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Summary.

In this continuation of an earlier paper® we shall investigate some pro-
perties of the iteration system.

In §6, it will be proved that if an iteration system ¥ is M-divisible,
there exists the unit element of B, and conversely; and the condition of
I’s being the unit element of ¥ is W(M)-M=M.

In §7, we shall investigate the relations between the numbers ¢ and p
(the degree and the order) of linearly independent basic elements of ¥ with
the reference fields of {&, M} and & respectively, and the closed dimension
n of B. )

In §8, we shall obtain the matrix-representation of ¥, and prove that
the iteration systems are essentially classified in the two types.

In §9, we shall investigate the relations between any two sets of the
central bases «; and « (i=1,....,n) in an iteration system.

, 56. Unit element.

We put forward the fol'lowing two definitions.

Definition: When we can always conclude that, for any element 3,e9®,
Bo=0 from MPB,=0, B is called M-divisible. . - ,

Definition: 7% is called the unit element of ¥ when the element h of -
B satisfies the following relations for any element 3 of B;

k=g,  ph=4.
Then we have the following theorems concerning the unit element of 8.

Theorem 21. When B is M-divisible, the necessary and sufficient con-
dition for h’s being the unit element of B is that

Mh=M

and as the'deﬁnitioﬂ for the unit element one of the relations h{f=ﬁ and
Bh=B may be omitted.

(i) K. Morinaga, this Journal, 10 (1940), 215 (W.G. No. 40.) (We refer to this as L)



138 .K. Morinaga.
Proof. Let h be tﬁe unit element of V; then
Mh=M (for Me®);

hence (6.1) is a necessary condition.

And, conversely, if Mh=M, then we have hM =M, because MeN (the
zentrum of B). Multiplying these equations by «; from left and right-
hand side respectively, we have (M being contained in N)

M(hai—a)=0 and M(zh—a;)=0.
Therefore, from the assumption, we have
haq;=ai and (L,;h/=(l,,;.

But since any element 8 of ¥ can be expressed in the form (cf. Theorem 7)
=AM+ M, WSy ),
we can conclude, from axiom II? (6.1), and (6.2), that

Bh=FoMh+ 35 (£ i, oa, ) = S+ 336G %, . 1, =

4

and similarly,
h3=8.

So, k is the unit element of ¥. Therefore (6.1) is the necessary and suffi-
cient condition for % to be the unit element of ¥ which is M-divisible.

Next, if & satisfies the relation 2g=p for any element 8, it must be
true that hM=M (for Me®), and this is the necessary and sufficient con-
dition for A(M) to be the unit element of B; so that we have ph=p for
any element 8 of ¥, And similarly, -if & satisfies the relation ph=pg for
any element 8 of B, then we have hp=p for any element 8 of B. There-
fore, as the definition for the unit element, one of the relations 28=8 and -
ph=p may be omitted. Q. E.D.

Since the unit element of B belongs to the zentrum of B, by Theorem
10 2 may be written in the form

| h=hez+7belfi (e+n—mg=0dd number); (6.3)
hence (6.1) becomes ; B
MG, +he, A)=M.

Theorem 22. When B is M-divisible and ny=0,? the necessary and
suffictent condition for B having the unit element is that there exists o

(1) I p. 219.
(2) The condition n,=0 is equivalent to @uap)=7045=M (,j=1,....,n).
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relation at least among the basic elements (containing M) of B.Y

Proof. Equation (6.1) is a relation among the basic elements; and it
is not an identity, because == @). - Hence, the condition that there exists a
relation among the basic elements is necessary for ¥ having the. unit
element. ! ;

Conversely, when ¥ is M-divisible and 7,=0 (i. e. B=B),? if there is
a relation among the basic elements of B, from Theorem 18 we know that
the relation can be written in the following form:

- I : '
holM)A=0 or ho(M)=0 for n=even,

o (6.3)
M(M)+h{M)A=0 for n=o0dd.

When 7 even, multiplying (M )f{=0 by /i we have hM"=0; and from
the M-divisibility of B we have .M =0; hence, when 7 is even, if there is
a relation among the basic elements of B, there exists the relation of M
only.

When # is odd, using the corollary of Theorem 20 we know, from (6.3),
that B includes a relation of M: namely, if ¥ includes a relation among
the basic elements (containing M), there always exists a relation with
respect to M, i.e. f(M)=0. But from the construction of ¥ we know

that the relation f(M)=0 can be written in the form : M»(M—ML(}M)) =0,
where l; does not include @) ; hence, from the M-divisibility of ¥, we have

Mi(M)=M.

Consequently, from Theorem 21, B has the unit element [,(M). Q.E.D.
For the case ny==0, using similar reasoning to that in the proof above,

we have ‘ ' '
Corollary. If B is M-divisible, and B contains a relation not includ-

ing elements of g,‘f” then B has the unit element.

Next, with respect to the M-divisibility of ¥ and existence of the unit
element, we have the following theorem. ,

Theorem 23. When B is finite order and B= (i.e. n,=0), the con-
ditions for existence of the unit element and the M-divisibility are equi-
valent.

Proof. Let B be M-divisible. Since ®B is finite order, there exists a
.polynomial relation of M, i.e. f(M)=0. But since B is M-divisible, from

(1) The basis (containing M) of B means all elements such that M, a;aries0,....

iy 3] ASa<ip<----<ip<n); and the relation among the besic elements means
their linear relation with the coefficients, polynomials of M.
2 L p 223

N
(8) B is the ring composed of all elements d: in [¢;] which satisfy (d)*=0,
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the corollary of Theorem 22 we know that 8 hag the unit element of the
form h(M).

' I
Conversely, if there exists the unit element h, then from B=9
(i.e. mp=0) and (6.3), k can be written in the form

h=h(M) 1i.e h=p,M+Mh (M) for n=even;
I _ I I
h=h2(M)+h1A i.e. h=p2(M)+M(hg+hlA)+p1A for 'n=0dd,

in which A, may contain @ but %, does not, and p’seR. Consider a re-
lation : MBy=0 (8, V). When n even, by multiplying both’sides of MBy=0
"by . und hy(M), and then adding the resulting relations, we have, from
(6.4), h(M)B,=0; but since kh is the unit element, the relation hB3y=0 is
reduced to By=0. Next, when n odd, by multiplying the relation MB,=0

- I §
by p. and hs+hA4, and adding the resulting relations, we have, from (6.4),

(6.4)

I I
(h—114)B=0, i.e. hfo=1mApo; 6.4y

I I
hence By=p.45 (since h_ is the unit element). Multiplying this by A4, we
have .
) I

ABo=p:M"By;

so that, in consequence of MpB,=0, it must follow that i e. 3=0 (since

I
Bo=1148, (6.4)").
Accordingly ¥ is M-divisible. So we have proved the theorem.

I
Theorem 24. If h(=hy(M, az)+m(M, a)A) is the unit element of B

i which n—mnqy 18 even (this means that B has an even non-nilpotent central
basis), then 2h,—h3 is the unit element with the relation hoh,=h,.

I
Proof. Since the unit element h(=hﬂz(M, ) + (M, aa)A) of B must

be an element of the zentrum (a=n—mny+1,....,n), we can conclude from
Theorem 10 that, for n—mn, even, h; is odd degree with respect to a, and
aphy=0. Hence

. ] I
?=0 and h2=h+2hMnA. (6.5)

But since % is the unit element of B, h?=h and hM=M. Therefore,
from (6.5), we have

(h3+ 2o A) M= M 6.5)
and (ha+ 1 A)M =M. (6.6)

Multiplying (6.6) by ks from the right-hand side, and subtracting the re-
sulting equation from (6.5) we have

(g + ) M= ;



Mathematical Foundation of Wave Geometry. II. . » 141

and, using (6.6), , ,
hot AM=mAM .

, ‘
Multiplying this by A from the right-hand side, and using the M-
divisibility of B we have hh;=h,. So, (6.5) becomes

G+ AM=M.
From this and (6.6) we have
| InA=h,—13.
Substituting this relation into (6.6), we get
(2he—hH)M =M ; )
so that, from Theorem 21, we see that 2h,—F3 is the unit element of ®."
N E.R]z'mark 1. The necessary and sufficient condition for the element %

of B to be the unit element of a submanifold {P;, P;B} of B, P, being
an element of zentrum of B, is

Pch=P, (B may be a non-M-divisible system). (6.7) «

Proof. Pch=P; is clearly the necessary condltlon for h to be the
unit element of {Pc, P:B}.

Conversely, if Pch=P, for an element P. belonging to the zentrum
of B, then, for any element p; of {Pc. P;B}, which is expressible in the
form:

B1=Pc(p®+ﬁ)=(pOﬁ)Pc ’

we have

Bih=(p@®+ B)Pch=(p®+ﬁ)Pc=.?1 )

and similarly 28;=p. This shows that the element % satisfying the rela-
tion (6.7) is the unit element of {P., P-9B}.

According to this Remark, the relation (6.1) for % expresses the neces-.
sary and sufficient condition for A’s being the unit element of {M, M8},
B being not necessarily M-divisible.

