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Abstract. In this article, we introduce the space of formal power series of class M
of Roumieu (resp., Beurling) type, which is the generalization of the space of entire

functions of normal (resp., minimal) type with respect to a proximate order. And we

characterize continuous endomorphisms of these spaces.

1. Introduction

In [3] and [4], R. Ishimura proved that any continuous endomorphism of

the sheaf or stalks of holomorphic functions has been characterized as a par-

tial di¤erential operator with holomorphic coe‰cients of infinite order. In [5],

R. Ishimura tried to solve the characterization problem of continuous endo-

morphism for the case of space of entire functions of normal type with respect

to a proximate order.

Recently, in [1], Aoki, Ishimura, Okada, Struppa, and Uchida charac-

terized continuous endomorphism of the spaces of entire functions of normal

type and minimal type with respect to a given order. Furthermore, in [2], they

generalized these conclusions to the case of proximate order.

In the present paper, we introduce the spaces of formal power series of

class M of Roumieu type and of Beurling type. The idea of M is from [8],

so are the name of Roumieu type and of Beurling type. It turns out that these

two spaces are more general than all the spaces referred above. We char-

acterize continuous endomorphisms of these spaces. As an application of our

main results, we extend the theorems of [2].

2. Preliminary

In this article, we employ the same notations as [6]: for a point z :¼
ðz1; . . . ; znÞ A Cn and for multi-indexes a ¼ ða1; . . . ; anÞ, b ¼ ðb1; . . . ; bnÞ A Nn
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with N :¼ f0; 1; 2; . . .g, we set

jzj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2 þ � � � þ jznj2

q
; qa :¼ qa

z :¼ qjaj

qza11 . . . qzann
;

~jzjjzj :¼ ðjz1j; . . . ; jznjÞ; jaj :¼ a1 þ � � � þ an;

a! :¼ a1! . . . an!; a� b :¼ ða1 � b1; . . . ; an � bnÞ;

a

b

� �
:¼ a!

ða� bÞ!b! ¼
a1

b1

� �
. . .

an

bn

� �
; ab :¼ a

b1
1 . . . abn

n :

Let M :¼ ðMaÞa AN n be a sequence of positive real numbers with the following

property:

(M1) There exist C; t > 1 such that for all a; b A Nn, we have

max
Maþb
MaMb

;
MaMb

Maþb

� �
cCtjaþbj:

We take a constant t > 1 that satisfies (M1) and fix it in the sequel.

Remark 1. Observe that

( i ) if p A R and ðMaÞa AN n satisfies (M1), then so does ððMaÞpÞa AN n ;

(ii) if both of ðMaÞa AN n and ðM 0
aÞa AN n satisfy (M1), then so does

ðMaM
0
aÞa AN n .

Definition 1. Suppose that f ðzÞ :¼
P

a AN n faz
a, r > 0, and that the

sequence M satisfies (M1). We define a subspace of the space of formal

power series:

BM
r :¼ f ðzÞ A C½½z��

���� k f ðzÞkr :¼ sup
a AN n

j faj
Ma

rjaj
< y

� �
;

which is a Banach space with norm k � kr. Now we consider the space of

formal power series of class M of Roumieu type

FfMg :¼ lim�!
r!y

BM
r ;

and the space of formal power series of class M of Beurling type

FðMÞ :¼ lim �
r!0

BM
r :

We have that FfMg (resp., FðMÞ) is a (DFS)-space (resp., an (FS)-space),

as the following lemma.
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Lemma 1. If 0 < s < r, then the inclusion mapping BM
s ,! BM

r is

compact.

Proof. Set B :¼ f f A BM
s : k f ks c 1g. We need to show that the set B

is relatively compact in BM
r . Suppose f jðzÞ A B for all j A N, where f jðzÞ :¼P

a AN n f j
a z

a. It su‰ces to show that there exists an accumulation point

f ðzÞ :¼
P

a AN n faz
a of the sequence ð f jðzÞÞj in BM

r .

First, we construct this f ðzÞ. For each a A Nn, we have

j f j
a jc k f jðzÞks

sjaj

Ma
c

sjaj

Ma
ð2:1Þ

whenever j A N. Thus, there exists a subsequence ðk0ð jÞÞj of N such that

f
k0ð jÞ
0 ! f0 as j !y. For the same reason, there exists a subsequence

ðk1ð jÞÞj of the sequence ðk0ð jÞÞj such that for each jaj ¼ 1, we have

f
kjajð jÞ
a ! fa as j !y. Repeating this process, we obtain fa for each

a A N. Set f ðzÞ :¼
P

a AN n faz
a.

