Ideals in a Boolean Algebra with Transfinite Chain Condition.

Fumitomo MAEDA.

(Received Nov. 6, 1939.)

Let L be a generalized \aleph -Boolean algebra, and Ω be an ordinal number. A subset $S=(a_{\alpha}; \alpha < \Omega)$ of L is called an ascending or descending system according as $a_{\alpha} < a_{\beta}$ or $a_{\alpha} > a_{\beta}$ for all $\alpha < \beta < \Omega$. If, for every ascending and descending system S, the power of S is $< \aleph$, then we say that L satisfies the \aleph -chain condition. Let α be an \aleph -ideal in L, and L/α denote the set of all equivalence classes with respect to α . When L/α satisfies the \aleph -chain condition, we say that L satisfies the \aleph -chain condition relative to α , and α is called a basic \aleph -ideal of the \aleph -chain condition. I shall prove that L satisfies the \aleph -chain condition relative to α if, and only if, L satisfies the following condition:

For every $T \subset L$ such that (i) $a \in T$ implies $a \notin a$, (ii) $a, b \in T$, $a \neq b$ implies $a \wedge b \in a$, the power of T is $< \aleph$.

I find also that class \mathfrak{P}_{n} of all basic \aleph -ideals of the \aleph -chain condition in L is a generalized \aleph -Boolean algebra, and class \mathscr{O}_{n}^{*} of all dual \aleph -ideals in \mathfrak{P}_{n} is a continuous Boolean algebra.

Next I apply this result to class \mathfrak{F}_{\aleph_1} of all measure functions defined in an \aleph_1 -Boolean algebra L. Let \mathfrak{a}_{ϕ} be the class of all a such that $\phi(a)=0$. Then \mathfrak{a}_{ϕ} is a basic \aleph_1 -ideal of the \aleph_1 -chain condition in L. I shall prove that class \mathfrak{Q}_{\aleph_1} of all $\mathfrak{a}_{\phi}(\phi \in \mathfrak{F}_{\aleph_1})$ is a dual \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} , and therefore \mathfrak{Q}_{\aleph_1} is a generalized \aleph_1 -Boolean algebra, and class $\Psi_{\aleph_1}^*$ of all dual \aleph_1 -ideals in \mathfrak{Q}_{\aleph_1} is a continuous Boolean algebra. We shall write $\phi < \phi$, when $\phi(a)$ is absolutely continuous with respect to $\phi(a)$, that is, $\phi(a)=0$ for all a such that $\phi(a)=0$. Then $\phi < \phi$ when, and only when, $\mathfrak{a}_{\phi} \supset \mathfrak{a}_{\phi}$. Hence \mathfrak{F}_{\aleph_1} is dualisomorphic to \mathfrak{Q}_{\aleph_1} . Therefore \mathfrak{F}_{\aleph_1} is a generalized \aleph_1 -Boolean algebra, and the class Ψ_{\aleph_1} of all \aleph_1 -ideals in \mathfrak{F}_{\aleph_1} is a continuous Boolean algebra.

Lastly I shall investigate the application to the spectral theory of the complete complex Euclidean space \mathfrak{S} . If a family of projections E(a) is defined for all a in an \aleph_1 -Boolean algebra L, such that

- (a) E(a)E(b)=0 when $a \wedge b=0$,
- (β) $E(a) = E(a_1) + E(a_2) + \cdots + E(a_i) + \cdots$ when $a = \sum_i \oplus a_i$,
- (γ) E(1)=1;

then we say that E(a) is a resolution of identity in the generalized sense. Let a_f be the class of all a such that E(a)f=0. Then a_f is a basic \aleph_1 -ideal 8

of the \aleph_1 -chain condition in L. I shall prove that class \Re_E of all $\alpha_f(f \in \S)$ is a dual \aleph -ideal in \Re_{\aleph_1} , and therefore \Re_E is a generalized \aleph_1 -Boolean algebra, and class θ_E^* of all dual \aleph -ideals in \Re_E is a continuous Boolean algebra. Next I shall obtain a resolution of identity $F(\mathfrak{A}^*)$ defined for all $\mathfrak{A}^* \in \theta_E^*$, which, we may say, is an extention of E(a) in the domain of definition. $F(\mathfrak{A}^*)$ corresponds to the resolution of identity defined by F. Wecken in his remarkable paper, which appeared recently.

General Properties of ℵ-Ideals in a Generalized ℵ-Boolean Algebra. (2)

- **1.** Let us consider generalized \aleph -Boolean algebra L with elements a, b, c, \ldots, \aleph being a transfinite cardinal number, that is, L satisfies the following axioms (I)-(IV):
 - (I) L is a partially ordered set; that is, in L a relation of inclusion $a \supset b$ is defined, such that
 - (i) $a \supset a$;
 - (ii) $a \supset b$, $b \supset c$ implies $a \supset c$.

We define equality a=b in L as the simultaneous existence of the relations $a\supset b$, $a\subset b$. We write a>b, when $a\supset b$ but $a\neq b$.

- (II) L is an \aleph -lattice; that is, For every subset S of L of power $< \aleph$, there is an element $\sum (S)$ in L which is a least upper bound or join of S, i.e.
 - (i) $\sum (S) \supset a$ for every $a \in S$,
 - (ii) $c \supset a$ for every $a \in S$ implies $c \supset \sum (S)$.

For every subset S of L of power $\leq \aleph$, there is an element $\Pi(S)$ in L which is a greatest lower bound or meet of S, i.e.

- (i) $\Pi(S) \subset a$ for every $a \in S$,
- (ii) $c \subset a$ for every $a \in S$ implies $c \subset \Pi(S)$.

When S=(a, b), we write $\sum (S)=a \lor b$, $\Pi(S)=a \land b$. If $\aleph >$ power of L, then L is called a *continuous* lattice.

(III) L is complemented in the generalized sense; that is, For any three elements a, b, c such that $a \subset b \subset c$, there exists an element x such that

$$b \lor x = c$$
, $b \land x = a$.

(IV) L is distributive in the generalized sense; that is, For every subset S of L of power $< \aleph$ and every $b \in L$

⁽¹⁾ Cf. W. Wecken [1]. The numbers in square brackets refer to the list given at the end of this paper.

⁽²⁾ M. H. Stone has investigated the properties of N_0 -ideals in a generalized N_0 -Boolean algebra with zero element. (Cf. M. H. Stone [1]). These investigations can be applied in our general case. In the present paper only a few properties are mentioned, which are necessary to what follows.

$$\sum (S) \wedge b = \sum (a \wedge b; a \in S),$$

 $\prod (S) \vee b = \prod (a \vee b; a \in S).$

It should be observed that in the axioms given above, the existence of zero element 0 and unit element 1 is not assumed. If the existence of these elements is assumed, then the \aleph -lattice satisfying (III) and (IV) is equivalent to the \aleph -lattice satisfying the following axioms (III') and (IV').

(III') For any element a, there exists an element x such that

$$a \vee x = 1$$
, $a \wedge x = 0$.

x is called the inverse of a, and is often denoted by a'.

(IV') For all elements a, b, c in L

$$(a \lor b) \land c = (a \land c) \lor (b \land c),$$

$$(a \land b) \lor c = (a \lor c) \land (b \lor c).$$

For the sake of simplicity we shall call the \(\times\)-lattice with zero and unit elements satisfying (III') and (IV') an \(\times\)-Boolean algebra.

It is also to be noted that, in axioms (I)-(IV), the duality holds good interchanging \subset , Σ , \vee by \supset , Π , \wedge .

- **2.** DEFINITION 2.1. In a generalized \aleph -Boolean algebra L, if a subset \mathfrak{a} of L satisfies the following properties, then \mathfrak{a} is said to be an \aleph -ideal in L:
 - (i) if $S \subseteq a$ and power of $S < \aleph$, then $\sum (S) \in a$,
 - (ii) if $a \in a$ and $b \in L$, then $a \wedge b \in a$.

(Condition (ii) is equivalent to: "if $a \in a$, $c \in L$, $c \subseteq a$, then $c \in a$ ".)

DEFINITION 2.1.*(2) Dually, we can define a dual \aleph -ideal \mathfrak{a}^* in a generalized \aleph -Boolean algebra L by the following properties:

- (i*) if $S \subseteq \mathfrak{a}^*$ and power of $S < \aleph$, then $II(S) \in \mathfrak{a}^*$,
- (ii*) if $a \in a^*$ and $b \in L$, then $a \lor b \in a^*$.

(Condition (ii*) is equivalent to: "if $a \in a^*$, $c \in L$, $c \supset a$, then $c \in a^*$ ".)

It is evident that class a(a) of all elements $b \in L$, such that $b \subseteq a$, is an \aleph -ideal in L.

DEFINITION 2.2. We say that a(a) is a principal \aleph -ideal in L.

Dually, we denote by $a^*(a)$ the class of all elements $b \in L$ such that $b \supset a$.

DEFINITION 2.2.* We say that $a^*(a)$ is a principal dual \aleph -ideal in L.

THEOREM 2.1. Class \Im of all \aleph -ideals in a generalized \aleph -Boolean algebra L is a lattice, closed with respect to the join of any subset of \Im and to the meet of subsets of \Im of power $< \aleph$. For every subset $\mathfrak{S} = (\mathfrak{a}_a; a \in I)$ of \Im , I being the set of indices, the join $\Sigma(\mathfrak{S})$ consists of those

⁽¹⁾ Cf. J. v. Neumann [1], 6; [2], 7.

^{(2) *} means the dual relation.

elements such that $c = \sum (a_a; a_a \in a_a, a \in I_1)$ where I_1 is a subclass of I of power $< \aleph$. And for every subset $\mathfrak{S} = (\mathfrak{a}_a; a \in I)$ of \mathfrak{F} of power $< \aleph$, the meet $\Pi(\mathfrak{S})$ consists of those elements such that $c = \Pi(a_a; a_a \in a_a, a \in I)$.

3 satisfies the following distributive laws:

$$a \wedge \sum (\mathfrak{S}) = \sum (a \wedge a_a; a \in I)$$

for every subset $\mathfrak{S} = (\mathfrak{a}_a; a \in I)$ of \mathfrak{F} , and

$$\alpha \vee \Pi(\mathfrak{S}) = \Pi(\alpha \vee \alpha_a; \alpha \in I)$$

for every subset $\mathfrak{S}=(\mathfrak{a}_a; a \in I)$ of power $< \aleph$.

 \mathfrak{J} has the unit element \mathfrak{e} , which is L itself.

Especially when L has zero element 0, \Im has zero element 0 which consists of 0 alone, and \Im is closed with respect to the meet of any subset of \Im .

PROOF. Since the following dual Theorem 2.1* is not familiar, I shall prove it. The present theorem can be proved as Theorem 2.1* with slight modifications.

THEOREM 2.1.* Class \mathfrak{F}^* of all dual \aleph -ideals in a generalized \aleph -Boolean algebra L is a lattice, closed with respect to the join of any subset of \mathfrak{F}^* and to the meet of subsets of \mathfrak{F}^* of power $<\aleph$. For every subset $\mathfrak{S}^*=(\mathfrak{a}_a^*;\ a\in I)$ of \mathfrak{F}^* , I being the set of indices, the join $\Sigma(\mathfrak{S}^*)$ consists of those elements such that $c=\Pi(a_a;\ a_a\in\mathfrak{a}_a^*,\ a\in I_1)$ where I_1 is a subclass of I of power $<\aleph$. And for every subset $\mathfrak{S}^*=(\mathfrak{a}_a^*;\ a\in I)$ of \mathfrak{F}^* of power $<\aleph$, the meet $\Pi(\mathfrak{S}^*)$ consists of those elements such that $c=\Sigma(a_a;\ a_a\in\mathfrak{a}_a^*,\ a\in I)$.

 \mathfrak{F}^* satisfies the following distributive laws:

$$\alpha^* \wedge \sum (\mathfrak{S}^*) = \sum (\alpha^* \wedge \alpha_\alpha^*; \alpha \in I)$$

for every subset $\mathfrak{S}^* = (\mathfrak{a}_a^*; a \in I)$ of \mathfrak{J}^* , and

$$\mathfrak{a}^* \vee \Pi(\mathfrak{S}^*) = \Pi(\mathfrak{a}^* \vee \mathfrak{a}_a^* : \alpha \in I)$$

for every subset $\mathfrak{S}^* = (\mathfrak{a}_a^*; a \in I)$ of \mathfrak{J}^* of power $< \aleph$.

 \mathfrak{F}^* has unit element \mathfrak{e}^* , which is L itself.

Especially when L has unit element 1, \mathfrak{J}^* has zero element \mathfrak{o}^* which consists of 1 alone, and \mathfrak{J}^* is closed with respect to the meet of any subset of \mathfrak{J}^* .

PROOF. (i) Let $\mathfrak{S}^* = (\mathfrak{a}_a^*; a \in I)$ be any subset of \mathfrak{J}^* , and \mathfrak{c}^* be the class of all elements $c = \Pi(a_a; a_a \in \mathfrak{a}_a^*, a \in I_1)$ where I_1 is a subclass of I of power $< \aleph$. And let S^* be any subset of \mathfrak{c}^* of power $< \aleph$; then, since all \mathfrak{a}_a^* are dual \aleph -ideals, $\Pi(S^*)$ can be written in the form $\Pi(S^*) = \Pi(b_a; b_a \in \mathfrak{a}_a^*, a \in I_2)$, where I_2 is a subclass of I of power $< \aleph$. That is, $\Pi(S^*) \in \mathfrak{c}^*$.

Let d be any element of L and $c \in c^*$. Then

$$d \lor c = d \lor II(a_a; \ a_a \in \mathfrak{a}_a^*, \ a \in I_1)$$
$$= II(d \lor a_a; \ a_a \in \mathfrak{a}_a^*, \ a \in I_1)^{(1)} \in \mathfrak{c}^*$$

⁽¹⁾ By Axiom (IV) of Sec. 1.

since $d \vee a_a \in \mathfrak{a}_a^*$. Hence \mathfrak{c}^* is a dual \aleph -ideal. Since \mathfrak{c}^* is the smallest dual \aleph -ideal which contains all \mathfrak{a}^* in \mathfrak{S}^* , we have

$$c^* = \sum (\mathfrak{S}^*)$$
.

- (ii) Next let $\mathfrak{S}^* = (\mathfrak{a}_a^*; \alpha \in I)$ be any subset of \mathfrak{F}^* of power $< \aleph$. The intersection of all these \mathfrak{a}_a^* in \mathfrak{S}^* consists of those elements c such that $c = \sum (a_a; a_a \in \mathfrak{a}_a^*, \alpha \in I)$. For any such element is common to all \mathfrak{a}_a^* of \mathfrak{S}^* , and if c is common to all \mathfrak{a}_a^* of \mathfrak{S}^* , then c is written in the form above, where $a_a = c$ for all $a \in I$. And this intersection is the required meet $II(\mathfrak{S}^*)$. Especially when L has unit element 1, the intersection of any subset of \mathfrak{F}^* is non-void, and is the meet $II(\mathfrak{S}^*)$.
 - (iii) Let $\mathfrak{S}^* = (\mathfrak{a}_a^*; a \in I)$ be any subset of \mathfrak{J}^* . Since $\mathfrak{a}^* \wedge \sum (\mathfrak{S}^*) \supset \mathfrak{a}^* \wedge \mathfrak{a}_a^*$ for all $a \in I$,

we have

$$\mathfrak{a}^* \wedge \sum (\mathfrak{S}^*) \supset \sum (\mathfrak{a}^* \wedge \mathfrak{a}_a^*; a \in I)$$
.