Remark 2. If B has the unit element, we may take this as the
actually existing unit element instead of the ideal element @ in all the
expressions treated above. -

§7. Order and dimension of B.

Definitions : The number of linearly independent elements of  which
respect to & is called the order of V. And if there is a relation fF(M)=0
in reduced form (¢f. Theorem 19), the degree of f(M) with respect to M
1s called the index of B with respect to M.
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Our iteration system ¥ is a hypercomplex number-system in which &
is the reference field and the number of its basic elements is the order.

However that may be, we can make another .expression for B, i.e. B
is a number system in which M, a, apaigy ...y an U0y,
in < m) are its basic elements and §'={K, M} or K'={KD, M} is its re-
ference field, M being the principal ring with the basic element M in the
field &; when ¥ does not contain the unit element, & is only an ideal
symbolical field having no actual meaning in itself, but being defined to

have meaning when operated to any element of B, e.g. (kl® +A(M ))ﬁz

kp+A(M)B. But here we cannot say that the bases: M, a;,, agaiyy, « .. .,
dgi, .+« + . 0; 7 are necessarily linearly independent in the reference field &',

and M is contained in its reference field and basic elements. However, here-
after, unless anything to the comtrary is stated, we use the phrases “linearly
independent ” and “ basis” in the latter sense.

With respect to the dependency of the basic element, we have to re-
mark some important points. It may occur. that & contains a definite ele-
ment %; such that kj3=0 for all element B of B. If & contains such an
element k[ (3= 0) we must therefore exclude the element % from the co-
efficients which define the linear dependence of basic elements; for other-
wise it is nonsense to consider the dependence of basic elements, because
any element whatever vanishes by multiplying k. Concerning the condition
of existence of such ki, we have: \

Theorem 25. When B is M-divisible, the necessary and sufficient con-
dition for the existence of a definite element ki, satisfying the relation
k=0 for any element f of B, is that there exists a minimal relation of
M: f(M)=0.

Proof. Let us assume that k{3=0 (k;==0) for any p(e %), then, by
taking f=M, we have kM =0, which is a relation of M for kie®’; so
there must exist a relation of M. '

Conversely, if there exists a relation of M: f(M)=0. Now, taking
the minimal relation of M i.e. f(M)=0, we have f(M)B=0, i.e. Mf(M)B=0
(f(M) must contain @, as B is M-divisible) and by the M-divisibility of
B we know that

fanp=o, N (AY
and, clearly, fE0 (e®). Q.E.D.

From the theorem above we know that when ® is M-divisible and the
relation exists (in reduced form), f determined by fi (M)=f(M) must be
excluded from the coefficients of the equation by which the linear inde-
pendence of basic elements is considered.

Definition: The number of linearly mdependent basic elements wzth
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reference field K" which is compoéed of every element of & except for ki, '
satisfying kiB=0 for any element of B, is called the degree of .
As the total number of bases M, ai,...., 00 ..., %, is 2%, the de-

gree ¢ of B must satisfy the following inequality :
' g2,

. z .

Theorem 26.. When B is M-divisible, and ng=0 (i.e. 8B=1) the degree
q of B is given by

‘ q=2"  for n even
g=2" or 2"  for m odd,

and q=2""1 occurs when, and only when, there is a relation among the
elements of B which- is not expressible by M only.

Proof. From Theorem 18, we know that when n even, there is no

relation among the elements of ¥ including the basic elements other than M
Hence the degree of ¥ here is glven by

q=2" (the number of bases of {[«]}). .

When » is odd, if there is no relation among the bases which includes the
bases other than M, necessarily

q=2";

and if there is a relation which is not expressible by M only, from Théorém
20 and my=0, the relation (in reduced form) is

g (M)G(M)+GM)A=0  (§ contains ®) (7.2)

: ’ I I
If ¢’G=0 above, we have G(M)A=0; multiplying this by A, and using the
M-divisibility of B, we have MgG(M)=0; hence the relation (7.2) is reduced
to f(M)=0. This contradicts the assumption. So, it must be true that
9’9 0. Therefore, from (7.2), multiplying this by bases, say «;,, ....a,
which do not contain «,, we have

g(M)a,,;‘ ceen aiﬂa,,M”‘p‘l = _:l’_‘a!,,;p.’_1 ceee ain_lg’(M)g(M) }
(%;== 1 for j==Fk).

This shows that if there is a relation which is not expressible by M alone,
every basis containing a«, is expressible linearly by the basis not containing
a,,Y and the relation always contains «,. Hence the basic elements not
containing «, are linearly independent among themselves. Therefore, if
there is a relation among the bases, which is not expressible by M only,
the degree ¢ of B is given by ¢=2""1 Q.E.D.

(7.2)

(1) 'The coefficient §Mn-p-12 0 since M ==0.
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~ When 9B is M-divisible (n; is not necessarily equal to 0), by Theorems
19 and 20, and using again the method by which we proved Theorem 26,
we can conclude that the degree ¢ of ¥ satisfies the relation

rm gL 2 for n—ny=even,?
gnml <l g <2  for n—ny=odd.
"Remark. When ¥ is M-divisible and its index is r+1 with respect to

M, we know from Theorems 17-20 that the order p and the degree ¢ of
B satisfy the relations ’

e < p < r2" for n—ny=even, } (1.3)

2l <p<¢2¢  for n—my=odd,
and ’ r¢<p.

Proof. Let the relation for M that gives the index 741 be f(M)=0.

Then

MSM, Ms(li, ey Msa[.,;l cesey ain_no__lj (73)/

(1 §i1<""<’in—no—1; S=0:----,T——1; MOE@)

are linearly independent in the reference field & (cf. Theorem 18), so we

have
- r2nml <l p,

And when 7 even, all the basic elements in (7.3) and M°ay_n, M aiun_p,
ves Moo, ... By ] together are linearly independent in & (cf. Theorem

18); so, when n—mng=even, we have
r2rm < p.

But, since f(M)R=0 (BG’B, FfDM=f(M )), any element of ¥ can be ex-
pressed by a linear combination of '

MM, Mz, . ..., Ma,, ....aq 1

n

(s=0,....,7—1; M°=@, 1 <4<+ <10, <)

in the field & (cf. Theorem 7); so necessarily p < r2".

And if there are linearly independent basic elements with respect to &”,
all resulting elements of multiplying these bases by M*® (s=0,....,r—1)
are linearly independent with respect to &; so we have r¢<p. Thus we
have proved the Remark.

Definition. The relation among the basic elements reduced by Theorems

19 and 20: ¢gM)§M)+ M )“I1=0 is called the reduced relation of B,

I
(1) When n—m,= even, the relation among the bases must contain A and aqa=
n—my+1,....7m) in ke, since e;,+€,+n—ny=0dd; i. e, it contains all a; and aq, (a, is a certain
number), so that 2770 q.
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’

and in the reduced reation ¢ (M)GM)+gM );1 =0 the degree of §(M)
with respect to M s called the degree of the 'relatwn, and § s called the
minimal coefficient of B,

Theorem 27. When B is M-divistble, and there is at least a relation
among the basic elements, there exists the following relation among its order
p, degree s of the reduced relation and index r+1 with respect to M of B:

p=(r+s)2*™ and r>s, (7.4)

and r+s is then exactly the order of the zeutrum of B. And the equality

I.
hold good when, and only when, ¢ in the reduced relation: ¢(M)g+§A=0
has the form g=M""'¢'(M), where g’(M) does not contatn .Y

Proof. From Theorem 9 we know that the zentrum elements of ¥

are given in the form h(M)+h(M )fi, is which hy(M) may contain r
linearly indepedent elements M, M2 ...., M" with respect to ®, because
the index of B with respect to M is »+1. And in the sets {M}A, M*A
(u=§,,s+1;. ...,7) is linearly expressed by the elements in {M} (i. e.
M “AI e {h(M )}), in which s is the degree of § in consequence of g’§+§fi=0.
So that M°, M‘i (w=1,....,7; t 0,...., s—l) are only elements linearly

independent in {M} and {M }A So that ¥ contains exactly r+s zentrum
elements linearly independent of one another.

Next, when B has the relation of degree s, from Theorem 20 and the
process of the proof above, we know that the following terms are linearly
independent with respect to §:

MuM, 1”“(2!1;l s aij, ) M”(l,;! cene ”ij’ln—nu

(1_S_i1<----<3}-§n—'no—vl; )‘2’
w=0,....,r—1;v=0,....,s—1/"

(1) We shall see in Theorem 31 that this relation is always satisfied by g’ in the re-
duced relation. So that (7.4) is rewritten p=(r+s)2n-1, r=g precisely.

