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Abstract. This paper is concerned with computable error bounds for asymptotic

approximations of the expected probabilities of misclassification (EPMC) of the qua-

dratic discriminant function Q. A location and scale mixture expression for Q is

given as a special case of a general discriminant function including the linear and

quadratic discriminant functions. Using the result, we provide computable error

bounds for asymptotic approximations of the EPMC of Q when both the sample

size and the dimensionality are large. The bounds are numerically explored. Similar

results are given for a quadratic discriminant function Q0 when the covariance matrix

is known.

1. Introduction

An important concern in discriminant analysis is the classification of a

p� 1 observation vector x as coming from one of two populations P1 and

P2. Let P i be p variate normal populations Npðmi;SÞ, where m1 0 m2 and S

is positive definite. Suppose that all the parameters are unknown. However,

Ni-samples are available from P i, i ¼ 1; 2. It is assumed that n ¼ N � 2 > 0,

where N ¼ N1 þN2. Then, there are two well-known discriminant proce-

dures. One is based on the linear discriminant function W , and the other is

based on the quadratic discriminant function Q. The usual linear discriminant

rule is to classify x as P1 or P2 according to W b 0 or W < 0. Similarly the

quadratic discriminant rule is defined by using Q.

These expected probabilities of misclassification (EPMC) have been

obtained under two asymptotic frameworks; one is a large-sample asymptotic

framework, and the other is a high-dimensional and large-sample asymptotic

framework. Asymptotic results under a large-sample asymptotic framework
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were reviewed by Siotani [9] and by McLachlan [8]. Fujikoshi and Seo [3]

derived asymptotic approximations of EPMC of a general discriminant function

Tg including W and Z under a high-dimensional and large-sample asymptotic

framework. Their extensions to asymptotic expansions were given in Fujikoshi

[1] for W . Matsumoto [7] extended the result due to Fujikoshi and Seo [3] to

an asymptotic expansion. For further results, see Hyodo and Kubokawa [6],

Tonda et al. [10], and Yamada et al. [12].

This paper is concerned with computable error bounds for asymptotic

approximations. These are based on a location and scale mixture of W ,

and use a general result on error bounds by Fujikoshi [1] and Fujikoshi and

Ulyanov [4]. We note that a location and scale mixture can be obtained

for a general discriminant function. These results will be useful for approx-

imating Tg and its error bound. However, such general problems will be

discussed in a future paper. Herein, we focus on the quadratic discriminant

function Q.

The remainder of the paper is organized as follows. In Section 2, we

provide preliminary results on a location and scale mixture of a normal dis-

tribution and its error bound, taking the linear discriminant function W as an

example. In Section 3, we derive a location and scale mixture expression of

a general discriminant function Tg including W and Q. It is noted that this

may be applied for approximations of a general discriminant function Tg and

its error bounds. However, in Section 4, details are discussed with respect

for the quadratic discriminant function Q. We provide computable error

bounds for high-dimensional and large-sample approximations for EPMC

of Q, including details of their numerical accuracy. As a special case, we

provide similar results for a quadratic discriminant function Q0 when the

covariance matrix is known.

2. Preliminaries

2.1. Discriminant functions. Suppose that we are interested in classifying a

p� 1 observation vector x as coming from one of two populations P1 and

P2. Let P i : Npðmi;SÞ ði ¼ 1; 2Þ be the two p variate normal populations,

where m1 0 m2 and S is positive definite. When the parameters are unknown,

we assume that random samples of sizes N1 and N2 are available from P1 and

P2, respectively. Let x1, x2 and S be the sample mean vectors and the sample

covariance matrix. It is assumed that n ¼ N � 2 > p, where N ¼ N1 þN2.

Then, a well-known linear discriminant function is defined by

W ¼ ðx1 � x2Þ0S�1 x� 1

2
ðx1 þ x2Þ

� �
: ð1Þ
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The observation x may be classified as P1 or P2 according to W b 0 or

W < 0.

In this paper, we consider classification of x using a quadratic discriminant

function Q defined by

Q ¼ 1

2
fð1þN�1

2 Þ�1ðx� x2Þ0S�1ðx� x2Þ

� ð1þN�1
1 Þ�1ðx� x1Þ0S�1ðx� x1Þg:

ð2Þ

The observation x may be classified to P1 or P2 according to Qb 0 or

Q < 0. The discriminant functions W and Q may be considered as special

cases of a general discriminant function defined by

Tg ¼
1

2
fðx� x2Þ0S�1ðx� x2Þ � gðx� x1Þ0S�1ðx� x1Þg; ð3Þ

where g is a positive number. The observation x may be classified to P1

or P2 according to Tg b 0 or Tg < 0. Then, it holds that

T1 ¼ W ; Ta ¼ ð1þN�1
2 ÞQ; ð4Þ

where a ¼ ð1þN�1
2 Þ=ð1þN�1

1 Þ.