Now we show that for any e > 0, there exists a subsequence kð jÞ of

N such that k f kð jÞðzÞ � f ðzÞkr c e whenever j A N. Since r > s, there exists

N > 0 such that

s

r

� �jaj
<

e

4

whenever jaj > N. In view of (2.1), we have j fajc sjaj=Ma for all a A N,

which implies that k f ðzÞks c 1. Thus, for all j A N, we have that

X
jaj>N

ð f j
a � faÞza

������
������
r

¼ sup
jaj>N

j f j
a � faj

Ma

rjaj

c sup
jaj>N

j f j
a j

Ma

sjaj
s

r

� �jaj
þ sup
jaj>N

j faj
Ma

sjaj
s

r

� �jaj

c k f jðzÞks
e

4
þ k f ðzÞks

e

4
c

e

2
: ð2:2Þ

On the other hand, by the construction of the sequence ðkNð jÞÞj, there exists

J A N such that

j f kN ð jÞ
a � fajc

e

2
min
jbjcN

rjbj

Mb
ð2:3Þ

whenever j > J and jajcN. By (2.2) and (2.3), we have
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k f kN ð jÞðzÞ � f ðzÞkr ¼
X
jajd0

ð f kN ð jÞ
a � faÞza

������
������
r

c
X
jajcN

ð f kN ð jÞ
a � faÞza

������
������
r

þ
X
jaj>N

ð f kN ð jÞ
a � faÞza

������
������
r

c max
jajcN

e

2
min
jbjcN

rjbj

Mb

� �
Ma

rjaj
þ e

2
¼ e

whenever j > J. Therefore, we see that f ðzÞ is an accumulation point of the

sequence ð f jðzÞÞj in BM
r , as desired.

By the definitions of FfMg and FðMÞ, we have the following propositions

immediately.

Proposition 1. Suppose that f ðzÞ ¼
P

a AN n faz
a is a formal power

series.

(1) f ðzÞ belongs to FfMg if and only if we have that

lim sup
jaj!y

ðj fajMaÞ1=jaj < y:

(2) f ðzÞ belongs to FðMÞ if and only if we have that

lim sup
jaj!y

ðj fajMaÞ1=jaj ¼ 0:

By the binomial theorem, for all a; b A Nn, we have

1c
ðaþ bÞ!
a!b!

¼ aþ b

a

� �
c

X
lcaþb

aþ b

l

� �
¼ 2jaþbj;

which means that ða!Þa AN n satisfies (M1). By Remark 1 (i), in the following

cases, the sequence ðMaÞa AN n satisfies (M1):

(1) Ma :¼ ða!Þ1=r, where r > 0. In this case, the spaces FfMg and FðMÞ

coincide with the spaces studied in [1] (in the sense of topological

space), respectively.

(2) Ma :¼ Ajaj, where Ajaj is given by (6.1). In this case, which is the

generalization of (1), the spaces FfMg and FðMÞ coincide with the

spaces studied in [2] (in the sense of topological space), respectively.

In the end of this paper, we will take a close look at this case as

an application of our main results.

(3) Ma :¼ ða!Þp, where p < 0. This case was first considered by R.

Ishimura and studied by S. Tatemichi.
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3. Formal theory

The set of all formal di¤erential operators of the form

P :¼ Pðz; qzÞ :¼
X
a AN n

aaðzÞqa
z ð3:1Þ

is denoted by D, where aaðzÞ A C½½z��. For any f ðzÞ A C½½z�� and n A Nn, we

set qn
z¼0 f ðzÞ :¼ qn

z f ð0Þ. The set of all formal di¤erential operators of the form

(in the sequel, we assume Q has the following form)

Q :¼ Qðz; qz¼0Þ :¼
X
n AN n

bnðzÞqn
z¼0

is denoted by L, where bnðzÞ A C½½z��. We define the mapping I by

I : D!L;

P 7! Q :¼
X
n AN n

P
zn

n!