Next, by (i) and (ii), any element c in $\mathfrak{a}^* \wedge \sum (\mathfrak{S}^*)$ is expressible in the form $c = a \vee II(b_a; b_a \in \mathfrak{a}_a^*, a \in I_1)$, where $a \in \mathfrak{a}^*$ and I_1 is a subclass of I of power $< \aleph$. But, by Axiom (IV) of Sec. 1,

$$c = \Pi(a \vee b_a; b_a \in \mathfrak{a}_a^*, a \in I_1)$$
.

Since $a \lor b_a \in \mathfrak{a}^* \land \mathfrak{a}_a^*$, we have $c \in \Sigma (\mathfrak{a}^* \land \mathfrak{a}_a^*; a \in I_1)$. Therefore

$$\mathfrak{a}^* \wedge \sum (\mathfrak{S}^*) \subset \sum (\mathfrak{a}^* \wedge \mathfrak{a}_a^*; a \in I).$$

Consequently

$$\alpha^* \wedge \sum (\mathfrak{S}^*) = \sum (\alpha^* \wedge \alpha_a^*; \ \alpha \in I).$$

(iv) As in (iii), we can prove that

$$\mathfrak{a}^* \vee \Pi(\mathfrak{S}^*) = \Pi(\mathfrak{a}^* \vee \mathfrak{a}_a^*; \ \alpha \in I)$$

for any subset $\mathfrak{S}^* = (\mathfrak{a}_a^*; a \in I)$ of \mathfrak{F}^* of power $< \aleph$.

THEOREM 2.2. Class $\mathfrak P$ of all principal \aleph -ideals in a generalized \aleph -Boolean algebra L is isomorphic to L in accordance with the following relations:

- (i) a(a)=a(b) if, and only if, a=b,
- (ii) $a(\sum(S)) = \sum (a(a); a \in S),$
- (iii) $a(\Pi(S)) = \Pi(a(a); a \in S),$

where S is any subset of L with power $< \aleph$. Hence \Re is also a generalized \aleph -Boolean algebra.

PROOF. (i) a=b obviously implies a(a)=a(b); and a(a)=a(b) implies $a \subset b$, $b \subset a$, and hence a=b.

- (ii) Since $\sum(S) \supset a$ for all $a \in S$, $a(\sum(S)) \supset \sum(a(a); a \in S)$. Next, by Theorem 2.1, $\sum(S) \in \sum(a(a); a \in S)$; hence $a(\sum(S)) \subset \sum(a(a); a \in S)$. (iii) Similarly to (ii).
- THEOREM 2.2.* Class \mathfrak{P}^* of all principal dual \times -ideals in a generalized \times -Boolean algebra L is dual-isomorphic to L in accordance with the following relations:

- (i) $a^*(a)=a^*(b)$ if, and only if, a=b,
- (ii) $a^*(\Sigma(S)) = \Pi(a^*(a); a \in S),$
- (iii) $a^*(\Pi(S)) = \sum (a^*(a); a \in S),$

where S is any subset of L with power $< \aleph$. Hence \mathfrak{P}^* is also a generalized \aleph -Boolean algebra.

PROOF. Cf. proof of Theorem 2.2.

THEOREM 2.3. In a generalized \aleph -Boolean algebra L with zero element 0, let α be an \aleph -ideal, and let α' be the class of all elements b such that $b \wedge a = 0$ for all $a \in \alpha$.

Then a' is an \aleph -ideal in L, and

$$a \wedge a' = p$$
.

PROOF. This theorem can be proved as the following dual case.

THEOREM 2.3.* In a generalized \aleph -Boolean algebra L with unit element 1, let α^* be a dual \aleph -ideal, and let α^* be the class of all elements b such that $b \vee a = 1$ for all $a \in \alpha^*$.

Then a*` is a dual ℵ-ideal in L and

$$a^* \wedge a^{*} = o^*$$
.

PROOF. (i) Let S^* be any subset of $a^{*'}$ of power $< \aleph$. Then, by Axiom (IV) in Sec. 1,

 $\Pi(S^*) \vee a = \Pi(b \vee a; b \in S^*) = 1$ for all $a \in a^*$.

Hence $\Pi(S^*) \in \mathfrak{a}^*$.

- (ii) If $b \in a^*$ and $c \supset b$, then $c \in a^*$, since $c \lor a \supset b \lor a = 1$ for all $a \in a^*$. From (i) and (ii), a^* is a dual \aleph -ideal in L.
- (iii) By Theorem 2.1*, $a^* \wedge a^{*'}$ consists of those elements $a \vee b$ such that $a \in a^*$, $b \in a^{*'}$. Since $a \vee b = 1$ for all $a \in a^*$, $b \in a^{*'}$, we have $a^* \wedge a^{*'} = \mathfrak{o}^*$.

DEFINITION 2.3. The x-ideal a' associated with an x-ideal a in the manner indicated in Theorem 2.3 is called the orthocomplement of a.

DEFINITION 2.3.* The dual \aleph -ideal α^* associated with a dual \aleph -ideal α^* in the manner indicated in Theorem 2.3* is called the *dual orthocomplement* of α^* .

THEOREM 2.4. In a generalized \aleph -Boolean algebra L with zero element 0, if every \aleph -ideal contained in a principal \aleph -ideal is also principal, then class \Im of all \aleph -ideals in L is a continuous Boolean algebra.

PROOF. Cf. the following dual case.

THEOREM 2.4.* In a generalized \aleph -Boolean algebra L with unit element 1, if every dual \aleph -ideal contained in a principal dual \aleph -ideal is also principal, then class \mathfrak{J}^* of all dual \aleph -ideals in L is a continuous Boolean algebra.

PROOF. From Theorem 2.1*, \mathfrak{F}^* is a distributive continuous lattice, that is, \mathfrak{F}^* is a continuous lattice which satisfies Axiom (IV') in Sec. 1. Hence it is sufficient to show that \mathfrak{F}^* is complemented, that is, that \mathfrak{F}^* satisfies Axiom (III') in Sec. 1.

Let a^* be any element in \mathfrak{J}^* , and a^{*} be the dual orthocomplement of a^* . Then, by Theorem 2.3*,

$$a^* \wedge a^{*} = o^*$$
.

Next we shall prove that

$$a^* \vee a^{*} = e^*$$
.

For this purpose, from Theorem 2.1*, it is sufficient to show that any element $c \in L$ is expressed in the form

$$c=a \wedge b$$
 where $a \in a^*$, $b \in a^{*'}$. (1)

If $c \in \mathfrak{a}^*$, then

$$c=1 \land c$$
 where $1 \in \mathfrak{a}^*$, $c \in \mathfrak{a}^*$.

If $c \notin a^*$, then there exists an element $a \in a^*$ such that $c \vee a \neq 1$.

Hence

$$a^*(c) \wedge a^* \neq o^*$$
.

Since $a^*(c) \wedge a^* \subset a^*(c)$, by assumption there exists an element $d \neq 1$ such that

$$\alpha^*(c) \wedge \alpha^* = \alpha^*(d). \tag{2}$$

Let d_1 be such that

$$d \vee d_1 = 1$$
, $d \wedge d_1 = c$.

Then $d_1 \in \mathfrak{a}^*$. For if not, then, as above, there exists an element $f \neq 1$ such that

$$\mathfrak{a}^*(d_1) \wedge \mathfrak{a}^* = \mathfrak{a}^*(f). \tag{3}$$

Then $d_1 \subset f$, and $d \vee f = 1$. Hence

Hence
$$a^*(d) \wedge a^*(f) = \mathfrak{o}^*. \tag{4}$$

Since $f \supset d_1 \supset c$, $\alpha^*(f) \subset \alpha^*(c)$. And by (3) $\alpha^*(f) \subset \alpha^*$. Hence by (2) $\alpha^*(f) \subset \alpha^*(c) \land \alpha^* = \alpha^*(d)$.

But this contradicts (4). Consequently

$$c=d \wedge d_1$$
 where $d \in \mathfrak{a}^*$, $d_1 \in \mathfrak{a}^*$.

Consequently (1) holds good for any $c \in L$. And the theorem is completely proved.

- **3.** DEFINITION 3.1. If a is an \aleph -ideal in a generalized \aleph -Boolean algebra L, then a and b are equivalent modulo a $(a \sim b \pmod{a})$ when there exist $u, v \in a$ with $a \sim u = a \vee v$.
- **Lemma 3.1.** The relation $a \sim b \pmod{\mathfrak{a}}$ is reflexive, symmetric, and transitive.

⁽¹⁾ We can define the equivalence modulo a^* ($a \sim b \pmod{a^*}$) when there exist $u, v \in a^*$ with $a \wedge u = b \wedge v$, and the set L/a^* of all equivalence classes. But I omit investigations into these dual properties. Cf. p. 20, footnote (3).

PROOF. Obviously $a \sim a \pmod{a}$; and $a \sim b \pmod{a}$ implies $b \sim a \pmod{a}$. To prove the transitivity, let $a \sim b \pmod{a}$, $b \sim c \pmod{a}$ i.e., $a \vee u_1 = b \vee v_1$, $b \vee u_2 = c \vee v_2$, u_1 , v_1 , u_2 , $v_2 \in a$. Then

$$a \vee u_1 \vee u_2 = b \vee v_1 \vee u_2 = c \vee v_1 \vee v_2$$
,

and $u_1 \vee u_2$, $v_1 \vee v_2 \in \mathfrak{a}$. Therefore $a \sim c \pmod{\mathfrak{a}}$.

DEFINITION 3.2. Let A_a be the set of all $x \in L$ with $x \sim a \pmod{\mathfrak{a}}$. The system $(A_a; a \in L)$ is a mutually exclusive and exhaustive partition of L into equivalence classes. We denote the equivalence classes by A, B, C, \ldots , and the set of all equivance classes by L/\mathfrak{a} .

DEFINITION 3.3. $A \subseteq B$ means the existence of $a \in A$, $b \in B$ with $a \subseteq b$.

LEMMA 3.2. When $A \subseteq B$, for every $a \in A$, $b \in B$ there exists u such that $a \subseteq b \lor u$, $u \in a$ and $b \lor u \in B$.

PROOF. Since $A \subseteq B$, there exist $a_1 \in A$, $b_1 \in B$ such that $a_1 \subseteq b_1$. Since $a \sim a_1 \pmod{a}$, $b \sim b_1 \pmod{a}$, there exist u_1, v_1, u_2, v_2 in a such that

$$a \vee u_1 = a_1 \vee v_1$$
, $b \vee u_2 = b_1 \vee v_2$.

Put $u=v_1 \lor u_2$; then, since $u \in \mathfrak{a}$, $b \lor u \in B$; and

$$a \subset a_1 \vee v_1 \subset b_1 \vee v_1 \subset b \vee v_1 \vee u_2 = b \vee u$$
.

THEOREM 3.1. When L is a generalized \aleph -Boolean Algebra, L/\mathfrak{a} is a generalized \aleph -Boolean algebra with zero element. (1)

- PROOF. (i) To show that L/a is a partially ordered set, we need only to prove that $A \supset B$, $B \supset C$ imply $A \supset C$. By Lemma 3.2, since $A \supset B$, $B \supset C$, there exist $a \in A$, $b \in B$, $c \in C$ such that $a \supset b$, $b \supset c$. Hence $a \supset c$. Consequently, by Definition 3.3, $A \supset C$. It is evident that class a itself is zero element of L/a. (When L has unit element 1, then A_1 is unit element of L/a).
- (ii) Next we shall show that L/a is an \aleph -lattice. Consider a subset \mathfrak{S} of L/a with power $< \aleph$. For each $A \in \mathfrak{S}$ select an element $a \in A$, and denote the set of these elements by S. Then, the power of $S < \aleph$, and $\mathfrak{S} = (A_a; a \in S)$. Thus $\sum(S)$ and $\Pi(S)$ exist, and for every $a \in S$, $\Pi(S) \subset a \subset \sum(S)$, $A_{\Pi(S)} \subset A_a \subset A_{\Sigma(S)}$.

Suppose now that $C = A_{a_0} \supset A_a$ for every $a \in S$. Then, by Lemma 3.2, there exists for each $a \in S$ an element $u_a \in a$ with $a_0 \lor u_a \supset a$. Thus

$$a_0 \vee \sum (u_a; a \in S) \supset \sum (S)$$
.

Since a is an \aleph -ideal, it follows that $\sum (u_a; a \in S) \in \mathfrak{a}$. Hence

$$C=A_{a_0}\supset A_{\Sigma(S)}.$$

Consequently $\sum (\mathfrak{S}) = \sum (A_a; a \in S) = A_{\Sigma(S)}.$ (1)

⁽¹⁾ J. v. Neumann has proved this theorem when L has zero and unit elements. Cf. J. v. Neumann [2], 10-11. Here I consider the general case, and the proof is somewhat simplified.

Next suppose that $C = A_{a_0} \subset A_a$ for every $a \in S$. Then, by Lemma 3.2, there exists for each $a \in S$ an element $v_a \in a$ with $a_0 \subset a \vee v_a$. Thus

$$a_0 \subset a \vee \sum (v_b; b \in S)$$
 for every $a \in S$,

and consequently $a_0 \subset \Pi(a \vee \sum (v_b; b \in S); a \in S)$;

that is, $a_0 \subset \Pi(S) \vee \sum (v_b; b \in S)$

by Axiom (IV) in Sec. 1. As before, $\sum (v_b; b \in S) \in \mathfrak{a}$, whence $A_{a_0} \subset A_{II(S)}$. Consequently $II(\mathfrak{S}) = II(A_a; a \in S) = A_{II(S)}$. (2)

Thus L/a is an \aleph -lattice.

(iii) L/a is complemented in the generalized sense. For let A, B, C be such that $A \subseteq B \subseteq C$; then, by Lemma 3.2, there exist $a \in A$, $b \in B$, $c \in C$ such that $a \subseteq b \subseteq c$. Then, by Axiom (III) of Sec. 1, there exists an element x in L such that

$$b \lor x = c$$
, $b \land x = a$.

Hence, by (1) and (2),

$$A_b \vee A_x = A_c$$
, $A_b \wedge A_x = A_a$.

Thus there exists an element $X=A_x$ in L/α such that

$$B \vee X = C$$
, $B \wedge X = A$.

(iv) L/a is distributive in the generalized sense. To prove this, consider a subset \mathfrak{S} of L/a with power $<\aleph$. Then, as in (i), we have a subset S of L, the power of $S<\aleph$, and $\mathfrak{S}=(A_a; a\in S)$. And let $B=A_b$ be any element in L/a. Then, by Axiom (IV) in Sec. 1, and (1) and (2), we have

$$\sum_{b} (\mathfrak{S}) \wedge B = A_{\Sigma(S)} \wedge A_b = A_{\Sigma(S) \wedge b} = A_{\Sigma(a \wedge b; a \in S)}$$
$$= \sum_{b} (A_{a \wedge b}; a \in S) = \sum_{b} (A_a \wedge B; a \in S).$$

Similarly we have

$$\Pi(\mathfrak{S}) \vee B = \Pi(A_a \vee B : a \in S)$$
.

THEOREM 3.2. If b is an \aleph -ideal in a generalized \aleph -Boolean algebra L, then the image $\mathfrak B$ of its elements under the homomorphism $L \to L/\mathfrak a$ constitutes an \aleph -ideal in $L/\mathfrak a$. And if $\mathfrak C$ is an \aleph -ideal in $L/\mathfrak a$, then the class $\mathfrak c$ of all elements of L with images in $\mathfrak C$ is an \aleph -ideal in L.