2.2. Error bounds for location and scale mixture variable. Error estimates for

asymptotic approximations of W have been studied by using its location and

scale mixture of the standardized normal distribution. In general, a random

variable Y is called a location and scale mixture of the standardized normal

distribution, if Y is expressed as

Y ¼ V 1=2Z �U ; ð5Þ

where Z@Nð0; 1Þ, Z and ðU ;VÞ are independent, and V > 0. It is known

(see Fujikoshi [1]) that the linear discriminant function W can be expressed as

a location and scale mixture of the standardized normal distribution. In fact,

when x comes from P1, the variables ðZ;U ;VÞ may be defined as

V ¼ ðx1 � x2Þ0S�1SS�1ðx1 � x2Þ;

Z ¼ V�1=2ðx1 � x2Þ0S�1ðx� m1Þ;

U ¼ ðx1 � x2Þ0S�1ðx1 � m1Þ �
1

2
D2;

ð6Þ

where D ¼ fðx1 � x2Þ0S�1ðx1 � x2Þg1=2 is the sample Mahalanobis distance

between two populations. Since Z@Nð0; 1Þ and is independent of ðU ;VÞ,
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we have

PrfY a yg ¼ EðU ;VÞ½FfV�1=2ðyþUÞg�: ð7Þ

From (7), we have an approximation Ffv�1=2
0 ðyþ u0Þg for the distribution

function of Y , where ðu0; v0Þ is a given point in the range space of ðU ;VÞ.
Then the following bound was given by Fujikoshi [1].

Theorem 1. Let Y be a location and scale mixture of Z in (5). Let

ðu0; v0Þ be any given point in the range space of ðU ;VÞ. Assume that

EðU 2Þ < y and EðV 2Þ < y. Then

jPrfY a yg �Fð~yyÞjaB0 þ B1; ð8Þ

where ~yy ¼ v
�1=2
0 ðyþ u0Þ, and

B0 ¼
1

2
ffiffiffiffiffiffiffiffi
2pe

p v�1
0 E½ðU � u0Þ2� þ

1

2
v�2
0 E½ðV � v0Þ2�

þ 1

2
ffiffiffiffiffiffi
2p

p v
�3=2
0 fE½ðU � u0Þ2�E½ðV � v0Þ2�g1=2;

B1 ¼
1ffiffiffiffiffiffi
2p

p v
�1=2
0 jEðU � u0Þj þ

1

2
ffiffiffiffiffiffiffiffi
2pe

p v�1
0 jEðV � v0Þj:

Corollary 1. Under Theorem 1, assume that u0 ¼ EðUÞ, and v0 ¼ EðVÞ.
Then

jPrfY a yg �Fð~yyÞjaB0; ð9Þ

where ~yy ¼ v
�1=2
0 ðyþ u0Þ, and

B0 ¼
1

2
ffiffiffiffiffiffiffiffi
2pe

p v�1
0 VarðUÞ þ 1

2
v�2
0 VarðVÞ

þ 1

2
ffiffiffiffiffiffi
2p

p v
�3=2
0 fVarðUÞ VarðVÞg1=2:

3. Location and scale mixture for a general discriminant function

In this section we express a general discriminant function Tg as a location

and scale mixture. Note that Tg can be expressed as

Tg ¼
1

2
f� ffiffiffi

g
p ðx� x1Þ þ x� x2g0

S�1f ffiffiffi
g

p ðx� x1Þ þ x� x2g

¼ 1

2
b1b2t

0
1B

�1t2:

ð10Þ
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Here

t1 ¼ b�1
1 S�1=2fð1� ffiffiffi

g
p Þxþ ffiffiffi

g
p

x1 � x2g;

t2 ¼ b�1
2 S�1=2fð1þ ffiffiffi

g
p Þx� ffiffiffi

g
p

x1 � x2g;

B ¼ S�1=2SS�1=2;

ð11Þ

and

b1 ¼ f1þN�1
2 � 2

ffiffiffi
g

p þ gð1þN�1
1 Þg1=2;

b2 ¼ f1þN�1
2 þ 2

ffiffiffi
g

p þ gð1þN�1
1 Þg1=2:

