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Introduction and Summary.

Wave Geometry is constructed by taking ds¢=r¢daci¢ (rarp=9:I) as the
metric of 4-dimensional manifold. This metrical form is introduced to unify
general relativity and quantum mechanies in a natural way from the physi-
cal angle; but the mathematical basis for adopting such a metric representa-
tion has not yet been fully established. Hence to establish the foundations
of Wave Geometry, it is very important to pursue the problem along this
line. :

The purpose of this paper is (1) to construet a theory of number system
B (or operator system) which shall be a generalization and abstraction of
Dirac’s 7; or Eddington’s E-number, (2) to show how this new system can
-imply, as a special case, Cliford’s number, including Dirac’s matrices 7; and
Eddington’s E-numbers, and how it is related to matrix representation, and (3)
to establish the methematical foundations of Wave Geometry by construeting
a geometry of the manifold of this system, without ‘using coordinates
independent of number system or operator as in the geometry of operators
hitherto proposed. , '

This investigation especially distinguished from those in Wave Geometry
hitherto have previously appeared in the following respects: Elements of
the ideal in this number system ¥ play the role of ¥ (wave function)
used as operands for operators; therefore all quantities in consideration
belong to B. And, using this ideal, we introduce the conception of * norm”
of any element in B, by which we can discuss convergency of any series
in 8. )

In this paper, as the first step, we shall restrict our investigation to
when the number of linearly independent elements in A is finite, leaving
the case of infinite linearly independent elements for future papers now in
preparation. ;

In §1, we construct from a general (original) operator set M and a
corpus & a linear manifold A in the field & satisfying Axiom I Then we
find some relations among M, K, and A (Theorem 1).

In §2, we introduce the multiplication and addition of elements of ¥,
and construct a manifold B from the multiplication and addition of ele-
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ments of A in the field &; and we consider the special case in which the
square of each element of 2 becomes a definite element M of B with a
factor of & (or, in another words, to the iteration of the element of M there
corresponds an element of &); we call such a system * an iteration system.”
In the iteration system a normal base system 6y, 6, . . .., Gnono Gnongtls « o+ + s &n
of A can be introduced such that

o o l, = R - sAa=n— ’
a(iaj)=pijM, plm=6lm , pa].=0 ( m 1; 2.1 yN—No; A=N n0+1 >.
ceesn3=1,2,...., 10

In particular, in the above when M=FkI, ny,=0 and & is the complex num-
ber system, it is shown that this iteration system B becomes equivalent to
Eddington’s E-number system.

In §3, it is proved that in the iteration system the element M belongs
to the “zentrum” of B, and each element of B is expressed by a linear
combination of aj, ap ovvv.... ,an. ... ay; With coefficients of functions of
M (Theorem 6).

In §4, assuming in the iteration system that B,=0 follows from
MBy=0(3<®B), we find the zentrum of B (Theorem 9). ‘Then, by investi-
gating the possibility of extending U while preserving its iterational character
by adjoining an element of B (Theorem 12), we answer the question: When
is A the minimum base system ? :

In §5, we consider the problem: Is there any relation among the
elements of the base system aj, a3, . ..., 0nyev..ya....ay; and if it exists,
what is the expression of that relation? We show that the totality of re-
lations can be reduced to a system of independent relations (Theorem 16-20).
And in the special case when 7,=0, we show that for even n the relation,
if it exists, is '

g(M)=0
and no more; for odd n

(DG +GANA) =0, g MFM)=0

and no more, where r=1 or 0 (ze&) and ¢, ¢ are prime to each other.

§1. A central linear manifold.

Consider a set M of any operators, and a corpus & (this may be a
ring). We assume that the multiplication (right or left) of each element of
WM with each element of ®, and the addition of operators thus introduced,
are known. Now, by this procedure, we construct a linear manifold of
operators from M in the field §, which we call the linear manifold A,
expressing it by A=[K, M] or [M, 8] according as multiplication is right
or left. More precisely, if k, k1, k.c® and m, m;, mee M, then

kmeA and k,m1+ komae ™ (for left mﬁltiplication).
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And if « is any element of 2, it can be expressed in the form :
a=>km*, where Fk;e®, mieM.©

With regard to N, we make the following assumptions :

If &,k ke R and a, a4y, a,e N, then

(a=a,

if ay=az and ay=a3 then a=az,

aqto=ata,

(I + o+ at+ a2=a1+(a2+a3) ’

Fey(Feza) = (ko)

k(ay+ ap) =kay+ kas ,

\ (ko1 +ko)a=TFera+ Kooy .

( If a null element 0 is contained in &, then, for the element 0,
0.y=0.0,=0; “
(I); § we call this O the null element of 2A.

For the null element O, V

\ a+0=a.

(@I If a=d, then atay=d +a.
(I); ka=ak for any k and a.

Remark 1: In the definition above we do not always need M <A or
1. m=m, even when there exists a unit element 1 in ®; but in latter case
we know that if we put 1. m=4, then

l.a=a
(for 1. (1. m)=1.m=a by (I)). °
Remark 2: When a unit element 1 is contained in A, «-+ 0=« follows
from other axioms; for, from (I); and the first part of (I),, we have

(1+0)a=1.a+0.a=a+0
and (14+0)e=1.a=a,
hence a+0=a.

Remark 3: When (k+k)m=km+kom(ky, ke R; meIN) and k1kzm—4-
ky(kgm), (I)2 and (1); can be replaced by :

If o= a then
{@: atay=d +o

and a+a1—a1=a o

(1) In this paper, subscript does not show power of element but is a notation denoting
different element; and when we want to write the powers we shall put bracket s (a).
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- (Assumption (I);' can be used even when U has not the null element.)
Proof. When U has the null element as defined by (I), it can be proved:
that (I). and (I:=(1);.

For, since, by (D)z, a+0cy=a, we have from the assumptlon (I)l

0. y=0>] k{mi = kai)’mfi =>(k;— ki)mi =>1 kimI —>kmi=a— ay,
hence ata—o=a;
therefore (D) follows from (I),. Conversely, since, by (I)5,

atay—o=a,
we have, from (I);,

at(ei—ay)=a or a+0g=ea, ’ (1.1)
and b.§ 19 (—a)+a+00=(—a)+a
or 0a~+0a;=0a,
and similarly 03+ 00="0ay ; -
so that Oty =0a .

Therefore, from (1.1) and the preceding equation, we know that (I);
is implied in (I)5.

Theorem 1. When a unit element 1 is contained in R, the necessary
and sufficient condition for MW 4s that 1.m=m, where m is any ele-
ment of M,

Proof. Suppose M <A, Then, for each element m of M there ex1sts
at least a set of element %° of & and m,; of M such that -

m=>kmt; (1.2)
-multiplying both sides by 1 (the unit of &) we get
Lm=1>km’. (1.3)

But, from Assumption (I),
123 km*=>ksm? ;

so from (1.2) and (1.3), we have for any element m of M
1.m=km*=m '

And conversely, if 1. m=m for any element m of M and unit element 1
of then M <A, clearly. So we have proved the theorem. Q. E.D.

Let ay, a,....,a, be the totality of linearly independent elements of
A ; then any element of 2A may be expressed by a linear combination of
«’s, the coefficients being elements of 8. We then express U by

A=[a,]

and call it a central linear manifold.



Mathematical Foundations of Wave Geometry. 1. 219

S2.. An iteration system and its normal basis.