(2) From Theorem 25 we know that the f(s=0) determined by f-M=f(M) satisfies
fB=0 for every element of ¥, hence fa,,.... a,-p:O, so that ag.... @i Mas, ... aip, ceees
Mra;, ... .a;, are linearly dependent with respect to ®. On the other hand, if «;. @i,

, Mr=la;, .. ..a;, are linearly dependent with respect to ®, then ﬁz,, « 03, =0, where '
degree f is smaller thanh 7, so that, multiplying by Gy e s Bigy WE have fM »=(. Therefore
f “M=0 ( f may contain (). Hence the index of B is smaller than r+1. But this con-

tradicts the assumption. Therefore a;, . iy , Maj, .. iy Mr-1g;,.. aip are linearly
independent ; and, using Theorem 18, we know that ' )
Mo, My, .. ..; MPn—n0 g ..., iy 0i=0, ey 7 =15 1S 6 <dn—ng < N0

are linearly independent.
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So, the oder p of B satisfies the relation
D Z T2"f°nu—1+ ’8275—710"1 ie. » z (,r+s)2'n,—nq-1 .

I
And since, from ¢'§+3§A =0, we know that

M jas, . ... @  On-ng=t ... a,;ﬁ_no_lg’g (rfo, 1,....,n—mg—1),

7

the equality above holds good when, and only when ¢’(M) contains M» ™1
as a factor. And, from the reduction in Theorem 20, we know that r =s.
So we have proved the theorem. v

Definition. A set of s (t=1,....,n) is called the central basis when
B={[a]} (i=1,....,n).

There will be many sets of central bases defining the same iteration
system. Concerning the numbers of the linearly independent elements in
different central bases {[«;]}, {{«/]} which define the same iteration system,
we have following theorem.

Theorem 28. If ny=0, B={[a;]}={[}]} (¢=1,....,n;5=1,....,7%),
then n=n" or n=2m and n'=2m-+1 when n=Fn" (say n<<w). In the
latter case, there is a relation among basic element of {{df]} (not only M),
and if r+1, ¥ +1 are indices of B with respect to M(=wa;) and M (=dal)
respectively, then
’ r=r+¢,
where s is the degree of the reduced relation of {Mid,....,al.... @, ) and

then the minimal coefficient ¢ has M'™ ™ as a factor.

Proof. (i) When n and #' are both even. From Theorems 7 and 19,
we see that the zentrum of B is composed of {M}, and the number of
independent (with &) elements of the zentrum of % is the index of ¥ with
respect to M. Since n and n’ are both even, we know that {M}={M’} (the
zentrum of V), and the indices »+1 and ' +1 with respect to M and M’
respectively are the same, i.e. »=v/. But in this case, since the order of
{l«;]} and {[ei]} is given by 72" and 72" respectively, we have r2"=7'2";
therefore, of necessity, n=n'.

(ii) When n and n’ are both odd. Among the respective indices of B
with respect to M and M’ and the order p of ¥ we have the following
relations (cf. Theorems 26, 27)

1<l p <2
o =b=r } (7.5)
P2V p <2V,
So, from (7.5), we have
V1< p < 2, (7.6)

Now we assume n<<n'. The relation n<<n' now becomes n_§n’~—2, )
(7.6) becomes

a
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ol p < r2”, - (7.8)
hence . 2 Zr.
And since, from Theorem 27, we know that
r=>s, rY=2s, r+s=r+d,

where s and s’ are respective degrees of the reduced relations, we have

r<2’ and v <2r. \ (7.7)
By this relation and (7.6), we have
2r'=r. (1Y
So, from (7.6), n < w' —2, ‘and the equation above, we have .
wW—2=n and 92V l=p=r2". ' (7.8)

Hence, applying the Remark on pape 144 to this relation, we know that r
is the order of zentraum of ®8; hence, from Theorem 27,

: "'2”/_1 é D,
and, from (7.7), :
o1 p,

This relation contradicts (7.8). So it must be true that n<{_#". So, when
n and 7. are not both odd, of necessity n=n'. '

(iii) When n=even and #'=o0dd. From the Remark on page 144, and
Theorem 27, we have

p=r2", 2V 1< p< 27, (7.9)
where r is the order of zentrum of B ; so that
2V 1 L p2m < 27 (7.10)
accordingly »' —1=mn.
Therefore, when 7,=0, ={[«;]}={[}]} (G=1,....,n;7=1,..... , 1)
and n=E7/, ope of » and #' is 2m, and the other is 2m-+1. Also, in
this case, the order of B={[d]} (s=1,....,%n) is 2% (cf. (7.9)), where

r is the order of the zentrum; hence there is a relation of the form

g §+g.fi=0, having the minimal degree s’; and r=1'+s/, where ' is the
index of B with respect to M’. Moreover,. by using Theorem 27, we know
that ¢ has the factor MV Q.E.D.

As the converse of this theorem we have the next corollary.

Corollary. When 1n,=0, B is M-divisible, 8={[«;]} ={[£]} (G=1,....,
n§=1,....,n), and there is mo relation among the basic elements of
{la;]} and {[i1}, it must follow that n=wn'.

When 7,=0 and ¥ is M-divisible, from Theorem 28 we know that

(1) We have this case when there is a relation among the basic element of .
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there are two possible cases: (i) The numbers of the elements in all the
different sets of central bases of ¥ are equal to one another, (ii) Some of
the numbers may be equal to 2m, and the others to 2m-+1, where m is a
definite number.? So we advance the definition that in case (i) the num-
ber of the elements in a set of central basis is called the dimension of B ;
and in case (ii), if the number of the elements in two groups of all the
sets of central basis of ¥ are equal to 2m and 2m+1, the former is called
the minimal dimension, and the latter the closed dimension, of 8.
Remark 1. Putting together the results above, from Theorems 26, 27,
and 28 we have the following four possible cases for the iteration system :
(i) When the order p of ¥ is w2" and the dimension is n.
(ii) . w D, Bis 022, ” is 2m+1, and
B has the minimal dimension.
(iii) When the order p of B is w2?™ and the dimension is 2m-+1, and
B has not the minimal dimension.
(iv) When the order p of ¥ is w2 <<p<<w2®"*! and the dimension
is 2m+1, and B has not the minimal dimension ;
where o is the order of the zentrum, i.e. o is the index of ¥ for (i), and
o is-the sum of index r and the minimal degree s for (ii)—(iv).
Two cases, (iii) and (iv), are distinguished according as ¢’ in the re-
duced relation has or has not M*" as a factor (cf. the Theorem 27).
But, in §8, we shall show that actually the case n=even in (i) is included
in (ii); i. e, if B={[a]} (¢=1,....,2m), there exists a set of central bases
such that ¥={[«/]} and [«;]] <[«] (7=1,....,2m+1), and case (iv) does
not exist. : ‘ :
Remark 2. In cases (ii)—(iv), the extension of the central manifold,
ie. [a] <[df] (¢2=1,....,n;5=1,....,m,n+1), does not exist even when
{lw]} < {ls]}.
Proof. We assume that [«j] is an extension of the central manifold
{[«;]} i.e. [¢] <[a}]. Then there is an element « such that « is contained
in [¢f] (j=1,....,%), but is not contained in [«] ({=1,. .'.:,n). If we

take a;.;, which is of the form a—%ﬁjl,(a-l-aiaai), then [¢;] is a central

manifold and
[e]<[w] =[] (i=1,....,n;k=1,....,mn+1;5=1,....,0n+1).

In cases (ii)—(iv), there exists a relation of the form
. I I
hey+he, A=0 A=ay..... oty (7.11)

(for, othefwise, we have p=w2?""1). On the other hand, since relation
(7.11) must be a relation among the basic elements of {[#]} (j=1,....,
n+1), (7.11) must be written m the form

‘ I I
' h/eé"l" h,elA/=0 (A/_—"('I[l ceee .an+13) . (7.12)
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For (7.11) to be expressible in the form (7.12), it must be true that

hezﬁo, he,fi=0 i.e. he,=he,=0; hence (7.11) is not a relation among the
basic elements of B, but identity. This contradicts the fact that ¥={[«]}
contains a relation among the basic elements. Therefore n<{ 7/, i.e., n=7/,
so that there is no extension of the central manifold [«;]; so we have proved
the Remark. : ,

Remark 3. In cases (i) and (ii), in which the central manifold is ex-
pressed by the basis of minimal dimensions, we can extend the central
manifolds.? :

Proof. If there is an iteration system ¥ in which the central manifold
and the reduced relation of M are [«] (1=1,....,7n) and F(M)=0, there
exists another iteration system in which [4] (j=1,....,7n,....,%) and
f(M)=0 are the central manifold and minimal relation of M'(=djd}),®
and {[«]} and {[¢/]} (i=1,....,n) are simply isomorphic to each other—
this will be proved in §8. Since these two iteration system, simply iso-
morphic to each other, are abstractly regarded as the same, in our case
the extension of the central manifold of [«;] is always possible abstractly.

§ 8. Matrix-representation of V.

In this section we shall consider the matrix-representations of the
iteration system B, If the matrix-representation of ¥ for which the order
is infinite be possible, the order of the matrix must be infinite. So, as the
first step, we shall now consider the case when the order of ¥ is finite,
i.e. the dimension of ® is finite, say », and its index is finite, say »+1.
(cf. Theorem 27 and p. 144). In this section we assume that ® is the
field of complex number. '

Remark 1. As preliminary let us consider the following matrix-equa-
tion of m-th degree

Xm=A4, (8.1)

A being a given métrix and X being unknown. Let
N m; . "
S (W)Eg;fl (x—a)™  (a;=a; for i==j) (8.2)

‘ . .
be the minimal form of A. Then the equation I_Tl(ac—ai) *=0 must be

. N R
satisfied by X™, so the minimum form of X is a factor of _rrl(xm—a,-)”‘a

(1) This holds good when iteration systems which are simply isomorphic to each other
are regarded as the same; and for case (iii) to be included in case (ii), the zentrum of B
must be a principal ring.