PROOF. (i) Let \mathfrak{S} be any subset of \mathfrak{B} with power $< \aleph$. Let \mathfrak{Q} be the smallest ordinal corresponding to this power, and replace \mathfrak{S} by the system $(A^a; \alpha < \mathfrak{Q})$. Then there exist a_a in \mathfrak{b} such that $A_{a_a} = A^a$ for all $\alpha < \mathfrak{Q}$. By (1) in the proof of Theorem 3.1,

$$\sum(\mathfrak{S}) = \sum (A_{a_{\alpha}}; \ \alpha < \Omega) = A_{\sum(a_{\alpha}; \ \alpha < \Omega)}.$$

Since $\sum (a_a; a < \mathcal{Q}) \in \mathfrak{b}$, $\sum (\mathfrak{S}) \in \mathfrak{B}$. Next, let $A \in \mathfrak{B}$, $B \in L/\mathfrak{a}$. Then there exist $a \in \mathfrak{b}$, $b \in L$ such that $A = A_a$, $B = A_b$. By (2) in the proof of Theorem 3.1, $A \wedge B = A_{a \wedge b}$. But, since $a \wedge b \in \mathfrak{b}$, $A \wedge B \in \mathfrak{B}$. Consequently \mathfrak{B} is an \aleph -ideal in L/\mathfrak{a} .

(ii) Let S be any subset of c with power $< \aleph$; and, as in (i), replace S by the system $(a_{\alpha}; \alpha < \Omega)$. Then $A_{\alpha_{\alpha}} \in \mathbb{C}$ for all $\alpha < \Omega$. Hence

 $\sum (A_{a_a}; \alpha < \Omega) \in \mathbb{C}$. Since $\sum (A_{a_a}; \alpha < \Omega) = A_{\sum (a_a; \alpha < \Omega)}$, we have $\sum (a_a; \alpha < \Omega) \in \mathfrak{c}$. Next, let $\alpha \in \mathfrak{c}$, $b \in L$. Then, since $A_a \in \mathbb{C}$, $A_b \in L/\mathfrak{a}$, $A_a \wedge A_b \in \mathbb{C}$. Hence, since $A_a \wedge A_b = A_{a \wedge b}$, we have $a \wedge b \in \mathfrak{c}$. Thus \mathfrak{c} is an \aleph -ideal in L, as we wished to prove.

THEOREM 3.3, Let a, b be \aleph -ideals in a generalized \aleph -Boolean algebra L such that $a \subseteq b$. And let $\mathfrak B$ be the image of b under the homomorphism $L \to L/a$. Then L/b is isomorphic to $(L/a)/\mathfrak B$ with respect to the join and the meet of subsets of power $< \aleph$.

PROOF. We denote by A_a the set of all $x \in L$ with $x \sim a \pmod{\mathfrak{a}}$; and by \overline{A}_a the set of all $x \in L$ with $x \sim a \pmod{\mathfrak{b}}$, and by \overline{A}_A the set of all $B \in L/\mathfrak{a}$ with $B \sim A \pmod{\mathfrak{B}}$. Then $L/\mathfrak{a} = (A_a; a \in L), L/\mathfrak{b} = (\overline{A}_a; a \in L), \text{ and } (L/\mathfrak{a})/\mathfrak{B} = (\overline{A}_A; A \in L/\mathfrak{a}).$

(i) If $A_u \in \mathfrak{B}$, then $u \in \mathfrak{b}$.

16

For, since \mathfrak{B} is the image of \mathfrak{b} , there exists an element $u_0 \in \mathfrak{b}$, such that $A_u = A_{u_0}$. Then $u \sim u_0 \pmod{\mathfrak{a}}$. Hence $u \vee w = u_0 \vee w_0$ where $w, w_0 \in \mathfrak{a}$. Since $\mathfrak{a} \subset \mathfrak{b}$, $u \subset u_0 \vee w_0 \in \mathfrak{b}$. Therefore $u \in \mathfrak{b}$.

(ii) If $a \sim b \pmod{\mathfrak{b}}$, then $A_a \sim A_b \pmod{\mathfrak{B}}$.

For, since $a \vee u = b \vee v$ where $u, v \in \mathfrak{b}$, we have $A_{a \vee u} = A_{b \vee v}$, that is, $A_a \vee A_u = A_b \vee A_v^{(1)}$ and $A_u, A_u \in \mathfrak{B}$. Hence $A_a \sim A_b \pmod{\mathfrak{B}}$.

(iii) If $A_a \sim A_b \pmod{\mathfrak{B}}$, then $a \sim b \pmod{\mathfrak{b}}$.

For there exist A_u , $A_v \in \mathfrak{B}$ such that $A_a \vee A_u = A_b \vee A_v$. That is, $A_{a \vee u} = A_{b \vee v}^{(1)}$ and $a \vee u \sim b \vee v \pmod{\mathfrak{a}}$. That is $a \vee u \vee u_1 = b \vee v \vee v_1$ where $u_1, v_1 \in \mathfrak{a}$. Since, by (i), $u, v \in \mathfrak{b}$, and $\mathfrak{a} \subset \mathfrak{b}$, we have $u \vee u_1 \in \mathfrak{b}$, $v \vee v_1 \in \mathfrak{b}$. Therefore $a \sim b \pmod{\mathfrak{b}}$.

(iv) By (ii) and (iii) there exists one-to-one correspondence between the elements in L/\mathfrak{b} and $(L/\mathfrak{a})/\mathfrak{B}$ such that $\bar{A}_a \leftrightarrow \bar{\bar{A}}_{A_a}$. Consider a subset $(\bar{A}_a \; ; \; a \in S)$ of L/\mathfrak{b} with power $< \aleph$. Then $\sum (\bar{A}_a \; ; \; a \in S) = \bar{A}_{\sum(a \; ; \; a \in S)}$ corresponds to $\bar{A}_{A_{\sum(a \; ; \; a \in S)}} = \bar{A}_{\sum(A_a \; ; \; a \in S)} = \sum (\bar{\bar{A}}_{A_a} \; ; \; a \in S)$. Similarly for $II(\bar{A}_a \; ; \; a \in S)$. Hence L/\mathfrak{b} is isomorphic to $(L/\mathfrak{a})/\mathfrak{B}$ with respect to the join and the meet of subsets of power $< \aleph$.

THEOREM 3.4. If \Im and \Im are the classes of all \aleph -ideals in a generalized \aleph -Boolean algebra L and in L/α respectively, then the homomorphism $L \to L/\alpha$ induces a homomorphism $\Im \to \Im$ with respect to the join of any subset and to the meet of subsets of power $< \aleph$. If $\mathfrak b$ and $\mathfrak c$ are \aleph -ideals in L with respective images $\mathfrak B$ and $\mathfrak C$ in L/α , then $\mathfrak b \lor \alpha = \mathfrak c \lor \alpha$ and $\mathfrak B = \mathfrak C$ are equivalent.

PROOF. (i) Let $\mathfrak{S} = (\mathfrak{a}_{\alpha}; \alpha \in I)$ be any subset of \mathfrak{F} , and let $\overline{\mathfrak{S}} = (\mathfrak{A}_{\alpha}; \alpha \in I)^{(2)}$ be the image of \mathfrak{S} in $\overline{\mathfrak{F}}$. By Theorem 2.1, $\Sigma(\mathfrak{S})$ consists of those elements

⁽¹⁾ By (1) in the proof of Theorem 3.1.

⁽²⁾ In this expression some \mathfrak{A}_{α} coincide, in spite of different indices, \mathfrak{A}_{α} being the image of \mathfrak{a}_{α} .

such that $c = \sum (a_a; a_a \in \mathfrak{a}_a, a \in I_1)$, where I_1 is a subclass of I of power $< \aleph$. Hence the image of $\sum (\mathfrak{S})$ consists of those elements such that $A_c = \sum (A_a; A_a \in \mathfrak{A}_a, a \in I_1)$. Hence image of $\sum (\mathfrak{S}) \subset \sum (\overline{\mathfrak{S}})$. Conversely, $\sum (\overline{\mathfrak{S}})$ consists of those elements such that $C = \sum (A_a; A_a \in \mathfrak{A}_a, a \in I_1)$, where I_1 is a subclass of I of power $< \aleph$. There exist $a_a \in \mathfrak{a}_a$ such that $A_a = A_{a_a}$ for all $a \in I_1$. Put $c = \sum (a_a; a \in I_1)$; then $c \in \sum (\mathfrak{S})$ and $C = A_c$. That is, $C \in \text{image of } \sum (\mathfrak{S})$. Hence $\sum (\overline{\mathfrak{S}}) \subset \text{image of } \sum (\mathfrak{S})$. Consequently $\sum (\overline{\mathfrak{S}}) = \text{image of } \sum (\mathfrak{S})$.

- (ii) In a similar manner we can prove that if $\mathfrak{S} = (\mathfrak{a}_a; a \in I)$ be any subset of \mathfrak{F} of power $\langle \aleph$, and $\overline{\mathfrak{S}} = (\mathfrak{A}_a; a \in I)$ be the image of \mathfrak{S} , then $\Pi(\overline{\mathfrak{S}}) = \text{image of } \Pi(\mathfrak{S})$.
- (iii) Since in the homomorphism $L \to L/\alpha$, the image of α is the ideal $\mathbb D$ consisting of zero element in L/α alone. Hence $\mathfrak b \lor \alpha$ and $\mathfrak c \lor \alpha$ have respective images $\mathfrak B \lor \mathfrak D = \mathfrak B$ and $\mathfrak C \lor \mathfrak D = \mathfrak C$. It follows that $\mathfrak b \lor \alpha = \mathfrak c \lor \alpha$ implies $\mathfrak B = \mathfrak C$. Furthermore, if b is any element in L with image B in $\mathfrak B$, then there exists an element b_0 in $\mathfrak b$ which also has B as its image. The fact that b and b_0 have the same images implies that $b \leadsto b_0 \pmod{\alpha}$, that is, $b \lor u = b_0 \lor v$ where $u, v \in \alpha$. Hence $b \in \mathfrak b \lor \alpha$. Thus $\mathfrak b \lor \alpha$ is the class of all elements in L with images in $\mathfrak B$. Similarly $\mathfrak c \lor \alpha$ is the class of all elements im L with images in $\mathfrak C$. In consequence, $\mathfrak B = \mathfrak C$ implies $\mathfrak b \lor \alpha = \mathfrak c \lor \alpha$.

THEOREM 3.5. Let \mathfrak{Y} be the class of all \aleph -ideals in a generalized \aleph -Boolean algebra L which contains \mathfrak{a} , and $\overline{\mathfrak{Y}}$ be the class of all \aleph -ideals in L/\mathfrak{a} . The homomorphism $L \to L/\mathfrak{a}$ induces an isomorphism $\mathfrak{Y} \to \overline{\mathfrak{Y}}$ with respect to the join of any subset and to the meet of subsets of power $< \aleph$.

PROOF. By Theorem 3.2, to any element $\mathfrak b$ in $\mathfrak Y$ there corresponds only one element $\mathfrak B$ in $\mathfrak Z$. Next, let $\mathfrak b$ and $\mathfrak c$ be two elements in $\mathfrak Y$ which have the same image $\mathfrak B$ in $\mathfrak Z$; then, by Theorem 3.4, $\mathfrak b \vee \mathfrak a = \mathfrak c \vee \mathfrak a$. Since $\mathfrak b \supset \mathfrak a$, $\mathfrak c \supset \mathfrak a$, we have $\mathfrak b = \mathfrak c$. That is, there exists one-to-one correspondence between $\mathfrak Y$ and $\mathfrak Z$. And Theorem 3.4 shows that this correspondence is an isomorphism with respect to the join of any subset and to the meet of subsets of power $< \aleph$

Generalized ℵ-Boolean Algebra with ℵ-Chain Condition.

4. DEFINITION 4.1 (4.1*). Let L be a generalized \aleph -Boolean algebra and Ω be an ordinal number. A subset $S=(a_a; a < \Omega)$ of L is called an ascending (descending) system when $a_a < a_\beta$ ($a_a > a_\beta$) for all $a < \beta < \Omega$.

DEFINITION 4.2 (4.2*). In L, if for every ascending (descending) system S, the power of S is $\langle \aleph$, then we say that L satisfies the \aleph -ascending (descending) chain condition.

DEFINITION 4.3. If L satisfies both \aleph -ascending and -descending chain conditions, then we say that L satisfies the \aleph -chain condition.

THEOREM 4.1. If a generalized \aleph -Boolean algebra L with zero element 0 satisfies the \aleph -ascending chain condition, then L satisfies, also, the \aleph -descending chain condition.

PROOF. Let $S=(a_a; a < Q)$ be any descending system. Let $b_a(a < Q)$ be such that

$$a_a \vee b_a = a_0$$
, $a_a \wedge b_a = 0$.

Then $S' = (b_a; \alpha < \Omega)$ is an ascending system.⁽¹⁾ Since the power of S' is $< \aleph$, the power of S is $< \aleph$.

THEOREM 4.1*. If a generalized \aleph -Boolean algebra L with unit element 1 satisfies the \aleph -descending chain condition, then L satisfies, also, the \aleph -ascending chain condition.

PROOF. Let $S=(a_a; \alpha < Q)$ be any ascending system. Let b_a ($\alpha < Q$) be such that

$$a_a \vee b_a = 1$$
, $a_a \wedge b_a = a_0$.

Then $S' = (b_a; \alpha < Q)$ is a descending system, and the theorem holds good.

THEOREM 4.2. If a generalized \aleph -Boolean algebra L satisfies the \aleph -chain condition, then L is a continuous Boolean algebra, and every \aleph -ideal and dual \aleph -ideal in L is principal.

PROOF. In order to prove this theorem, we must show that $\sum(S)$ and II(S) exist for any subset S of L. If there exists a subset S such that $\sum(S)$ does not exist, then there exists a set \overline{S} of minimum power having this property. Let Ω be the smallest ordinal corresponding to this power, and replace \overline{S} by the system $(a_a; \alpha < \Omega)$. By the definition of \overline{S} , $b_a = \sum (a_r; \gamma < a)$ exists for each $\alpha < \Omega$. But, by assumption, $\sum (b_a; \alpha < \Omega)$ does not exist. Now, for each $\alpha < \Omega$ there exists a smallest $\alpha' < \Omega$ such that $b_{\alpha'} = b_a$; let us denote this α' by α^* . Let K be the set of all $\alpha^* < \Omega$. Then the sets $(b_a; \alpha < \Omega)$, $(b_{a*}; \alpha^* \in K)$ are equal, and $\sum (b_{a*}; \alpha^* \in K)$ does not exist. Therefore the power of K is $\geq \aleph$. But $(b_{a*}; \alpha^* \in K)$ is an ascending system, and, by assumption, the power of K is $< \aleph$, which is absurd.

Similarly we can prove the existence of $\Pi(S)$ for every subset S of L. Next, let \mathfrak{b} be any \aleph -ideal in L. Let \mathcal{Q}_0 be the smallest ordinal corresponding to the power of \mathfrak{b} , and denote all the elements of \mathfrak{b} by $(a_a; \alpha < \mathcal{Q}_0)$. Since L is continuous, $b = \sum (a_a; \alpha < \mathcal{Q}_0)$ and $b_a = \sum (a_r; \gamma < a)$ ($\alpha < \mathcal{Q}_0$) exist. As before, for each $\alpha < \mathcal{Q}_0$ there exists a smallest $\alpha' < \mathcal{Q}_0$ such that $b_{\alpha'} = b_a$; let us denote this α' by α^* . Let K_0 be the set of all $\alpha^* < \mathcal{Q}$. Then

that is, $b_a \subset b_\beta$. If $b_a = b_\beta$, then

$$a_a = a_0 \wedge a_a = (a_\beta \vee b_a) \wedge a_a = (a_\beta \wedge a_a) \vee (b_a \wedge a_a) = a_\beta$$
,

which is absurd. Consequently $b_a < b_{\beta}$.

