
SOLUTIONS

No problem is ever permanently closed. Any comments, new
solutions, or new insights on old problems are always welcomed by
the editor.

6. Proposed by Curtis Cooper and Robert E. Kennedy, Central

Missouri State University, Warrensburg, Missouri.
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where log is the natural log and γ is Euler’s constant.

Solution by the proposers.

We start with the following lemma.
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= log 3− 2 +
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The next to last equality follows from

∫ ∞

1

u− [u]

u2
du = 1− γ [1]

and

∞
∑

n=1

(

1

n+ 1
−

1

n+ 1
3

)

= 2−
π

2
√
3
−

3

2
log 3 [2] .

To prove the result, we have by Euler’s summation formula [1]
that
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Next,
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Thus by the lemma,
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9. Proposed by Robert E. Shafer, Berkeley, California.

Let p be a prime. Prove that

(p−1)! ≡ (p+1)
(

1p−1+2p−1+3p−1+ · · ·+(p−1)p−1
)

(mod p2) .

Solution by Bob Prielipp, University of Wisconsin-Oshkosh,

Oshkosh, Wisconsin.

The problem as stated above is incorrect. Letting p = 2 yields

a counterexample. In the remainder of our solution we shall assume

that p is an odd prime number.
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We shall use the following known result. If p is an odd prime

number, then

(∗) 1p−1 + 2p−1 + · · ·+ (p− 1)p−1 ≡ p+ (p− 1)! (mod p2) .

[For a proof of (*), see exercise 5 and its solution on p. 211 of Sier-

pinski, Elementary Theory of Numbers, Hafner Publishing Com-

pany, New York, 1964.] We may now construct the following col-

lection of equivalent congruences.

(p− 1)! ≡ (p+ 1)(1p−1 + 2p−1 + · · ·+ (p− 1)p−1) (mod p2)

(p− 1)! ≡ (p+ 1)(p+ (p− 1)!) (mod p2) [by (∗)]

(p− 1)! ≡ p2 + p(p− 1)! + p+ (p− 1)! (mod p2)

p(p− 1)! ≡ −p (mod p2)

(p− 1)! ≡ −1 (mod p) .

But (p−1)! ≡ −1 (mod p) follows from Wilson’s Theorem so our

solution is complete.

Also solved by the proposer.

12. Proposed by Robert E. Shafer, Berkeley, California.

Evaluate
∫ 1

0

e1/log x dx ,

where log denotes the natural log.
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Solution by Mark Ashbaugh, University of Missouri, Colum-

bia, Missouri.

The integral evaluates to 2K1(2) ≈ .2797318 whereK1 denotes

one of the two standard modified Bessel functions of order 1. It

would be surprising though perhaps not impossible for there to be

a more elementary expression for the value of this integral.

Let I denote the given integral. Then under the substitution

t = −1/ logx it becomes

I =

∫ ∞

0

t−2e−(t+1/t) dt

=

∫ 1

0

t−2e−(t+1/t) dt+

∫ ∞

1

t−2e−(t1/t) dt .

Now change variables to s = 1/t in the first of these integrals to

arrive at

I =

∫ ∞

1

e−(s+1/s) ds+

∫ ∞

1

t−2e−(t+1/t) dt

=

∫ ∞

1

(1 + t−2)e−(t+1/t) dt .

Finally, put t = eu in this integral, obtaining

I = 2

∫ ∞

0

coshue−2 coshu du .

Since one of the standard integral representations for the modified

Bessel function Kν(z) is

Kν(z) =

∫ ∞

0

e−z cosh t cosh(νt) dt
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[Abramowitz and Stegun, p. 376, eq. 9.6.24] we can identify the

value of our integral as

I = 2K1(2)

= 2

[

γI1(2) +
1

2
−

∞
∑

n=0

Hn +Hn+1

n!(n+ 1)!

]

where γ ≈ .5772157 is Euler’s constant,

Hn ≡

n
∑

m=1

1

m

with the convention that H0 = 0, and I1 represents the other stan-

dard modified Bessel function of order 1 and thus, in particular,

I1(2) =

∞
∑

n=0

1

n!(n+ 1)!
.

In an analogous fashion one can show that the function I(a)

defined by the integral

I(a) =

∫ 1

0

ea/ log x dx for a > 0

is given by

I(a) = 2
√
aK1(2

√
a) .

The sequence of substitutions to be used is now t = −
√
a/ logx ,

s = 1/t , and t = eu .

Also solved by the proposer.
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