Note that B obeys the Wishart distribution Wpðn; IpÞ, and is independent of

t1 and t2. Suppose that x belongs to P1. Then, it holds that

ti @Npðb�1
i d; IpÞ; i ¼ 1; 2; ð12Þ

where d ¼ S�1=2ðm1 � m2Þ. In general, t1 and t2 are not independent and their

covariance matrix is computed as

Covðt1; t2Þ ¼ b0ðb1b2Þ�1Ip;

where b0 ¼ 1þN�1
2 � gð1þN�1

1 Þ. Therefor, t1 and t2 are independent if and

only if

g ¼ ð1þN�1
1 Þ�1ð1þN�1

2 Þ1 a; ð13Þ

i.e., Ta ¼ ð1þN�1
2 ÞQ.

To express Tg as a location and scale mixture, let us consider a trans-

formed variate ~tt2 of t2 defined by

~tt2 ¼ b
�1=2
3 t2 �

1

b2
d� b0

b1b2
t1 �

1

b1
d

� �� �
; ð14Þ

where b3 ¼ ½1� fb0=ðb1b2Þg2�1=2. Then, ~tt2 is independent of t1, since t1 and
~tt2 are normal and Covðt1; ~tt2Þ ¼ O. We can write Tg in terms of t1, ~tt2 and

B as

Tg ¼
1

2
b1b2t

0
1B

�1t2

¼ 1

2
b1b2t

0
1B

�1 b3~tt2 þ
b0

b1b2
t1 �

1

b1
d

� �� �
ð15Þ

¼ 1

2
b1b2b3fV 1=2Z �Ug;
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where

Z ¼ ðt 01B�2t1Þ�1=2t 01B
�1ð~tt2 � b�1

2 dÞ;

U ¼ b�1
3 � b0

b1b2
t 01B

�1t1 þ
1

b2

b0

b21
� 1

� �
t 01B

�1d

� �
;

V ¼ t 01B
�2t1:

ð16Þ

It is observed that Z@Nð0; 1Þ, and is independent of ðU ;VÞ. These imply

the following Theorem.

Theorem 2. Let Tg be a general discriminant function defined by (3) based

on Ni samples from P i : Npðmi;SÞ, i ¼ 1; 2. Then, Tg can be expressed as

a location and scale mixture. More precisely, when x belongs to P1, we can

express as

Tg ¼
1

2
b1b2b3fV 1=2Z �Ug; ð17Þ

where Z, U and V are given by (16).

As a special case of Lemma 2, we have a location and scale expres-

sion of W . Note that the expression is di¤erent from that in (6). Similarly,

we have a location and scale expression of Q as a special case of g ¼
ð1þN�1

1 Þ�1ð1þN�1
2 Þ whose result is essentially the same as that obtained

by Yamada et al. [12].

Using Theorem 1 and Theorem 2, approximations for a general discrim-

inant function Tg and its error bound can be obtained. It is interesting to

study how the error bound depends on g. However, such results are beyond

the scope of the current paper. In the next section, we focus on results for

the quadratic discriminant function Q.

4. Approximations for EPMC of Q and error bounds

In this section we discuss approximations for the quadratic discrim-

inant function Q which is given as a general discriminant function with

g ¼ a ¼ ð1þN�1
1 Þ�1ð1þN�1

2 Þ. Noting that b3 ¼ 1, from Theorem 2 we

have

Q ¼ ð1þN�1
2 Þ�1

Ta ¼
1

2
ð1þN�1

2 Þ�1
b1b2t

0
1B

�1t2; ð18Þ

where
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t1 ¼ b�1
1 S�1=2fð�

ffiffiffi
a

p
þ 1Þxþ

ffiffiffi
a

p
x1 � x2g;

t2 ¼ b�1
2 S�1=2fð

ffiffiffi
a

p
þ 1Þx�

ffiffiffi
a

p
x1 � x2g;

B ¼ S�1=2SS�1=2;

ð19Þ

and

b1 ¼
ffiffiffi
2

p
f1þN�1

2 �
ffiffiffi
a

p
g1=2; b2 ¼

ffiffiffi
2

p
f1þN�1

2 þ
ffiffiffi
a

p
g1=2: ð20Þ

Suppose that x belongs to P1, i.e., x@Npðm1;SÞ. Then, ti @Npðb�1
i d; IpÞ,

i ¼ 1; 2, nB@Wpðn; IpÞ, and t1, t2 and B are independent. Further, using

Theorem 2, we have

Q ¼ bfV 1=2Z �Ug; ð21Þ

where

Z ¼ ðt1B�2t1Þ�1=2t 01B
�1ðt2 � b�1

2 dÞ;