⁽¹⁾ For, when $a < \beta < \Omega$, since $b_{\alpha} \wedge a_{\beta} \subset b_{\alpha} \wedge a_{\alpha} = 0$, $b_{\alpha} = b_{\alpha} \wedge a_{0} = b_{\alpha} \wedge (a_{\beta} \vee b_{\beta}) = (b_{\alpha} \wedge a_{\beta}) \vee (b_{\alpha} \wedge b_{\beta}) = b_{\alpha} \wedge b_{\beta}$,

$$b = \sum (a_a; \ \alpha < \Omega_0) = \sum (b_a; \ \alpha < \Omega_0) = \sum (b_{a*}; \ \alpha \in K_0). \tag{1}$$

Since $(b_{a*}; a^* \in K_0)$ is an ascending system, the power of K_0 is $< \aleph$. Hence, \mathfrak{b} being an \aleph -ideal, by (1) $b \in \mathfrak{b}$. Consequently $\mathfrak{b} = \mathfrak{a}(b)$, as we wished to prove.

Similarly we can prove that every dual x-ideal is principal.

DEFINITION 4.4. If a generalized \aleph -Boolean algebra L with zero element satisfies the following condition:

- (T_1) For every subset T of L such that
 - (a_1) $a \in T$ implies $a \neq 0$,
 - (β_1) $a, b \in T, a \neq b$ implies $a \wedge b = 0$,

the power of T is $< \aleph$:

then we say that L satisfies the \aleph -independence condition. (1)

THEOREM 4.3. A generalized \aleph -Boolean algebra L satisfies the \aleph -chain condition, if, and only if, L has zero element and satisfies the \aleph -independence condition.

PROOF. (i) First, assume that L satisfies the \aleph -chain condition. Then, by Theorem 4.2, L is a continuous Boolean algebra. Let T be a subset of L which satisfies (a_1) and (β_1) of (T_1) . And let \mathcal{Q} be the smallest ordinal corresponding to the power of T, and denote T by $(a_a; \alpha < \mathcal{Q})$. Then, for every $\alpha < \mathcal{Q}$, $b_a = \sum (a_r; \gamma < \alpha)$ exists. Now, by (β_1) ,

$$a_a \wedge b_a = a_a \wedge \sum (a_r; \gamma < a) = \sum (a_a \wedge a_r; \gamma < a) = 0.$$

Hence $a_a
dash b_a$ and $a_a
lefta b_a$. If a
lefta
lefta
lefta 0, then

$$b_{\beta} \supset a_{a} \vee b_{a} > b_{a}$$
.

Therefore $(b_a; a < \Omega)$ is an ascending system. Since L satisfies the \aleph -chain condition, the power of $(b_a; a < \Omega)$ is $< \aleph$. Hence the power of $T < \aleph$.

(ii) Conversely, assume that L has zero element 0 and satisfies the \aleph -independence condition. If L does not satisfy the \aleph -chain condition, then there exists an ascending system $S=(b_a; \alpha < \Omega)$ with power \aleph . Let a_a be such that

$$b_a \vee a_a = b_{a+1}$$
, $b_a \wedge a_a = 0$.

Then the power of $T=(a_a; \alpha < \Omega)$ is \aleph and

- (a_1) $a_a \neq 0$, since $b_a < b_{a+1}$;
- (β_1) $a_{\alpha} \wedge a_{\beta} = 0$ when $\alpha < \beta < \Omega$, since $a_{\alpha} \wedge a_{\beta} \subset b_{\beta} \wedge a_{\beta} = 0$. But, by condition (T_1) , the power of $T < \aleph$, which is absurd.

DEFINITION 4.5. Let L be a continuous Boolean algebra. An element

⁽¹⁾ J.v. Neumann introduced this condition, and proved that, if an w-Boolean algebra L satisfies the w-independence condition, then L is a continuous Boolean algebra. (Cf. J.v. Neumann [2], 8). From Theorem 4.3, we may say that Theorem 4.2 is a generalization of J.v. Neumann's theorem.

 $a \neq 0$ of L is atomistic if b < a implies b = 0. The set L_{at} is the set of all atomistic elements of L; L is atomistic if $\sum (L_{at}) = 1$.

THEOREM 4.4. If a generalized \aleph_0 -Boolean algebra L satisfies the \aleph_0 -chain condition, then L is an atomistic Boolean algebra which is lattice-isomorphic to the class of all subsets of a finite set.

PROOF. By Theorem 4.2, L being continuous, L has zero element 0 and unit element 1. Now, we can prove that $\sum (L_{at})=1$. If $\sum (L_{at}) \neq 1$, then there exists an element $b \neq 0$ in L such that $\sum (L_{at}) \wedge b = 0$. Since L satisfies the \aleph_0 -chain condition, there exists an atomistic element a such that $a \subset b$. But $a \subset \sum (L_{at})$, contradicting $\sum (L_{at}) \wedge b = 0$. Consequently L is an atomistic Boolean algebra.

If $a, b \in L_{at}$ and $a \neq b$, then $a \wedge b = 0$. Since, by Theorem 4.3, L satisfies the \aleph_0 -independence condition, L_{at} is a finite set. And L is lattice-isomorphic to the class of all subsets of L_{at} .

DEFINITION 4.6. Let α be an \aleph -ideal in a generalized \aleph -Boolean algebra L; if $L/\alpha^{(2)}$ satisfies the \aleph -chain condition, then we say that L satisfies the \aleph -chain condition relative to α , and α is called a basic \aleph -ideal of the \aleph -chain condition. (3)

THEOREM 4.5. If a generalized \aleph -Boolean algebra L satisfies the \aleph -chain condition relative to α , then L/α is a continuous Boolean algebra, and every \aleph -ideal and every dual \aleph -ideal in L/α is principal.

DEFINITION 4.6.* Let a^* be a dual w-ideal in a generalized w-Boolean algebra L; if L/a^* satisfies the w-chain condition, then we say that L satisfies the w-chain condition relative to a^* , and a^* is called a basic dual w-ideal of the w-chain condition.

And we have the following theorem:

Theorem 4.6.* A generalized \aleph -Boolean algebra L satisfies the \aleph -chain condition relative to a^* if, and only if, L satisfies the following condition:

- (T2) For every subset T of L such that
 - (a₂) $a \in T$ implies $a \notin a^*$,
 - (β_2) $a, b \in T, a \neq b$ implies $a \lor b \in a^*$,

the power of T is < %.

Corresponding to Sec. 5, in an w-Boolean algebra L ($w = w_0$ or w_1), we have lattice functions which are multiplicative, instead of additive, as follows:

(i) Case
$$\aleph = \aleph_0$$
: $\phi(a) = \frac{1}{n}$, $n = 1, 2, ...$,
Case $\aleph = \aleph_1$: $0 < \phi(a) \le 1$;

(ii) $\phi(a) = \Pi \phi(a_i)$ when $a = \Pi \boxtimes a_i$.

 $(II \boxtimes a_i \text{ means } II(a_i; i=1,2,\ldots) \text{ when } a_i \vee a_j=1 \text{ for all } i \neq j).$

THEOREM 5.1.* Set a_{ϕ}^* of all elements a such that $\phi(a)=1$ is a dual N-ideal in L. Theorem 5.2.* L satisfies the N-chain condition relative to a_{ϕ}^* .

In this way we have dual theorems for those in Sec. 4 and 5; but I omit them.

⁽¹⁾ Cf. J. v. Neumann [2], 19.

⁽²⁾ By Theorem 3.1, L/a is a generalized N-Boolean algebra with zero element.

⁽³⁾ Dually, we can define as follows:

PROOF. This theorem is evident from Definition 4.6 and Theorem 4.2.

DEFINITION 4.7. Let α be an \aleph -ideal in a generalized \aleph -Boolean algebra L. If L satisfies the following condition:

- (T_2) For every subset T of L such that
 - (a_2) $a \in T$ implies $a \notin a$,
 - (β_2) , $a, b \in T$, $a \neq b$ implies $a \land b \in a$,

the power of T is $< \aleph$;

then we say that L satisfies the \aleph -independence condition relative to a.

THEOREM 4.6. In a generalized \aleph -Boolean algebra L, the \aleph -chain condition relative to a is equivalent to the \aleph -independence condition relative to a.

PROOF. If a subset T of L satisfies (a_2) and (β_2) of (\mathbf{T}_2) , then $\mathfrak{T}=(A_a;\ a\in T)$ satisfies (a_1) and (β_1) of (\mathbf{T}_1) . Since $a\neq b$ implies $A_a\neq A_b^{(1)}$ T and \mathfrak{T} have the same power. Next, let \mathfrak{T} be a subset of L/a which satisfies (a_1) and (β_1) of (\mathbf{T}_1) . If we take out one element a such that $A_a=A$ for each $A\in \mathfrak{T}$, then set T of such an element a satisfies (a_2) and (β_2) of (\mathbf{T}_2) , and T and T have the same power. Hence L satisfies the R-independence condition relative to R if, and only if, L/R satisfies the R-independence condition. Consequently the present theorem follows from Theorem 4.3 and Definition 4.6.

THEOREM 4.7. When a generalized \aleph -Boolean algebra L has zero element 0, the \aleph -independence condition relative to a is equivalent to the following condition:

- (T₃) For every set $T \subset L$ such that
 - (a_3) $a \in T$ implies $a \in a$,
 - (β_3) $a, b \in T$, $a \neq b$ implies $a \wedge b = 0$,

the power of T is $< \aleph$. (2)

PROOF. It is evident that when L satisfies (T_2) , then L satisfies (T_3) . Hence we shall show that when L satisfies (T_3) , then L satisfies (T_2) . Let T be a subset of L which satisfies (a_2) and (β_2) of (T_2) . Now, if the power of $T \ge \aleph$, then there is a subset T' of T with power \aleph . Let \mathcal{Q} be the smallest ordinal of power \aleph , and write $T' = (a_\alpha; \alpha < \mathcal{Q})$. Then for every $\alpha < \mathcal{Q}$, $b_\alpha = \sum (a_\gamma; \gamma < \alpha)$ exists. Now,

$$a_a \wedge b_a = a_a \wedge \sum (a_r; r < a) = \sum (a_a \wedge a_r; r < a)$$
.

By the property of T, $a_{\alpha} \wedge a_{\gamma} \in \mathfrak{a}$. Hence

⁽¹⁾ For, if $A_a = A_b$, then $a \vee u = b \vee v$ $(u, v \in a)$. And $a = a \wedge (b \vee v) = (a \wedge b) \vee (a \wedge v) \in a$, which is absurd.

⁽²⁾ J. v. Neumann introduced this condition (T_3), and proved that, if an N-Boolean algebra L satisfies (T_3), then L/α is a continuous Boolean algebra. (Cf. J. v. Neumann [2], 11.) By Theorem 4.6, we may say that Theorem 4.5 is a generalization of J. v. Neumann's theorem.

$$a_a \wedge b_a \in \mathfrak{a}$$
 for all $a < Q$.

Since $a_a \not\in a$, $a_a \wedge b_a \not= a_a$. Now let \bar{a}_a be such that

$$(a_a \wedge b_a) \vee \bar{a}_a = a_a, \qquad (a_a \wedge b_a) \wedge \bar{a}_a = 0. \tag{1}$$

Since $a_a \wedge b_a \neq a_a$, $\bar{a}_a \neq 0$. Therefore the power of $(\bar{a}_a; a < Q)$ is \aleph . If $a < \beta < Q$, then, since $\bar{a}_a \subset a_a \subset b_\beta$, $\bar{a}_\beta \subset a_\beta$, we have, by (1),

$$\bar{a}_a \wedge \bar{a}_\beta \subset b_\beta \wedge \bar{a}_\beta \wedge a_\beta = 0$$
.

Next we shall show that $\bar{a}_a \notin \mathfrak{a}$ for all $a < \mathcal{Q}$. For if $\bar{a}_a \in \mathfrak{a}$, then, since $a_a \wedge b_a \in \mathfrak{a}$, we have, by (1), $a_a \in \mathfrak{a}$, which contradicts the assumption of T. Consequently $(\bar{a}_a; a < \mathcal{Q})$ satisfies conditions (a_8) and (β_8) of (T_8) . Hence, by assumption, the power of $(\bar{a}_a; a < \mathcal{Q})$ is $< \aleph$, which is absurd; and the proof is complete.

THEOREM 4.8. Let a, b be \aleph -ideals in a generalized \aleph -Boolean algebra L, such that $a \subseteq b$. If L satisfies the \aleph -chain condition relative to a, then L satisfies, also, the \aleph -chain condition relative to b.

PROOF. If L satisfies the \aleph -chain condition relative to \mathfrak{a} , then, by Definition 4.6, L/\mathfrak{a} satisfies the \aleph -chain condition. Hence, by Theorem 4.3, L/\mathfrak{a} has zero element and satisfies the \aleph -independence condition, that is, (T₁). Hence L/\mathfrak{a} satisfies (T₃) with respect to the \aleph -ideal \mathfrak{B} , \mathfrak{B} being the image of \mathfrak{b} under the homomorphism $L \to L/\mathfrak{a}$. Therefore, by Theorem 4.7, L/\mathfrak{a} satisfies the \aleph -independence condition relative to \mathfrak{B} . Hence, by Theorem 4.6 and Definition 4.6, $(L/\mathfrak{a})/\mathfrak{B}$ satisfies the \aleph -chain condition. Therefore by Theorem 3.3 L/\mathfrak{b} satisfies \aleph -chain condition. Consequently, by Definition 4.6, L satisfies the \aleph -chain condition relative to \mathfrak{b} .

THEOREM 4.9. If a generalized \aleph -Boolean algebra L satisfies the \aleph -chain condition relative to an \aleph -ideal α , then class $\mathfrak Y$ of all \aleph -ideals which contain α is an \aleph -Boolean algebra.

PROOF. From Theorem 3.5, \mathfrak{Y} is isomorphic to class \mathfrak{F} of all \aleph -ideals in L/\mathfrak{a} with respect to the join of any subset and to the meet of subsets of power $< \aleph$. But, by Theorem 4.5, every \aleph -ideal in L/\mathfrak{a} is principal; hence, by Theorem 2.2, \mathfrak{F} is a generalized \aleph -Boolean algebra. Obviously, \mathfrak{F} has zero and unit elements. Consequently \mathfrak{Y} is an \aleph -Boolean algebra.

If we extract the complementedness of the X-Boolean algebra \mathfrak{Y} , then, from Theorem 4.9, we have the following theorem, a being zero element of \mathfrak{Y} .

THEOREM 4.10. If a generalized \aleph -Boolean algebra L satisfies the \aleph -chain condition relative to an \aleph -ideal a, then, for any \aleph -ideals b, c such that $a \subseteq b \subseteq c$, there exists an \aleph -ideal b such that

$$b \lor b = c$$
. $b \land b = a$.

⁽¹⁾ If L has zero element, then this theorem is evident from Theorems 4.6 and 4.7.

THEOREM 4.11. In a generalized \aleph -Boolean algebra L, class \mathfrak{P}_{\aleph} of all basic \aleph -ideals of the \aleph -chain condition is a generalized \aleph -Boolean algebra with unit element e. And $e \in \mathfrak{P}_{\aleph}$, $e \in \mathfrak{F}$, $e \in \mathfrak{F}_{\aleph}$.