(2) The existence and actual form of such an iteration system will be proved in 28.
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N
And the matrix z whose minimum form is a factor of ]Tl(a;’"—ai)m" and
includes the following form as a factor,

N me ' ‘
_I—l;l(x—ai, /li) * ’ . (8-3)
where (@;,)"=a; (A=p=m),

satisfies equation (8.1); but the matrix whose minimum form is a factor of
N

IIl(xm—ai)mi and does not contain the following form as a factor,

H(w a”) ‘)

. =1
does not satisfy (8.1). So the general independent solution of (9.1) is given

by the matrix, except for the equivalent matrices whose minimum form is
given by

N mi Iy ’ l_l
M—a:,)" T @=a,) ... c=a,, )"
(vi:hvj for 4= 7; v =F 3 ) 8.4)
1=y v, <<m;lUs=0,....,m;

where N is the number of different roots of f(x)=0; hence there are at
‘least mY ! inequivalent solutions of (8.1).%V

Accordmgly, the normal forms A and X of 4 and X (. e. SXS“—
and UAU- 1=A4) are given by

1
J; I,
. . o0 o T 0
= ~ and X = N
N v NP
0 ., o g
&y
n
ere
wh 100 ) (@010 -+~ 0 h
0 0 R .
N 0 o0 o
0 ~,
) 0 (} - , 0 . ‘13 N
T . Vi 127, Wi §
= = and J.= S P
| ) a | laeeor )
0| 0 0 _
0 0 . ‘? hY
€q; S
Gai.g
0 0
~ -~ \ T

(1) We say that matrices transformable to one another are equivalent. And the order
of the matrix is no less than E'rm ; 8o there exists a matrix whose mlmmum form is given
o |

by H(x @i, ,,) i (1 < uj<m), and there are mN-1 different forms of II(av a;, /z) i at
least because @, may be 0,
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Moreover, the order 'of.A must be equal to > m; (the degree of the minimum
form of A), or larger.

Remark 2. For the»purpose of obtaining the matrix-representation of
the iteration system ® which does not include relations among the basic
elements, we shall consider the matrix-equation

X:=A,
If the minimum form of A is given by
N
F@T @—aj™,

where a;%a; for 73 j,i then, from Remark 1, we know that there exist
at least 2! inequivalent matrices z which satisfy f(z*)=0 and whose normal
form is written as follows:

£ 10~ 0y
~. 0 \ RN 0
. - - "
7= , where  Ji == 0 i N
0 . ) T IRCERCE
Jy : €100 Le=o0.t1
0 0
— t'
S 5 (7 .

< P

Remark 3. For the purpose of obtaining the matrix-representation of
the iteration system ¥ which includes the reduced relation g(M)G(M)+

’ I
G(M)A=0 among the basic elements of B, we shall consider the following
simultaneous matrix-equations :

f@)=0 ’
9 + e = } (®5)
where n odd and f, g satisfy the relations
F@=T() - } -,
(6~ (~ 1) g =1 6D 7). 55
From assumption (8.5), for f and g we have
(26— (~17~1%) () = (9(e)+ (~ 1) ) (9D — (= 1)"F 27) e
=r()f =1 1 @)™ (8.6)

and §(d= val @—a )y (m.<m., and Dm,<>Im,).
-
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N

provided that f(x)= Hl (x—a)m .®

But, since n odd, from the equation above we have®

n-1
(g(x2)+(—1)f2—w ) TI (x+£v a,)y™ ™ 11 (x—b;)

where b;== +1/a,: the double signs being taken as corresponding to those
of (x+1 a)™ ™.

Accordingly

1 N N —

(g(xz)'i-(—l) 2 90").67(002)—3 Ul(x”"-a»r)’"f T=I1(xj:1/a,,)mv‘"'vﬂ (x—by). (8.6)

Now let us consider a matrix z whose minimum form is given by the
second product (a factor of f (xz)) of (8.6) multiplied by «° in which e=0
for mi=0 and e=—1 for m{=0, i.e.

N N _ ,
2° 11 @—a)™ 1T @V a,)" "% . , 8.7)

Actually, such a matrix z is given by (in the normal form)

Far10---~--0
0 Nt : 0 o
Ji 0
| 0 (-l—
— Far
‘.\‘ O where (fl _ i»[a[ 10 ________ O
0 0 e
"ol 0
0 0 "1
h I
0

From Remark 1, we know that the matrix 2 above-obtained is a solu-
tion of (8.5), and f(x) is the minimum form of 2% Moreover, such z has
the following property: When §(#?)=g(*)§(«*) and g¢(2?) is not constant,
there ex1sts the inequality :

(@@+(-DT @) g +0 (8.8)

for any polynomial ¢'(x) of 2. For if the followmg relation is satisfied
by 2z: '

(1) The relation 3 mr <X m, follows from the meaning of minimum coefficient of .
N ’
(2) It must be true that (9@ +z7) (g(w’)—xn) contains I[ (ao’—a, Y™ "™ ag a factor;

so if (x+ / @;) (a;==0) is not contained in (g(2?)+wx»), then (x——v/a,) is not contained in
(9(90’)+9c'n) because of n’s being odd,
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((A+ (10T ) g@@=0,

~ we know that by using the same reasoning as in obtaining (8.6) from (8.5)
(because f(x) is the minimum form of 2%), the following relation will be
found to exist:

((@+(-1F ) 7 =TT (=)™ @£V @)™ ™ T @—b)  ©&9)

where g'(xz)—ﬂ(xz a,) ©oml<ml, Sml/<<m. and b+ tva,;

the double signs responding to those of (z+v'a,) * *. Accordingly, the
N wm’ N —
minimum form of 2z must be a factor of I_Tl(xz-—a,) v Hl(xjﬂ/ a,) ¥ (the

greatest common factor of (8.7) and (8.9)), and it is an essential factor of
(8.7) because of m. <m. and SIm! <<m.. This contradicts the minimum
form of 2z as given by (8.7).

Therefore, ((@+(-1" ) g +0. Q. E.D.

Using these Remarks 2, 3, we shall find the matrix-representation of
B when B is M-divisible and 7,=0 (i. e. B does not contain null central
base).

As regards the E-number systems having 2p and 2p+1 (minimum)
dimension respectively,® we are well aquainted with the fact that there
exist matrix-representations of 27- and 2°*'-th order respectively,” and when
the dimension of ¥ is 2p, there is a simple isomorphism between ¥ and
the matrix-manifold of 2p-th order; but when the dimension (minimal) of
B is 2p+1, there exists a simple isomorphism between ¥ and a part of
the matrix-manifold of 27+-th order.

Let 7; (¢i=1,....,n) be the central bases of a matrix-representation
of E-number system whose dimension is ». Using this 7;, we shall con-
sider a representation of central bases in the iteration system ¥ and shall
obtain a matrix-representation of 8.

Here, we shall consider the problem in two cases separately: I. There
is no relation, II. There is a relation, among the basic elements of ¥,

(1) E-number system is the ring {[r;]} with complex number as reference field charac-
terized by - yirjy=0i;I (I is the unit element) (¢=1,....,m). So it is a special case of the
" iteration system such that M=I and n,=0 and ® is a complex number systemn (i.e.
J(M)=M*—M is the minimal relation of that iteration system).
(%) When p=1, in fact le(‘l%), 7,=(_%) is the central basis of a two-dimensional E-
number system (open). And if 7;....,72p is ’che matrix presentation of central bases of a
2p-dimensional E-number system, then (%), (r 0), (%% gives a matrix representation of

central bases of o 2(p+1)-dimensional E—number system. So by induction, we have a matrix-
representation of n-dimensional F-number system. =
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Case I. When there is no relation among the basic elements of
B={[«;]} (G=1,....,n).
Let »+1 be the index of ¥ with respect_of M, and let

FOD=11 (M-a)"™ (810)

be its minimal relation of B with respect to M. ‘
In the first instance, choose » and ¢ such that r+1<2* and ¢q—n=2;

and let 7,....,70....,7q+1 be a matrix-representation of the central bases
in an E-number system whose minimal dimension is ¢+1. Then the set
of 7qerTntly+ vy Tar¥e becomes a central basis of the F-number system

whose dimension is g¢—mn. Accordingly, from (8.10) and the theory of
matrix-representation of E-number systems, we know that

gl—_— {[Tq+17’n+l; s ey Tq+qu]}

is simply isomorphic with the manifold of all the matrices of 2-th order.
But from (8.10) and Remarks 1, 2, we know that there exists a matrix 2z
of 2(= r+1)-th order such that its minimum form is

| fvrl (@+v/a)"™ (8.11)

N m. . L) .
and f(x) (-Egl(x—ai) 1) is the minimum form of 2% And, in our case,

since f(x®) has the form . ‘
Fa)a?, o (8.11y

N S -
and I_TJ(m;tV a;) ¢ is a factor of f(a?)z, z satisfies (by (8.11))
F@x=0. (8.11)".