� �
qn
z¼0:

In what follows, we always assume aaðzÞ and bnðzÞ have the form:

aaðzÞ :¼
X
b AN n

ab
a z

b and bnðzÞ :¼
X
m AN n

bm
n z

m:

Lemma 2. Let P A D and Q A L. Then the following statements are

equivalent:

(1) IðPÞ ¼ Q;

(2) For all n A Nn, we have

bnðzÞ ¼ P
zn

n!

� �
¼
X
acn

zn�a

ðn� aÞ! aaðzÞ;

(3) For all a A Nn, we have

aaðzÞ ¼
X
nca

ð�zÞa�n

ða� nÞ! bnðzÞ;

(4) For all n; m A Nn, we have

bm
n ¼

X
lcn
lcm

a
m�l
n�l
l!

;
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(5) For all n; m A Nn, we have

am
n ¼

X
lcn
lcm

ð�1Þl

l!
b
m�l
n�l :

Consequently, the mapping I : D!L is bijective.

Proof. By the definition of the mapping I , we see (1) is equivalent

to (2). Hence, for each n A Nn, we have

X
m AN n

bm
n z

m ¼ bnðzÞ ¼
X
acn

zn�a

ðn� aÞ! aaðzÞ

¼
X
acn

X
b AN n

zn�a

ðn� aÞ! a
b
a z

b

¼
X
lcn

X
b AN n

a
b
n�l
l!

zbþl ¼
X
lcn

X
m AN n

X
lcm

a
m�l
n�l
l!

zm;

where l :¼ n� a and m :¼ b þ l. Thus, (2) is equivalent to (4). By the same

process, we see (3) is equivalent to (5).

To see (2) implies (3), observe that for each g < a, we have

X
gcnca

ð�1Þja�nj

ða� nÞ!ðn� gÞ! ¼
1

ða� gÞ!
X

gcnca

a� g

a� n

� �
ð�1Þja�nj ¼ 0:

Thus, for each a A Nn, we have

X
nca

ð�zÞa�n

ða� nÞ! bnðzÞ ¼
X
nca

ð�zÞa�n

ða� nÞ!
X
gcn

zn�g

ðn� gÞ! agðzÞ

¼
X
gca

za�gagðzÞ
X

gcnca

ð�1Þja�nj

ða� nÞ!ðn� gÞ! ¼ aaðzÞ;

as required. By the same process, we see (3) implies (2).

In (2), we see that bnðzÞ A C½½z�� whenever aaðzÞ A C½½z��. Thus, the

mapping I : D!L is well-defined. For the similar reason, (3) yields that

the mapping I is surjective. Finally, (5) implies that the mapping I is injective.

For any P A D and f ðzÞ :¼
P

n AN n fnz
n A C½½z��, we have formally

Pf ¼
X
a AN n

aaðzÞqa
z f ðzÞ

¼
X
a AN n

X
b AN n

ab
a z

b

 ! X
nda

fn
n!

ðn� aÞ! z
n�a

 !
¼
X
a AN n

caðzÞ;
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where

caðzÞ :¼
X
m AN n

X
bþn�a¼m

nda

ab
a

n!

ðn� aÞ! fn

0
B@

1
CAzm:

For each a A Nn, caðzÞ is a formal power series. However, for each m A Nn,

the sum of the coe‰cients of zm in the series
P

a AN n caðzÞ is not necessarily

convergent. So we need the following definition to ensure that Pf is not

ambiguous.

Definition 2. Suppose P A D and f ðzÞ :¼
P

n AN n fnz
n A C½½z��. We say

P is formally well-defined at f provided that for all m A Nn, we have

X
n AN n

X
lcn
lcm

a
m�l
n�l

n!

l!
fn

����
���� < y:

Let S be a subset of C½½z��. We say P is formally well-defined on S if P is

formally well-defined at any f A S.

Proposition 2. If P is formally well-defined at f , then Pf ¼ IðPÞ f A
C½½z��.

Proof. Since P is formally well-defined at f , by Lemma 2, there exists

Q A L such that Q ¼ IðPÞ, and for all m A Nn, we have that

X
n AN n

jbm
n n! fnjc

X
n AN n

X
lcn
lcm

a
m�l
n�l

n!

l!
fn

����
���� < y;

which implies that the series
P

n AN n bm
n n! fn is absolutely convergent. Hence,

setting l :¼ n� a and m :¼ b þ l, we obtain that

Pf ¼
X
a AN n

X
m AN n

X
bþn�a¼m

ab
a

n!