Here we assume that the multiplication between the elements of [a;]
is known such that the associative and distributive laws hold ; i.e.,

aiajak=ai(ajak) ’
(D)o aile;j+ap) =oo;+ aiay, ,
(s + @)y, = oo+ aary, «
Now consider the totality of numbers made from 2 by . multiplication and
summation in the field &, and denote it by B, B={[«;]}. But we must

not say that all the elements of B always belong to €. Further, for B
we make the asssumptions :

(Hn{5=ﬁ'
If pi=B, PB.=fs, then Bi=ps;

51+32=32+.31 ’
| Bt Bt Bs=p1+ (Bt B,
(D2 ¢ Bu(BetBs) = BBt BB ,
(BatBa)Br=Pofr+ PP .
If p=p then B+pi=p+5.
(IDs  08,=03=0, O+p=p.
(ID:  kBi+B)=kpi+kBx, (keR; By, 2 Bs€D).
From these assumptions we have
Theorem 2. (i) ﬁlﬁzﬁs=51(ﬁzﬁs), (i) (Frtk)p=kp+kp, (iii) Ferkes = ky(KeoB),
(iv) kB=pk. )
The theorem can easily be proved, so the proof will be omitted here;
we need only notice that
(i) follows from (II); and (1),
(ii) follows from (II);, (II);, and (I);,
(iii) follows from (II), and (I),, ’
(iv) follows from (II); and (I)s.
Next, in order to characterize the numbers of 20 (or B), we make the
following assumptions :
III To each element of A there corresponds only one element of & by an
operation called iteration.®
»

(1) Using Theorem 2 (ii), we can easily see that when a unit element 1 is contained
in B, the latter part of Axiom (IL);, i.e. B+O B, follows from other axioms. And O in
A becomes O in B.

(2) We can generahze the idea of “the iteration,” if we correspond to an element a
of A another element & of W (or VW) in a certain definite manner S. If S is needed to
satlsfy the condition of involution, we must take it that (4)*=a, and as the iteration define
aa
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(i) We call the operator of squaring of an element of & the iteration
of the element.

(ii)) If we take from ao;+a;a;, for all suffices, all the operators, say
P,, linearly independent of each other in the field &, then we have

(Ka;)= % PP, (p*e®).©

Thus we see that to an element %‘a; of 2 there corresponds a set of numbers
p® of 8. When there is only one P, we say that to the iteration of «
there corresponds a single number p’ of K. '
The number system 8 which satlsﬁes axioms I, II, III is called “
iteration system.”
Now, returning to our case, from Assumption III it follows that

a;;tajo;=p; M for i3] and ata, P M - (2.0)

where p;e® and Me®B.®
Conversely, from (2.1), we see that each element belonging to 2, say k'a,
satisfies the iteration condition, i.e.
Ka;=3kkp;M=kM (3 klip;=ke8)). (2.2)

Sq 17
So we see that through the iteration a number k(e&®) corresponds to the
operator k’z;. So we have
Theorem 3. In order that W may satisfy Assumption III, it is necessary
and sufficient that N

g+ a0 = i M

where q;e&, and M is a definite non-null element of 8.

The relation (2.1) is a fundamental condition characterizing the number.
of iteration system that we are going to deal with.)
Theorem 4. When K is a corpus,® in the rélation

(aza,-l-aja,) piM (¢=1,2,....,n, finite)

if the rank of p; is n, a; (t=1,....,n) are linearly independent. But the
converse is not always true.

Proof. Let the rank of p;; be n, and «; (i=1,....,n) be linearly dependent;
then we shall have %'z;=0 (when there is no null element in 2, make
ka;+a=a stand for k'a;=0). Multiply the equation by «; from the right

(1) Hereafter we shall use the convention that when the same letter appears in any
term as a subscript and a superscrlpt it is to be understood that this letter is summed for
all the values.

(2) When & is a corpus, we have ‘E(aiaj'i'ajai):pijM and (Kie;=kikip;; M instead of
(21) and (2.2).

(8) Refer to footnote (1) on Page 8 for the case when ® is a ring.
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side and from the left respectively and taking the summation of two result-
ing equations side by side,

it » M=0 ;(1) )
therefore® k*M=0 (because the rank of p; is n). So that, to prove the
last part of the theorem, we can take a special example.® If we take

00 010
= =l—T—]seeiieens y Oppy =] ————
0 \X “lox \Xn o
010 - ' 0010 -
0001 000 I . 0
0 0
Up—po+1= y Op-py+2= ceeey
0 0 0 0
. ]
0-01
0--0| 0
an= ’
0 0

where X;’s (¢t=1,....,n—ny) are square matrices satisfying the relation
)((le)=almM‘ -(ly‘m=1,---‘:’n—%)’

then s are all independent of each other, and the rank -of p; is n—mn,,
because in this case

Dim=0im (i,j=1,.-..,n;lsm=1,-...,n—no>
Pai=0 a=n—nyt+1l,....,m

0 l 0
and M is of the form | ———|. v ,
| m

Theorem 5. When & is a corpus, in

é»(a,.aj+a,.a,-)=p,-,-M (i=1,2,....,m)

(1) Hereafter we denote null element in B by 0 (in usual letter).

(2) When & is a ring, we bave 4kiM=0 (where 4=|p;;|) in place of kM =0 in Theorem
4. Hence this theorem is true for B in which £=0 or M=0 follows from kM=0(keR)
even when ® is not a corpus. .

(3) These matrices X; actually exist.



399 K. Morinaga.

if the rank of (py) is n—mne W=[a;] contains just n—mny linearly independent
elements which are orthogonal to each other (i.e. ddm=0,M) and their
iterations are not null. ' ,

Proof. If the rank of the (p;) is m—m, we can find a linear transforma-
tion ¢;=hia; of the base system «; (¢=1,....,7n) (|ki|30, hie®) such that

I=1,....,n—n; a=fn~n0+1,...‘.,’n;>

ﬁlm=alm ’ ﬁai=0 (,.
i=1,....,n

“and ‘;—(aoi(ij'l"aej’;i):i)ijM ; in fact, p;=hthEpy, and A=[a]=[s].
So, from Theorem 4, we know that 2(1= [a] (1=1,2,....,n—mny) contains just
n—mny linearly independent elements which are orthogonal to each other and
whose iterations are non-null. Therefore A=[q;] contains at least n—mn,
hnearly 1ndependent elements which are orthogonal and whose iterations are
non-null. Hereafter we call the elements whose iteration becomes null,. i. e.,
=0, a nil potent element.

If A=[s;] contains n—me+p (p30) non-nil potent elements say
Gy« e« oy On-ng+p Which are linearly independent and anticommutative to each
other, i.e. auin=0,.M (X, £=1,2,....,n—ny+p),® then the rank of (p;;) is
greater than n—mn,; but this contradicts the assumption that the rank of p(;)
i8 n—mny,. Therefore A=[a;] has just n—mn, non-null bases. Q. E.D.

If in A=(g;), o's are linearly independent (in 8) and the rank of p,;
‘in agaj=pi;M is n—mng, then, by the same process as that used in proving
Theorem 5, we can choose the bage a; such that

aqbmy=O01mM (j=1, 2),. e,y Lm=1,.... ,n—no;) 23)

Aty =0 a=n—mne+1,....,m

"And since o's are linearly independent and accordingly form a base system
of 2, A can be written as follows.:
- I N
A=[5]=A+A (2.4)

. I N N 4
where A=]y] and A=[a.] (=1,....,n—ng; a=n—mne+1,....,n). Here A
has the following property : each element is not anticommutative with all of
I N . N
A; but, on the other hand, U has the property: each element of A is

N
anticommutative with each element of € (of course A). Further, we can

I N
easily show that € and U are maximum linear manifolds in U having the
above-mentioned property and satisfying (2.4); and for such separation of

P S
Q) dadw="5(dadutdnds)
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N I . N -
A, A is invariant but A is not uniquely determined unless A=0. From
these properties of &; as seen in (2.3), we call this base system a; the normal

base system of A.- Hereafter we denote {91} and {91} by %B and % re-
spectively, i.e.,

~ N I1=1,....,n—ng;
B=(W={[3]} and B={A}={[z]} (a:,;_mfi ; n>

§ 3. Propertlos of M and canonical expressnon
for elements of B by o's. .‘ » .

Taking the normal base system iy we shall mvestlgate some important
properties of M. )
When & is a corpus; since

=M (l 1,2,....,n—mn ) 5.1)
agay+ ayae=0 a=n— 'n0+1 , N :
we have, multiplying by ; from the right-hand 31de
aM=Mas and a.M~+atac= 0 3.2)
From (3.1) the last equations become
acM=Ma, (a=n—my+1,....,n).

