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Let L be a generalized -X- Boolean algebra, and 9 be an ordinal number
A subset S=(a,; a<<2) of L is called an ascendmg or descending system
according as a,<<ayz or a,>a; for “all a<ﬂ<?2 If, for every ascending
and descending system S, the power of ‘S is <X, then we say that L
satisfies the X-chain condition. Let a be an X-ideal in L, and L/a denote
the set of all equivalence classes with respect to a. When L/a satisfies the
.R-chain condition, we say that L satisfies the R-chain condition relative to
a, and a is called a basic X-ideal of the X-chain condition. I shall prove
that L satisfies the X-chain condition relative to a if, and only if, L satis-
fies the following condition :

For every T'<<L such that (i) aeT implies ada, (ii) a,beT, ab im-

plies a ~bea, the power of T is <¥.

I find also that class Py of all basic XR-ideals of the X-chain condition in L
is a generalized N-Boolean algebra, and class @} of all dual-X-ideals in Py
is a continuous Boolean algebra.

Next I apply this result to class Fy, of all measure functions defined
in an X;-Boolean algebra L. Let a; be the class of all ¢ such that ¢(a)=0.
Then a4 is a basic ¥;-ideal of the X;-chain condition in L. I shall prove
that class Qy, of all a,(peFy,) is a dual X;-ideal in Py,, and therefore Dy,
is a generalized X;-Boolean algebra, and class 7, of all dual X;-ideals in Qy,
is a continuous Boolean algebra. We shall write ¢ <¢, when ¢(a) is ab-
solutely continuous with respect to ¢(a), that is, ¢(a)=0 for all @ such that
#l@)=0. Then ¢<¢ when, and only when, a,>a,. Hence Fy, is dual-
isomorphic to Qy,. Therefore Fy, is a generalized X,;-Boolean algebra, and
the class ¥y, of all ¥;-ideals in Fy, is a continuous Boolean algebra.

Lastly I shall investigate the application to the spectral theory of the
complete complex Euclidean space . If a family of projections E(a) is
defined for all ¢ in an ¥;-Boolean algebra L, such that

(@) E(@)E(d)=0 when anbdb=0,
(A E(a)=E(a)+E(a)+ ---- +E(a)+---- when a=2i}®a¢,
(n EQ)=1;

then we say that E(a) is a resolution of identity in the generalized sense.
Let ar be the class of all @ such that E(a)f=0. Then qs is a basic ¥;-ideal
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of the ¥;-chain condition in L. I shall prove that class Rg of all a/(feD)
is a dual N-ideal in Py,; and therefore R is a generalized X;-Boolean algebra,
and class 6% of all dual X-ideals in Rg is a continuous Boolean algebra.
Next I shall obtain a resolution -of identity F(N*) defined for all A*eb},
which, we may say, is an extention of E(a) in the domain of definition.
F(A™) corresponds to the resolution of identity defined by F. Wecken in his
remarkable paper, which appeared recently.®

General Properties of X-Ideals in a Generalized
%-Boolean Algebra.®

‘ 1. Let us conSIder genemlzzed R-Boolean a,lgebm L with elements
a,be...., ® being a transfinite cardinal number, that is, L satisfies the
followmg axioms (I)-(IV):
(1) L is a partially ordered set; that is, in L. a relatwn of inclusion
a Db is defined, such that
(i) a>a;
(i) a>b, b>ec implies a De. :
We define equality a=b in L as the simultaneous existence of the. relatlons
a>b, ac<b. We write a>b, when a>b but a¢b.
(II) L is an N-lattice; that is,
For every subset S of L of power <X, there is an element
>(S) in L which is a least upper bound or join of S, i.e.
(i) >3(S)Da for every acs,
(il) e>a for every aeS implies ¢ >>(S).
For every subset S of L of power <¥, there is an element
11(S) in L which is a greatest lower bound or meet of S, i.e.
(i) IH(S)<a for every aeS,
(i) e¢=a for every aeS implies e I(S).
When S=(a, b), we write >(S)=avb, II(S)=anb. If X> power of L,
then L is called a continuous lattice.
(III) L is complemented in the generalized sense; that is,
For any three elements a,b,c¢ such that ac bec, there exists
an element z such that

bva=c, brz=a.

" (IV) L is distributive in the generalized sense; that is,
For every subset S of L of power <\X and every beL

(1) Cf. W. Wecken [1]. The numbers in square brackets refer to the list gwen at the
end of this paper.

(2) M. H. Stone has investigated the properties of V-ideals in a generalized ¥,-Boolean
algebra with zero element. (Cf. M. H. Stone [1]). These investigations can be applied in
our general case. In the present paper only a few propertxes are mentioned, whlch are
necessary to what follows.
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SIS)Ab="(an~b; ael),
I S)vb=II(avb; aeS).

It should be observed that in the axioms given above, the existence of
zero element 0 and unit element 1 is not assumed. If the existence of these
elements is assumed, then the X-lattice satisfying (III) and (IV) is equiva-
lent. to the X-lattice satisfying the following axioms (III’) and (IV').®

(III') For any element a, there exists an element 2 such that

avze=1l, arx=0.
x is called the inverse of @, and is often denoted by a'.
(IV’) For all elements a,b,¢ in L

(avb)re=(an~c)v(brc),
(an~b)ve=(ave)~bve).

For the sake of simplicity we shall call the X-lattice with zero and
unit elements satisfying (IIT") and (IV’) an X-Boolean algebra. .

It is also to be noted that, in axioms (I)- (IV), the duality holds good
interchanging <, >, v by >, 1, ~.

2. DEFINITION 2.1. In a generalized X-Boolean algebra L, if a subset
a of L satisfies the following properties, then a is said to be an R-ideal
in L: :
(i) if S<a and power of S<<¥, then E(S)ea,
(i) if aea and beL, then a~bea.
(Condition (ii) is equivalent to: “if aeaq, ceL, c=a, then cea”.)
DEFINITION 2.1.*® Dually, we can define a dual R-ideal a* in a
generalized R-Boolean algebra L by the following properties : ‘
(i*) if S<a* and power of S<<X, then I/(S)ea*,
(ii*) if aea™ and belL, then avbea™,
(Condition (ii*) is equivalent to: “if aea*, ceL, ¢Da, then cea™”.)
It is evident that class a(a) of all elements beL, such that bca, is an
NR-ideal in L.
DEFINITION 2.2. We say that a(a) is a principal R-ideal in L.
Dually, we denote by a*(a) the class of all elements beL such that
boa. .
DEFINITION 2.2.* We say that a*(a) is a principal. dual x-'idedl in L.