ðn� aÞ! fn

 !
zm

 !

¼
X
m AN n

X
n AN n

X
lcn
lcm

a
m�l
n�l

n!

l!

0
BB@

1
CCA fn

0
BB@

1
CCAzm

¼
X
m AN n

X
n AN n

bm
n n! fn

 !
zm

¼
X
n AN n

bnðzÞn! fn ¼
X
n AN n

bnðzÞqn
z f ð0Þ ¼ IðPÞ f :
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It follows that IðPÞ f A C½½z�� from the convergence of the seriesP
n AN n

bm
n n! fn.

4. Continuous endomorphisms of FfMg

Definition 3. Let M� :¼ ðM �
a Þa AN n , where M �

a :¼ a!=Ma. A di¤erential

operator P A D is of class fM�g (resp., of class ðM�Þ) provided that for any

e > 0, there exist C; r > 0 (resp., for any r > 0, there exist C; e > 0) such that

kaaðzÞkr cC
ejaj

M �
a

for all a A Nn. The set of all di¤erential operators of class fM�g (resp., of

class ðM�Þ) is denoted by DfM
�g (resp., DðM

�Þ). For convenience, we also

set

LfM�g :¼
�
Q A L

���� for any e > 0; there exist C; r > 0 such that

kbnðzÞkr cC
ejnj

M �
n

for all n A Nn

�
;

LðM�Þ :¼
�
Q A L

���� for any e > 0; there exist C; r > 0 such that

kbnðzÞke cC
rjnj

M �
n

for all n A Nn

�
:

Lemma 3. There exists C > 0 such that for all b A Nn, r > 0 and

f A C½½z��, we have

k f ðzÞzbkrt cCk f ðzÞkr �
Mb

rjbj
:

Proof. By (M1), there exists C > 0 such that for all b A Nn, r > 0 and

f A C½½z��, we have that

k f ðzÞzbkrt ¼
X
a AN n

faz
aþb

�����
�����
rt

¼ sup
a AN n

j faj
Maþb

ðrtÞjaþbj

c sup
a AN n

j faj
Ma

rjaþbj
� sup
a AN n

Maþb
Ma

1

t

� �jaþbj
cCk f ðzÞkr �

Mb

rjbj
;

as desired.
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By the following proposition, we see that the mapping I : DfM
�g !LfM �g

is bijective.

Proposition 3. P A DfM
�g if and only if IðPÞ A LfM�g.

Proof. (Necessity). For any e > 0, we choose some 0 < d < e=t. Since

P A DfM
�g, we have that there exist C1 > 0 and dþ 1=r < e=t such that

kaaðzÞkr cC1d
jajMa

a!

for all a A Nn. By Lemma 2 (2) and Lemma 3, we have that there exist

C1 < C2 < C3 < C such that

kbnðzÞkrt
n!

Mn
c
X
acn

n!

ðn� aÞ!Mn
kaaðzÞzn�akrt

c
X
acn

C2n!

ðn� aÞ!Mn
� kaaðzÞkr �

Mn�a
rjn�aj

c
X
acn

C3n!

ðn� aÞ!Mn
�Ma

a!
djaj �Mn�a

rjn�aj

cCtjnj
X
acn

n

a

� �
djaj

rjn�aj
¼ Ctjnj dþ 1

r

� �jnj
< Cejnj

for all n A Nn, which means IðPÞ A LfM �g.

(Su‰ciency). If IðPÞ A LfM�g, then Lemma 2 (3) holds. By the same

process as above, we have P A DfM
�g.

Let P A DfM
�g. To characterize continuous endomorphisms of FfMg, we

need to show that the definition of Pf is unambiguous for all f A FfMg.

Lemma 4. Every element of DfM
�g is formally well-defined on FfMg.