From this and (3.2), . »
' a:M= Ma; r=1,2,....,m).
So we see that M is commutative with each element of 2, i.e.
S ' aM=Ma . (aeN). .
' Further, from Assumption II, we can easily see that M is also com-
~ mutative with each.element of %, i.e.
' BM=MpB  (Be®). |
Also, accordingly, since Me®, from (II), we can deduce that any poly-
nominal of M with coefficients from & is commutative with any element of
B, ie. .
BE(M)=F(M)8 .
So we have ' :
Theorem 6. When & is a corpus, any polynominal of M with coefficients
from & belongs to “ the zentrum” of 8. ;o
When & is a rmg, since (k‘e;¥=kM, and from the.relation .
(Ka))u ki) = Klaj(kie;)?
we have kMkio;=k'a;kM or Mkk’a‘ kkto, M .

() When A=[i]+dal= 0+3( is an above-mentioned separation, -
I N
m=[ﬁi]+[&a]=ill’+21 (a°i=&’l+g‘1”&a; g‘;eﬁ)

' I I
is also an above-mentioned separation and U == W’.
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This shows that kk‘z; and M are commutative, and therefore kk's; is com-
mutative with any polynominal of M with coefficients from 8.

' Remark. When & is a ring, the theorem is true if we take 4M for
M, where 4 is the determinant of the matrix of the highest rank in (p;).
For, when ® is a ring, in (3.1) we can make some modifications, as follows:

au=dM and  éGeat+aa.=0.
So that we get (by the same procedure as in obtaining (3.3) from (3.1))
a;AM=AMas;
and . ‘ BF(AM)=F(AM)B‘ (BeW). ' Q.E.D.

Accordingly, all the theorems concerning M, when & is a corpus, are trans-
fered to those when R is a ring by putting 4M in place of M. So that
we can assume, hereafter, that £ is a corpus, so far as we are concerned
with M.

As an application of Theorem 6, we shall find “the canonical form”
of the expression for the element of 8 in terms of o’s.

For convenience we use the symbolical notation @ such that

B+pB=p(®D+8)
_ B+BB=(®+p)B,
even when there exists no unit element of ¥ and, accordingly, in such a
case @ has no real meaning in itself, but has meaning when it operates to
each element of . Using this symbol, we have
Theorem 7. FEach element of B can be expressed linearly by the base

elements M, oy, % . ... 00050 «ocosary ... . an,® the coefficients being poly-
nomials of M, i.e.,

B=f(M)~+fia;+ "oz a4« - - -+ nag, . ... %1 (8.5)

where f(M) is a polynomial of M, other f’s are polynomials of M and @
with the coefficients from K. .

Remark. Though f%---% may contain the meaningless unit (@), each
term of (3.5) has real meaning, since they operate to, or are operated by,
a’s, the elements of B. - '

Proof. Any elément of B can be expressed in a polynomial of normal
base elements s, i.e.

B= 33 p "t &) ..., () 2 (p'sef) (8.6)

aiy....aip

But, from (3.1),
g'sef®; Sa; =3lai;

..al af a
n((‘}l) 1-'..((,}%) n pail...,”’ip__::tqai....a;‘;

af..

a a; a. a;
Pt ) . (&) P=gq

not summed by a;_

(1) This notation is the same in Der Ricci-Kalkiil (J. A. Schouten), p. 26.
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provided that (7,)°=Q@®. Further, from III and (3.3),
D TR ) & SO £
can be written, using the symbol (M)'=(®),
(M) g% (@)™ . ... (Gn)n

n-n ,
where ¢;=1 or 0; a= Zupi when we write a;=2p)+c¢;; if all indices
. £

., <2 (a=n—mng+1,....,n) then -=@), and, in the other case, r=0. So,
(3.6) becomes

B=9g(M)+ g+ 0" syt - H gy b, (BT)

where g¢"+*-’s are polynomials of M and @) with the coefficients from &,
provided that ¢; <<%, for A<<p.
On the other hand, since agar,=0 (j3¢k), for 7,314, (1<<p), we have

I3 o __ o o o ° ° o
Oigeess aip—ail cees a[ia{lliaﬂ ceae aib_llaib] cree a,-p
° o © o o <
+ai1 ceee a(iaa”aﬂ veos aib_lla,;b) ceen aip

P o O‘
T Ofyeeee a[iaal'iaﬂ .

+(— l)b—a‘_l&il cens &ia

o I3 . ©
.o aib_l[aib]. cee llip

&. © o o o
gy s iy (B Oy e s i

3

—_— n: © o o [ Q)
T Ofjeene a[ia,a'iaﬂ ceee aib_ll(lib] ceesly o

»
Hence, for 1,34, (A<<pg)
Fiyoo oo @iy =0 ee e @i)e (3.8
Therefore (3.7) becomes .'
B=F(M)+ g6+ g osbint -+ g™ by g

If we trans_form back the normal base system to the original base system
a's by a;=hia;, we have

. B=f(M)4_fiai_|'_fili2a[i1ai2]+ SEEE AR RPN
where f(M) is a polynomial of M and other fir are polynomial of M and

@ with coefficients from ®. /
Hereafter this expression of g is called “a canonical form” of B.

§4. The “Zentrum” of B and the extension
of Qi by an element of B.

We shall prove the following theorem for the purpose of finding the
zentrum of B.

(1) We apply some notations used in tensor calculus. See Der Ricci-Kalkil (J. A.
Schouten), p. 25, 26. .
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Theorem 7. An element Pq of B which s commutative with all the elements
of B s, except for a certain additional term By satisfying M* ™B,=0, ex-
pressed, in the form
“(2) (when n—mny=even)
. . , g
P, c= ]'bz + hlA
(i) (when n—my=odd) ,
‘ Po=hy+hyA

I N .
where A=ay....an 0 M'seB, by is a polynomial of odd degree in a, and
hs, he are of even degree in a, satisfying the relations

- I : S ¢ ' :
M "q,hA=0, M ™ah,A=0 (a=n—ng+1,....,7n).
Proof. Since P; is commutative with &;, we have
?lPC:PC%l } (l=1, 2,....,n—n0;_>. @1
6aPo=Pcag a=n—ny+1,....,n

Multiplying the first equation by & from the left-hand side, we have

N MPC—&ZPC&Z=O s (4.2)
and, using Theorem 6,

Pc=p(M)+p“&,1+ s p”‘"‘n(M)&[M cene (;".'n,]'"

But each term of &Pcq is the same as the corresponding term of MP,
except for the signs, the ambiguity of the sign being determined by the
following rule (by 3.1)): In MP; and &,Pca;

a; (1=1,....,n) containing &,
-(b) terms of MP; of odd degree with respect to
a; (1=1,....,n) not containing & '

(a) terms of MP. of even degree with respec.t to }
(4.3)

have different signs, and the other terms have the same sign.
Now, expressing the sum of terms (a) by MPg;, and the sum of the
terms of (b) by MP(,, we have, from (4.2),)

MPg+MP&L=0. . (4.4)
If we define MPP=MP;— M(P¢;+ P¢,), then, from the equation above,
- o MPP=MP;. (4.4y
By the same process, M?PER+ MPPEY =0.

Also, if we put
M*P$X=M*Po— M*Po~ MAPE+PE)),  (uh)

then, from the equation above,
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M2Pg>=M2P,; .
Proceeding like this, we finally arrive at
. Mn—noP((Jl)(Z)....(n—no)__Mn—nnPC .