U ¼ c1g
0B�1t1; V ¼ t 01B

�2t1:
ð22Þ

Here,

b ¼ ½ð1þN�1Þ=fð1þN�1
1 Þð1þN�1

2 Þg�1=2c2;

c1 ¼ �b1b
�1
2 ; c2 ¼ fN=ðN1N2Þg1=2;

g ¼ b�1
1 d; t2 ¼ g 0g ¼ b�2

1 D2:

ð23Þ

Note that ðU ;VÞ’s in (22) and in (17) with g ¼ a are the same.

In general, the Q-rule with a cuto¤ point 0 classifies x as P1 if Q > 0 and

P2 if Q < 0. Then, there are two types of probability of misclassification.

One is the probability of allocating x into P2 even though it actually belongs

to P1. The other is the probability that x is classified as P1 although it

actually belongs to P2. These two types of expected probabilities of mis-

classification (EPMC) for the Q-rule are expressed as

eQð2j1Þ ¼ PrðQ < 0 j x A P1Þ and eQð1j2Þ ¼ PrðQ > 0 j x A P2Þ:

As is well known, the distribution of Q when x A P1 is the same as that of

�Q when x A P2 by interchanging N1 and N2. This indicates that eQð1j2Þ
(or eQð1j2Þ) is obtained from eQð2j1Þ (or eQð2j1Þ) by replacing ðN1;N2Þ with

ðN2;N1Þ. Thus, in this paper, we only deal with eQð2j1Þ. Then, we have the

following expression:
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eQð2j1Þ ¼ PrfbðV 1=2Z �UÞ < 0g

¼ EðU ;VÞfFðV�1=2UÞg:
ð24Þ

Next in the following we choose the range point ðu0; v0Þ of ðU ;VÞ
as

u0 ¼ EðUÞ; v0 ¼ EðVÞ: ð25Þ

Consider approximating eQð2j1Þ by Fðv�1=2
0 u0Þ. For use of Theorem 1, the

means and variances of U and V in (27) are required, and are given in the

following Lemma:

Lemma 1. Let U and V be the random variables defined by (22). Then

their means and variances are given as follows:

EðUÞ ¼ nc1t
2

m� 1
; m > 1;

VarðUÞ ¼ ðnc1Þ2t2
ðm� 1Þðm� 3Þ

n� 1

m
þ 2t2

m� 1

� �
; m > 3;

EðVÞ ¼ n2ðn� 1Þðpþ t2Þ
mðm� 1Þðm� 3Þ ; m > 3;

VarðVÞ ¼ n4ðn� 1Þ
mðm� 1Þðm� 3Þ

�
2ðn� 3Þðpþ 2t2Þ

ðm� 2Þðm� 5Þðm� 7Þ

þ ðpþ t2Þ2 n� 3

ðm� 2Þðm� 5Þðm� 7Þ �
n� 1

mðm� 1Þðm� 3Þ

� �
;

m > 7;

ð26Þ

where c1 is given by (23), m ¼ n� p, and t2 ¼ b�2
1 D2.

Proof. The random variables U and V are expressed as

U ¼ nc1g
0A�1t1; V ¼ n2t 01A

�2t1; ð27Þ

where A ¼ nB. Note that t1 @Npðg; IpÞ, A@Wpðn; IpÞ, and t1 and A are

independent. The results are obtained by using the following distributional

expressions (see, e.g., Fujikoshi [2], Yamada et al. [11]):

g 0A�1t1 ¼ tY �1
1 fZ1 þ t� ðY2=Y3Þ1=2Z2g;

t 01A
�2t1 ¼ Y �2

1 ð1þ Y2Y
�1
3 ÞfðZ1 þ tÞ2 þ Z2

2 þ Y4g:
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Here, Yi @ w2fi , i ¼ 1; . . . ; 4; Zi @Nð0; 1Þ, i ¼ 1; 2; and

f1 ¼ mþ 1; f2 ¼ p� 1; f3 ¼ mþ 2; f4 ¼ p� 2:

Further, all the variables Y1, Y2, Y3, Y4, Z1 and Z2 are independent.

Let us consider an approximation

eQð2j1Þ@Fðy0Þ; y0 ¼ v
�1=2
0 u0; ð28Þ

where u0 ¼ EðUÞ and v0 ¼ EðVÞ. Applying Corollary 1 to this approxima-

tion, we have the following result.