Let z be the element in B; which corresponds to z in the above-mentioned
simple isomorphism between ¥, and the manifold of all the matrices of

N T\ . o .
2°-th order. Then we know that I (v+1 @)™ is the minimum form of z,
‘and z satisfies i

Ff@x=0. (8.12)

Moreover, f(x) is the minimum form of 22

But, since all the elements of B(={[rs+17ns1+...7e10,]}) are the

+1+ ¢ —_—
maf:;ices of Zq 2 <e={(1) f.gf_ gi};ggg&th order, z is the matrix of
atl+e

2 2 th order.

Next, we consider the matrices v .

TiR= M (z=1,....,n).

(1) We assume that in f(oo)—:—z_ljl(M——ai)mi, a;Fa; for 145 ar'ld a;=0, m;=1.



Mathematical Foundation of Wave Geometry. II 156

We can prove that the set of matrices p; (i=1,....,n) forms a central
basis of the iteration system B, the minimum form of pp=x==p is
N m- - o s ’

f(x) (E I_Il(oc—a;) 1), and moreover {[¢;]} is p- divisible.

Proof. Elements of B (={[7¢u17n+1....7er17al} are all even degree
with respect to the representants of r.(t=n-+1,....,q+1) of the central
basis in an E-number system, and do not include the other basic elements
7; (0=1,....,n) in the same central basis of the E-number system. Hence
7: (i=1,....,7n) is commutative with all elements of B;,. And since z be-
longs to B, z is commutative with all r;. So we have

BGly=T@RTp=TaT?* = 0:ii2" .
That is, #;’s are anticommutative to each other,‘i’ and wu=p @=1,....,,7n).
Therefore, the set of y; forms a central basis of n-dimension, and {[#;]} is
an n-dimensional iteration system. And from Remarks 1 and 2, and the
N m. . o e

method of obtaining 2, we know that f(x) (E }_Tl(x—ai) 1) is the minimum
form of p=2~

Next, we shall prove that {[s]} is p-divisible. Since any element b,
in this iteration system can be written in the form '

b=rfim+ S KT oy, ASH<----<ip<mn),
"1""1'1;

we have, using #;=7z7,

pbo=pfot SIAf T Pty = 2R L, } 813)
1<h<< <, Zm).
But, since 2z has the expansion of the following form:
q+l . . . .
z=nz<}jg]""""r,-, v, FIZSH<----<p<g+1)  (813)

and there is no relation among the basic elements 7; (¢=1,....,q+1), be-
cause of 7;’s being minimal basis, therefore the elementstsz.‘""i"z”r,-l e e T,
(not summed by 4’s) and 2* J;""";’n; ceo.72, (not summed by i”s) (1 =1,
<< < Zm; 1 K4 <+ - -<ip <) have common terms in the ex-
pansion with respect t0 7uy Yodww + o v e Tores e Tuyyy (substituting the ex-
pansion (813) for z) (1 <w’s<q+1) when, and only when, p=9/, 1,=1,

) uis (i=1,....,n) are linearly independent of one another, because of being anti-
commutative to one another (non nilpotent). For, if there exist a linear relation auj=
>latuc (t=Fj; a=0), then the left-hand side of this relation is commutative with »;, but
T

the right-hand side is anticommutative with ;. So ap;=0, i,e. a=0, Therefore there is
no linear relation. '
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v estp=1p So, if uby=0, applying to (8.13) the linear independence of
the basic elements, we have ‘

2 i 2Py . ... 7; =0 (not sum by s ,
S0 A T, y 78) } (8.14)
2fi(z)=0;
and, multiplying the first equation above by 7, ....7:, we get
2f T @er=0, v (815)

where j}; ' may contain the term @®. Since fi(2?) belongs to {[x;]}, it
can be written in the form

FB=FiaDe.
So, from (8.14) and (8.15),Y’ we have
 fleD=rdad) £
2 )=y @ f() }

where @ may be included in 7’s. Therefore, from (8.11)”, it follows that

(8.16)

xﬁzlzp(xz)grzlz?(xz)f(xz)x . (8.17)

But, since z satisfies f(@®)z=0 and f(®)=0 (cf. (8.11)"), we have, from
(8.16) and (8.17),

H=0 and zfi (B =0. (8.18)
Accordingly ﬂfl""i”(zz)/l,fl. cos i, =0 (because p;=2r,), so that

b=l +Sh @, gy =0.

Therefore {[#,]} is p-divisible. Q.E.D.
Since {[1]} (={[r:2]}) is a subset of {{«]} (r=1,....,¢+1), and, as we

q+lte

have mentioned, 7.’s are matrices of 2~ 2 th ord?,r <e={(1) ggﬁ gi%:gggn )

+1+ e
{{#:]} consists of the matrices of 22 th order. So we have
Theorem 29.  For the M-divisible iteration system B which has no re-
lation among the basic elements, there exists always a representation by

matrices of the Z‘qj?'e'th order where q 1is determined by the relations
r+1<2" and 2v=qg—n when r+1 and n are the index and dimension of
B, respectively, and v is a certain integer satisfying the relation r+1 < 2%,
(The method of securing the actual form of the representation is given in
" the deduction of this theorem).

N
(1) For, in f(w).=_i£11(x—a,-)mi, a;sFa; for i4=j and a,=0, m=1
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Case II. When there exists a relation among the basic elements of 8,
Since there exists a relation among the basic elements, » must be odd.
Now we shall find a matrix-representation of ¥ whose index is r+1, and
whose reduced relation and minimal relation are given by

g(MD)F(M)+§(M)A=0 }
and f)=0

respectively.
In this case, from the corollary of Theorem 20, necessarily

Jf@)=go(x)g(x) .
Multiplying (8.19) by A, we have

(8.19)

Agg+(~1)"% gMr=0;
eliminating /i from (8.19) and the relation above, we have
(1)~ (—1)"F M™) §(M)=0.
But, since f(x)=0 is the minimal form of M, it must be true that

(@)~ (-1 #) §)=r() f@) .

So, by the same reasoning as in Remark 3 (p. 29), we know that
m=1 N —m_—m
(0@ + (1) ¢ o) =T @2V a)™ ™ T@=b),  (8.20)
N m- N "
where f(w)=g(x—ai) :, g(w)=_TIl(w—ai) ‘,
m.<m, and SIm.<>m..
Now let us consider the matrix Z whose minimal form is
N ~eymo—m, N m
o7 @tv/a,)™ ™ 1T (@ —a)™, - (8.21)

where 7=0 for m;=0, 7=1 for m;==0, and the minimal order of such a
. N N
matrix z is r+1+2m2——77 (because the form (8.21) is r+1+zl}m2—77th

degree®). As in Case I, we take the matrix-representation of the central
basis of E-number system whose minimal dimension is g, L€, Tlyeeues Tul
Tatlhesoos Tor. If We put

n—1

a=(=1) 2 r1....7n1, (8.22)

N o .
(1) The degree of IIl(xi Va,)™ is (r+11).
.
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since = is odd, 7/s (¢=1,....,n—1) are anticommutative with 7,, and
re=rt....1h=1.

So we see that [r;] (¢=1,....,n) is a closed central basis of (n—1)-dimen-
sional E-number system.

By the same method as in Case I, we obtain the matrix z, which cor-
responds to z above, (z < Alr.l} G=1,...., q+1)), using the 7’s above and
(8.21) in place of 7’s and (8.11) in Case I. (cf. p. 151).

Taking the following matrices

TR=H (=1,....,n)

and making use of Remark 3, by the similar reasoning to that in the proof
of Case I, we know that {[#;]} forms an n-dimensional (closed) g-divisible

N m. . .« e .
iteration system® and f(x) (E]‘Il(w—ai) ’) is the minimal form of 8 with
respect to y;;=p#. Moreover, from Remark 3 we know that g(M)g(M)+

I
G(M)A=0 is the reduced relation of {[#;]}, and the order of matrices in
€ —_ N
{[x1} is 2‘,; (e={(1) ggi g;gggn), where ¢ is determined by r+1+gl}mi—
v o _f0 for mi=0\® . .
72 and 2v=q—n (77—{1 for m, #:0)' Therefore, combining the result
above and Theorem 29, we have

Theorem 30. There always exists a matrix-representation of the itera-
tion system B which is M-divisible and ny=0 (i.e. not having nilpotent

+e —_—
central basis), and its order of matrix 8 2"‘12— <e={g ;g: g;ﬁ%’b) where

, N ,
q 8 determined by the relations r+1+_21m§—77 <2and 2<qg—n<2v+1
when r+1 s its index with respect to M, and m; is the multiplicity of

. L. AN __ {0 for m{=0
different roots of minimal coefficient : g_El(o:2 a;) * and 77—{1 “for mi==0,

N
and v s a certain number satisfying the first relation (7‘+1+Z} mi—

(1) From Remark 3 we know that the matrix Z satisfies g(x?)g (2% + g(x?)xm=0, and does

not satisfy the equation of lower degree than this (by 8.8). So
9(g () +§(2Hzn=0 (A)
is the minimal relation of the matrix z whose représentation is Z in the isomorphism. Aec-
cordingly, using the relation 7,....7,=I, we have
" 9T () +F(@)anty. ... =0,
and this becomes, from 27;=7;2=yu;
9T +T ... tn=0 e gu)F(u)+5(L)e-... tn=0.