But from the meaning of indices of PYY% - we see that PP®--- @m0 ig
composed of two parts, the one being of terms of odd degree with respect
to ;(1=1,2,....,m) containing all &,....,éasn, at the same time, and
the other being of those of even degree with respect to & (i=1,....,m)
containing non of &, dz .. Gnonge

So we have

(i) (when n—ng is even) M7 ™Py=M""(hy+hyis. ... ém-ny2)

‘ "t 4.5)
(ii) (when n—ng is Odd) Mn—noPC Mn_no(hg—hg(l[l . .&n_m]) } ( )

N — . -~
where A’s {U} and h; is a polynomial of odd degree in &, and h, and h,
are also polynomials of even degree in 4,.
Substituting the second equation of (4.1) into (4.5), and using (3.1), we
have

(i) (whenl.n—fno is even) .
M= by — ot (Gl —Fadadds . - nmia} =0 | (4 5y
(i) (when n—mn, is odd)
Mol G — aitat (oo P « . Ginmia) =0
But in general,
' TN P R M G § L S TR oy,

(@s, bs=n—my+1,....,10),
therefore we have

Gbye oot @b, Oay e s o, Flayeeesba b -...05,=0 when rr’=0dd,
Boue e e Bo, Gy G, Fare oo G Gy G, =20y G Gy o, (4.6)
‘ when 71’ =even.
But since the degree of b is odd with respect to &.’s, the degree of o, Fis
are even, and Ry, ks, the%, ‘we have, from (4.6)
bahe—Paita=0, Gi—Maa=28h and &ofoted,=2a.0s.

So" that (4.5) becomes

M ™G bt v n-ag=0 for mn—mg=even ‘

M”";‘°& oo - a,,_.,,o]—O for n—my=odd. }
Therefore, from (4 5) and (4.7),

4.7)
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Pc=hz+h1!;[1 ceese &n_noj"i'ﬁ(]‘,
M ™ghan e v« Gn-ng=0 for m—mng=even,

PC=hQ+ﬁ2’;[l ce o &n~nu]+.30 N (4.8)
M”“”“&Jag&g veeelipn=0 for m—my=odd
(a=n—my+1,....,n)

where f; is a certain element satisfying M" ™B,=0. Thus we know that
the element of W which is commutative with each element of 2 must be
of the form (4.8). On the other hand, any element of ®¥ which is com-
mutative with all elements of 2 must be also commutative with all ele-
ments of B, and conversely. So that any element which is commutative
with all elements of ¥ is given by (4.8). Thus we have proved the theorem.

Theorem 9. When Bo=0 folllows from MpB,=0, the element Pc of B which
18 commutative with all the elements of B is given by

(i) (when n—ny=-cven) -Pc=hz+ﬁ1fll
(i) (when n—rLO#odd) P.= h2+h1A

N ~
where W'se®, h; is a polynomial of odd degree in &, and hs, hy are of even
degree in 4, satisfying the relations
CGai=0,  &he=0 (a=n—metl,....,n).
Proof. In this case (4.5) and (4.7) become (multiplying (4.7) by A)

hq+h1A &li=0 for m—-mg=even,
(4.9)

PC=.h2+h2A dahe=0 for m—my=o0dd

I
where A=dp.... @n-n3 And we can easily see that P given as above is‘
commutative with all the elements of . Q. E.D.

From the foregoing theorem we have ‘
Theorem 10. When B,=0 follows from MBy=0, “the zentrum” of B is
the totality of such P’s as are ¢iven by '

- 1 '
Po=hh,A for m—my=even
(4.10)

I
Po=hh,A  for n—mny=odd

where hy is any polynomial of odd degree in &g, and, the other h's are any
polynomial of .even degree in &,, only restricted by the relations :

r'iaTb_FO and §h=0 '(a=fn—’no+1,....,n).

" (1) But we have not yet succeeded in proving that this result is sufficient, because of
the presence of the additional term g,
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Remark. We can easily see that under any transformation of normal '
I I N I I
basis in A, hA4 in which ¢.h=0(c,e) is invariant i.e. hA=hA’. And in

general hfi=poham oo Opong] (alegi; D€ R).

An element of B can be expressed by a linear combination of the bases
M,ay,....,00. ... a4y With coefficients of polynomials of M and @ in the
field & Here we have two cases to consider; the one in which M, a,....,
a1 . ... 0y are all linearly independent (coefficients being polynomials of M
and @), the other in which M, a,....,ay....a, are linearly dependent.
Theorem 11. When B,=0 follows from MB,=0 if, M, a1, a5 ....s01.c..0n]
are all linearly independent, an element Ps of “the zentrum” of B 1is
given by
' P=hy(M)+p(M): . for m=odd

P=h(M)+pM)ici....an3 Jfor mn=even

where p(M) is any polynomial of M and .
Proof. By Theorem 9,

~ L I
ai=0 in Pe=hy+hA for n—mny=even;
I (4.11)
da 2=0 in Pc=h2+h2A for ’n—"ﬂo:-Odd
First, we shall show that %, ks have the expression of the form

T n-no+l...., ° °
h2~"0 (M )arn-ngtLe s+« Cu]

For, if not, one of the terms of the loweét degree in hJfe=1or 2) must
have the form :

e “"(M)igay « .. a3 (r<<mg and not summed by ay,....,a,) (4.12)

where ay,....,a, is a certain set taken from n—m+1,....,n. Multiply
(4.11) by G4, -+ a, ; product all the &’s not contained in (4.12) except

for any one, say &ano; then we have
&arﬂ....&am_l&ah:o (a=n—ny+1,....,1n).
If 'we put, here a=a,, we have

R (M)in-ngs1+ .- an=0  (not summed by aj, ey )

T @, ° °
or h’e T(M)fl[n—-nw] vees Op]= 0 .
which contradicts the assumption of independence of M, a1, G2, 0 e s dp1e s+ Ane
So it must be true that
he = h:b—nc+l ..... n(M)&n—no-{-l R &'IL .

Next, if we substitute the expression of h. above into Ps of Theorem 10,
the equation &.h.=0 is satisfied identically. But, by Theorem 10, when
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n—"ny=even, F, must be of odd degree in &,; and when n—ny=0dd, h; must
be of even degree. On the other hand, from (4.10), R is of ng-th degree
m aq. So we see that #n must be odd in either case n—ny=even or odd;
and otherwise, when n is even, necessarlly he=0; so the theorem is
proved.

Theorem 12. When B,=0 follows from M ﬁo—O an element P, of B
which is anticommutative with all the elements of B is given by

oI
Py=h+hA for n—my=even
Py=h+ hlA Jor m—mny=odd,

where hy is a polynomial of even degree in &, (@=n—mne+1,....;n) and
the other h’s are those of odd degree satzsfymg the relations aahz—O and
(lah]_—

Proof. In exactly the same way as in the proof of Theorem 8, if we

take P,; and P, instead of Py and P, in (4.3) as follows: P, is the
totality of terms of odd degree with respect to &; (¢=1,2,....,n) contain-

ing &, and PJ; is the totality of terms of even degree with respect to &
not containing & : we can prove that the element P, which is anticom-
mutative with all elements of B is given by the expression stated in the
theorem.

Next we proceed to investigate the extension of 2 by adjoining an
element P of A preserving Axiom III satisfied by 2. If we assume that
‘we have %, by adjoining m linearly independent elements (together 2A) to
A, expressing =[] (1=1,2,....,n,n+1,....,n+m), by the usual
method of successive normalization for vectors we have the normal basis of
A;,. in the following form:

Uly o ssey Ony &n+1, ceees Onimy
&(,1&#)=8“,M or 0.

From this we may conclude that, if we can adjoin m linearly indepen-
dent (together 2) elements to AU, r(r<m) elements can be adjoined to
A (€. Gnity+ee.s tmsr). Further, we may conclude that, if A, is an
extension of A by adjoining r elements, then we are able to get A, by ad-
joining »—r (r,<<7) suitable elements to 2., which is obtained by adjoin-
ing 7, suitable elements (e.g. &n+1, ..., Guir), 71 being any integer (<<7).
From these conclusions we see that the problem of extension of 2 is reduced
to one of extension by one element. Let 2 be an extension of A by P
and « an element of 2 ; then, necessarily

d=a+kP, '

where « and k are any elements of 2 and &, respectively; and, from
Axiom III,
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(a+kPP=a M (@e®, M'e®).