PROOF. If $\alpha \in \mathfrak{P}_{\aleph}$ and $b \supset \alpha$, then, by Theorem 4.8, $\mathfrak{p} \in \mathfrak{P}_{\aleph}$. Hence \mathfrak{P}_{\aleph} being the subset of \mathfrak{F}_{\aleph} by Theorem 2.1, \mathfrak{P}_{\aleph} is closed with respect to the join of any subset. Next I shall show that \mathfrak{P}_{\aleph} is closed with respect to the meet of subsets of power $< \aleph$. Let \mathfrak{S} be any subset of \mathfrak{P}_{\aleph} of power $< \aleph$. Let \mathfrak{Q} be the first ordinal corresponding to the power of \mathfrak{S}_{\aleph} , and write $\mathfrak{S}=(\alpha_a; \alpha<\mathfrak{Q})$. Since \mathfrak{S} is the subset of \mathfrak{F}_{\aleph} , by Theorem 2.1 $\alpha=H(\alpha_a; \alpha<\mathfrak{Q})$ exists. Let T be any subset of L which satisfies (α_2) and (β_2) of (T_2) with respect to α . Denote by T_a the set of all elements of T which is not contained in α_a . Since T_a satisfies (α_2) and (β_2) of (T_2) with respect to α_a , the power of T_a is $< \aleph$. Since T is the set-theoretical sum of T_a $(\alpha<\mathfrak{Q})$, the power of T is $< \aleph \cdot \aleph = \aleph$. Consequently L satisfies the \aleph -independence condition relative to α , and α is a basic \aleph -ideal of the \aleph -chain condition. That is, $\alpha \in \mathfrak{P}_{\aleph}$.

Now the complementedness and the distributivity of \mathfrak{P}_{\aleph} follow from Theorems 4.10 and 2.1 respectively. The proof is thus completed.

When L has zero element 0, and the \aleph -ideal $\mathfrak o$ belongs to $\mathfrak P_{\aleph}$, it is a very trivial case; for in this case $\mathfrak P_{\aleph} = \mathfrak P$, and, by Theorem 4.2, all \aleph -ideals in $\mathfrak P_{\aleph}$ are principal; hence, by Theorem 2.2, $\mathfrak P_{\aleph}$ is is isomorphic to L.

By Theorem 4.11, $\mathfrak{P}_{\mathfrak{R}}$ is a generalized \aleph -Boolean algebra with elements \mathfrak{a} , \mathfrak{b} , \mathfrak{c} , Hence, in $\mathfrak{P}_{\mathfrak{R}}$ we can define dual \aleph -ideals, which we denote by \mathfrak{A}^* , \mathfrak{B}^* , \mathfrak{C}^* , And let $\mathscr{O}_{\mathfrak{R}}^*$ be the class of all dual \aleph -ideals in $\mathfrak{P}_{\mathfrak{R}}$. Then we have the following theorems.

THEOREM 4.12. Every dual \aleph -ideal \mathfrak{B}^* in \mathfrak{P}_{\aleph} contained in a principal dual \aleph -ideal \mathfrak{A}^* (a) in \mathfrak{P}_{\aleph} , is also principal.

PROOF. Since $\alpha \in \mathfrak{P}_{\aleph}$, by Theorem 4.11 $\mathfrak{A}^*(\mathfrak{a})$ is a class of all elements \mathfrak{b} of \mathfrak{F} such that $\mathfrak{b} \supset \mathfrak{a}$. Hence, by Theorem 3.5, $\mathfrak{A}^*(\mathfrak{a})$ is isomorphic to class \mathfrak{F} of all \aleph -ideals in L/\mathfrak{a} with respect to the join of any subset and to the meet of subsets of power $< \aleph$. Since $\alpha \in \mathfrak{P}_{\aleph}$, L satisfies the \aleph -chain condition relative to \mathfrak{a} , therefore, by Theorem 4.5, \mathfrak{F} is isomorphic to L/\mathfrak{a} and every dual \aleph -ideal in L/\mathfrak{a} is principal. Consequently, \mathfrak{B}^* being a dual \aleph -ideal in $\mathfrak{A}^*(\mathfrak{a})$, \mathfrak{B}^* is principal, as we wished to prove.

THEOREM 4.13. Class Φ_{\aleph}^* of all dual \aleph -ideals in \mathfrak{P}_{\aleph} is a continuous Boolean algebra.

PROOF. By Theorem 4.11, \mathfrak{P}_{\aleph} is a generalized \aleph -Boolean algebra with unit element \mathfrak{e} . Hence, applying Theorem 2.4* to \mathfrak{P}_{\aleph} instead of L, by Theorem 4.12, the assertion of the present theorem holds good.

Generalized ≈-Boolean Algebra of Measure Functions.

5. In what follows, let L be an \aleph -Boolean algebra, where $\aleph = \aleph_0$ or \aleph_1 .

DEFINITION 5.1. If, to any element a of L, there corresponds a real (finite) number $\phi(a)$ such that

- (i) Case $\aleph = \aleph_0$: $\phi(a) = n$, $n = 0, 1, 2, \dots$, Case $\aleph = \aleph_1$: $0 \le \phi(a)$;
- Case $\aleph = \aleph_1$: $0 \le \phi(a)$; (ii) $\phi(a) = \sum \phi(a_i)$ when $a = \sum_i \oplus a_i^{(1)}$;

then we say that $\phi(a)$ is a measure function defined in L.

Denote by $\mathfrak{F}_{\mathbb{N}}$ the class of all measure functions defined in L, where $\aleph = \aleph_0$ or \aleph_1 .

It is to be noted that (ii) implies $\phi(a) + \phi(b) = \phi(a \lor b) + \phi(a \land b)$. For let c be such that $(a \land b) \lor c = a$, $(a \land b) \land c = 0$. Then $c \lor b = c \lor (a \land b) \lor b = a \lor b$, $c \land b = (a \land b) \land c = 0$. Hence $\phi(a) = \phi(a \land b) + \phi(c)$ and $\phi(a \lor b) = \phi(c) + \phi(b)$. Consequently $\phi(a) + \phi(b) = \phi(a \lor b) + \phi(a \land b)$.

Theorem 5.1. Set a_{ϕ} of all elements a such that $\phi(a)=0$ is an \approx ideal in L.

PROOF. If $b \subset a$ and $\phi(a) = 0$, then, since

$$\phi(a) = \phi(b) + \phi(c),$$

where c is an element such that $b \vee c = a$, $b \wedge c = 0$, we have $\phi(b) = 0$. Let $(a_i; i=1, 2, \ldots)$ be a subset of α_{ϕ} of power $< \aleph$; then, since $\phi(\sum a_i) \le \sum \phi(a_i)$, $\phi(\sum a_i) = 0$, that is, $\sum a_i \in \alpha_{\phi}$. Consequently α_{ϕ} is an \aleph -ideal.

Theorem 5.2. L satisfies the \aleph -chain condition relative to \mathfrak{a}_{ϕ} .

PROOF. From Theorems 4.6 and 4.7, to prove the present theorem, it is sufficient to show that L satisfies the following condition:

- (T₃) For every set $T \subset L$ such that
 - (a_3) $a \in T$ implies $\phi(a) > 0$,
 - (β₃) $a, b \in T$, $a \neq b$ implies $a \wedge b = 0$, the power of T is $< \aleph$.

When $\aleph = \aleph_0$, then $\phi(a) \ge 1$ for any $a \in T$. Since $\phi(1)$ is finite, by the additivity of $\phi(a)$, the power of T must be finite.

When $\aleph = \aleph_1$, by the complete additivity of $\phi(a)$, power of set S of those elements $a \in T$, such that $\frac{1}{2^n} \ge \phi(a) > \frac{1}{2^{n+1}}$ is finite. Hence power of T is \aleph_0 .

⁽¹⁾ We write $\sum \oplus a_i$ in place of $\sum (a_i; i=1, 2, ...)$, provided $a_i \land a_j = 0$ for all $i \neq j$.

⁽²⁾ It has already been pointed out by A. Tarski that an \aleph_0 -ideal α is a prime ideal when, and only when, $\alpha = \alpha_{\phi}$, where $\phi(\alpha)$ takes only two values 0 and 1. (Cf. A. Tarski, Fund. Math. 15 (1930), 42.)

If we denote by \mathfrak{Q}_{\aleph} the set of all \aleph -ideals \mathfrak{a}_{ϕ} ($\phi \in \mathfrak{F}_{\aleph}$), then, by Theorem 5.2, \mathfrak{Q}_{\aleph} is a subset of \mathfrak{P}_{\aleph} ($\aleph = \aleph_0$ or \aleph_1).

Theorem 5.3. $\mathfrak{Q}_{\aleph_0} = \mathfrak{P}_{\aleph_0}$.

PROOF. Since $\mathfrak{D}_{\aleph_0} \subseteq \mathfrak{P}_{\aleph_0}$, we must prove that $\mathfrak{P}_{\aleph_0} \subseteq \mathfrak{D}_{\aleph_0}$. Let $\mathfrak{a} \in \mathfrak{P}_{\aleph_0}$; by Definition 4.6, L/\mathfrak{a} satisfies the \aleph_0 -chain condition, and hence, by Theorem 4.4, L/\mathfrak{a} is lattice-isomorphic to the class of all subsets of a finite set. When $A \in L/\mathfrak{a}$, if n is the number of elements of the subset which corresponds to A, then define $\phi(A) = n$. Then $\phi(A)$ is a measure function defined in L/\mathfrak{a} . Now define $\phi(a) = \phi(A)$ when $a \in A$. Then $\phi(a) = 0$ when $a \in \mathfrak{a}$. Let $(a_i; i = 1, 2, \ldots, \nu)$ be any set such that $a_i \wedge a_j = 0$ when $i \neq j$. Then $A_{a_i} \wedge A_{a_j} = A_{a_i \wedge a_j}^{(1)} = A_0 = 0$ when $i \neq j$. Now

$$\phi(\sum a_i) = \phi(A_{\sum a_i}) = \phi(\sum A_{a_i})^{(2)} = \sum \phi(A_{a_i}) = \sum \phi(a_i).$$

Consequently $\phi(a)$ is a measure function such that $a = a_{\phi}$. That is, $a \in \mathfrak{D}_{\aleph_0}$, and $\mathfrak{P}_{\aleph_0} \subseteq \mathfrak{D}_{\aleph_0}$, as we wished to prove.

THEOREM 5.4. \mathfrak{Q}_{\aleph_1} is a dual \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} ; hence \mathfrak{Q}_{\aleph_1} is a generalized \aleph_1 -Boolean algebra with unit element. And class $\Psi_{\aleph_1}^*$ of all dual \aleph_1 -ideals in \mathfrak{Q}_{\aleph_1} is a continuous Boolean algebra.

PROOF. (i) Let $S=(a_{\phi_i}; i=1, 2,)$ be a denumerable subset of $\mathfrak{Q}_{\mathfrak{H}_i}$.

Put
$$\phi(a) = \sum_{i} \frac{\phi_{i}(a)}{2^{i}\phi_{i}(1)}.$$

Then $\phi(a)$ is a measure function. Since $\phi(a)=0$ when, and only when, $\phi_i(a)=0$ for all i, we have $\alpha_{\phi}=H(\alpha_{\phi_i};\ i=1,2,\ldots)$. Hence $\Pi(\alpha_{\phi_i};\ i=1,2,\ldots)\in \mathfrak{Q}_{\aleph_1}$.

(ii) Let $a \in \mathfrak{D}_{\aleph_1}$, $b \in \mathfrak{P}_{\aleph_1}$ and $b \supset a$. Let $\phi(a)$ be a measure function such that $a = a_{\phi}$. By Theorem 4.10, there exists an \aleph_1 -ideal c such that

$$b \lor c = e$$
, $b \land c = a$.

By Theorem 2.1, every element $a \in \mathfrak{e}$ is expressed in the form $a = b \vee c$ where $b \in \mathfrak{b}$, $c \in \mathfrak{c}$. Since $b \wedge c \in \mathfrak{b} \wedge \mathfrak{c} = \mathfrak{a}$, and $\phi(b \wedge c) = 0$, we have

$$\phi(a) = \phi(b) + \phi(c)$$
.

The value of $\phi(c)$ is uniquely determined for a definite element a. For, if $a = b_1 \vee c_1$ where $b_1 \in b$, $c_1 \in c$, then

$$c = c \land a = c \land (b_1 \lor c_1) = (c \land b_1) \lor (c \land c_1)$$

and $c \wedge b_1 \in c \wedge b = a$; hence we have $\phi(c) = \phi(c \wedge c_1)$. Similarly $\phi(c_1) = \phi(c \wedge c_1)$. Consequently $\phi(c) = \phi(c_1)$.

Now, put $\phi(a) = \phi(c)$.

(a) $\psi(a) = 0$ when $a \in \mathfrak{b}$, and $\psi(a) \ge 0$.

⁽¹⁾ By (2) in the proof of Theorem 3.1.

⁽²⁾ By (1) in the proof of Theorem 3.1.

(β) When $a = \sum_{i} \oplus a_{i}$, put

$$a_i = b_i \vee c_i$$
, $b_i \in \mathfrak{b}$, $c_i \in \mathfrak{c}$,

for all i. Then $a = \sum_i \oplus b_i \vee \sum_i \oplus c_i$, and $\sum_i \oplus b_i \in \mathfrak{b}$, $\sum_i \oplus c_i \in \mathfrak{c}$. Hence $\psi(a) = \phi(\sum_i \oplus c_i) = \sum_i \phi(c_i) = \sum_i \phi(a_i).$

(7) $\psi(a) \neq 0$ when $a \notin b$. For, when $a \notin b$, let $a = b \lor c$, $b \in b$, $c \in c$. If $c \in a$, then $c \in a \subset b$ and $a = b \lor c \in b$, which is absurd. Hence $c \notin a$, and $\phi(c) \neq 0$.

Thus $\psi(a)$ is a measure function such that $\mathfrak{b}=\mathfrak{a}_{\psi}$. Consequently $\mathfrak{b}\in\mathfrak{Q}_{\aleph_1}$. From (i) and (ii), \mathfrak{Q}_{\aleph_1} is a dual \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} .

- (iii) By Theorem 4.13, class $\varphi_{\aleph_1}^*$ of all dual \aleph_1 -ideals in \mathfrak{P}_{\aleph_1} is a continuous Boolean algebra, $\Psi_{\aleph_1}^*$ being the set of all dual \aleph_1 -ideals \mathfrak{A}^* in \mathfrak{P}_{\aleph_1} such that $\mathfrak{A}^* \subset \mathfrak{Q}_{\aleph_1}$, $\Psi_{\aleph_1}^*$ is also a continuous Boolean algebra.
- **6.** Let $\phi(a)$ and $\psi(a)$ be two measure functions in \mathfrak{F}_{\aleph_1} . If $\psi(a)=0$ for all a such that $\phi(a)=0$, then we say, as in the theory of set functions, that $\psi(a)$ is absolutely continuous with respect to $\phi(a)$, and write $\psi < \phi$ or $\phi > \psi$. To indicate that the relations $\psi < \phi$, $\phi < \psi$ both hold good, we write $\psi \sim \phi$.