Moreover, from (A) we know that this is the minimal relation of {[x:]}.
(2) Cf. footnote (1) on p. 156.



Matl\xematlcal Foundation of Wave Geometry. II. 159

752, (The methods of obtaining the representation are also given in the
deduction of this theorem).

Next, using this theorem, we shall prove that when any function f(x)
and its factor §(x) and arbitrary odd number » are given, there exists one,
and only one, M-divisible iteration system except for isomorphic iteration

. I
systems, the reduced relation being given by the form g¢g§+d(M)A=0 (g
being a certain funection of M) and the minimal relation being f(M)=0.
In this case the reduced relation can be reduced to the linear form, i.e.,
I
M g(M)G(M)+FM)A=0.

To show this we shall first prove
Lemma 1. If a function f(x), its factor §, and an odd number n are
arbitrarily given, by choosing a switable function g(x) there exists a matriz

n—1

having f(x) and (g(w2)+(——1)“2v a:"‘) §(x?) as mintmum forms of 22 and z.
Proof. From Remarks 1 and 3, we know that the necessary and

n—1
sufficient condition for f(x) and (,t}(:102)~!-(—1)T ac”) g(x?) to be the minimum
forms of 2% and 2 is that there exist constants ¥ and b; and a function
r(x) satisfying the identity

21 N —
(969+(-1) "2 &) A=K 1 eV a:)" 11 (z— ) +7 () f@?),
N m-
where f@)=k, 1l (x—a;) ™.
N T My . T e
But, since _I=Tl(w:t1/ a;) (either sign of +1 a; is to be taken) is a factor
N
of £ (=11 (a*—a)™), the identity is reduced to
, - . o
(0 +(~1)"7 ") ge)=F 1 @£V a;)" 1 w—b}), (8.23)

and using the relation : . ,
)=k 11 (@*—a)™, (8.23y

we have, from (8.23), for suitable %, b,,
n-1 N e
(g(x2)+(—1) 2 x”)Ek I=T1 @tV a;)™ " (b)) . (8.24)

We can prove that there exist b; and g(x?) which satisfy (8.24).
Let 2r+2 and 27" be the degree of f(2?) and §(2?) ; then then the de-
N m—m .
gree of TI1 (x—a) ™ " is r—1'+1, and when the degree of I (x—b;) is 77,

the degree of the right-hand side of (8.24) is r—#+1++”. On the other
hand, since the function g(x?) in the left-hand side of (8.24) is a certain
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polynomial in «?, and the coefficients of odd degree in g(x“’)+(—l)%lm"
with respect to x are 0 or 1 when n is odd, from which we know that
there must exist relations among the constants £ and b; for the sake of
the identity (8.24), and that the number of these relations is given by

%(r—r’+1+r”+e)

(e=0 for r—»'+1+7">n and e=1 for r—r'+1+7" <n).V

So, in general, when the number of the constants b, is greater than

;—(r—-r’+1+r”+e) ie. r—7+1+e<7”, we can determine such b; and

accordingly g(«?) through the identity (8.24). But since there exist un-
bounded numbers of such polynomial TI (x—b,;) whose degree »”’ satisfies
r—r'+1+4+e < r”, there always exist b; and g(a?) satisfying (8.24). And for
such g(@?), f(2? is a factor of (g“’(x"’)——(—l)"“‘xz") §(@*.®  So, from Remarks
1 and 3, there exists a matrix z such that the minimal forms of z and 22
are 77 (g(x2)+(—1)"“1x”) §(x?) and f(x), respectively, where 7=0 for m;=0
and 7=1for m;=+0. So we have proved Lemma 1.

Hence, if we obtain a function g(a?) by the above-mentioned method
for a given f(x), its factor g(x), and an odd number = ; then, by Theorem
30, we have an iteration system in matric form whose minimal form and
minimal coefficient are f(x) and §(x) respectively. So we have

Theorem 31. When f(x), its factor G(x), and an odd number n are
given, there always exists an tteration system in matric form whose minimum
form and minimal coefficient are given by f(x) and §(x); and there are
at least 2V different iteration systems, which are mot transformable but
isomorphic to each other, where N s the number of different roots of
flw)=0. :

Lemma 2. When f(x), its factor §(x), numbers n (odd), and n(<<n)
are given, for a function g(x) suitably chosen, there exists a matrix z such

that the minimwm forms of 2% and z are given by f(x) and (xz'i"zg(xz)—}—
n-1
(- 2z 90”) g(@?) respectively.

Proof. We shall use the same notation as in Lemma 1. In this case,
the identity corresponding to (8.24) becomes

n~1

(1) When r—7'+1+7”>n, the degree of g(z)+(—1) 2 a» is the same as that of
n-1
g(@®); and when r—r/+1+7” <m, the degree of g(@)+(—1) 2 a» is the same as that
of a7, n—1 N
(2) Substituting —x for x in (8.24), we have (g(xz)——(——l) 2 a:n) =+kIl 1(oz::Fv/ a;) (z+by)
=

n—1

as n is odd. So the product of ga)—(—1) 2 an (8.24) and (8.23) contains f(@» as factor.
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)mt m

N
iI_Tl(w:t Via; T (—b)= =0 %5(a?) +a”. (8.25)

Since the degree of the left-hand side above is »—7'4+1+7", and the poly-
nomial g(2?) in the right-hand side is of even degree, the coefficients of the
terms of lower degree than 27—2 and of the terms of odd degree in the
right-hand side must be 0 or 1. This condition becomes, using identity
(8.25), '

E(fr—-r’-i-r”+l+e)+1:@
(e=0 for r—#'+14+7">n and e=1 for r—r'+1+7r"<n)

relations among the constants b;, Since we can always make the number
7"/ of constants b; satisfy the inequality r—»'+2n+14+e<+”, we can
choose the constants b; satisfying the relations among the constants b;. So,
there exist b; and g(«?) satisfying (8.25).

Therefore, taking such a g@? from (8.25), for the matrix z whose
minimum form is

N- - m.—m’. N m, |
@ 11 @xv a;)" /11 (2 —a)™ (8.26)
i .

where 7=0 for m;i=0 and 7=1 for m{==0, we know from Remark 3 that

f(x) and (wﬁb‘ g(w2)+(——1)ﬂ2_lx”) g(x?) are the minimum form of z% and 2
respectively. So, we have proved the lemma. Therefore, by the same
reasoning as that employed to obtain Theorem 31 from Lemma 1, we have
the following theorem for Lemma 2.

Theorem 32. When f(x), its factor g(w), n (odd) and n(<m) are
arbitrarily given, there exists an iteration system B in matric form whose

mmzmum relation and reduced relation are fF(M)=0 and M n- g(M)g(M )+

a(M )A 0 respectively.

Forms (8.24) (in Theorem 31) and (8.26) (in Theorem 32), by which z
is determined, depend only on f(x) and its factor §(x).® So, when two iso-
morphic iteration systems are regarded as the same from Theorems 31 and
32 we can say that the iteration system of dimension 7 is uniquely deter-
mined by the minimal form f(x) and the minimal coefficient § whlch isa-
factor of f(x) and its dimension n.

So that, from Theorems 31 and 32, we have

Theorem 33. If B contains a relation among the basic elements, then

I
the reduced relation is given by the form M™ g(M)§+g(M)A=0.

@ %(r—r’ +1+77+¢€) and % are numbers of conditions among coefficients of odd and
even degree respectively. ’

(2) The iteration systems {[x;]} obtained from matrices z determined from two choices
of sign in ++a; are clearly isomorphic.
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And, from Theorem 28, we have
Corollary. When r+1 and s(==0) are index and degree of relation of
on M-divisible and non-nilpotent iteration system B, the order of B s
given by
(r+s)27 1.

When 8 is M-divisible and n,=0, from the corollary above we know
that case (iv) in Remark I (p. 148) does not occur. So we have
Theorem 34. Iteration systems are essentially classified into two types:
I. The order p of B is w2", and its dimension is n.
IL The order p of B is w2®™, and its dimension is 2m—+1, but it is
tmpossible for B to be expressed by 2m-dimensional basic elements,
where o 1s the order of the zentrum of B.

§9. On the transformations of the central basis.

In this section we shall consider the relations between the sets of basis
a; and o when B={[a]}={[«]} G=1,....,n;5=1,....,7). For this
purpose we shall prove some lemmas. N

Lemma 1. If B(={[«]}) is M-divisible, and there exists @ in ¥ such
that «;S=S84; and Ta;=a;T® for certain Sand 7T in B ({=1,....,n), then
- ST=P, where P; is a zentrum-element. Moreover, if such P, has no
common factor with the reduced relation f(M)=0, then {[]}=%, and TS
is a zentrum element of V.