But since M’ is independent of a(e ) ‘and k, and £=aM when k=0, then
consequently
qM=M’,  (qe®)

so that | (a+kPY=a"M. (4.13)
Accordingly, if we put a=1, k=1, above,
: Pi=pM  pef. (4.14)
If we put a=a;, k=1, . .
(e;+PYP=a/M @/e®), . (4.15)
and, using (4.14) and (4.15), .
P+ P&)=(a] —p—08;)M=a;M, (4.16)

where 8;=1 for ¢=1,2,....,n—n, and &;=0 for n—no+1,'....,'h./

In the same way as we obtained (4.4) from (4.2) in Theorem 8, we have,
from the equation above

MI_’,,+MP§1=al,M&zl (l1=1, ceeey ’n'—’l’lg) (4.17)

— . . ?
where P, is the sum of all terms in P of odd degree with respect to

& (i=1,....,n) containing &, and P, is the sum of all terms in P of
even degree with respect to a; not containing a,.

Hence, if we put MP‘"’=MP——%M(I~’Z‘+PEJ )

then, from (4.16), MI3““=MP——;—Ma,1&h (not summed by 1,).

But also, from (4.15), a1, MP+ MPé;,=a;,,M®
‘Substituting (4.17) into the above we have A
A MPY)+(MP®) g,=a,M? (L¥h).

By the same process as that' by which we obtained (4.16) from (4.15), we
have, from the foregoing equation,

M*P + MPPY =a, M, . (4.18)
Also, if we put M“’P"l"’Z’EMZP"l’—%M“’(P{J"+P{};”),
we have from (4.18)

M2PW D = sz(ll)—% M?ay,a, (not summed by L),
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So, from (4.17),

M2P®a = pp2p_ % M@, +ans) (3l
/

Continuing like this, we finally arrive at

M= Upy_p) = Jr-mop— L oM 2 ae (3l for i3j).

\

‘Hence Mn——fnop(l) cee (BM0) = M”R”DP—' E Mr—mo 21] al&l )

As seen from the meaning of indices, PV is composed of two parts,
one being of even degree with respect to & (¢=1,....,n) containing all
@1y +eeeyan-n, at the same time, and the other being of odd degree with
respect to a; (¢=1,....,n) not containing any of &,....,dn-n. Therefore
PD-...nm0> ean be written in the form

_ : LI
PV---mmd=p +h,A for n—ny=even, }
_ o I
PV.-tmmo=p + A for n—mp=odd,

- ~ N -
where Ay, by and h,e®B and hy, by are polynomials of 4, (a=n—mne+1,....,n)
of odd degree, and %, is of evdn degree; hence P is written in the form

o I n—ano '

P=h1+h»2A+é-- ?al&,-i-ﬂo for n—mny=even, }
o I n—mng

P=h1+h1A+% Sla+py for n-m=odd,

where f, is any element in B satisfying M™ "B,=0.
When g,=0 follows from MpB,=0, P is written

o I n-no
P=h1+h2A+l Sty for n—my=even,
. 21 (4.19)
P=h1+7b1A+% Zloalal for n—mny=o0dd,

where Ay, hi and Tbgeﬁll\% and hy, k, are polynomials 4, (a=n-—'n0+1 )
of odd degree, and T is of even degree.

P in (4.19) was obtained by using the condition of (4 16) for ¢=1
2,....,n—mng We shall next find, therefore, the condition under which P
must satisfy the remaining equations of (4.16) for ¢=1,2,...., n—n,.
Substituting (4.19) in (4.16), and using aq.a,=0, we have

. &JozA =a, M for mn—my=even,
T (4.20)
agmA=a,M for n—my=o0dd (a=n—mnet+1,....,n);
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Multiplying these equations by &, we have, for both,
AaiaM=0 i.e. a,=0 (a=n—ne+1,....,m). (4.21)
Hence, from (4.20),

Gahe=0 for m—my=even,
o (4.22)
=0 for n—my=o0dd (a=n—mne+1,....,n).
Conversely, if (4.22) holds good in (4.19), (4.16) is satisfied by P in
(4.19) ; therefore (4.19) with (4.22) is the general form of P satisfying (4.16).
(i) When n—ny=even. Further substituting (4.19) in (4.14), and using
(4.22), we have .

pM= 7} D @)’M+(—-1) : RY(M )M ™7, (4.23)

L‘z’,"
where 7 is the term of 0-th degree in &, contained in Roa.

Multiplying the first equation above by &, (@a=n—mne+1,....,n), and uding
(4.22), we have, for n—ny=even,

5 —L 2 = = —_—
aa<p 42(az)) 0 (a=n—ny+1,....,m),
from which
w=lEWN
4 (4.24)
or ' 3a=0.

But the latter case cannot occur because of independence of basis &, unless
it does not exist originally, i.e. no=0.
When n,=0, we have

pM=1 DM+ (-0 (ROD) MY (weR);  @29)

and this equation is not an identity unless h;=0, for the lowest term of

(h)?M™ is even degree in M; and when b=%2(al)2, we have
hhe=0. (4.26)

Conversely, if (4.22) and (4.26) hold good in P in (4.19), (4.13) is satisfied
by P in (4.19); therefore P in (4.19) with (4.22) and (4.25) or (4.26) is the
general form of P satisfying (4.13). ‘
(i) When n—my=o0dd. Substituting (4.19) in (4.14), and using (4.22),
we have - .
pM= 1S} M. 26y

Conversely, if (4.22) holds good of P in (4.19), (4.13) is satisfied by this
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P; therefore (4.19) with (4.22) is the general form of P satisfying (4.13).
So we have

Theorem 13. When ,Bo=0 Sollows from MBy=0(B,eB), in order that AW may
be extended by adjoining an element P of B preserving Axiom III, 4t s
necessary ond sufficient that

When n—mny=even,

n—no

either . P= h1+th+ — Z Wiy

~ N -~
‘where hy, hye® and hy s a polynomial of odd degree in a., and hy s of
even degree, satisfying
&ahz=0 and h2h2=0

' — I n—ng
or n=0 and P=T(M)A+L"SY 0
. 2 -1 (4.27)
RUAMIM»™=bM (be®);
when n—ny=odd
~ I n—mg
P=h1+h1A+% S, (4.28)

where h’s are any polynomials of odd degree in G4, sdatisfying aah1=0.
When n—mny=even, if P in Theorem 12 is anticommutative with each

element of A, and P20 (i.e. pM%0), then a;=0 in (4.16) (1=1,2,.

n) ; hence 7o=0. From (4.24), and from (4.23), (4.27) we have

Lo — I N n
| P=h(M)+h{M)A, n=0 and pM=(—1)2(h)?M"™,
where Pi=pM.

When n—np=o0dd, if P in Theorem 12 is anticommutative to o, then, from
(4.16), a;=0, so that, from (4.23),
p=0;

hence P?’=0; and from (4.26),

P=h1+71:11‘11‘ &aﬁ1=0
“So we have
" Theorem 14. When n—mny=cven, in eorder that U may be extended by
adjoining a mon-nill potent element P of B which is orthogonal to A, it is
necessary and sufficient that ny=0 and there exists a relation of the form

pM=(=1)[MM)EM", (ot identity)

where h is any function of M, and p is any non-null number of 8. When
n—mny 18 odd, in order that U may be extended by adjoining an element P
of B which is anticommutative with A, P must be a nill potent element
n B, and it s giwven by

oL .
P=h1+h1A and &a, 1=0,
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where I's are any polynomials of G, (Ga=n—ne+1,....,n) of odd degree.
Further, with respect to an extenswn of % by elements in B, we have
the following

Theorem 15. When W is an. extension of N, where
I N :
W=W+W=[5,]+[a] '=12,....,n—ngtr;d =n—n+r+1,....,7)
I N ’
U=+ AU=[g,]+[a,] - (=12,....,n—ny; d' =n—ny+1,....,7n),

I I
the mecessary and sufficient condition for U W (or r0) 1s that

n=even, mny=0, pM=(—1)?(h(M))2M”, 'r=v1,

where p s any non-null number in &, and h is any polynomial of M ;
and then the adjoining element P is given by

I
P= h(M)A + aia,,;

Proof. As an independent basis in 2/, we can take (from (4.16))
- I
&1,.Q..,&n,hel,3+hez,,1A+aﬁal (l=1,2,....,’l')