Proof. Suppose f ðzÞ :¼
P

n AN n fnz
n A FfMg. Then we have that there

exist C1; d > 1 such that

j fnjcC1
djnj

Mn

for all n A Nn. If P A DfM
�g, then we have that for any e > 0, there exist

C2; r > 1 such that

jab
a jcC2

Ma

a!Mb
ejajrjbj
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for all a; b A Nn. To see P is formally well-defined at f , we choose some e > 0

such that 0 < 2edt < 1. By Lemma 2 (4), there exist C > C3 > 0 such that for

all m A Nn, we have

X
n AN n

X
lcn
lcm

a
m�l
n�l

n!

l!
fn

����
����cC1C2

X
n AN n

X
lcn
lcm

Mn�l
ðn� lÞ!Mm�l

ejn�ljrjm�lj � n!
l!
� d
jnj

Mn

c
C1C2

Mm

r

e

� �jmjX
n AN n

ðedÞjnj
X
lcn
lcm

n

l

� �
Mn�lMl

Mn
� Mm

MlMm�l

c
C3

Mm

rt

e

� �jmjX
n AN n

ðedtÞjnj
X
lcn
lcm

n

l

� �

c
C3

Mm

rt

e

� �jmjX
n AN n

ð2edtÞjnjc C

Mm

rt

e

� �jmj
< y;

as desired.

Theorem 1 (Main Result 1). If P A DfM
�g or IðPÞ A LfM �g, then

P : FfMg !FfMg is a continuous endomorphism.

Conversely, if F : FfMg !FfMg is a continuous linear operator, then we

have

(1) there exists a unique P A DfM
�g such that Ff ¼ Pf for all f A FfMg,

(2) there exists a unique Q A LfM �g such that Ff ¼ Qf for all f A FfMg.

Proof. In view of Proposition 3, we may assume both of P A DfM
�g

and IðPÞ A LfM �g hold. For any d > 0, we choose some 0 < e < 1=d. By

Lemma 4 and Proposition 2, we have that there exist h > 0 and C > C1 > 0

such that

kPf kh ¼ kIðPÞ f kh c
X
n AN n

kbnðzÞqn
z f ð0Þkh

c
X
n AN n

kbnðzÞkhn!j fnj

c
X
n AN n

C1e
jnjMn

n!
� n! � k f ðzÞkd

djnj

Mn
cCk f ðzÞkd

for all f A FfMg.

To see the converse part, in view of Proposition 3, Lemma 4, and

Proposition 2, it su‰ces to show (2). Since FðznÞ A C½½z�� for all n A Nn,
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we have

Q :¼
X
n AN n

F
zn

n!

� �
qn
z¼0 A L:

Hence, for any f A FfMg, we have

Ff ¼
X
n AN n

fnF ðznÞ ¼
X
n AN n

F
zn

n!

� �
qn
z f ð0Þ ¼ Qf :

It is obvious that Q A L is unique.

Finally, we show Q A LfM�g. For any e > 0, we choose some h > 1=e.

By the continuity of F , we have that there exist r > h and C > 0 such that

F
zn

n!

� �����
����
r

c
C

n!
kznkh ¼

C

n!
�Mn

hjnj
cC

ejnj

M �
n

for all n A Nn, which implies Q A LfM �g.

5. Continuous endomorphisms of FðMÞ

By the following proposition, we see that the mapping I : DðM
�Þ !LðM�Þ

is bijective.

Proposition 4. P A DðM
�Þ if and only if IðPÞ A LðM �Þ.

Proof. (Necessity). Since P A DðM
�Þ, we have that for any e > 0, there

exist C1; d > 0 such that

kaaðzÞke=t cC1d
jajMa

a!

for all a A Nn. Thus, by Lemma 2 (2) and Lemma 3, we have that there exist

C1 < C2 < C3 < C such that

kbnðzÞke
n!

Mn
c
X
acn

n!

ðn� aÞ!Mn
kaaðzÞzn�ake

c
X
acn

C2n!

ðn� aÞ!Mn
� kaaðzÞke=t �

Mn�a

ðe=tÞjn�aj

c
X
acn

C3n!

ðn� aÞ!Mn
�Ma

a!
djaj �Mn�a

t

e

� �jn�aj

cCtjnj
X
acn

n

a

� �
djaj

t

e

� �jn�aj
¼ Ctjnj dþ t

e

� �jnj

for all n A Nn, which means IðPÞ A LðM �Þ.
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(Su‰ciency). If IðPÞ A LðM �Þ, then Lemma 2 (3) holds. By the same

process as above, we have P A DðM
�Þ.

Let P A DðM
�Þ. To characterize continuous endomorphisms of FðMÞ, we

need to show that the definition of Pf is unambiguous for all f A FðMÞ.

Lemma 5. Every element of DðM
�Þ is formally well-defined on FðMÞ.