Proof. From «;,S=S8a; and Te;=a;T we have

aiST= SEZT=ST(11, and TuiS= TS;I‘z:a,,TS (’L=1, ceeey ’I’L) (9.1)

So, ST is commutative with all the elements «’s; therefore ST belongs
to the zentrum of B,?, i.e. ST=P,. Further, from «,S=S%;, we have
aju;S=0;8%;=Sd;a;. So we have, in general, 2S=SB, where f=F(«;) and
B=F(z). Now, if 5S=SB; and £S=Sp; then (8 —3)S=0; hence (8, —f)
ST=0, i.e. (Bi—p)Pc=0. But, since ¥ is M-divisible, by applying the
elimination-method (cf. Theorem 19) to

(—)Pc=0, (Bi—B)f(M)=0, and (Bi—B)F(M)A=0,

we have the reduced form (8;—PB)Pc=0, where Pc(M) is a common factor
of P; and f(M). Hence, if P; and f(M) have no common factor, then
p1=B. And, since @ may be any element of ¥ and fe® and the order
of B is finite, B can cover all the elements of B. Accordingly, the cor-
respondence of 8 and B defines an automorphism in . So we nave aua;,=0
(=F7), because.aun,,=0 (i==J) and o?=M’'. Therafore [#] is a central

(1) We do not assume that [z;] is a central manifold of B,
(2) Cf. this Journal, 10 (1940), p. 226.
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manifold of B, i.e. {[z;]}=9. And from (9.1) we see that TS is also com-
mutative with all elements of ¥ i.e. TS=P,. Q.E.D.

Definition: When B is M-divisible and STM=M, T is called the
inverse of S. '

Remark: We know from §6 that such ST is the unit element of B,
and accordingly TS is also that unit element of ¥. So, by the definition
above, S is the inverse of T. ‘

Lemma 2. If a;S=8a;, ;8 =8'a;, and there exists the inverse T of
S, then S'=P.S.

Proof. Multiplying «;S= Sa, by T, the inverse of S, from both 51des,

we have
Ta;=aT; 9.2)

multiplying «;S8’=8"a; by T from the left-hand side, we have Te;S'=TSa;,
50, by the use of (9.2) this becomes

#TS =TSz 9.2y
Since, in this case, ST does not contain a factor of the minimal funection
F(M) of M (because TS is the unit element), from (9.2) and Lemma 1 we
have {[z]}={[z]}=9. From this result and (9.2); we know that 7'S’

belongs to the zentrum of ¥ i.e., TS'=P, Therefore, multiplying this
equation by S from the left-hand side, we have

S'=P.S. Q. E.D.

Lemma 3. I f f(M)=0 and f’(M N1=0 are the minimum relations for
M and M’ respectively and moreover M=k(M'), and M’ =k (M), then the
Sfollowing relations hold good :

k(a2)=aj ,  Klay)=aj,

for the non-null roots a; and afa; a;ef®) of f(@)=0 and f(x)=0 (xeK)
respectively, 1. e.,

f@=T@-a)", f@=Ie-a".

Proof. From the assumption, we have f (k(M ’)) =0 and f ’(k’(M )) =0,
ie. .

(k@) =<@)f @)
1 (K@) =7 (@) f ()

(1) We assume that STM~M If we write TBS=f/, then, multiplying 7" from the
right-hand side, we have TR=F'T (for ST is the unit element). So from Lemma 1 we
know that the correspondence between B and f’ defines an-automorphism with in 8 in which
the unit element corresponds to itself clearly. So, if we substitute ST for g in TBS=§#,
it follows that T(ST)S=ST, i.e. TS=S8T (for ST is the unit element). Therefore 7T'S is
-the unit element of B and S is the inverse of T.

9.3)
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On ther other hand, we have
M =k(k’(M )) , l.e. xzk(k’(ac)) +(x) f(x) . 9.3y

From this identity, we know that k’(x) and f(x) have no common factor
except .V -

Hence k(a)) &0, and the condltlons of (9.3) can be written by k(a;)=aj;,
E(a;)=a}, and a; a}, =0 (5,7 = ,N;i7=1,....,N’), where f(x)=

N A
ffl (w=a)™ and f@)=11 (x——a;-)m’ (a,;, a;-eﬁ). Q.E.D.
i= . =

When the base M satisfies the minimum relation f(M)=0, and g, is
a root of f(x)=0 (a;=F0) the relation Mfi(M)=a,fi(M) obtains, provided

that f(x)=(x—ay)filx). So if we put Ml:aﬂ and fl(a1M1)=gl(M ), then

1
Mg (M) =g(My) (9:(M) £ 0).

- If we take such g(M)’s for different roots of f (), we can show that
they are essentially different; for, if fi(M) (or gl(M_l)) and fo(M) (or gz(Mz))
for a,, az (a; == a,) are essentially equivalent, then it follows that b, f1+b,/2=0,
where b’s are constants; but this contradicts the assumption that f(M)=0
is the minimal relation of M. Accordingly, there are different g(M)s as
many as the number of different non-null roots of f(x)=0. Conversely, in
an iteration system B, if there exists g(M) such that Mg(M)=g(M)— the
relation among the bases of ¥—, from Theorem 19 and the corollary of
Theorem 20 there exists the minimal relation, say f(M)=0. So we have

Lemma 4. In an iteration system B, the necessary and sufficient con-
dition for the ewistence of a g(M) and M satisfying the relation Mg(M)=
g(M), (9(M) == 0), there exists the relation f(M)=0 of base M.

Now, when B is M-divisible and n,=0, using the Lemmas above let
us consider the problem of the isomorphic correspondence of the two sets
of bases, «; and o, of BB ={{«]}={[£1}):

a;S=8a; (or fS=Sp). . 6)

For this purpose, we shall treat the problem in two separate cases: I
M=M and 1I. {M}={M"}.
Case I. M=M.

If we put ;= % and «=-% (I is any difinite number), then (9.6)
1/al 1/0,;
becomes
a;S=S4; . 9.7

Multiplying this by g¢,(M,)a; from the left-hand side, we have

(1) From the construction of B and k(M), it follows that k(M)=a, M’ +a,M"*+----;
hence, k(k/(M N=ak'(M)+a (M) +----. So if f(x) and k/(x) have a common factor x—a
other than z (a==0), substituting a for x into (9.3 we have a=0; which contradicts a#O
Accordingly k/(x) and f(x) have no commen factor except @,
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Mlgl a,,Sla, . i.e. §l=—a-i§l&:: (9.8)

where S;=g¢,(M)S; hence S,=a,;S/@. (Hereafter we shall write g(M) for
9(M) when there is no -confusion.) So S=Sa. Now we assume that S
includes the term of the 0-th degree, say sy(M), with respect to a;; i.e., S
includes 5(M) of the form s(M)g(M). Then the right-hand side of (9.8)
includes the terms Sy(M)a;a;, ; so the term Sy(M )z;0;, must be included in
the left-hand side S (4,=1,....,n). Hence, if we put 7=4, in (9.8), the
right-hand side includes the term Sy(M)a,a;, %, (i,<<%); so the term
8(M)a;,a;,a;, must be included in the left-hand side of (9.8), i.e,, S. By
continuing this reasoning, we see that S includes the term

§O(M)&,-p....17¢ﬁ§1....Eép A <<+ <i,<m).
So S must include all their sum
B=8lM) 3 G .. iy, O S0<ip<or-<i,<m).
n....zp
On the other hand, we can prove that the S, satisfies the relation :
| So=:5¢; .

Proof : First we shall consider the reduction of a term s(,oz,(azz
iy oo o @ )ozz which appears in @S, separating it into two cases.

When % of §ﬁ,—(&,~p R /A a,-p)ai is any one of %;,....,%, Say 7.,
we have

~

80y e By e oo ) =EMM o T T e Gy e T T
But from Lemma 4, »

SoMM =s,g(M)MM =5,9(M) =5,
So the term sy(M )&,—(Eip. 77 A a;p)a; in @;S¢; becomes an other term
in S, such that

= ( A\ - - -/ —/ —7 -/
S(;(M)czz,27 T SN T2 A /SN (NN

When ¢ is not included in 4y,....,1, as 4, 8(M)a, ... . &G, . ... & & be-

comes another terms of S, containing @a; as factor, i e.,

= (TFY\= — — s — —t
So(M)aip....a,;....aila,;,....a,;....a',;p.
P

Accordingly, 8v(Sa, . . . @, . . . Tp)i=8%; . ... @, . .. . %,. There-
fore, we have o
S0=H,-S —:; .

Multiplying this relation by. a; from the left-hand side, and taklng mto
account, that MS;=S;, we have
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a,;gg = go—&: i.e. aigﬂ = go(l: .