’ — I
or Gty oovesln e 3 Pe 1 A

When n—ne=0dd (n,=>0), from (4.26), we have p;=0 (where (P,)’=p;M);
hence (P;)?=0, therefore necessarily
I

s :
A=A, : (5.29)

. I I
therefore n—mn, must be even for W W,
When n— no even, for ny=¢0, from (4 24) p,=0; hence (P;)?=0, and there-

fore QI 9[’ so, in order that QI(QY necessarily 7,=0; hence P,=h(M )A. i
But since necessarlly (P)*=pM, we have

PM(=(l, AP =(= 1)%(hA(M))2M” : (5.30)

which is a relation .of M. This proves that it is impossible to téke the
adjoining element more than one at most (i.e. #>}1). Conversely, if
n=even, 1,=0, r=1, and (5.30) is satisfied, we have

I I I
[&1, savey Ans hL(M)A]—:—Ql/D A

"In this case (n—mng=even), if we can get U, by adjoining- non-nil
(linearly independent with 2) elements, we are able to get A, by adjoining
non-nil r—1 elements to 2A;, which is obtained by adjoining one non-nil
element. '

’ But since, when n—n,—odd in A, the extension of A is impossible by
one non-nil element, extension of A; by »—1 non-nil elements is impossible,
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for the corresponding n —n§ (=n+1—mn) of A; is odd. Therefore, neces-
sarily r>p1.

Thus we have proved the theorem. Q. E.D.

And from this theorem we have
Corollary. When ' is an extension of U when n—ng=odd, then

: . I I .N N
. mecessarily A=W, W W,

§5. The basis of B.

By Theorem 7 we know that, from-the assumption that for the itera-
" tion of & there corresponds a single number % of &, ®B forms a linear
manifold (the coefficient being polynomials of M and @ with field &) with
a basis constituting the independent elements taken from

M,al,(lz,....,au....(ln]. (5.1)

Now we come to the Questions : In what condition are M, ay,....,00... &y
linearly independent or not, and in what form is the relation when (5.1)
are dependent ? .
For the latter question we have ’
Theorem 16. Relations among (5.1), if they exist, are expressed by
linear combinations of the forms

A=12,...;50=1..,m—n;r= 1 coM— Mg
f/la[j‘ a-’rj+gla[-77'+1 g < )

and j;’s are all different; aaeﬂl
satis]{ying the relation M™ ™ f/I(lD'l....ajr]+g,1(1ur+1....ajn_n0]=0 where f;,

9,€9B, and when n—ny—even, f; and g; are both at the same time poly-
nomials, even or odd degree in. iq, and when n—mny=odd, the ome s even
and the other is odd, satisfying the relations ‘

N
a M ", =0, a, M" ™g,=0 (ageA).

Proof. If there is ’a‘linear relation among M, aq,....,001.... 4y, it may
be of the form:

P=f(M)+f{(M)a;+f*ag; 05, -
—|—fi""'ira[il....qiy3+ ""+fi""'i”0[i1----ain3=0,
ie. P=h(M,a,)+ha+ b tn-n(M, Ga)ig, . . =
(fir-rE0; WseWB); -
then w;ve have | |

-—(Z[((llP‘*"P(Jl) 2(11(1[ ”’—2MP1‘”

; . . ' 5.2)
and =al(alP—Pal)=2alalP(l)=ZMPz(” (l=1,~.. .o ,n_no). } (
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Here P must be the sum of terms, in P, of odd degree with respect to
a; (1=1, ,m) containing &;, and those of even degree not containing a,,
and P§ b the sum of remaining terms in P, i.e. PP+ P{P=P.

Next, taking MP{¥ or MP{" as P in (5.2), we have

0=, (e, MPh + MPID)=2M2PE0  (13c1y),

where ;=1 or 2 according as the sign of the second form in the above is
+ or -, and Pe(llelz)(ZZ)E(Pe(lh)gél)‘
Carrying out the same procedure as above, we have, generally,

MPf,l.’.).. =0 (1<J<'n ne; &;=1or2;1;=1,2,....,n—n0; b, lp,...., 7).
Specially, if we take, above, j=n—1ng, €1=€= "+ =€, €py1= """ =Epnongy
we have

n—ng 5 (1).. (l i) n-ng4(l1).. )(l N _
MR rﬂ" =0 and M" P TR =0,

where /s are all different. And, from the meaning of suffices €s, the
foregoing can be written in the following forms respectively :
(when n—mny=even) 5 .
1 2 :
]Mn—no(hll....l,,&ll v &lr"}'hl”l""l"“""&lr e &l )=0 A

+1 ¢ Hpmyg

, 2 T
and Mn—no(hlx....lr&ll.“ .‘&zr+hl7+1""ln—nﬂalr+l. . -&l )=0 ,

(when n—mng=0dd)

Mn—'no ;Ll""‘l o o htl Ty o ' o _.0 3 (5'4)
( TOp e alr-l- r+ BROGY eees aln»no)—— '
. 2 P
and M"_m(hl“'“lrah....alr+hlr+1""ln noal e ) 0

(l1Lz. ﬂvo )

\not summed by I's

~

where h’1 b and h’r+1 ‘ln-no are the sum of all terms of odd degree in

l

2
d, contained in A"+ and h'r+1--'a-m respectively, and AM--- and

2 . . e . A
Rr+1-lu-no are the sum of all terms of even degree in d, contained in
R*---'r and h'r+1--'n-m respectively. Since superfix U, l.... can be any
one of 1,2,....,n—ny P can be expressed by a linear combination of the
forms (returning to the original base system)

f/latll cease alr]+q,1aur+1 eses aln-no:' ‘ .
satisfying M ™ (fga[ll eeee alﬂ-l-g,]a[lﬁl cege aln_n ])=0 .

~ So we have proved the first part of the theorem.
In order to show the second part of the  theorem, we write s1mply
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" » . . 1 2 T
hia ho i hi i and hy, respectively, instead of h!*---ir, BU--lr, Blr+te ln-n

K 2 .
and hr+1-'n-ne, expressing the suffices by a single suffix notation 2. By
this notation, (5.4) can be written in a single equation

M (b, 16, iy, Ry ee oty )=0 (€=1,2;2=1,2,....) (55)

satisfying n—ny+e€;+e=0dd. Multiplying (5.5) by a, (a=n—ne+1,....,%)
from the left-hand and right-hand sides, we have, respectively,

aaM" " (he, 201, 0+ oot FPeg 201, - )=0

n"no
and GaM™ ey 16ty v b1, — Py 261y e e a,n_m) =0:
from which follows
M ey e 8, =0 GalM Ry 2y, b, =05 (5.6)

and theréfore, returning to the original base system -«;, we have

. N
%M”hnof/latiz ceed G = 0, 'aaMnanog/laEi =0 (ageN).

1" By
So we have proved the theorem.
Next, with regard to the properties of A, ; and k. ; we shall show
Theorem 17. When ny=>1 and M,ay,....,a0....a; are not in-
dependent, there exists a relation U(M)&....e.=0 for even n—mny, and
UM)a....an=U(M)on-not1....0n for odd n—mn, where l and I are poly-
nomzials of M.
Proof. From Theorem 15, the relations must be satlsﬁed when M, qy,....,
ag . .. . apg are not independent

MR 3. by, F gy ooy, =0 (eertn—my=0dd). (5.7)

(i) When n—mny=even.