Since $\psi < \phi$ when, and only when, $a_{\phi} \supset a_{\phi}$, if we use the relation < as the order in the lattice theory, then \mathfrak{F}_{\aleph_1} is dual-isomorphic to \mathfrak{O}_{\aleph_1} . Hence, from Theorem 5.4, we have

THEOREM 6.1.⁽²⁾ System \mathfrak{F}_{\aleph_1} of all measure functions is a generalized \aleph_1 -Boolean algebra with zero element.⁽³⁾ And class Ψ_{\aleph_1} of all \aleph -ideals in \mathfrak{F}_{\aleph_1} is a continuous Boolean algebra.

Of course, the zero element of \mathfrak{F}_{\aleph_1} is the function $\phi(a)$ such that $\phi(a)=0$ for all $a\in L$.

Application to the Spectral Theory.

7. Let \mathfrak{H} be a complete complex Euclidean space, with elements f, g, \ldots , that is, a space which satisfies all the axioms of Hilbert space except the axiom of separability. Let E(a) be a projection defined for all elements a of an \aleph_1 -Boolean algebra L. If E(a) satisfies the following conditions, then we say that E(a) is a resolution of identity in the generalized sense.

⁽¹⁾ This definition is a generalization of that used by M. H. Stone. Cf. M. H. Stone, Linear Transformations in Hilbert Space, (1932), 214.

⁽²⁾ Direct proof of this theorem, using the functional property of $\phi(a)$, is given in Sec. 9.

⁽³⁾ From Theorem 5.4, $\mathfrak{F}_{\mathcal{N}_1}$ is closed with respect to the operation of meet of any subclass of $\mathfrak{F}_{\mathcal{N}_1}$.

⁽⁴⁾ This is a generalization of the ordinary defined resolution of identity $E(\lambda)$. (Cf. F. Maeda [1], 78; K. Friedrichs [1], 54-58; F. Wecken [1], 443.)

- (a) E(a)E(b)=0 when $a \wedge b=0$;
- (β) $E(a) = E(a_1) + E(a_2) + \cdots + E(a_i) + \cdots$ when $a = \sum \oplus a_i$,
- $(\gamma) \quad E(1) = 1.$

Let a, b be any elements in L. And let a_1 , b_1 be the inverses of $a \wedge b$ in a and b respectively. That is,

$$a=(a \wedge b) \oplus a_1$$
, $b=(a \wedge b) \oplus b_1$.

From (β) , we have

$$E(a) = E(a \wedge b) + E(a_1)$$
, $E(b) = E(a \wedge b) + E(b_1)$.

Since $a_1 \wedge b_1 = 0$, from (a) we have

$$(a') E(a)E(b) = E(a \wedge b).$$

(a') shows the permutability of E(a).

Let f be any element in \mathfrak{H} . Then, from (α') ,

$$(E(a)f, E(b)f) = ||E(a)E(b)f||^2 = ||E(a \land b)f||^2 = \sigma(a \land b),$$

where $\sigma(a) = ||E(a)f||^2$. Hence

$$(E(a)f, E(b)f) = 0$$
 when $a \wedge b = 0$. (1)

From (β) , when $a = \sum_{i=1}^{n} \oplus a_i$,

$$E(a)f = E(a_1)f + E(a_2)f + \cdots + E(a_i)f + \cdots$$
 (2)

From (1) and (2), we have

$$\sigma(a) = \sigma(a_1) + \sigma(a_2) + \cdots + \sigma(a_i) + \cdots$$

Then $\sigma(a)$ is a measure function as defined in Sec. 5.

Let f be any element in \mathfrak{H} , and let \mathfrak{a}_f be the class of all elements $a \in L$ such that E(a)f=0. If we put $||E(a)f||^2=\sigma(a)$, then $\sigma(a)$ is a measure function, and $\mathfrak{a}_f=\mathfrak{a}_\sigma$. Hence \mathfrak{a}_f is an \aleph_1 -ideal in L contained in \mathfrak{D}_{\aleph_1} and therefore in \mathfrak{P}_{\aleph_1} .

Denote by $\mathfrak{M}(f)$ the closed linear manifold determined by E(a)f when a runs over L.

LEMMA 7.1. If $g \in \mathfrak{M}(f)$, then $a_f \subset a_g$.

PROOF. If $g \in \mathfrak{M}(f)$, then g is a limit of a sequence of elements of the form

$$h = \alpha_1 E(\alpha_1) f + \alpha_2 E(\alpha_2) f + \cdots + \alpha_n E(\alpha_n) f,$$

where α 's are complex numbers. Hence, by (α') , E(b)g is the limit of the sequence of elements of the form

$$E(b)h = a_1E(b \wedge a_1)f + a_2E(b \wedge a_2)f + \cdots + a_nE(b \wedge a_n)f.$$

But if $b \in a_f$, then $E(b \wedge a_i)f = 0$ (i = 1, 2, ..., n) and E(b)h = 0. Hence E(b)g = 0. Consequently $a_f \subset a_g$.

LEMMA 7.2. If $a_f \vee a_g = e$, then $\mathfrak{M}(f) \perp \mathfrak{M}(g)$.

PROOF. Let $g = g_1 + g_2$, where $g_1 \in \mathfrak{M}(f)$ and $g_2 \perp \mathfrak{M}(f)$. Since $E(a)g = E(a)g_1 + E(a)g_2$ and $(E(a)g_1, E(a)g_2) = (E(a)g_1, g_2) = 0$,

we have

$$||E(a)g||^2 = ||E(a)g_1||^2 + ||E(a)g_2||^2$$
.

Hence

$$\mathfrak{a}_{g} \subset \mathfrak{a}_{g_1}$$
.

Since $g_1 \in \mathfrak{M}(f)$, by Lemma 7.1 we have $\mathfrak{a}_f \subset \mathfrak{a}_{g_1}$. Consequently $\mathfrak{a}_{g_1} \supset \mathfrak{a}_f \vee \mathfrak{a}_g = \mathfrak{e}$. That is, $E(a)g_1 = 0$ for all $a \in L$. Therefore $g_1 = 0$, and $g \perp \mathfrak{M}(f)$. That is, $\mathfrak{M}(g) \perp \mathfrak{M}(f)$.

LEMMA 7.3. Let \mathfrak{b} be any \aleph_1 -ideal contained in \mathfrak{P}_{\aleph_1} such that $\mathfrak{b} \supset \mathfrak{a}_f$. Then there exists an element $c \in L$ such that

$$\mathfrak{b} = \mathfrak{a}_g$$
 where $g = \mathbf{E}(c)f$.

Proof. By Theorem 4.10, there exists an \aleph_1 -ideal $\mathfrak c$ in $\mathfrak P_{\aleph_1}$ such that

 $b \lor c = e, \quad b \land c = a_f.$

By Theorem 2.1, since $1 \in e$, we have

$$1=b \lor c$$
 where $b \in \mathfrak{b}, c \in \mathfrak{c}$.

Now, put $g = \mathbf{E}(c)f$. If $a \in \mathfrak{b}$, then $\mathbf{E}(a)g = 0$. For

$$E(a)g = E(a)E(c)f = E(a \land c)f$$

by (a'), and $a \wedge c \in b \wedge c = a_f$.

If $a \notin \mathfrak{b}$, then $E(a)g \neq 0$. For if not, then $E(a \wedge c)f = E(a)g = 0$ and $a \wedge c \in \mathfrak{a}_f \subset \mathfrak{b}$. Since

$$a=a \wedge 1=a \wedge (b \vee c)=(a \wedge b) \vee (a \wedge c)$$

and $a \wedge b \in \mathfrak{b}$, we have $a \in \mathfrak{b}$, which is absurd.

Thus $a \in \mathfrak{b}$ when, and only when, E(a)g = 0. That is, $\mathfrak{b} = \mathfrak{a}_g$.

THEOREM 7.1. Class $(a_g; g \in \mathfrak{M}(f))$ is a principal dual \aleph_1 -ideal $\mathfrak{A}^*(a_f)$ in \mathfrak{P}_{\aleph_1} (or in \mathfrak{Q}_{\aleph_1}).

PROOF. (i) If $g \in \mathfrak{M}(f)$, then, by Lemma 7.1, $a_f \subset a_g$.

(ii) Next, let \mathfrak{b} be any \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} (or in \mathfrak{Q}_{\aleph_1}) such that $\mathfrak{b} \supset \mathfrak{a}_f$. Then, by Lemma 7.3, there exists an element $g \in \mathfrak{M}(f)$ such that $\mathfrak{b} = \mathfrak{a}_g$. From (i) and (ii), the theorem is proved.

THEOREM 7.2. Class \Re_E of all α_f such that $f \in \mathfrak{F}$ is a dual \aleph_1 -ideal in $\mathfrak{P}_{\aleph_1}^{(2)}$. Especially when \mathfrak{F} is separable, \Re_E is a principal dual \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} .

PROOF. There exists a system $(f_i; f_i \in \mathcal{S}, i \in I)$ such that the closed linear manifolds $\mathfrak{M}(f_i)$ are mutually orthogonal and

⁽¹⁾ For, since (g, E(a)f) = 0 for all $a \in L$, $(E(b)g, E(a)f) = (g, E(b \land a)f) = 0$ for all $a, b \in L$.

⁽²⁾ Or in $\mathfrak{O}_{\mathcal{H}_1}$.

$$\mathfrak{H} = \sum_{i \in I} \mathfrak{M}(f_i)^{(1)}. \tag{1}$$

Since $\mathfrak{A}^*(\mathfrak{a}_{f_i})$ is a dual \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} , if we apply Theorem 2.1* to \mathfrak{P}_{\aleph_1} instead of L, then join $\mathfrak{B}^* = \sum (\mathfrak{A}^*(\mathfrak{a}_{f_i}); i \in I)$ is a dual \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} .

Let g be any element in \mathfrak{H} , and g_i be the component of g in $\mathfrak{M}(f_i)$. Then $g_i=0$ for all i except a denumerable subset I_1 of I. And $g=\sum_{i\in I_1}g_i$. Then $\|E(a)g\|^2=\sum_{i\in I_1}\|E(a)g_i\|^2$. Hence $\alpha_g=II(\alpha_{g_i};\ i\in I_1)$. Since, by Theorem 7.1, $\alpha_{g_i}\in\mathfrak{A}^*(\alpha_{f_i})\subset\mathfrak{B}^*$, we have $\alpha_g\in\mathfrak{B}^*$. Consequently

$$\Re_E \subset \mathfrak{B}^*$$
.

Next, let a be any element in \mathfrak{B}^* . Then, by Theorem 2.1*,

$$\alpha = \Pi(\alpha_{g_i}; \alpha_{g_i} \in \mathfrak{A}^*(\alpha_{f_i}), i \in I_1),$$

where I_1 is a denumerable subset of I. Put $g = \sum_{i \in I_1} \alpha_i g_i$, where $(\alpha_i; i \in I_1)$ is a system of complex numbers such that $\sum_{a \in I_1} \alpha_i g_i$ converges. Then, since $\|E(a)g\|^2 = \sum_{i \in I_1} |\alpha_i|^2 \|E(a)g_i\|^2$, we have $\alpha_g = \Pi(\alpha_{g_i}; i \in I_1)$. That is, $\alpha = \alpha_g$. Hence $\mathfrak{R}^* \subset \mathfrak{R}_E$

Consequently $\Re_E = \Re^*$, and the first part of the theorem is proved.

Especially when $\mathfrak S$ is separable, then I in (1) is denumerable. Hence put $f = \sum_{i \in I} a_i f_i$, where $(a_i; i \in I)$ is a system of complex numbers such that $\sum_{i \in I} a_i f_i$ converges. Then, since $||E(a)f||^2 = \sum_{i \in I} |a_i|^2 ||E(a)f_i||^2$, we have $a_f = \Pi(a_{f_i}; i \in I)$. And $\mathfrak B^* = \mathfrak A^*(a_f)$.

From Theorem 7.2, \Re_E is a generalized \aleph_1 -Boolean subalgebra of \Re_{\aleph_1} with unit element \mathfrak{e} . And especially when \mathfrak{P} is separable, \Re_E is an \aleph_1 -Boolean subalgebra of \Re_{\aleph_1} with zero and unit elements.

Let θ_E^* be the class of all dual \aleph_1 -ideals \mathfrak{A}^* in \mathfrak{R}_E . Since \mathfrak{R}_E is a dual \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} , and, by Theorem 4.13, class $\theta_{\aleph_1}^*$ of all dual \aleph_1 -ideals in \mathfrak{P}_{\aleph_1} is a continuous Boolean algebra, θ_E^* being the set of all dual \aleph -ideals \mathfrak{A}^* such that $\mathfrak{A}^* \subset \mathfrak{R}_E$, θ_E^* is also a continuous Boolean algebra.

THEOREM 7.3. Let $\mathfrak{A}^* \in \Theta_E^*$, and $\mathfrak{M}_{\mathfrak{A}^*}$ be the class of all elements $f \in \mathfrak{P}$ such that $\mathfrak{a}_f \in \mathfrak{A}^*$. Then $\mathfrak{M}_{\mathfrak{A}^*}$ is a closed linear manifold, and

$$\mathfrak{M}_{\mathfrak{A}^*} \perp \mathfrak{M}_{\mathfrak{A}^{*'}}, \qquad \mathfrak{M}_{\mathfrak{A}^*} \oplus \mathfrak{M}_{\mathfrak{A}^{*'}} = \mathfrak{F},$$

where \mathfrak{A}^{*} is the inverse of \mathfrak{A}^{*} .

PROOF. (i) Let $f \in \mathfrak{M}_{\mathfrak{A}^*}$, $g \in \mathfrak{M}_{\mathfrak{A}^*}$. Then $\mathfrak{a}_f \in \mathfrak{A}^*$, $\mathfrak{a}_g \in \mathfrak{A}^*$. Since

⁽¹⁾ Give § a well-order type. We find the elements of $P=(f_i;f_i\in\S,\,i\in I)$ by transfinite induction as follows: g belongs to P when, and only when, $\|g\|>0$ and g is orthogonal to $\mathfrak{M}(f)$ for all $f\in P$ which have lower rank than g in the well-order type. Since $(E(a)f,E(b)g)=(E(a\wedge b)f,g)=0$, $\mathfrak{M}(f)$ $(f\in P)$ are mutually orthogonal. $(\sum_{i\in I}\bigoplus$ means the closed linear sum.)

 $\mathfrak{A}^* \wedge \mathfrak{A}^{*'} = \mathfrak{D}^*$, we have, by Theorem 2.1*, $\mathfrak{a}_f \vee \mathfrak{a}_g = \mathfrak{e}$. Hence, by Lemma 7.2, $f \perp g$. Consequently $\mathfrak{M}_{\mathfrak{A}^*} \perp \mathfrak{M}_{\mathfrak{A}^{**}}$.

(ii) Let g be any element in \mathfrak{H} such that $g \perp \mathfrak{M}_{\mathfrak{A}^*}$. Then $\mathfrak{A}^* \wedge \mathfrak{A}^*(\mathfrak{a}_g)$ $=\mathfrak{D}^*$. For if not, by Theorem 4.12 there exists $\mathfrak{b} \in \mathfrak{P}_{\aleph}$ such that

$$\mathfrak{A}^{*} \wedge \mathfrak{A}^{*}(\mathfrak{a}_{g}) = \mathfrak{A}^{*}(\mathfrak{b})$$
.