THEOREM 2.1. Class & of all R-ideals in a generalized X-Boolean
algebra L is a lattice, closed with respect to the join of any subset of
and to the meet of subsets of S of power <X. For every subset S=
(ag; ael) of &, I being the set of indices, the join >.(S) consists of those

(1_) Cf. J.v. Neumann [1], 6; [2], 7.
(2) * means the dual relation,
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elements such that c=>(a,; azeq,, acli)) where I, is a subclass of I of
power <XR. And for every subset ©=(a,; ael) of I of power <X, the
meet I1(S) comsists of those elements such that c=1I(a,; a,€q, acl).

S satisfies the following distributive laws :

anSI(S)= E(a/\aa, ael)
ﬁrr every subset S=(a,; acl) of &, and

avII©®)=II(ava,; acl)
for every subset S=(a,; acl) of power <X.

I has the unit element e, which is L itself.

Especially when L has zero element 0, & has zero clement o which
consists of 0 alone, and S is closed with respect to the meet of any subset
of .

ProoF. Since the following dual Theorem 2.1* is not familiar, I shall
prove it. The present theorem can be proved as Theorem 2.1* with slight
modifications.

THEOREM 2.1.* Class J* of all dual X-ideals in a generalized X-Boolean .
algebra L is a lattice, closed with respect to the join of any subset of J*
and to the meet of subsets of I of power <<X. For every subset &*=
(ar; ael) of X%, I being the set of indices, the join 3)(S*) consists of those
elements such that c=1Il(a,; azea;, acl}) where I, i8 o subclass of I of
power <X. And for every subset S*=(a’; ael) of J* of power <X,
the meet I1(S*) consists of those elements such that c=>)(a.; a,ca;, ael).

X* satisfies the following distributive laws:

aA* ASHGH) =X (a* ~a}; ael)
for every subset &*=(a}; ael) of I*, and
Ca*vII(©*)=H(a*va;: ael)
Jor every subset &*=(a); ael) of'S* of power <¥.

J* has unit element e*, which is L ttself. .

Especially when L has unit element 1, §* has zero element o* which
consists of 1 alone, and J* 1is closed with respect to the meet of any subset
of &*.

PROOF. (i) Let &*=(a); aelI) be any subset of 3*‘, and ¢* be the
class of all elements ¢=1I(a,; a,ca), ael;) where I; is a subclass of I of
power <<®. And let S* be any subset of ¢* of power <<¥; then, since
all a) are dual X-ideals, /771(S*) can be written in the form [1I(S*)=
(b, ; beqa;, aely),  where I, is a subeclass of I of power <<X. That is,
II(S*)ec*.

Let d be any element of L and cec*. Then .

dve=dvIl(a,; azeal, aely)
o =Ildva,; aea;, acll)®Pec*

(1) By Axiom (IV) of Sec. 1.




Ideals in a Boolean Algebra with Transfinite Chain Condition. 1

since dvazea;. Hence ¢* is a dual R-ideal. Since ¢* is the smallest dual
R-ideal which contains all a* in S*, we have o
‘ c=31(8").

(i) Next let &*=(a}; ael) be any subset of I* of power <<X. The
intersection of all these a} in ©* consists of those elements ¢ such that
c=3(a,; a.€a), ael). For any such element is common .to.all a} of S*,
and if ¢ is common to all a; of &%, then c¢ is written in the form above,
where a,=c for all ael. And this intersection is the required meet I1(&™).
Especially when L has unit element 1, the intersection of any subset of &*
is non-void, and is the meet 1/(S%). B '

(iii) Let &*=(a}; ael) be any subset of *. Since

a*AZ(©")Da*Aa;  for all  ael,
we have a*xx}j(@*)az(a*/\a:; ael).
Next, by (i) and (ii), any element ¢ in a*A3>J(&") is expressible in the
form c¢=av /I(b,; byea;, ael;), where aea® and I, is a subclass of I of
power <¥. .But, by Axiom (IV) of Sec. 1,
c=1Il(avb,; bea;, aclh).
Since a\b,ea* Aaz, we have ce> (a* ~na7; aely). Therefore
. A= (a* ~al; ael).
Consequently A= (a*~ak; ael).
(iv) Asin (iii), we can prove that
a* v II(&*)=M(a* va,,, ael)
for any subset &*=(a’; ael) of §* of power <R,

THEOREM 2.2. Class P of all principal N-ideals in a generalized ®-
Boolean algebra L 1s isomorphic to L in accordance with the folltnlnng
relations :

(i) a(a)=a(d) if, and o'nly if, a=b,

(i) a(=(9) = (al0); aes),

i) a(11(S))=1 (ala); aeS), .
where S is any subset of L with power <<X. Hence P 13 also a generalized
R-Boolean algebra.

ProorF. (i) a=b obviously implies a(a)=a(b); and a(a)=a(b) implies
acb, b=a, and hence a=b.

(i) Since 33(S)>a for all aeS, a(3(S)) DX (a(a); a,eS) Next,
by Theorem 2.1, 33(S)e 3 (a(a); a,eS) hence a(33(S)) =2 (at@); aeS).

(iii) Similarly to (ii).

THEOREM 2.2.* Class P* of all principal dual ¥-ideals in a generalized

R-Boolean algebra L is dual-isomorphic to L in accordance 'mth the follaw-
ing relations :



12 : ‘ F. Maeda.:

(i) a*(a)=a*®) if, and only if, a=b,

(i) a*(Z(S))=1(a*(a); aeS),

(i) o*(17(8)=3(a%a); aeS),
where S is any subset of L with power <<X. Hence B* is also a generalized
®-Boolean algebra.

Proor. Cf. proof of Theorem 2.2.

THEOREM 2.3. In a generalized X-Boolean algebra L with zero element
0, let a be an R-ideal, and let a’ be the class of all elements b such that

bAa=0 for all aca.
Then o’ is an R-ideal in L, and
ana’=o.
PROOF. This theorem can be proved as the following dual case.