Sinee ke, ; and he,; are respectively odd and even in &, (a=n—mne+1,....,n)

(or even and odd degree), the 2n, equations in (5.6) must not be identical.®
If we use the notation h;=dole, 1+ a1 and express any one term of

the lowest degree in h; with respect to a, by I§*%ay,.. .. g, (not summed

by a’s) when s;=ny, we have, from (5.7), multiplying by & SRTTRY or .

n—ngy
iy,

M7 7005t %o (M )an—ngt1+ -+ - Gnfigy « + o« &am= 0 (not summed by a’s)
ie M)oy....a,=0;

(1) Since we know that of he,; and he, 1 one is odd and the other even degree in dg
when n—n,=even, it cannot be true that e, 2 and he, 1 are at the same time of the follow-
ing form ’

- & _ Q

Pey, A0n—ng+1 - in } (Pes, Aeﬁ)
. a

o
Pey, 180 —no+1 . n
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and when s<<n,, multiplying (5.7). by &, ,,....d,, the product of all the
elements «’s, which are not contained in d,,,.... ,&,,SO, we see that all the
terms in the resulting equation except for those induced from

Y A Y P R (not summed by a’s) vanish identically,
so that we have UM)ay. ... 6,=0. (5.8
. Remark : Further, from (5.7), iterating it and using (5.6), we have

Mz(n~no)hl, AiQ.A(M)&l cese &n—n(): 0 } (5.9)

and M?(n‘~mo)%l; Ahofz, x(M)&l PRSP (;n—'n(): 0 . ,
where h, (M) and hy (M) are the term of 0-th degree of & in hs, and
%%

(ii) When n—mny=o0dd, we have, similarly, the equations corresponding to

(5 8) and (5.9):
l(M)&l = l/(M)a'n —mp+le } .
(5.10)
e On—ng=0

and M ”")(hz e, 17 Po, e, )

So we have proved the theorem.
Special case.

When we can conclude that from Mﬁ 0 there follows B=0, from
equation (5.5) in Theorem 15:

Mn—ﬂo(hsh A&ll cee '&lr+ hez’ l&lr+l cese &m_m)=0 >

we have hq, ,1(0111 cees &lr+hez, A&lr+1 Y /1) =0

I
becoming (—1)"*she, ,M"+he, ,A=0,

vzlhere n—mnete+e is odd and €,e=1,2.
Similarly, (5.6), (5.8), and (5.9) become respectively

bahe, =0 and ke, =0,
. UM)ép-ng+1 s« - =0,
and hy, i, (M)=0 and Fo, o, (M) =0, (5.11)
Moreover, (5.10) becomes N
UM)is ... . in=U(M)in-nyr1--- -G and T b s+h she,=0. (5.12)
So we have
Theorem 18. When we can assume that from MR=0 follows p=0,

the relations among the basis of 8 M, ay,....0r.. ..y, o they exist, are
as follows :

N
b, A, 0) + T s(M, 0 A=0  (age; a=n—mg+1,....,m), (5.13)
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where n—mny+e;+e,=0dd, € is 1 or 2 according as ke, is a polynomial of

odd or even degree with respect to q, and he,, Re, le% satisfy the relations
ahe;=0 and  ahe;=0 (A=1,2,....).

Precisely, we have
Theorem 18'. When n— 'n0=eve’n, and the relations exist we have, from
(5.13),

UMty ngs1e-vean=0, Iy sis (M)=0 and Ty o (M)=0;
also, when n—ny=odd, ’ .
UM)imongsrevee bn=U(M)s1....cn and Topsho 1+ R he 1=0

where hz M) s the term of 0-th degree of a, in hy ,.

The difference between the general case and the special case is that in
the former a power of M™ ™ always remains as a factor of equations, but
in the latter it can be removed. Although this difference is not essential
in treating expressions, in the former case the resulting expressions become
exceedingly complex compared with those in the latter. For this reason
we shall hereafter consider the problem in the special case, and shall state
those in the general case as necessity requires.

Next we shall find all the 1ndependent relations within (5 13)

hq, 2 + hez, AA = 0

and arrange term in good order.
For this purpose we introduce the following notations :
Express each of

M, &'n_'nui—ly e ey &['n~no+1 PRI &n]
by A, simply, and set them in order according to the following rule:
Writing

ArEaul-"‘aas (a1<a2<-°"<as)’
bi<b<<....<by),

AwEabl ce e abt

for the integer r and 77,
if as<bt, then »Z7,
if a;=b, and a,;Zb;y, then r<'r
if a;=bs a;1=b;1 and a, 22b; 5 then r=7’

............

and assuming that 4,=M, we know that A, can be defined when, and
only when, A;,...., A,_; are defined. Thus A4;,...., Ay (N=2™) can just
COVET dayy+ .« . 0a, -+ dq 3 iN the unique way.
Using the notation A4, given above we have the following theorem with
regard to a reduetion of the relations of (5.13)
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Theorem 19. When n—mny=even, the totality of the equations (5.13):
o+ Feg 1A =0
can be reduced to the system of relations of the form.:

+ (Gt fo(M) A,)) A=0 -
o+ (Gr+AM) A,) A=0

----------

+(G,+1,M)4,,) A=0

N
where g,, §, are polynomials of M of odd and even degree in a, (a,eN)

V= p<m<<....<p,<2%)

respectively and are linear combinations of Apye1y .. .., Ao, and f’s satisfy
the relation of the form [, =aqs f,,,s for p, and p, related by A,,sz
=4, An (for suitable ). -

Proof. The totality of all relatlons (5.13) and those obtained from (5.13)

by multiplying with A (from Whlchever side), can be written in the form
k,]"l'kgA:O (2=1, 2,....,8), (5.14)

where k; and % are linear combinations of A;; and then the totality of the
relations in (5.14) containing A4,, g, being the smallest suffix of A; contained
in (5.14), must have the form:

- i |
Lt (L mdM)A,)A=0  (i=1,2,....,¢) (5.15)

where 1;, Z are linear combinations of Ay .y.- .. Agno,
When ¢;=1, (5.15) takes the form

~ I
1+ ([+m(M)Aq,)A=0.
And when ¢, 2, we take any two from (5.15), say

bt (R m(M) A,,) A=0 (516
and C b+ (R mMD)A) A=0. (5.16);

Since m,, m, are polynomials, they rhay be expressed in the form
m=ny + m1M+ -+ mI](M )rl
and me=m3+miM+ -- - +mi(M)™ (assuming that 0 r <1y mieR)

o 1 -
By eliminating the term m3*(M)2A4,4 in (5.16), from (5.16); and (5.16)s,

(1) Since Ay=da,.... “O"'A’ for given 7,8 (r, s < 270) there holds the relation

A A=A if Ay, As have no common' dq’s,
ArAs=0 if A,, As hdve common dg’s.
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Ir

~ I o~ I i
(M Y=gl +LLA) — mp(l+ BA) + (M) mmgamy —mmg) Ag, A =0

~ I
or, shortly, U+ (4 miA,)A=0, (5.17)

where the degree of the coefficient m; of A, is less than 7:2, and the system
of relations (5.16); and (5.17) is equivalent to that of (5.16), and
(5.16),. Similarly, by eliminating the term of the greatest power of M

in the coefficient of A,,OA from (5.17) and (5. 16)1-the equation in which

the coefficient of Aqu is of lower degree in M than that in (5.15)s—we
have

~ I
(0 +mi Ag) =0, (5.18)

where the degree of m; in M is less than the greatest degree of m{ and
msz.  Continuing this process, by which we obtained (5.18) from (5.15); and
(5.15),, at last we have the following two equations, equivalent to (5. 16)1
. and (5.16),, as seen by the procedure used above:

bt (L (M) A=0

- < I

L+LA=0
where I's are linear combinations of Ag1,...., A, and m, is the greatest
common factor of m; and m, as easily seen from this procedure. This
procedure is nothing but an elimination process of A, from (5.16); and
(5.16),, preserving the system of relations to be equivalent as a whole. We
. call such a procedure ‘‘the elimination for Ag.”

Thus, in (5.14), applying elimination for A,, successively, finally we
have the system of relations equivalent to (5.14):

I
Ugrt (g +m A )A=0  (5.19)

oI } : (5.19)
1Tk A=0 (6.19). ) (2=1,....,5—1)

where K}, &}, g, and 7, are linear combinations of Agus,. ..., Az and m’
is the greatest common factor of m; in (5.15). .