Since $\mathfrak{A}^*(\mathfrak{b}) \subset \mathfrak{A}^*(\mathfrak{a}_g)$, we have $\mathfrak{b} \supset \mathfrak{a}_g$. Then, by Lemma 7.3, there exists an element $g_1 = E(c)g$ such that $\mathfrak{b} = \mathfrak{a}_{g_1}$. Let f be any element in $\mathfrak{M}_{\mathfrak{A}^{**}}$. Then, since $E(c)f \in \mathfrak{M}_{\mathfrak{A}^{*}}$, we have

$$(g_1, f) = (E(c)g, f) = (g, E(c)f) = 0.$$

But, since $\mathfrak{A}^*(\mathfrak{b}) \subset \mathfrak{A}^{*}$, we have $\mathfrak{a}_{q_1} = \mathfrak{b} \in \mathfrak{A}^{*}$. Hence $g_1 \perp \mathfrak{M}_{\mathfrak{A}^*}$. $g_1 \in \mathfrak{M}_{\mathfrak{A}^*}$, which is absurd.

Consequently $\mathfrak{A}^*(\mathfrak{a}_q) \subset \mathfrak{A}^*$,

that is, $a_g \in \mathfrak{A}^*$. Hence, from (i), $\mathfrak{M}_{\mathfrak{A}^*}$ is composed of all elements g such that $g \perp \mathfrak{M}_{\mathfrak{A}^*}$. Therefore $\mathfrak{M}_{\mathfrak{A}^*}$ is a closed linear manifold.

(iii) Let h be any element in \mathfrak{F} . And put

$$h=f+g$$
 where $f \in \mathfrak{M}_{\mathfrak{A}^*}$, $g \perp \mathfrak{M}_{\mathfrak{A}^*}$.

By (ii), $g \in \mathfrak{M}_{\mathfrak{A}^*}$. Hence $\mathfrak{H} = \mathfrak{M}_{\mathfrak{A}^*} \oplus \mathfrak{M}_{\mathfrak{A}^*}$.

THEOREM 7.4. $\mathfrak{M}_{\mathfrak{A}^*}$ defined for all $\mathfrak{A}^* \in \theta_E^*$ has the following properties:

- (i) $\mathfrak{M}_{\mathfrak{A}^*} \perp \mathfrak{M}_{\mathfrak{B}^*}$ when $\mathfrak{A}^* \wedge \mathfrak{B}^* = \mathfrak{O}^*$,
- (ii) $\mathfrak{M}_{\mathfrak{A}*} = \prod_{a \in I} \mathfrak{M}_{\mathfrak{A}_a^*}$ when $\mathfrak{A}^* = \prod(\mathfrak{A}_a^*; \alpha \in I)$, (iii) $\mathfrak{M}_{\mathfrak{A}*} = \sum_{a \in I} \oplus \mathfrak{M}_{\mathfrak{A}_a^*}$ when $\mathfrak{A}^* = \sum(\mathfrak{A}_a^*; \alpha \in I)$,
- (iv) $\mathfrak{M}_{\mathfrak{D}*} = 0^{(1)}$ and $\mathfrak{M}_{\mathfrak{E}*} = \mathfrak{H}$,

where \mathfrak{D}^* and \mathfrak{E}^* are zero and unit elements of θ_E^* respectively.

PROOF. (i) If $\mathfrak{A}^* \wedge \mathfrak{B}^* = \mathfrak{D}^*$, then $\mathfrak{B}^* \subset \mathfrak{A}^*$ and $\mathfrak{M}_{\mathfrak{B}^*} \subset \mathfrak{M}_{\mathfrak{A}^*}$. by Theorem 7.3, $\mathfrak{M}_{\mathfrak{A}^*} \perp \mathfrak{M}_{\mathfrak{A}^{*'}}$, we have $\mathfrak{M}_{\mathfrak{A}^*} \perp \mathfrak{M}_{\mathfrak{B}^*}$.

(ii) If $\mathfrak{A}^* = \Pi(\mathfrak{A}^*_a; a \in I)$, then $\mathfrak{A}^* \subset \mathfrak{A}^*_a$ and $\mathfrak{M}_{\mathfrak{A}^*} \subset \mathfrak{M}_{\mathfrak{A}^*}$ for all $a \in I$. $\mathfrak{M}_{\mathfrak{A}^*} \subset \prod_{a \in I} \mathfrak{M}_{\mathfrak{A}_a^*}$. Hence (1)

Let $f \in \mathfrak{M}_{\mathfrak{A}_{a}^{*}}$ for all $\alpha \in I$; that is, $\mathfrak{a}_{f} \in \mathfrak{A}_{a}^{*}$ ($\alpha \in I$). Then $\mathfrak{a}_{f} \in \mathfrak{A}^{*}$. Consequently $f \in \mathfrak{M}_{\mathfrak{A}*}$. Therefore

$$\mathfrak{M}_{\mathfrak{A}^*} \supset \prod_{a \in I} \mathfrak{M}_{\mathfrak{A}^*_a}. \tag{2}$$

From (1) and (2), (ii) is proved.

(iii) If $\mathfrak{A}^* = \sum (\mathfrak{A}_a^*; a \in I)$, then $\mathfrak{A}^* \supset \mathfrak{A}_a^*$ and $\mathfrak{M}_{\mathfrak{A}^*} \supset \mathfrak{M}_{\mathfrak{A}_a^*}$ for all $a \in I$. $\mathfrak{M}_{\mathfrak{A}^*}\supset \sum_{\mathfrak{A}^*}\oplus \mathfrak{M}_{\mathfrak{A}^*_a}$. Hence

Let f be any element orthogonal to all $\mathfrak{M}_{\mathfrak{A}_{\sigma}^*}$ ($a \in I$). Then, by Theorem 7.3, $f \in \mathfrak{M}_{\mathfrak{A}_{a}^{*}}$ for all $\alpha \in I$. Since $\mathfrak{A}^{*} = \Pi(\mathfrak{A}_{a}^{*}; \alpha \in I)$, by (ii) $\mathfrak{M}_{\mathfrak{A}^{*}} = \Pi_{\mathfrak{A}_{a}^{*}}$. Hence $f \in \mathfrak{M}_{\mathfrak{A}^*}$. Therefore, by Theorem 7.3, $f \perp \mathfrak{M}_{\mathfrak{A}^*}$. Consequently

⁽¹⁾ This means that Mo* is composed of only one element 0 in 5.

$$\mathfrak{M}_{\mathfrak{A}^*} \subset \sum_{a \in I} \oplus \mathfrak{M}_{\mathfrak{A}^*_a}. \tag{4}$$

From (3) and (4), (iii) is proved.

- (iv) This is evident from the definition of M_{α*}.
- **8.** By Theorem 7.4 $\mathfrak{M}_{\mathfrak{A}*}$ satisfies the following conditions:
- (a) $\mathfrak{M}_{\mathfrak{A}^*} \perp \mathfrak{M}_{\mathfrak{B}^*}$ when $\mathfrak{A}^* \wedge \mathfrak{B}^* = \mathfrak{D}^*$,
- (β) $\mathfrak{M}_{\mathfrak{A}*} = \sum_{n} \oplus \mathfrak{M}_{\mathfrak{A}_n^*}$ when $\mathfrak{A}^* = \sum_{n} \oplus \mathfrak{A}_n^*$,
- (7) $\mathfrak{M}_{\mathfrak{E}*} = \mathfrak{H}.$

That is, $(\mathfrak{M}_{\mathfrak{A}^*}; \mathfrak{A}^* \in \theta_E^*)$ is a complete orthogonal system of closed linear manifolds in \mathfrak{P} whose index is the element of the continuous Boolean algebra $\theta_E^{*,(1)}$ Let $F(\mathfrak{A}^*)$ be the projection of \mathfrak{P} on $\mathfrak{M}_{\mathfrak{A}^*}$; then $F(\mathfrak{A}^*)$ satisfies the following conditions:

- (a) $F(\mathfrak{A}^*)F(\mathfrak{B}^*)=0$ when $\mathfrak{A}^* \wedge \mathfrak{B}^*=\mathfrak{D}^*$,
- (β) $F(\mathfrak{A}^*) = F(\mathfrak{A}_1^*) + F(\mathfrak{A}_2^*) + \cdots + F(\mathfrak{A}_n^*) + \cdots$ when $\mathfrak{A}^* = \sum_{n=1}^n \oplus \mathfrak{A}_n^*$,
- (γ) $F(\mathfrak{E}^*)=1.$

As defined in Sec. 7, $F(\mathfrak{A}^*)$ is a resolution of identity in the generalized sense defined in θ_E^* . Thus, from a resolution of identity E(a) defined in L, we obtain a resolution of identity $F(\mathfrak{A}^*)$ defined in θ_E^* . In what follows, I shall investigate the relation between E(a) and $F(\mathfrak{A}^*)$.

THEOREM 8.1. Let \mathfrak{A}_b^* be the class of all $a_f \in \mathfrak{R}_E$ such that $a_f \supset a(b')$, where b' is the inverse of b. Then $\mathfrak{A}_b^* \in \theta_E^*$, and the system $(\mathfrak{A}_b^*; b \in L)$ is an \aleph_1 -Boolean algebra which is isomorphic to L with respect to the join and the meet of subsets of power $< \aleph_1$.

PROOF. (i) It is evident that \mathfrak{A}_b^* is a dual \aleph_1 -ideal in \Re_E , that is, $\mathfrak{A}_b^* \in \theta_E^*$.

- (ii) If $b \supset c$, then $a(b') \subset a(c')$; hence $\mathfrak{A}_b^* \supset \mathfrak{A}_c^*$.
- (iii) Let $b = \sum (c_i; i=1, 2, \ldots)$; then $b' = \Pi(c_i'; i=1, 2, \ldots)$. Since $b \supset c_i$, by (ii) $\mathfrak{A}_b^* \supset \mathfrak{A}_{c_i}^*$ for all i. Hence

$$\mathfrak{A}_b^* \supset \sum (\mathfrak{A}_{c_i}^*; i=1,2,\ldots). \tag{1}$$

Next, let a_f be any element in \mathfrak{A}_b^* . Then, by Theorem 2.2,

$$a_f \supset a(b') = \prod (a(c'_i); i=1,2,\ldots).$$

Put $b_i = a_f \vee a(c_i')$, and $E(c_i)f = g_i$; then, since $E(a)g_i = E(a)E(c_i)f = E(a \wedge c_i)f$, we have $a_{g_i} = b_i \in \mathfrak{A}_{c_i}^*$. Now

$$a_f = a_f \vee \Pi(a(c_i'); i=1, 2, ...) = \Pi(a_f \vee a(c_i'); i=1, 2, ...)^{(2)}$$

= $\Pi(a_{g_i}; i=1, 2, ...)$.

Hence $\mathfrak{A}_b^* \subset \Sigma(\mathfrak{A}_{c_i}^*; i=1, 2, \ldots)^{(3)}$. (2)

- (1) Cf. F. Maeda [2], 111.
 - (2) By Theorem 2.1.
 - (3) By Theorem 2.1.*

32 F. Maeda.

From (1) and (2), we have

$$\mathfrak{A}_b^* = \sum (\mathfrak{A}_{c_i}^*; i=1,2,\ldots).$$

(iv) Let $b = \Pi(c_i; i=1, 2, ...)$; then $b' = \sum (c_i'; i=1, 2, ...)$. Since $b \subset c_i$, by (ii) $\mathfrak{A}_b^* \subset \mathfrak{A}_{c_i}^*$ for all i. Hence

$$\mathfrak{A}_b^* \subset \Pi(\mathfrak{A}_{c_i}^*; i=1,2,\ldots). \tag{3}$$

Next, let a_f be any element in $\Pi(\mathfrak{A}_{c_i}^*; i=1, 2, ...)$. Then $a_f \supset a(c_i')$ for all i. Hence

$$a_f \supset \sum (a(c_i'); i=1,2,\ldots) = a(b').$$

Therefore $\mathfrak{A}_b^* \supset \Pi(\mathfrak{A}_{c_s}^*; i=1, 2, \ldots)$. (4)

From (3) and (4), $\mathfrak{A}_b^* = \Pi(\mathfrak{A}_{c_i}^*; i=1, 2, ...)$.

(ii), (iii), (iv) show that the correspondence $b \leftrightarrow \mathfrak{A}_b^*$ between L and $(\mathfrak{A}_b^*; b \in L)$ is an isomorphism with respect to the join and the meet of subsets of power $< \aleph_1$.

THEOREM 8.2. E(a) is imbedded in $F(\mathfrak{A}^*)$ in such a manner that $E(a)=F(\mathfrak{A}^*_a)$ for all $a \in L$.

PROOF. Let E(b) be the projection of \mathfrak{F} on the closed linear manifold \mathfrak{R}_b . If $f \in \mathfrak{R}_b$, then E(b)f = f and

$$E(a)f = E(a)E(b)f = E(a \land b)f$$
.

Hence $a_f \supset a(b')$, that is, $f \in \mathfrak{M}_{\mathfrak{A}_h^*}$. Consequently

$$\mathfrak{N}_b \subset \mathfrak{M}_{\mathfrak{A}_b^*}$$
 (1)

Next, if $f \in \mathfrak{M}_{\mathfrak{A}_b^*}$, then $\mathfrak{a}_f \supset \mathfrak{a}(b')$. Hence E(b')f = 0, and $f \in \mathfrak{R}_b$. Consequently $\mathfrak{M}_{\mathfrak{A}_b^*} \subset \mathfrak{R}_b$. (2)

From (1) and (2), we have $\mathfrak{N}_b = \mathfrak{M}_{\mathfrak{A}_b^*}$, which shows that $E(b) = F(\mathfrak{A}_b^*)$.

From Theorem 8.2, we may say that $F(\mathfrak{A}^*)$ is an extension of E(a).

Direct Proof of Theorem 6.1.

- **9.** In Sec. 6, we have Theorem 6.1 as a simple application of the general theory of ideals in a Boolean algebra. In what follows, I shall give a direct proof of this theorem, using the functional property of $\phi(a)$. For this purpose I shall first prove the following lemmas:
- LEMMA 9.1. Let $\phi(a) \in \mathfrak{F}_{\aleph_1}$, and let \mathfrak{b} be an \aleph_1 -ideal such that $\mathfrak{b} \supset \mathfrak{a}_{\phi}$. Then there exists an element $b \in \mathfrak{b}$ such that, if we put $\phi^{\times}(a) = \phi(a \wedge b')$, $\phi^{\times \times}(a) = \phi(a \wedge b)$, b' being the inverse of b, then

⁽¹⁾ When L is a σ -field of Borel sets in the space of real numbers, E(a) is a resolution of identity of a self-adjoint operator A. And in this case the extended resolution of identity $F(\mathfrak{A}^*)$ is useful for the investigation of the unitary invariance of A. (Cf. F. Wecken [1].)

$$\phi(a) = \phi^{\times}(a) + \phi^{\times \times}(a)$$

and

$$\mathfrak{b} = \mathfrak{a}_{\mathbf{a}^{\times}}, \quad \mathfrak{a}_{\mathbf{a}^{\times}} \vee \mathfrak{a}_{\mathbf{a}^{\times}} = \mathfrak{e}.$$

PROOF. Let a be the least upper bound of $\phi(a)$ for all a such that $a \in b$. Then there exists a sequence of elements $(a_i; i=1, 2, \ldots)$ such that $a_i \in b$ and $\lim_{i \to \infty} \phi(a_i) = a$. Put $b = \sum (a_i; i=1, 2, \ldots)$. Then $b \in b$. Hence $\phi(b) \leq a$. Since $b \supset a_i$, $\phi(b) \geq \phi(a_i)$. Hence $\phi(b) \geq \lim_{i \to \infty} \phi(a_i) = a$. Consequently $\phi(b) = a$.