THEOREM 2.3.* In a generalized X-Boolean algebra L with unit element
1, let a* be a dual R-ideal, and let a*" be the class of all elements b such that
bva=1 for all aea*. -
Then o™ 1s a dual R-ideal in L and
a*Aa*=p*, .
ProoF. (i) Let S* be any subset of a*' of power <<X. Then, by
Axiom (IV) in Sec. 1, " _ _
I S*)va=Ilbva; beS*)=1 for all aea*.
Hence 71(S*)ea™". '
(ii) If bea™ and ¢>Db, then cea™, since cvva>Dbva=1 for all aea™.
From (i) and (ii), a*" is a dual N-ideal in L. '
* (iii) By Theorem 2.1% -a*Aa™ consists of those elements a\b such
that aea*, bea™. Since avb=1 for all aca*, bea™', we have
a*Aa™=p*.
DEFINITION 2.3. The N-ideal a’ associated with an X-ideal a in the
manner indicated in Theorem 2.3 is called the orthocomplement of a.
DEFINITION 2.3.* The dual X-ideal a** associated with a dual X-ideal
a* in the manner indicated in Theorem 2.83* is called the dual orthocomple-
ment of a*. .

THEOREM 2.4. In a generalized X-Boolean algebra L with zero element
0, if every R-ideal contained in a principal X-ideal is also principal, then
class ¥ of all R-ideals in L s a continuous Boolean algebra.

Proor. Cf. the following dual case.

- THEOREM 2.4.* In a generalized ®-Boolean algebra L with unit element
1, if every dual X-ideal contained in a principal dual. XR-ideal is also
principal, then class 3* of all dual R-ideals in L 138 a continuous .Boolean
algebra. .
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ProOF. From Theorem 2.1%, &* is a distributive contlnuous lattice,.
that is, §* is a continuous lattlce which satisfies Axiom (IV’) in Sec. 1.
Hence it is sufficient to show that &* is complemented, that is, that J*
satisfies Axiom (IIT") in Sec. 1.

Let a* be any element in 3%, and a*™' be the dual orthocoxpplement of
a*. Then, by Theorem 2.3%, : '

Next we shall prove that

a*va*=e*, _
For this purpose, from Theorem 2.1%, it is sufficient to show that any element
ceL is expressed in the form .

c=a~b where aea*, bea*. (1)
If cea™, then ‘
¢c=1~c where 1lea®, cea™

If cda*', then there exists an element aea® such that ¢cva=¢l.

Hence - a*(e)~a* 0",
Since a*(c)/\a < a*(c), by assumption there exists an element dﬂF 1 such that
a*(c) ~na* =a*(d). (2)

Let d; be such that
dvdi=1, dnady=c.

Then d;ea*’. For if not, then, as above, there exists an element f3¢1

such that

a*(d)~a*=a*(f). . @) .
Then d;<f, and dvf=1. Hence A o o

a (@) ~Aa*(f)=0*. ‘ 4)

Since fody D¢, a*(f)<a*(c). And by (8) a™(f)=a*. Hence by (2)
’ a*(f)=a*(c) Aa*=a*(d). '
But this contradicts (4). Consequently
c=d~d, where dea*, diea™

Consequehtly (1) holds good for any ceL. And the theorem is com-
pletely proved.

3. DEFINITION 3.1. If a is an X-ideal in a generalized X-Boolean
algebra L, then ¢ and b are equivalent modulo a '(a~b (mod 'a)) when there
exist u, vea with avu=avv.®

LEMMA 3.1. The relation a~b (mod a) 18 reﬂemve, symmetrw, omd
transitive.

- (1) Wecan define the equivalence modulo a* (a~b (mod a*)) when there exist u,vea*
with e Au=bAwv, and the set L/a* of all equivalence classes. But I omit investigations into
these dual properties. Cf. p. 20, footnote (3).
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"~ PROOF, Obviously a~a (mod a); and a~b (mod a) implies b~a (mod a).
To prove the transitivity, let a~b (mod a), b~c (mod a) i.e,, avu,, =bvy,
by ug=c vy Uy, V1, Ug, v2€a. Then

: av U Vv Ue=bv o v ug=cv v vy,
and u;\ Us, vV V€A Therefore a~c (mod a).

DEFINITION 3.2. Let A, be the set of all weL with x~a (mod a).
The system (A.; aeL) is a mutually exclusive and exhaustive partition of L
into equivalence classes. We denote the equivalence classes by A, B, C
and the set of all equivance classes by L/a.

DEFINITION 3.3. A< B means the existence of aeA4, "beB with a = b.

LEMMA 3.2. When AC B, for every acA, beB there emsts w such
that a—bvu, uea and bvueB.
ProOF. Since A B, there exist a,€ A4, be B such that a; b, Since
a~a, (mod a), b~b; (mod a), there exist w;, v1, up, vz in a such that
avU=a, vy, b\ ug=by\v v,.
Put w=v;vu; then, since uea, bvueB; and
AT uv I Sh v Chv o v u=bv .

THEOREM 3.1. When L is a generalized X-Boolean Algebra, L/a s a
generalized R-Boolean algebra with zero element. '

PrROOF. (i) To show that L/a is a partially ordered set we need only
to prove that ADB, BoC imply ADC. By Lemma 3.2, since ADB,
B> C, there exist aeA, beB, ceC such that a>b, b>c. Hence a >,
Consequently, by Definition 3.3, AD>C. It is evident that class a itself is
zero element of L/a. (When L has unit element 1, then A, is unit element
of Lja).

(ii) Next we shall show that L/a is an ®-lattice. Consxder a subset
S of Lj/a with power <<X. For each Ae® select an element aed, and -
denote the set of these elements by S. Then, the power of S<<X, and
S=(A,; aeS). Thus 33(S) and II(S) exist, and for every aeS, II(S)cac
23(S), Ams) S Aa < Asgs)

Suppose now that C=A4,, D A, for every aeS. Then, by Lemma 32
there exists for each aeS an element u,ea with ayvu,>a. Thus

apv 2 (Ua; aeS)D33(S).
Smce a is an R-ideal, it follows that >)(u.; aeS)ea, Hence
o . C=A,>Axs. :
Consequently SH©)=5(4a; aeS)=Axs). | (1)

(1) J.v. Neumann has proved this theorem when L has zero and unit elements. Cf.
J.v. Neumann [2], 10-11. ' Here I consider the general case, and the proof is somewhat
simplified.