Theorem 3. Let u0 and v0 be defined as u0 ¼ EðUÞ and v0 ¼ EðVÞ, which
are given in (26), and y0 ¼ v

�1=2
0 u0. Then, if m ¼ N1 þN2 � p� 2 > 7,

jeQð2j1Þ �Fðy0ÞjaB0; ð29Þ

where

B0 ¼
1

2
ffiffiffiffiffiffiffiffi
2pe

p v�1
0 VU þ 1

2
v�2
0 VV þ 1

2
ffiffiffiffiffiffi
2p

p v
�3=2
0 fVUVVg1=2; ð30Þ

where VU ¼ VarðUÞ and VV ¼ VarðVÞ are given by (26).

Now, let us consider a high-dimensional and large-sample asymptotic

framework given by

ðAFÞ: p=Ni ! hi > 0; i ¼ 1; 2; D2 ¼ Oð1Þ: ð31Þ

Then, under (AF), from Theorem 3 we have

B0 ¼ O1; and eQð2j1Þ ¼ Fðy0Þ þO1; ð32Þ

where Oj denotes the term of the jth order with respect to ðN�1
1 ;N�1

2 ; p�1Þ.
Hitherto, various approximation errors have been formally stated without

rigorous proofs. However, by virture of Theorem 3, our result (32) is based

on a rigorous proof.

When S is known, we use the quadratic discriminant function Q0 defined

by

Q0 ¼
1

2
fð1þN�1

2 Þ�1ðx� x2Þ0S�1ðx� x2Þ

� ð1þN�1
1 Þ�1ðx� x1Þ0S�1ðx� x1Þg:

ð33Þ

Assume that x belongs to P1, i.e., x@Npðm1;SÞ. Then, we can write Q0

as

Q0 ¼ bfV 1=2
0 Z0 �U0g: ð34Þ
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Here, ðZ0;U0;V0Þ is defined from ðZ;U ;VÞ by putting B ¼ Ip, that is,

Z0 ¼ ðt1t1Þ�1=2t 01ðt2 � b�1
2 dÞ; U0 ¼ c1g

0t1; V0 ¼ t 01t1; ð35Þ

and the constants b, c1 and c2 are the same ones as in (23). The conditional

distribution of Z0 given t1 is Nð0; 1Þ. Therefore, Z0 @Nð0; 1Þ, and Z0 is in-

dependent of t1. This implies that Q0=b is a location and scale mixture of

Nð0; 1Þ. Note that the marginal distributions of ðU0;V0Þ may be expressed as

U0 ¼ c1ðtX þ t2Þ; V0 ¼ w2pðt2Þ;

where X is the Nð0; 1Þ variable. Using these distributional results, the means

and variances of U0 and V0 are obtained as follows:

EðU0Þ ¼ c1t
2; VarðU0Þ ¼ c21t

2;

EðV0Þ ¼ pþ t2; VarðV0Þ ¼ ðpþ 2t2Þ:
ð36Þ

Theorem 4. Let ~uu0 and ~vv0 be defined as ~uu0 ¼ EðU0Þ and ~vv0 ¼ EðV0Þ, which
are given in (36). Consider the error probability eQ0

ð2j1Þ ¼ PrðQ0 < 0 j x A P1Þ.
Then, we have

jeQ0
ð2j1Þ �Fð~yy0Þja ~BB0; ð37Þ

where ~yy0 ¼ ~vv
�1=2
0 ~uu0, and

~BB0 ¼
1

2
ffiffiffiffiffiffiffiffi
2pe

p ~vv�1
0 VU0

þ 1

2
~vv�2
0 VV0

þ 1

2
ffiffiffiffiffiffi
2p

p ~vv
�3=2
0 fVU0

VV0
g1=2: ð38Þ

Here, VU0
¼ VarðU0Þ, VV0

¼ VarðV0Þ, and they are given by (36).

We provide numerical values for the upper bounds B0 in (30) and ~BB0 in

(38) in Tables 4.1 and 4.2. Table 4.1 pertains to the case where D ¼ 1:68, and

Table 4.2 to the case where D ¼ 2:56. As a matter of course, the bounds will

be smaller as D becomes larger. Similarly, the bounds when the covariance

matrix is known are smaller in comparison to those when the covariance matrix

is unknown. The bounds will be useful for moderate values as well as large

values of p and for large values of N1 and N2 except for the case where

m ¼ N1 þN2 � p� 2 is small, though their accuracy depends on whether the

covariance matrix is known or unknown.
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