Let b' be the inverse of b. And put

$$\phi^{\times}(a) = \phi(a \wedge b')$$
 and $\phi^{\times \times}(a) = \phi(a \wedge b)$. (1)

Then it is evident that $\phi^{\times}(a)$, $\phi^{\times \times}(a)$ belong to $\mathfrak{F}_{\mathfrak{H}_1}$, and

$$\phi(a) = \phi^{\times}(a) + \phi^{\times \times}(a). \tag{2}$$

If $a_0 \in \mathfrak{b}$, then, since $a_0 \vee b \in \mathfrak{b}$, we have $\phi(a_0 \vee b) \leq a$. But $a = \phi(b) \leq \phi(a_0 \vee b)$. Hence $\phi(a_0 \vee b) = \phi(b)$. Now

$$\phi(a_0 \vee b) + \phi(a_0 \wedge b) = \phi(a_0) + \phi(b).$$

Hence $\phi(a_0 \wedge b) = \phi(a_0)$. And, by (1), $\phi^{\times \times}(a_0) = \phi(a_0)$. Consequently, from (2), $\phi^{\times}(a_0) = 0$. Hence

$$\mathfrak{b} \subset \mathfrak{a}_{\mathfrak{a}^{\times}}. \tag{3}$$

Next we shall prove that $b \supset a_{\phi^{\times}}$. For this purpose, let $\phi^{\times}(a_0) = 0$; then, from (1), $\phi(a_0 \land b') = 0$; hence $a_0 \land b' \in a_{\phi} \subset b$. Since $a_0 \land b \in b$, we have $a_0 = (a_0 \land b') \lor (a_0 \land b) \in b$. Consequently

$$\mathfrak{b} \supset \mathfrak{a}_{\phi^{\times}}. \tag{4}$$

From (3) and (4),

$$\mathfrak{b} = \mathfrak{a}_{d^{\times}}$$
.

Let a be any element in L; then

$$a = (a \land b) \lor (a \land b')$$
.

Since, by (1), $a \wedge b \in \mathfrak{a}_{\phi^{\times}}$, $a \wedge b' \in \mathfrak{a}_{\phi^{\times \times}}$, we have $a \in \mathfrak{a}_{\phi^{\times}} \vee \mathfrak{a}_{\phi^{\times \times}}$.

Hence

$$e = a_{d} \times a_{d} \times a$$

LEMMA 9.2. When $\psi < \phi$, there exists an element b_{ϕ} such that $b_{\phi} \in a_{\phi}$ and $\phi(b_{\phi})$ is the least upper bound of $\phi(a)$ for all $a \in a_{\phi}$; and if we put

$$\phi_{\psi}^{\times}(a) = \phi(a \wedge b_{\psi}'); \qquad \phi_{\psi}^{\times}(a) = \phi(a \wedge b_{\psi}),$$

then

$$\phi(a) = \phi_{\psi}^{\times}(a) + \phi_{\psi}^{\times \times}(a) ,^{(1)}$$

and

$$\psi \sim \phi_{\psi}^{\times}$$
, $\phi_{\psi}^{\times} \wedge \phi_{\psi}^{\times} \sim 0$. (2)

PROOF. Since $a_{\phi} \supset a_{\phi}$, if we put a_{ϕ} instead of b, then the present lemma follows from Lemma 9.1.

⁽¹⁾ $\phi_{\psi}^{\times}(a)$ and $\phi_{\psi}^{\times}(a)$ correspond to the "Regularitätsfunktion" and "Singularitätsfunktion" of $\phi(a)$ with respect to $\phi(a)$ in the theory of set functions. Cf. H. Hahn, Theorie der reellen Funktionen I (1921), 421.

^{(2) 0} is the zero element in ₹ℵ₁.

DEFINITION 9.1. When $\psi < \phi$, the element b_{ψ} in Lemma 9.2 is called a basic element of ψ with respect to ϕ .⁽¹⁾

Lemma 9.3. The basic element b_{ϕ} of ψ with respect to ϕ has the following properties:

- (i) If $\psi_1 < \psi_2$, then $\phi(b_{\psi_1}) \geq \phi(b_{\psi_2})$.
- (ii) $\psi_1 < \psi_2$ is equivalent to $\phi(b'_{\psi_1} \land b_{\psi_2}) = 0$.
- (iii) If $\psi_1 < \psi_2$ and $\phi(b_{\psi_1}) = \phi(b_{\psi_2})$, then $\psi_1 \sim \psi_2$.

PROOF. (i) is evident, since $\phi(b_{\phi})$ is the least upper bound of $\phi(a)$ for all $a \in a_{\phi}$.

(ii) When $\phi_1 < \phi_2$, put $c = b'_{\psi_1} \land b_{\psi_2}$. Since $b_{\psi_1} \land c \subset b_{\psi_1} \land b'_{\psi_1} = 0$, we have $\phi(b_{\psi_1} \lor c) = \phi(b_{\psi_1}) + \phi(c)$.

Since $c \in a_{\psi_2} \subset a_{\psi_1}$, we have $b_{\psi_1} \vee c \in a_{\psi_1}$. Hence, $\phi(b_{\psi_1})$ being the least upper bound of $\phi(a)$ for all $a \in a_{\psi_1}$,

$$\phi(b_{\psi_1} \vee c) = \phi(b_{\psi_1}).$$

$$\phi(c) = 0.$$

Consequently

Next, assume that $\phi(b'_{\psi_1} \wedge b_{\psi_2}) = 0$. By Lemma 9.2,

$$\psi_{1}(a) \sim \phi_{\psi_{1}}^{\times}(a) = \phi(a \wedge b_{\psi_{1}}'), \qquad \psi_{2}(a) \sim \phi_{\psi_{2}}^{\times}(a) = \phi(a \wedge b_{\psi_{2}}').$$

$$\phi(a \wedge b_{\psi_{1}}') = \phi(a \wedge b_{\psi_{1}}' \wedge b_{\psi_{2}}) + \phi(a \wedge b_{\psi_{1}}' \wedge b_{\psi_{2}}').$$

 $\leq \phi(b'_{\theta_0} \wedge b_{\theta_0}) + \phi(a \wedge b'_{\theta_0}) = \phi(a \wedge b'_{\theta_0}).$

Now,

Consequently, if $\psi_2(a) = 0$, then $\psi_1(a) = 0$. That is, $\psi_1 < \psi_2$.

(iii) If $\psi_1 < \psi_2$ and not $\psi_1 \sim \psi_2$, then there exists an element a such that $\psi_1(a) = 0$ but $\psi_2(a) \neq 0$, and $a \wedge b_{\psi_2} = 0$. Since $\psi_2 < \phi$, $\phi(a) \neq 0$, and since $\psi_1(a) = 0$, $\psi_1(b_{\psi_1} \vee a) = 0$. Hence, by the property of b_{ψ_1} we have

$$\phi(b_{\psi_1} \vee a) = \phi(b_{\psi_1}). \tag{1}$$

From $\phi_1 < \phi_2$, by (ii), $\phi(b'_{\phi_1} \land b_{\phi_2}) = 0$. Hence

$$\phi(b_{\psi_1} \wedge b_{\psi_2}) = \phi(b_{\psi_2}). \tag{2}$$

Now $\phi(a) \neq 0$ and $a \wedge b_{\psi_2} = 0$; we have, by (1) and (2),

$$\phi(b_{\psi_2}) < \phi(b_{\psi_2}) + \phi(a) = \phi(b_{\psi_2} \lor a) \leq \phi(b_{\psi_1} \lor b_{\psi_2} \lor a)
= \phi(b_{\psi_2}) + \phi(b_{\psi_1} \lor a) - \phi(b_{\psi_2} \land (b_{\psi_1} \lor a))
= \phi(b_{\psi_2}) + \phi(b_{\psi_1}) - \phi(b_{\psi_2} \land b_{\psi_1})^{(2)} = \phi(b_{\psi_1}).$$

Consequently, if $\phi(b_{\psi_1}) = \phi(b_{\psi_2})$, then it must follow that $\psi_1 \sim \psi_2$.

Direct Proof of Theorem 6.1. (i) It is evident that \mathfrak{H}_{n} is a partially ordered set with respect to the order <.

⁽¹⁾ If L is a σ -field of sets E, then $\phi(E)$, $\psi(E)$ are completely additive set functions, and when $\psi < \phi$, there exists a point function f(x) such that $\psi(E) = \int_E f(x) d\phi(E)$. In this case, $b\psi$ corresponds to the set of all points x such that f(x) = 0.

⁽²⁾ For $b_{\psi_2} \wedge (b_{\psi_1} \vee a) = (b_{\psi_2} \wedge b_{\psi_1}) \vee (b_{\psi_2} \wedge a) = b_{\psi_2} \vee b_{\psi_1}$.

(ii) Let $S=(\phi_i; i=1, 2,)$ be a denumerable subset of \mathfrak{F}_{\aleph_1} . Put $\phi(a) = \sum_i \frac{\phi_i(a)}{2^i \phi_i(1)}$; then $\phi(a) \in \mathfrak{F}_{\aleph_1}$. And $\phi(a) = 0$ when, and only when, $\phi_i(a) = 0$ for all i. Hence

$$\mathfrak{a}_{\phi} = \Pi(\mathfrak{a}_{\phi_i}; i=1, 2, \ldots) \quad \text{and} \quad \phi \sim \sum (\phi_i; i=1, 2, \ldots).$$
 Especially
$$\phi_1 \vee \phi_2 \sim \phi_1 + \phi_2. \tag{1}$$

Let $S=(\phi_i; i=1, 2, \ldots)$ be a denumerable subset of \mathfrak{F}_{\aleph_1} . Then, by Theorem 2.1, $\mathfrak{b}=\sum (\mathfrak{a}_{\phi_i}; i=1, 2, \ldots)$ is an \aleph_1 -ideal in L, and $\mathfrak{b} \supset \mathfrak{a}_{\phi_1}$. By Lemma 9.1, there exists a function $\psi \in \mathfrak{F}_{\aleph_1}$, such that $\mathfrak{b} = \mathfrak{a}_{\psi}$. And

$$\psi \sim \Pi(\phi_i; i=1, 2, ...)$$
.(1)

(iii) Let $\phi \in \mathfrak{F}_{\aleph_1}$ and $S = (\phi_i; i = 1, 2, ...)$ be any denumerable subset of \mathfrak{F}_{\aleph_1} . Then, by Theorem 2.1,

$$a_{\phi} \wedge \sum (a_{\phi_i}; i=1,2,\ldots) = \sum (a_{\phi} \wedge a_{\phi_i}; i=1,2,\ldots).$$

This means that $\phi \vee \Pi(\phi_i; i=1, 2, \ldots) \sim \Pi(\phi \vee \phi_i; i=1, 2, \ldots)$. (2)

Similarly,
$$\phi \wedge \sum (\phi_i; i=1, 2, \ldots) \sim \sum (\phi \wedge \phi_i; i=1, 2, \ldots)$$
.

Thus the distributive law in the generalized sense holds good.

(iv) Let ϕ , ψ be such that $\psi < \phi$. Then, by Lemma 9.2, there exist $\phi_{\psi}^{\times}(a)$, $\phi_{\psi}^{\times}(a)$ such that

$$\phi(a) = \phi_{\phi}^{\times}(a) + \phi_{\phi}^{\times}(a) ,$$

and $\phi_{\psi}^{\times} \sim \psi$, $\phi_{\psi}^{\times} \wedge \phi_{\psi}^{\times} \sim 0$. By (1), we have

$$\psi \vee \phi_{\psi}^{\times \times} \sim \phi$$
, $\psi \wedge \phi_{\psi}^{\times \times} \sim 0$. (2)

Hence ϕ_{ψ}^{\times} is the inverse of ψ in ϕ .

When $\chi < \phi < \phi$. Put $\xi = \phi_{\phi}^{\times} + \chi$. Then we have, from (2),

$$\phi \sim \phi \vee \chi \sim (\psi \vee \phi_{\psi}^{\times}) \vee \chi \sim \psi \vee \xi,$$

$$\chi \sim 0 \vee \chi \sim (\psi \wedge \phi_{\psi}^{\times}) \vee \chi \sim \psi \wedge \xi,$$
 by (iii).

and

Hence \mathfrak{F}_{\aleph_1} is complemented in the generalized sense.

Thus \mathfrak{F}_{\aleph_1} is a generalized \aleph_1 -Boolean algebra with zero element.

(v) To prove that class Ψ_{\aleph_1} of all \aleph_1 -ideals in \mathfrak{F}_{\aleph_1} is a continuous Boolean algebra, by Theorem 2.4 it is sufficient to show that every \aleph_1 -ideal \mathfrak{B} in \mathfrak{F}_{\aleph_1} contained in a principal \aleph_1 -ideal $\mathfrak{a}(\phi)$ is also principal.

If $\phi \in \mathfrak{B}$, then $\phi < \phi$. Let α be the greatest lower bound of $\phi(b_{\psi})$ for all $\phi \in \mathfrak{B}$. Then there exists a sequence $(\phi_i; i=1, 2, \ldots)$ such that $\phi_i \in \mathfrak{B}$ and $\lim_{i \to \infty} \phi(b_{\psi_i}) = \alpha$. Put $\sum (\phi_i; i=1, 2, \ldots) = \chi$. Then $\chi \in \mathfrak{B}$ and $\phi_i < \chi$. Hence $\phi(b_{\psi_i}) \geq \phi(b_{\chi})$ for all i. Consequently $\alpha \geq \phi(b_{\chi})$. On ther other hand, since $\chi \in \mathfrak{B}$, by the definition of α $\phi(b_{\chi}) \geq \alpha$. Therefore $\phi(b_{\chi}) = \alpha$.

⁽¹⁾ This proof holds good for any subset S of $\mathfrak{F}_{\mathcal{N}_1}$. Hence $\mathfrak{F}_{\mathcal{N}_1}$ is closed with respect to the meet of any subset of $\mathfrak{F}_{\mathcal{N}_1}$.

⁽²⁾ This relation holds good when the power of S is $\ge w_1$. Cf. Theorem 2.1, and footnote above.

Next, let ψ be any element in \mathfrak{B} . And put $\xi(a) = \chi(a) + \psi(a)$. From $\xi \in \mathfrak{B}$, we have $\phi(b_{\xi}) \geq a$. And from $\xi > \chi$, we have $\phi(b_{\xi}) \leq \phi(b_{\chi}) = a$. Consequently $\phi(b_{\xi}) = \phi(b_{\chi})$. Hence, by Lemma 9.3 (iii), $\xi \sim \chi$. Since $\xi \sim \chi \vee \psi$, we have $\chi > \psi$. Therefore \mathfrak{B} is a principal \aleph_1 -ideal $\mathfrak{A}(\chi)$.

References.

- K. Friedrichs [1], "Beiträge zur Theorie der Spektralschar I. Spektralschar auf Intervallen und Spektralzerlegung unitärer Operatoren." Math. Annalen, 110 (1935), 54–62.
- F. Maeda [1], "Theory of Vector-Valued Set Functions," this Journal, 4 (1934), 57-91.
 - [2], "Indices of the Orthogonal Systems in the Non-Separable Hilbert Space," this Journal, 7 (1937), 103-114.
- J. v. Neumann [1], Continuous Geometry (mimeographed note of lecture given at Princeton), Part I (1935-1936).
 - [2], Do., Part III (1936-1937).

36

- M. H. Stone [1], "The Theory of Representations for Boolean Algebras," Trans. American Math. Soc. 40 (1936), 37-111.
- M. Wecken [1], "Unitärinvarianten Selbstadjungierter Operatoren," Math. Annalen, 116 (1939), 422-455.

HIROSIMA UNIVERSITY.