Ideals in a Boolean Algebra with Transfinite Chain Condition. ‘15
Next suppose that C=A4, < A, for every aeS. Then, by Lemma 3.2,
there exists for each aeS an element v,ea with aqg<avv,. Thus
g av>(vy; beS) for every aeS,
and consequently A< II(avZ(vb; beS); aeS) ;

that is, Ay II(S) v (vp; beS)
by Axiom (IV) in Sec. 1.  As before, > (vy; beS)ea, whence A, < Ap).
Consequently II(©®)=1I(A,; aeS)=Ancs. 2)

Thus L/a is an R-lattice.

(iii)  L/a is complemented in the generalized sense. For let A4, B, C
be such that A B< C; then, by Lemma 3.2, there exist ae A, beB, ceC
such that a—bce¢. Then, by Axiom (III) of Sec. 1, there exists an element
z in L such that '

Hence, by (1) and (2),
| AvA=4,  ArA=Al
Thus there exists an element X=A, in L/a such that
BvX=C, BAX=A.
(iv) L/a is distributive in the generalized sense. To prove this, con-
sider a subset & of L/a with power <<X. Then, as in (i), we have a
subset S of L, the power of S<<X®, and &=(A4,; aeS). And let B=4,

be any element in L/a. Then, by Axiom (IV) in See. 1, and (1) and (2),
we have

bva=c, brx=a.

2I@)AB=AxsyNAp=Ax5yn = Asxansd; aes)
=2(Aors; a€8)=21(A.~AB; ael).
Similarly we have =~ (&) B=Il(4,~B; aef).

THEOREM 3.2. If b is an R-ideal in a generalized R-Boolean algebra
L, then the image B of its elements under the homomorphism L— Lfa con-
stitutes an R-ideal in Lfa. And if € is an X-ideal in L/a, then the class
¢ of all elements of L with images in € is an R-ideal in L.

Proor. (i) Let © be any subset of B with power <<X. Let 2 be
the smallest ordinal corresponding to this power, and replace & by the
system (A%; a<<£). Then there exist' a, in b such that Aaa——'-'A“ for all
a<<®2. By (1) in the proof of Theorem 3.1,

2(@)=3(4e,; a<D)=A50, a<0- :
Since X (ay; a<<2)eb, >3(S)eB. Next, let AeB, BeL/a. Then there
exist aeb, beL such that A=A4,, B=A4,. By (2) in the proof of Theorem
8.1, AAB=A,.;. But, since anbeb, A~Be®B. Consequently B is an
R-ideal in Lj/a. : o

(ii) Let S be any subset of ¢ with power <<¥; and, as in (i), re-
place S by the system (a,; «<<£2). Then A4, e€ for all «<<2. Hence
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E(Ada: a<<£)e€. Since 21(4, ;a<L)=As,: a<2) Wehave Si(a,; a<<2)ec.
Next, let .aec, beL. Then, since 4,¢€, A,eL/a, A, ~A,e€. Hence, since

A ~Ay=A,.,, we have a~bec. Thus ¢ is an R-ideal in L, as we wished
to prove.

. THEOREM 3.3, Let a,b be R-ideals in a generalized X-Boolean algebra
L such that a=b. And let B be the image of b under the homomorphism
L-Lja. Then L[b is isomorphic to (L[a)/B with respect to the join and
the meet of subsets of power <<X.

ProoF. We denote by A, the set of all xe L with x~a (mod a); and by

A, the set of all zeL with z~a (mod b), and by A4 the set of all BeL/a
with B~A (mod B). Then L/a=(A,; aeL), L/6=(A,; aeL), and (L/a)/B=
(J‘IA; AGL/Q). '

(i) If A,eB, then ueb.

For, since B is the image of b, there exists an element u,<b, such that
A,=A,,. Then u~uy(mod a). Hence u\ w=uy\ w, where w, wyea.” Since
ac b, u<ugvweeb. Therefore ueb.

(ii) If a~b (mod b), then A,~A,; (mod B).

For, since avu=bvv where u,veb, we have A,.,=A4;., that is,
A, vA,=A, VAL and A, A, eB. Hence A,~A, (mod B).

Gii) If A,~A; (mod B), then a~b (mod b)..

For there exist A,, A,¢B such that A,vA,=A,vA, That is,
Apvu=A4,..,"2 and avu~bdbvv (mod a). That is avuvi=bvvvy, where
uy, vi€a. Since, by (i), u,veb, and a=b, we have uvueb, vvo,eb.
Therefore a~b (mod b).

(iv) By (i) and (iii) there exists one-to-one correspondence between

" the elements in L/6b and (L/a)/8B such that /Lez,ia. Consider a subset
(A,; aeS) of L/b with power <X. Then 3}(A4,; aeS)=Axq;qcs) corres-
ponds to Aa_ . ..o =Axa,; a§s)=Z(A—Aa; aeS).® Similarly for II(4,; aeS).

Hence L/b is isomorphic to (L/a)/B with respect to the join and the meet of
subsets of power <<X.

THEOREM 3.4. If & and J are the classes of all XR-ideals in a ge-
neralized X-Boolean algebra L and in Lja resgectively, then the homo-
morphism L- L[a induces a homomorphism J—J with respect to the join
of any subset and to the meet of subsets of power <X. If b and ¢ are
R-ideals in L with respective images B and € in L/a, then bva=cva and
B=C are equivalent.

PROOF. (i) Let &=(a,; a€) beany subset of ,and let &=(,; ae)®
be the image of & in J. By Theorem 2.1, >1(&) consists of those elements

(1) By (1) in the proof of Theorem 3.1. ‘

(2) In this expression some %, coincide, in spite of different indices, %, being the image
of Az, - . - .
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such that ¢c=3>(a,; a,€qa,, acl;), where I, is a subclass of I of power
<<X. Hence the image of >)(&) consists of those elements such that
A =(A,; AeN,, acl)). Hence image of 3(€)=1(S). Conversely,
S1(S) consists of those elements such that C=3)(4,; A,e¥,, acly), where
I, is a subclass of I of power <<X. There exist a,ea, such that Aa=Aaa
for all ael,, Put c=31(a,; aely); then ce> (&) and C=A. That is,
Ce image of 37(8). Hence 3)(8) < image of 33(S). Consequently 33(8)=
image of >(&).