Proof. If P A DðM
�Þ, then we have that for any 0 < e < 1, there exist

C2; r > 0 such that

jab
a jcC2

Ma

a!Mb
rjajejbj

for all a; b A Nn. If f ðzÞ :¼
P

n AN n fnz
n A FðMÞ, then we have that for any

d > 0, there exists C1 > 0 such that

j fnjcC1
djnj

Mn

for all n A Nn. To see P is formally well-defined at f , we choose some d > 0

such that 0 < dtð1þ rÞ < 1. By Lemma 2 (4), there exist C > C3 > 0 such that

for all m A Nn, we have

X
n AN n

X
lcn
lcm

a
m�l
n�l

n!

l!
fn

����
����cC1C2

X
n AN n

X
lcn
lcm

Mn�l
ðn� lÞ!Mm�l

rjn�ljejm�lj � n!
l!
� d
jnj

Mn

c
C1C2

Mm

X
n AN n

djnj
X
lcn
lcm

n

l

� �
rjn�lj

Mn�lMl

Mn
� Mm

MlMm�l

c
C3t

jmj

Mm

X
n AN n

ðdtÞjnj
X
lcn
lcm

n

l

� �
rjn�lj

c
C3t

jmj

Mm

X
n AN n

ðdtð1þ rÞÞjnjc Ctjmj

Mm
< y;

as desired.

Theorem 2 (Main Result 2). If P A DðM
�Þ or IðPÞ A LðM �Þ, then

P : FðMÞ !FðMÞ is a continuous endomorphism.

Conversely, if F : FðMÞ !FðMÞ is a continuous linear operator, then we

have
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(1) there exists a unique P A DðM
�Þ such that Ff ¼ Pf for all f A FðMÞ,

(2) there exists a unique Q A LðM�Þ such that Ff ¼ Qf for all f A FðMÞ.

Proof. In view of Proposition 4, we may assume both of P A DðM
�Þ and

IðPÞ A LðM �Þ hold. By the definition of LðM �Þ, we have that for any e > 0,

there exist C1; r > 0 such that

kbnðzÞke cC1r
jnjMn

n!

for all n A Nn. We choose some 0 < d < 1=r. By Lemma 4 and Proposition

2, we have that there exist h > 0 and C > C1 such that

kPf ke ¼ kIðPÞ f ke c
X
n AN n

kbnðzÞqn
z f ð0Þke

c
X
n AN n

kbnðzÞken!j fnj

c
X
n AN n

C1r
jnjMn

n!
� n! � k f ðzÞkd

djnj

Mn
cCk f ðzÞkd

for all f A FðMÞ.

To see the converse part, in view of Proposition 4, Lemma 4, and

Proposition 2, it su‰ces to show (2). Considering the proof of the converse

part of Theorem 1, we only need to prove that the operator Q defined in the

proof of Theorem 1 is in LðM �Þ. By the continuity of F , we have that for any

e > 0, there exist C; h > 0 and r > 1=h such that

F
zn

n!

� �����
����
e

c
C

n!
kznkh ¼

C

n!
�Mn

hjnj
cC

rjnj

M �
n

for all n A Nn, which implies Q A LðM�Þ.

6. Applications

We conclude this paper by applying the main results to the space of entire

functions of normal type or minimal type with respect to a proximate order.

In this section, we assume r > 0. Let rðrÞ be a proximate order for the order

r (see Definition 1.15, [9]). We recall that limr!y rðrÞ ¼ r. For any s > 0,

we define the Banach space

Bws
:¼ f A OðCnÞ

���� k f kws
:¼ sup

z AC n

j f ðzÞje�wsðzÞ < þy
� �
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with norm k � kws
, where ws :¼ sjzjrðjzjÞ. Now we consider the space of entire

functions of normal type with respect to a proximate order rðrÞ:

ErðrÞ :¼ lim�!
s!y

Bws
;

which is a (DFS)-space (see [6]), and the space of entire functions of minimal

type with respect to a proximate order rðrÞ:

E
rðrÞ
0 :¼ lim �

s!0

Bws
;

which is an (FS)-space. Let jðqÞ be the inverse function of q ¼ rrðrÞ for all

su‰ciently large q A R. It’s well-known that rrðrÞ is strictly increasing for all

su‰ciently large r > 0. We may assume the function jðqÞ is strictly increasing

on q A ½0;yÞ. Let A :¼ ðAjajÞa AN n and A� :¼ ðA�jajÞa AN n , where

Ajaj :¼
jðjajÞjaj

ðerÞjaj=r
ð6:1Þ

and A�jaj :¼ a!=Ajaj. We remark that (see Proposition 1 [6] and Proposition 3.3

[7]):

Proposition 5. Suppose that f ðzÞ ¼
P

a AN n faz
a is an entire function.