The totality of all relations (5.19) and those obtained from (5.19), by
multiplying with A;, A, . ..., Am (from whichever side) can be written in

the form
I
eyl 1 A A0 (5:20) }( | (5.20)
1=1

K A 0 (5.20). .,s’—l)

which is equivalent to (5.19) (i.e. (5.14)) and in which ¥ ; k are linear
combinations of Ag+1,...., A
Next, let the smallest suffix of A; contained in (5.20), be ¢, if applying

I
the elimination for A, A, to the system of relations (5.20), we have the
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followmg gystem of relations, which is equivalent to (5.20),,

uq1+ (uq‘+m//(M)A01)A 0 } (l=1’2’ oo -)
W+ A=0 -

where u,, %, and k’s are linear combinations of A, .1,...., A and m”

I
is the greatest common factor of equations including A4, A4 in (5.20),"
Continuing this process, we finally reach the system’ of relations equi-
valent to (5.14), as follows:

I
g, + (uq“ +mO®(M)A, )A
Ug, + (uql +m’ (M )Aql)zi :

thg,+ (il +mP(M) 4, ) A=0

0

0 .

0= p<qr....<gq.<2™; ¢’s are integer)
(5.21)

where u, and %, are linear combinations of Ag4y,..... , Aane (with the co-
efficients of polynomials of M) and m® is the greatest common factor of
the term in the relations in which the smallest suffix of 4; is ¢;. And
from the process by which (5.14) and (5.20) are deduced from (5.13) and
(5.19) respectively, we can easily see that, when A4, —-A' A,, the relation

obtalned by multiplying with A4; the equation u,, +(u,, m‘s"A )A 0, i.e.

A; {uq +(uq +m®A, )A} 0, can be expressed by a linear combination of '
relations in (5 21)

Uq, + (Ul TP A )A 0
and “qs+(“vs m‘s’A )A 0 (Ge=0apt1y 22+ +»Qr)-

So, from the property of m mentioned above m® is a factor of m®,
ie. m®=a,,m™ when g, and g, are related in A, =4, A, (for suit-

able 7).
If a,,=®, ’che relation

Ug,, + (2, ey mePA, )A 0
is expressed by i _
A{ A, + (g, +m4, A} =0
I
and uq + (ﬁq +'m,(8’A )A =0 (q k! PIS PR . ’ q'r)

Therefore, when @,,,=(@, ommiting the relation wu,, +(uq,+ “"A )A =0

(1) If the number of relations m (5.20), containing AqlA is only one, then we apply the

I
elimination for quA to the system of relations containing AgA- with the next smallest
suffix, say g,
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from (5.21), and ‘applying this process to all q’s, we have the following
system of relations, which is equivalen’c to (5.21) (i.e. (5.14))
I
Jo+(Got+oAp)A=0 e

I
+(g,+/i4,)A=0 .
ot @i+ fildy) O=p<pm<....<p,=Z2%).  (5.22)

........

9r + (g,,-/ +f,-/)A = ()1(11J1_l

Theorem 20. When n—ng=odd, all the relations among the elements
of B are reduced to the set of equations of the form:

I
Go+ Moo pet (o + £ M)A,) A=0
I
gitmfid,, + (§1+f1(M)Ap,) A=0

.............

g-+n.f,A, +(g,, o, As, )A 0 <0§po<p1<;...<p,§2no;)
o+ (Fo+fod )A 0 0 h<th<....<t, 2™
+

o - - (5.23)

h1+ (h1 +f1Atl)A =0

------------

b+ (Rt fr Ay ) =0 /

where g;, §s, hi, h; arelinear combinations of Apttyeeees Ay, the coefficients
being polynomials of M, if p;=t; then J?t,-=fp¢n;i and n,, n, are poly-
nomials prime to each other, and OLW]‘;{,SI=f,,s2 when Apsl=A,,82Ai, A; being
taken suitably.

Proof. Using the same process as in Theorem 18, and taking into account
that the relations including A,, ¢ being the smallest suffix of A; in

(5.14), are all written in the form w,+(w%+v,Am)A 0 (2=1,2,....,0),
we have the following relations corresponding to (5.19)

, I
! o+ (M )MoA g+ (g +meAg)A=0  (5.24), }

~ T (5.24)
tEA=0 (5.24),

where wu,, k) are linear combinations of A,, Aq°+1, weoo Ao, and W, and k)
are linear combinations of Ag 41, . . Ag”o, and n; may be null.

- When nd(M) = 0 : 'multiplying by A (from whichever side) all the equa-

tions of (5.24),, and by elimination for Aqu from the resulting equations,
we have
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I B
i+ WAl )A=0 (525
ur+( niMeAq,) ( )1} (5.25)
k"+k A 0 (5.25),
where ), %, k/ and &/ are linear combinations of Agitr e Ag‘no, and

nym, is a factor of all the coeﬁi(:lents of terms which contains Aqu in (5.24).
"Further, by elimination for A,,,DA from (5.25); and the equation obtained

by multiplying (5.24); with A we have the following relations equivalent
to (5.14)

- I -
Uy 16 M )mo(M) Ag,+ (Ul +meAe)A=0 (5.26),

oI . ‘
vo+ (Vo +nigmeA 4 ) A=0 (5.26), ¢ 1=1,2,....) (5.26)
~ T .
kK +E{A=0 y (5.26)3
where u,, vé, U, Vo, ki and E}’ are linear combinations of Agyy,..... , Az'no.

If no and 7 are not prlme, let the greatest common factor ng and 7%j be

a(M) then mg=an, ng=an. Substituting this into (5.26); and multiplying
I
the resulting equation by A and 7, we have

n—no+l

I ~ I
{( 1) 2 (u4,+moAq0)M”‘”°+u0A}+7°m7°qu°A=0;

-and. usmg (5 26), we have from the equation above (by ehmmatlon for
g °A,,0A and multiplication by A the resulting equation.

(ﬁmoAqn+h)A+7z=0

where h, i are linear combinations of A,.+1,...., A. And by elimination
for A, from (5.26), and the above we have ’che followmg equatlons equi-
valent to

Uo+no(M)mo(M )Aqo + (U + mOAqo)A =0
Yo+ T+ FiomoAg, A =0 | (1=1,2....) (5.27)
G iAo
where ug, vy, 9ig, 0 k;’ and k} are linear combinations of Aggrts oo ooy Agno;

and n, 7 are polinomials prime to each other except for a power of M
(but 7, it may be that). :

When ny=0: Multiplying by A all the equations of (5.24),, and elimi-
. I
nating A,A from the resulting equations and (5.24), we have

I
+ (Fy+modg)A=0
Vo (?}0 mﬂ qo) } (5.28)
/

~ I
K+ I A=0
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where v, ¥, &/ and k&7 and linear combinations of Aggits o v vy Agno,

. Continuing the process of elimination by which we obtained from (5.14),
(5.27) or (5.28), we finally get (5.23).

Corollary. When n—mny=o0dd, if there is a relat'wn g(M )+ g )A 0,
there always exists the relation f(M)=0.

Proof. By Theorem 19, the relation g(M)+g(M )A is reduced to
g (MG M) +g(M )A—O (po—O in Theorem 19).
I
Eliminating A from g (M)go(M)+gGo(M )A 0

7 - N I . n—no+l . . I
and  AfgG+GONA}=0 Qe (=1) * M""G+gFA=0
~mptl

we have {(g’)z—(—l) 2 M» "“}(g )= (5.28)

But, since n—mny is odd, this equation can not be an identity. So we have
the equation of M, say f(M)=0, which is a factor of the right-hand side
of (5.28). So the corollary has been proved.
Special case, 7,=0:

When 7,=0, from Theorems (18) and (19) and the corollary, we see
that, if there exist relations in B, then necessarily :
(when n=even) ¢g(M)=0, and there is no more relatlon
(when n= odd) either f(M)=0

or §A=g(M Jg(M) and ¢ (M)g=0, g(M)=x0,

and there is no more relation where g(M ) and ¢’(M) have no common factor.
This problem was discussed at a special Semmar of Geometry and

Theoretical Physies of this University.

In conclusion, I wish to express my thanks to the Hattori-Hoko-Kwai
for financial support.

Mathematical Institute, Hirosima University.
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