(ii) In a similar manner we can prove that if &=(a,; ael) be any
subset of & of power <¥, and &=(,; ael) be the image of &, then
II(S)= image of 11(S). . _

(iii) Since in the homomorphism L - L/a, the image of a is the ideal
9 consisting of zero element in L/a alone. Hence bva and c¢va have
respective imarges BvO=B and €vO=C. It follows that bva=cva
implies B=C€. Furthermore, if b is any element in L with image B in B,
then there exists an element b, in b which also has B as its image. The
fact that b and b, have the same images implies that b~b, (mod a), that is,
bvu=byvv where u,vea. Hence bebva. Thus.bva is the class of all
elements in L with images in %B. Similarly ¢\ a is the class of all elements
im L with images in €. In consequence, B=C implies bva=cva.

THEOREM 3.5. Let 9 be the class of all R-ideals in a generalized
R-Boolean algebra L which contains a, and & be the class of all R-ideals
in Lja. The homomorphism L- L|a induces an isomorphism <3 with
respect to the join of amy subset and to the meet of subsets of power <X,

Proor. By Theorem 3.2, to any element b in ) there corresponds only
one element B in J. Next, let b and ¢ be two elements in ) which have
the same image B in &; then, by Theorem 3.4, bva=cva. Since bDa,
¢>Da, we have b=c. That is, there exists one-to-one correspondence between
9 and J. And Theorem 3.4 shows that this correspondence is an iso-
morphism with respect to the join of any subset and to the meet of subsets
of power <

Generalized X-Boolean Algebra with X-Chain Condition.

4. DEFINITION 4.1 (4.1%). Let L be a generalized X-Boolean algebra
and 2 be an ordinal number. A subset S=(a,; a<<®) of L is called an
ascending (descending) system when a,<<az (a,>ap) for all a<<pg<<L. '

DEFINITION 4.2 (4.2*). In L, if for every ascending (descending) system
S, the power of S is <X, then we say that L satisfies the N-ascending
(descending) chain condition.

DEFINITION 4.3. If L satisfies both X-ascending and -descending chain
conditions, then we say that L satisfies the X-chain condition.
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THEOREM 4.1. If a generalized X-Boolean algebra L with zero element
0 satisfies the R-ascending chain co'ndztwn, then L satisfies, also, the X-
descending chain condition.

PrROOF. Let S=(a,; «<<£) be any descendmg system. Let b, (a<<9)
be such that

: A by=ag, a, ~b,=0.
Then S§'=(b,; a<<2) is an ascending system.”” Since the power of S’ is
<X, the power of S is <X.

THEOREM 4.1*. If a generalized RX-Boolean algebra L with unit element
1 satisfies the R-descending chain condition, then L satisfies, also, the X-
ascending chain condition.
. PROOF. Let S=(a,; a<<£) be any ascending system. Let b, (a<.Q)
be such that
avbh.=1, A~ b =ay.

Then S'=(b,; a<<£) is a descending system, and the theorem holds good.

THEOREM 4.2. If a generalized X-Boolean algebra L satisfies the N-
chain condition, then L 1s a continuous Boolean algebra, and every X-ideal
and dual R-ideal in L 1s principal.

PROOF. In order to prove this theorem, we must show that >1(S) and
1I(S) exist for any subset S of L. If there exists a subset S such that

SI(S) does not exist, then there exists a set S of minimum power having
this property. Let £ be the smallest ordinal corresponding to this power,

and replace S by the system (a,; «a<<£2). By the definition of S, b,=
Sia,; r<a) exists for each «<<2. But, by assumption, > (b,; a<<£2) does
not exist. Now, for each a<<2 there exists a smallest «'<<£ such that
b, =b,; let us denote this «’ by «*. Let K be the set of all «*<<2. Then
the sets (by; a<<9), (b.x; a*€K) are equal, and > (b.+; a*e€K) does not
exist. Therefore the power of K is = X. But (b.,«; a*€K) is an ascend-
ing system, and, by assumption, the power of K is <<¥, which is absurd.

Similarly we can prove the existence of 7I(S) for every subset S of L.

Next, let b be any R-ideal in L. Let £, be the smallest ordinal corres-
ponding to the power of b, and denote all the elements of b by (a,; a<<2p).
Since L is continuous, b=3](a,; a<<2) and b,=>1(a,; r <a) (a<< Q) exist.
As: before, for each a<< £, there exists a smallest «' << £2; such that b,,=b,;
let us denote this o by «*. Let Kj be the set of all a*<<£. Then

(1) For, when a <8< 9, since byAag C by Aaa=0,
' ba=bg Aay=ba A(agVbp)=(baAag)V(ba Abg)=baAbg,
that is, b, < bg. If by=bg, then '
Q= A0g=(agVbg) Aaa=(agAas)V(baAag)=ag,
which is absurd. Consequently b, <bga.
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b=31(0:; a<2)=3(b; a<<2)=31(bss; ackKy). (1)

Since (bar; «* e Kp) is an ascending system, the power of K, is <<®. Hence,
b being an N-ideal, by (1) beb. Consequently b=a(b), as we wished to
prove. ”

Similarly we can prove that every dual X-ideal is principal.

- DEFINITION 4.4.  If a generalized X- Boolean algebra L w1th zero element
satisfies the following condition :
(Ty) For every subset T of L such that
() aeT implies a0,
(B) a,beT, a>b implies a~b=0,
the power of T is <¥;
then we say that L satisfies the X-independence condetzon o

THEOREM 4.3. A generalized R-Boolean algebra L satisfies the X-chain
condition, if, and only if, L has zero element and satesﬁes the R-indepen-
dence condition.

ProoF. (i) First, assume that L satisfies the X-chain condition. Then,
by Theorem 4.2, L is a continuous Boolean algebra. Let T be a subset. of
L which satisfies (a;) and (8;) of (T;). And let 2 be the smallest ordinal
corresponding to the power of T, and denote T by (a,; «<<£). Then, for
every a<<®, b,=>(a,; r<<a) exists. Now, by (5),

. aa/\b "'a/a/\Z(ar, T<a) E(a/a/\a’r’ T<a) 0
Hence a,4 b, and a,vb,>b,. If a<<f<<L, then
bgDaaVb,,>ba-
Therefore (b,; a<<£) is an ascending system. Since L satisfies the R-chain -
condition, the power of (b,; a<<9) is <<X. Hence the power of T<<X.