So we have proved the proposition.
Similarly, for an element T, in ® of the form

I0=t0(M) E (71 . 'aél;iil""aip (0§i1<""<’&.p§'n),

where fo=t,g(M) ({,e ®), we can prove that T, satisfies the ‘relation :

T_o(l.;= fléTo .
So we have
Theorem 35. When there exists a relation f(M ) 0 and B={[¢]}=
A[1}, any elements S and T given by

S—EPTQT(M) E ’1 . ..Eiln.gl....ﬁf:p

and T ZQTgT(M) 2 az --~°a§1ai1"-'};i (0§i1<“"<iﬁ-—§n)’

define the following isomorphism :
» a;,S=8d; and Ta;=dT ) 9.9)

where ¢.(M.) are defined by f(M)=M-a.)gM,) and Ei=1—/g;~- and p,;

q. are any number of 8. And, from (9.9) and Lemma 1, we have

Corollary. ST and TS are elements of the zentrum in B.

Now we shall consider the problem: What is the necessary and suf-
ficient condition for a basis «; of B, « given by Tw;S=dj, to be also a
basis of B i.e. {[a;]}={[«;]}? To answer this we shall prove the next
lemma.

Lemma 5. An element A(e®) satisfyiny the relation L(M)Aa;=
al{ M)A (i=1,....,n) 8 zero, if there is no relation L=1I or l,=—1, and
Li(x) 4+ L(x) and L(x) —l(x) are both prime to the minimum function f(x) of B.
And when Li(x)+L(x) is prime to f(x) and U(x)=1(x),

V‘A=a0(M )+ aidM )/i when the dimension of B 1s odd,

A=ai(M) when the dimension of B is even ;
when l(z)—bx) prime to £(z) and L(@)=—bx),

A=0  when the dimension of B is odd

A=a;A when the dimension of B is even.

Proof. Multiplying the relation .
5 L(M)Aw;=al(M)A (9.13)
by a; from the left-hand side, we have
‘ haiAa;=MLA , (9.13)
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We separate the terms of A into two groups, 4;+ and A, such that one
group A;. consists of all the terms of odd degree (with respect to «;) in-
cluding «; as a factor, and of all the terms of even degree not including a;
as a factor, and the other group A;. consists of all the remaining terms
of A. Then (9.13) is rewritten by this 4;. and A4;_ as follows:
WA — A )=b(A;+A;-) .
Multiplying (9.13) by «; from the right-hand side, we have
W(A;:+A; )= lZ(A'L+ A;).
So, from these two relations, we have
L—L)A;=0) .
(z=1,...
(l1+ L)A;-=0
When L(x)+1l(x) and li(x)—l(x) are both prime to the reduced function

f(x) of B, from (9.14) we can conclude that l; == +1,; accordingly A;.1=
A; 1=01i.e. A=0; and if [;=1, then A, =0 (¢=1,....,n), so that

). ©.14)

I
A=ayf(M)+a)(M)A when the dimension of B is odd

9.156
A=ay(M) when the dimension of ¥ is even, } (9.15)
if l,=—10, then A4;,,=0 (i=1,....,7n); s0
" A=0  for dimensi odd
, for dimension » } (9.15)
A=ay(M)A for » ,» €ven, .

Conversely, for A given by (9.15) and (9.15) we can easily see that it
satisfies the relation (9.13). So we have proved the lemma.

Theorem 36. When B has the unit element and Ta;S=d5 (i=1,. , 1)
(T, Se®W), the necessary and suﬁicwnt condition for {[a;]}= {[a,]} 18 that

TS has the form TS=ho{M)+h(M )A and
{ni(M )+(—1)’2_h¥(M YMY={M} when the dimension n is even,
{(TSYM, (TSy"A}={M, A}  when the dimension n is odd.
Proof. Let us assume that ‘ |
Ta;S=a; and {[a]}={[]}; (9.16)

then o has the inverse. Accordingly, S and T are non-singular, i. e.®

(1) The unit element %~ of B has the form hx(M’)+h,(M’).£’. So we can express k as
follows: h=alath+aifuai....al-10i+1....an; hence aiath+hai....ai-1a5+1....an)=h.
Therefore a; has the inverse (athi+hid}....a;-10i+1....a2).

@) If S(p—p)=0, then from (9.16) ai(B—B;)=0. So, multiplying this relation by the
inverse w; of af from the left-hand side, we have §;—B=0. Therefore SB=F (because
the order of B is finite). Since B includes a unit element %, so there exists S-1such that
SS-1=h(S-1e B).
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So if we write U=TS and S~ '¢;S=a;, then the relation Ta;S=d} becomes
US'4;S=d}, i.e. Ua;=d;, and @z;=M and U has its inverse. Therefore
we have

UqUs,=did,=M' =P, ©(9.16)
and ’ Uz, Uui+ Ua;Ua;= dia;+ala; =0,

rMultiplying this by a; and @; from the left- and right-hand sides
respectively, we have
M2U=a_1(;l_,, U&,‘-) (7]- .

Then, by applying the notation used in §5, this relation can be written in
M2U= MZ( U({) ({)_’_ U(%x%')__ U(i:)('-?— U(%)(.’{')) . (9_16)"
On the other hand, U is written in ‘
U_—_____ U(f{) (.]7:)+ U(%)('%)‘l' U(i')(.g)_'_ U(%) (.{') .
So, from (9.16)” and the identity above, we have
UPP+UPYP=0 UPP+UPP=0 (t=4, 4,5=1,....,n).

So the terms of odd degree in U are the sum of two parts, the one com-
posed of terms (in UPY) which contain @a; as a factor, and the other
composed of terms (in UP9) which contain neither @; nor @, By giving
j the values from 1 to n for a fixed ¢, we know that the term of odd de-
gree in U contains a;....a, as a factor.? And similarly, the terms of
even degree in U are composed of two parts, one not containing a; (j=1,
2,....,n) (in MPY9), the other containg @a,....a, as a factor (in MP9).
So we have

I I
U=hy(M)+h(M)a,....an=h{M)+ (M)A (A=a....a,). (9.17)
Further, substituting U above into (9.16), we have

(hd M) +h1(M)ff) (ha+( —1)n-lh1f1)M= Pe=M':  (918)
by actual calculation, we have
when n=even (hé —(-1)2mM ”) M=M
when n=odd (h%-l—(——l)ﬁz—lh%M"+2h1hzf£1)M=M’.

Of course, the zentrums of {[«;]} and {[«;]} must be the same. So we have

(1) Cf: this Journal, 10 (1940), 236.
(@) The term of odd degree which does not contain a; (j=1,....,%) at all as a factor
must vanish,
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{(h%——(——l)’ﬂﬁM ”)M } ={M} when n is even. 9.19) | ,

I I I 7 I :
If n=0dd, M'=U’M and A’'=U"A (A=A4)?; U and A belong to the
zentrum of B ; so, from Theorem 10, it follows that

(UPMUA) =N, 4). (9.19)

Conversely, if we take U in (9.17) which satisfies (9.19) when » even,
and (9.19) when n odd, then & given by US'¢;S=d; for any element S
of B, (i.e. Ua;=aq;) satisfies the relations :

A ’
a<,-a,-)—3,-jM .

Accordingly «f’s constitute a set of central bases of an iteration system
B (={J4]}). And, by (9.19) or (9.19), the zentrums of {[«;]} and {[«]}
are equal. So, from Remark 1 (on p. 144) and Theorem 27, {[«;]} and. {[«}]}
contain the same number of linearly independent basic elements with respect
to & and {[«{]} < {[a[}. So we have proved the theorem.

Theorem 37. When B contains the unit element and {[US ' S1}=
{la;]} and the norm s defined in K, the necessary and sufficient condition
for U satisfying the relation above to have an infinitesimal operator (i.e.
WMM)+ed, € 1) is that U 1s given in the following form :

U= e“M"‘{ when m is even
and U=hM) when n is odd,
where (M) is the unit element of B.

Proof. If we substitute R(M)+eA (¢ K1) for U in (9.16) where h
is the unit element of B, we have

M(h-l—eA)ai:PCai(h—eA) }

9.20
a;Aa;+a;Aa;=0. (9.20)

So, Ma;=Pca;,, Multiplying this relation by «; from the right-hand side,
we have M=Pg. ,
Substituting this into (9.20), we have

Aa,;= —a,;A . !

I
So, from Lemma 5, A=0 when 7 is odd, and A=I(M)A when n=even.
Therefore, if U is the result of repetions of an infinitesimal operator, it

(1) When n odd, since @,....an is commutative with a;,a;....an is an element in
the zentrum of B. Hence the relation &....z2,=S"1g;....anS becomes &,....@n=
S-1Sg....an, s0 we have )

I I
A=A.
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I N i
. follows that U=¢"®’4 (for h is the unit element) provided that ¢ is the
unit element h(JM).

I
Conversely, if n even and U=€*4, we have

I I
-}-—Z(M VA -1 1 1

Uz=e? ae 2 MU T,
‘Accordingly, we know that
{lu}={{Ua]}.

So we have proved the theorem.

This problem was discussed at a special Seminar of Geometry and
Theoretical Physics in the Hirosima University, and research into it has
been carried on under the Scientific-Research Expenditure of the Depart-
ment of Education.

Mathematics Institute, Hirosima University.
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