Then,

(1) f ðzÞ belongs to ErðrÞ if and only if we have

lim sup
jaj!y

ðj fajAjajÞ1=jaj < y:

(2) f ðzÞ belongs to E
rðrÞ
0 if and only if we have

lim sup
jaj!y

ðj fajAjajÞ1=jaj ¼ 0:

Therefore, we see FfAg ¼ ErðrÞ and FðAÞ ¼ E
rðrÞ
0 in the sense of set

because of the following lemma.

Lemma 6. The sequence A satisfies (M1).

Proof. We remark that (see the proof of Theorem 1.23 [9]) for any

0 < e < 1=r, there exists Se > 0 such that

1

r
� e

� �
d

ds
log s <

d

ds
log jðsÞ < 1

r
þ e

� �
d

ds
log s
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whenever s > Se. Set x :¼ 1=rþ e. For any p; q > Se, integrating each side

from p to pþ q, we have

1

r
� e

� �
log

pþ q

p
< log

jðpþ qÞ
jðpÞ <

1

r
þ e

� �
log

pþ q

p
:

Hence, for all p; q > Se, we have that

pþ q

p

� �ðr�1�eÞp
<

jðpþ qÞ
jðpÞ

� �p

<
pþ q

p

� �ðr�1þeÞp
:

By the same reason, for all p; q > Se, we have that

pþ q

q

� �ðr�1�eÞq
<

jðpþ qÞ
jðqÞ

� �q
<

pþ q

q

� �ðr�1þeÞq
:

Therefore, for all p; q > Se, we have that

Apþq
ApAq

¼ jðpþ qÞpþq

jðpÞpjðqÞq ¼
jðpþ qÞ
jðpÞ

� �p
jðpþ qÞ
jðqÞ

� �q

c
pþ q

p

� �ðr�1þeÞp
pþ q

q

� �ðr�1þeÞq
< eðr

�1þeÞðpþqÞ

and

ApAq

Apþq
¼ jðpÞpjðqÞq

jðpþ qÞpþq
¼ jðpÞ

jðpþ qÞ

� �p
jðqÞ

jðpþ qÞ

� �q

c
p

pþ q

� �ðr�1�eÞp
q

pþ q

� �ðr�1�eÞq
< 1

And the assertion follows immediately.

We recall an important lemma (see Lemma 6.3 [7]):

Lemma 7. Assume that, for each q A Zþ, r :¼ rðqÞ is the solution of

equation

d

dr
ðrqe�sr rðrÞ Þ ¼ 0: ð6:2Þ

Then we have that

lim
q!y

rqe�sr
rðrÞ

Aq

 !1=q
¼ 1

s

� �1=r
:
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The following lemma shows that the topology of ErðrÞ (resp., E
rðrÞ
0 ) coin-

cides with the topology of FfAg (resp., FðAÞ), that is FfAg ¼ ErðrÞ (resp.,

FðAÞ ¼ E
rðrÞ
0 ) in the sense of topological spaces.

Lemma 8. Suppose r > 0 and Ma ¼ Ajaj for all a A Nn. Then

(1) For any d > 0, there exist s;C > 0 such that for all f A BM
d , we

have

k f kd
C

c k f kws
cCk f kd:

(2) For any s > 0, there exist d;C > 0 such that for all f A Bws
, we

have

k f kws

C
c k f kd cCk f kws

:

Proof. Let ~SS :¼ ðs; . . . ; sÞ A Rn
þ and r :¼ s

ffiffiffi
n
p

. By the Cauchy inequal-

ity, for any s > 0 and any s > 0, we have

j faj ¼
1

a!
jqa

z f ð0Þjc
1

~SS a
sup
~jzjjzjc~SS

j f ðzÞjc 1

s

� �jaj
sup
jzjcs

ffiffi
n
p j f ðzÞj

¼
ffiffiffi
n
p

r

� �jaj
sup
jzjcr

j f ðzÞje�sr rðrÞ
 !