(ii) Conversely, assume that L has zero element 0 and satisfies the

R-independence condition. If L does not satisfy the X-chain condition, then
there exists an ascending system S=(b,; a<<2) with power R. Let a, be
such that

bavaa—baﬂ ’ ba(\aa_o.;-
Then the power of T'=(a,; a<<£2) is X and
(al) '.afaaF(): since ba<ba+1;
(B) a,~ag=0 when a<<B<<2, since a,Aaz3bgraz=0.,
But, by condition (T), the power of T'<<X, which is absurd.

DEFINITION 4.5. Let L be a continuous Boolean algebra. An element

(1) J.v. Neumann introduced this condition, and proved that, if an ¥-Boolean algebra L
satisfies the ¥-independence condition, then L is a continuous Boolean algebra. (Cf. J.v.
Neumann (2], 8). From Theorem 4.3, we may say that Theorem 4.2 is a generalization of
J. v. Neumann’s theorem.
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a0 of L is atomistic if b<<a implies b=0. The set L, is the set of all
atomistic elements of L; L is atomistic if 31(L.)=1."

THEOREM 4.4. If a generalized Xy-Boolean algebra L satisfies the Ny-
chain condition, then L 1s an atomistic Boolean algebra which is lattice-
isomorphic to the class of all subsets of a finite set.

Proor. By Theorem 4.2, L being continuous, L has zero element 0
and unit element 1. Now, we can prove that > (L.)=1. If >(L.)¥1,
then there exists an element b3=0 in L such that > (L.) ~Ab=0. Since L
satisfies the N4 -chain condition, there exists an atomistic element a such
that a<=b. But a =>1(L,), contradicting >}(L,;) Ab=0. Consequently L
is an atomistic Boolean algebra.

If a,beL,: and a3cb, then gAb=0. Since, by Theorem 4.3, L satisfies
the Xj-independence condition, L, is a finite set. And L is latt1ce isomorphic
to the class of all subsets of L.

DEFINITION 4.6. Let a bean x-ldeal in a generalized X-Boolean algebra
L; if L/a® satisfies the X-chain condition, then we say that L satisfies the
R-chain condition relative to a, and a is called a basic R-ideal of the X-
chain -condition.®

" THEOREM 4.5. If a generalized X-Boolean algebra L satisfies ‘the -
chain condition relative to a, then Lja is a continuous Boolean algebra,
and every R-ideal and every dual R-ideal in Lja is principal.

(1) Cf. J.v. Neumann {2], 19.

© (2) By Theorem 8.1, L/a is a generalized %-Boolean algebra with zero element.

(8) Dually, we can define as follows:

DEFINITION 4.6.* Let a* be a dual w-ideal in a generalized %-Boolean algebra L; if
Lja* satisfies the ¥-chain condition, then we say that L satisfies the w-chain condition
relative to a*, and o* is called a basic dual ¥-ideal of the W-chain condition.

And we have the following theorem:

THEOREM 4.6.* A generalized N-Boolean algebra L satisfies the N-cham condmon re-
lative to a* if, and only if, L satisfies the following condition :

(T¥) For every subset T of L such that

(@) aeT implies -ada*, .
(B) a,beT, acb implies avbea*
the power of T 18 <.

Corresponding to Sec. 5, in an ¥-Boolean algebra L (¥=%, or ¥;), we have lattice func-
tions which are multiplicative, instead of additive, as follows:

(i) Case w=¥y: #@)=—-, n=12,....,
Case ¥=¥;: 0<¢(@)=1;
(i) ¢(a)=mI¢(a;) when a=NIKa;
(I B a; means II{a;; i=1,2,....) w;len a;Va;=1 for all 7).
* THEOREM 5.1.* Set af of all elements a such that ¢(a)=1 is a dual w-ideal in L.

THEOREM 5.2.* L satisfies the \-chain condition velative to aj.
In this way we have dual theorems for those in Sec. 4 and 5; but I omit them.
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Proor. This theorem is evident from Definition 4.6 and Theorem 4.2.

DEFINITION 4.7. Let a be an X-ideal in a generalized X-Boolean algebra
L, If L satisfies the following condition :
(T;) For every subset T of L such that
(@) aeT implies adaqa, v
(B:) a,beT, a>b implies a~bea,
the power of T is <<¥;
then we say that L satisfies the R-independence condition relative to a.

THEOREM 4.6. In a generalized XR-Boolean algebra L, the X-chain con-
dition relative to a is equivalent to the R-independence condition relative
to a. :
Proor. If a subset T of L satisfies (az) and (B) of (T,), then T=
(As; aeT) satisfies (@) and (By) of (Ty). Since a3cb implies A% A4, T
and ¥ have the same power. Next, let T be a subset of L/a which satisfies
(a) and (B) of (Ty). If we take out one element @ such that A,=A for
each AeX, then set T of such an element a satisfies (a;) and (B) of (T2), and
T and % have the same power. Hence L satisfies the X-independence con-
dition relative to a if, and only if, L/a satisfies the X-independence condition.
Consequently the present theorem follows from Theorem 4.3 and Defini-
tion 4.6.

THEOREM 4.7. When a generalized R-Boolean algebra L has zero
dement 0, the NR-independence condition relative to a is equivalent to the
Jollowing condition :

(Ts) For every set T<L such that

(as) aeT implies ada,
(Bs) a,beT, axb implies a~b=0,
the power of T is <X.®

ProorF. It is evident that when L satisfies (T,), then L satisfies (Ts).
Hence we shall show that when L satisfies (Ts), then L satisfies (T:). Let
T be a subset of L which satisfies (az) and () of (Ty). Now, if the
power of T'=> ¥, then there is a subset 77 of T with power X. Let 2 be
the smallest ordinal of power ¥, and write T=(a,; a<<£2). Then for every
a<<®, b,=>(a,; r<<a) exists. Now,

ANl = A 2305 T<a)=(a.~a;; 7<<a).
By the property of T, a,~a,ea. Hence

(1) For, if Ag=A4p, then avVu=bVvv (u,vea).- And a=aAdVv)=(@Ab)V(@Av)ea,
which is absurd. . . .

(2) J.v. Neumann introduced this condition (T;), and proved that, if an ¥-Boolean
algebra L satisfies (Ty), then L/a is a continuous Boolean algebra. (Cf. J.v. Neumann [2],
11) By Theorem 4.6, we may say that Theorem 4.5 is a generalization of J.v. Neumann’s
theorem. Co :
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. : a,~nbea  forall a<<£.
Since a,d:q, a,~b,>xa,. Now let @, be such that ) ‘
(a’aAba)Vda=ad’ (aaAba)Ada=0- (1) -

Since a,~b,Xa, a,5%0. Therefore the power of (@,; a<<£) is R, If
a<<f<<®, then, since G, = a, by, 65 ag we have, by (1),

A AAgThgAdgnag=0.
Next we shall show that a,¢a for all «<<£. For if a,ea, then, since
a,~b,ea, we have, by (1), a,eqa, which contradicts the assumption of T.
Consequently (@y; a<<2) satisfies conditions (a5) and (Bs) of (T;). Hence,

by assumption, the power of (d@,; a<<2) is <X, which is absurd; and the
proof is complete.

THEOREM 4.8. Let a, b be R-ideals in a generalized X-Boolean algebra
L, such that a<b. If L satisfies the R-chain condition relative to a, then
L satisfies, also, the R-chain condition relative to 6.

Proor. If L satisfies the N-chain condition relative to q, then, by
Definition 4.6, L/a satisfies the X-chain condition. Hence, by Theorem 4.3,
L/a has zero element and satisfies the X-independence condition, that is,
(T)). Hence Lja satisfies (Ts) with respect to the X-ideal B, B being the
image of b under the homomorphism L—L/a. Therefore, by Theorem 4.7,
L/a satisfies the R-independence condition relative to B. Hence, by Theorem
4.6 and Definition 4.6, (L/a)/®B satisfies the XR-chain condition. Therefore by
Theorem 3.3 L/b satisfies X-chain condition. Conseqnently, by Definition 4.6,
L satisfies the R-chain condition relative to b.

THEOREM 4.9. If a genmeralized X-Boolean algebra L satisfies the X-
chain condition relative to an R-ideal a, then class 9 of all R-ideals which
contain a i8 an R-Boolean algebra.

ProOF. From Theorem 3.5, ) is isomorphic to class J of all X-ideals
in L/a with respect to the join of any subset- and to the meet of subsets
of power <<X. But, by Theorem 4.5, every N-ideal in L/a is principal;
hence, by Theorem 2.2, J is a generalized ®-Boolean algebra. Obviously,
& has zero and unit elements. Consequently ) is an X-Boolean algebra.

If we extract the complementedness of the X-Boolean algebra 9, then,
from Theorem 4.9, we have the following theorem, a being zero "elementA
of 9.

THEOREM 4.10. If a generalized N-Boole(m algebm L satzsﬁes the x-
chain condition relative to an X- ideal a, then, for any R-ideals b, ¢ such
that ac=bc¢, there exists an R-ideal d such that

bvb=c, bad=a.

(1) If L has zero element, then this theorem is evident from Theorems 4.6 and 4.7.
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THEOREM 4.11. In a generalized X-Boolean algebra L, class Py of all
basic R-ideals of the N-chain condition is a generalized R-Boolean algebra
with unit element ¢. And aePy, be, bDa mplies bePy.

PROOF. If aePBy and b>a, then, by Theorem 4.8, pePy. Hence Py
being the subset of &, by Theorem 2.1, Py is closed with respect to the
join of any subset. Next I shall show that Py is closed with respect to the
meet of subsets of power <<X. Let & be any subset of Py of power <<X.
Let 2 be the first ordinal corresponding to the power of &, and write
S=(a,; a<<£). Since & is the subset of ¥, by Theorem 2.1 a=11(a,; a << 2)
exists. Let T be any subset of L which satisfies (az) and (5;) of (T,) with
respect to a. Denote by T, the set of all elements of T which is not con-
tained in a,. Since T, satisfies (ap) and (8, of (Tz) with respect to a,, the
power of T, is <<X. Since T is the set-theoretical sum of T, («z<<£), the
power of T is <<X-X=¥. Consequently L satisfies the X-independence
condition relative to a, and a is a basic R-ideal of the X-chain condition.
That is, aePy.

Now the complementedness and the distributivity of P, follow from
Theorems 4.10 and 2.1 respectively. The proof is thus completed.

When L has zero element 0, and the X-ideal o belongs to Py,. it is a
very trivial case; for in this case Py=3S, and, by Theorem 4.2, all R-ideals
in Py are principal; hence, by Theorem 2.2, P, is is isomorphic to L.

By Theorem 4.11, Py is a generalized X-Boolean algebra with elements
a,b,¢,.... Hence, in Py we can define dual X-ideals, which we denote by
A%, B*, €*,.... And let &% be the class of all dual R-ideals in Px. Then
we have the following theorems.

THEOREM 4.12. Ewery dual RX-ideal B* in Py contained in a p'rmczpal
dual R-ideal A*(a) in Py, is also principal. ‘

Proor. Since aePy, by Theorem 4.11 A*(a) is a class of all elements
b of I such that b>a. Hence, by Theorem 3.5, A*(a) is isomorphic to
class I of all X-ideals in L/a with respect to the join of any subset and
to the meet of subsets of power <<X. Since aeP,, L satisfies the X-chain
condition relative to a, therefore, by Theorem 4.5, § is isomorphic to L/a
and every dual X-ideal in L/a is principal. Consequently, B* being a dual
R-ideal in A*(a), B* is principal, as we wished to prove.

THEOREM 4.13. Class @y of all dual X-ideals in Py s a continuous
Boolean algebra.

ProOF. By Theorem 4.11, B is a generalized ®R-Boolean algebra with
unit element e. Hence, applying Theorem 2.4* to P instead of L, by
Theorem 4.12, the assertion of the present theorem holds good.
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' Generalized X-Boolean Algebra of Measure Functions.

5. In what follows, let L be an X-Boolean algebra, where X=1¥,
or ¥

DEFINITION 5.1. If, to any element a of L, there corresponds a real
(finite) number ¢(a) such that
.o (i) Case ®=¥;: ¢la)=n, n=0,1,2,....,

Case X=¥%;: 0 4¢(a);

(i) ¢l@)=>¢(a;) when a=>Da;V;
then we say that ¢(a) is a measure function defined in L.