esr
rðrÞ

c
k f kws

Ajaj
ð
ffiffiffi
n
p
Þjaj

Ajaje
sr rðrÞ

rjaj
:

For each jaj A Zþ, we choose some r > 0 satisfying (6.2). Continuing the

estimate, by Lemma 7, we have that for any e > 0, there exists C > 0 such

that

j fajcC
k f kws

Ajaj
ð
ffiffiffi
n
p

s1=r þ eÞjaj

for all a A Nn. To see the first inequality in (1) (resp., the second inequality in

(2)), for any d > 0 (resp., s > 0), we choose some e > 0 and s > 0 (resp., d > 0)

such that
ffiffiffi
n
p

s1=r þ e < d. Hence, there exists C > 0 such that

k f kd ¼ sup
a AN n

j faj
Ajaj

djaj
c sup

a AN n

j fajAjajð
ffiffiffi
n
p

s1=r þ eÞ�jajcCk f kws

for all f A BM
d (resp., f A Bws

).
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To see the second inequality in (1) (resp., the first inequality in (2)), we

remark that (see the proof of Lemma 6.4 in [7]) if r; s > 0, then

lim sup
jaj!y

kzakws

Ajaj

� �1=jaj
c

1

s

� �1=r
:

For any d > 0 (resp., s > 0), we choose some e > 0 and s > 0 (resp., d > 0)

such that dðð1=sÞ1=r þ eÞ < 1. Then there exists C > 0 such that

k f kws
c

X
a AN n

j faj kzakws
c

X
a AN n

j fajAjaj
1

s

� �1=r
þ e

 !jaj

c k f kd
X
a AN n

djaj
1

s

� �1=r
þ e

 !jaj
cCk f kd

for all f A BM
d (resp., f A Bws

), as desired.

Finally, applying the preceding lemma and the main results, we have the

following corollaries immediately.

Corollary 1. Let P A D and assume that one of the following conditions

holds:

( i ) P A DfA
�g.

( ii ) IðPÞ A LfA �g.

(iii) For any e > 0, there exist C; s > 0 such that for all a A Nn, we

have

kaaðzÞkws
cC

ejaj

A�jaj
:

(iv) For any e > 0, there exist C; s > 0 such that for all n A Nn, we

have

P
zn

n!

� �����
����
ws

cC
ejnj

A�jnj
:

Then P : ErðrÞ ! ErðrÞ is a continuous endomorphism.

Conversely, if F : ErðrÞ ! ErðrÞ is a continuous linear operator, then we

have

(1) There exists a unique P A D satisfying condition (iii) or (iv) such that

Ff ¼ Pf for all f A ErðrÞ.

(2) There exists a unique P A DfA
�g such that Ff ¼ Pf for all f A ErðrÞ.

(3) There exists a unique Q A LfA �g such that Ff ¼ Qf for all f A ErðrÞ.
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Corollary 2. Let P A D and assume that one of the following conditions

holds:

( i ) P A DðA
�Þ.

( ii ) IðPÞ A LðA �Þ.

(iii) For any e > 0, there exist C; d > 0 such that for all a A Nn, we

have

kaaðzÞkwe
cC

djaj

A�jaj
:

(iv) For any e > 0, there exist C; d > 0 such that for all n A Nn, we

have

P
zn

n!

� �����
����
we

cC
djnj

A�jnj
:

Then P : E
rðrÞ
0 ! E

rðrÞ
0 is a continuous endomorphism.

Conversely, if F : E
rðrÞ
0 ! E

rðrÞ
0 is a continuous linear operator, then we have

(1) There exists a unique P A D satisfying condition (iii) or (iv) such that

Ff ¼ Pf for all f A E
rðrÞ
0 .

(2) There exists a unique P A DðA
�Þ such that Ff ¼ Pf for all f A E

rðrÞ
0 .

(3) There exists a unique Q A LðA �Þ such that Ff ¼ Qf for all f A E
rðrÞ
0 .

In [2], continuous endomorphisms of the space ErðrÞ (resp., E
rðrÞ
0 ) are

characterized by condition (iii) of Corollary 1 (resp., Corollary 2). Hence,

these two corollaries could be considered as the extension of the theorems

in [2].
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