Denote by & the class of all measure functions defined in L, where
R=¥; or ¥, ‘ :

It is to be noted that (ii) implies ¢(a)+ ¢(b)=¢(ab)+¢(@a~b). For let
¢ be such that (aAb)ve=a, (aAb)Ac=0. Thencvb=cv(aAb)vb=avbh,
enb=(anb)~c=0. Hence ¢la)=g¢larb)+¢(c) and ¢(a‘ b)=g(c)+ @(b).

Consequently ‘ B(a)+ p(b) = p(a b)+ olan b).

THEOREM 5.1. Set a4 of all elements a such that ¢(a)=0 is an X-
ideal in L.® ‘ .
ProoF. If b—a and ¢(a)=0, then, since’

dla)=pb)+ (),
where ¢ is an element such that bve=a, bArc=0, we have ¢(b)=0. Let
(a;;7=1,2,....) be a subset of a; of power <<X; then, since ¢(Za,) <
Se(as), ¢ a;)=0, that is, Sja;ea;. Consequently a, is an XR-ideal.

THEOREM 5.2. L satisfies the R-chain condition relative to a,.
Proor. From Theorems 4.6 and 4.7, to prove the present theorem, it
is sufficient to show that L satisfies the following condition :
(Ts) For every set T<<L such that
(@5) aeT implies ¢(a)>0,
(Bs) a,beT, a3bdb implies aAb=0,
the power of T is <¥,
When X=¥, then ¢(a)=1 for any aeT. Since ¢(1) is finite, by the
additivity of ¢(a), the power of T must be finite.
When X=1¥;, by the complete additivity of ¢(a), power of set S of

those elements ae T, such that %g¢(a)>¢2—}ﬁ-{ is finite. Hence power of

T is R,

(1) We write 3@ a; in place of > (a;; 1=1,2,....), provided a;Aa;=0 for all i:j.
k2 " ) :

(2) It has-already been pointed out by A. Tarski that an ¥,ideal a is a prime ideal
when, and only when, a=ag4, where ¢(a) takes only-two values 0 and 1. (Cf. A. Tarski,
Fund. Math. 15 (1930), 42.)
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If we denote by DN the set of all X-ideals a4 (¢€Fy), then, by Theorem
5.2, QO is a subset of Py (R=¥, or ¥)).

THEOREM 5.3. Q= By

PRrRoOOF. Since Qy, < Py, we must prove that Py, < Qy,. Let aePy,;
by Definition 4.6, L/a satisfies the X,-chain condition, and hence, by Theorem
4.4, L/a is lattice-isomorphic to the class of all subsets of a finite set. When
AeLfa, if n is the number of elements of the subset which corresponds
to A, then define ¢(A)=n. Then ¢(A4) is a measure function defined in
L/a. Now define ¢(a)=¢(A) when aeA. Then ¢(a)=0 when aea. Let
(a;; ©=1,2,....,v) be any set such that a;~a;=0 when <3j. Then
Aai/\A.,j=A,,imj‘1’=Ao=O when 73j. Now

$(310) = p(Ars) = S A, )P =1 ¢(A,) =S ¢(as).

Consequently ¢(a) is a measure function such that a=a, That is, aeQy,
and Py, S Qy,, as we wished to prove.

THEOREM 5.4. Qy, 18 a dual Xy-ideal in Py, ; hence Qy, 18 a generalized
R;-Boolean algebra with unit element. And class ¥y, of all dual xl-zdeals
m Qy, 18 @ continuous Boolean algebra.

Proor. (i) Let S=(a4;¢=1,2,....) be a denumerable subset of Q..

Put (@)= E ¢1(a)

YO | |
Then ¢(a) is a measure function. Since ¢(@)=0 when, and only
when, ¢i(a)=0 for all ¢ we have a;=H(ay; i=1,2,....). Hence

IKa,, ; i=1,2,....)eQn. »
(i) Let aeQy, bePy, and b>a. Let ¢(a) be a measure function
such that a=aqs;. By Theorem 4.10, there exists an X;-ideal ¢ such that
’ bve=e, bAc=a. ' ’
By Theorem 2.1, every element aee is expressed in the form a=5bV ¢ where
beb, cec. Since bacebAac=aqa, and ¢(bAc)=0, we have
Pla)=g(b)+¢(c) .

The value of ¢(c) is uniquely determined for a definite element a. For, if
a=>b,\v¢; where beb, ¢ ec, then , :
c=c/\a=0/\(b1vcl)=(c/§b1)v(0/\c,)
and cAbjecnb=a; hence we have ¢lc)=g¢lcnc). Similarly ¢le)= dle~ey).
Consequently ¢(c)=¢(cy). Co

Now, put ¢(a)=g(c). '
(@) ¢(a)=0 when aeb, and ¢(a)=0.

.(1) By (2) in the proof of Theorem 3.1, .
(2) By (1) in the proof of Theorem 3.1,
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() When a=>®a; put

a,=b,;VC,;, b,-eb, Cc;€C,
for all 4. Then a=>1®b;v21®c;, and > Pb;eb, S1Pc;ec. Hence

$(@) = (S @) =S 9(c) =5 9(e:).

(r) #a)>0 when ad:b. For, when ad:b, let a=b- ¢, beb, cec. If
cea, then ceacb and a=bvceb, which is absurd. Hence cd:q, and
#(c) 0. .

Thus ¢(a) is a measure function such that b=a,. Consequently beQy,.

From (i) and (ii), Qg is a dual XR;-ideal in Py,. .

(iii) By Theorem 4.13, class @%, of all dual X;-ideals in By, is a con-
tinuous Boolean algebra, ¥}, being the set of all dual ¥-ideals U™ in Py,
such that A* <= Qy, ¥4, is also a continuous Boolean algebra. ‘

6. Let ¢(a) and ¢(a) be two measure functions in Fy,. If ¢(a)=0
for all @ such that ¢(a)=0, then we say, as in the theory of set functions,
that ¢(a) is absolutely continuous with respect to ¢(a), and write ¢ <¢ or
¢>¢.P To indicate that the relations ¢<¢, ¢< ¢ both hold good, we
write ¢~¢. )

Since ¢ <¢ when, and only when, a, Day, if we use the relation < as
the order in the lattice theory, then ¥y, is dual-isomorphic to Qy,. Hence,
from Theorem 5.4, we have

THEOREM 6.1.% System Ty, of all measure functions is a generalized
R-Boolean algebra with zero element.® And class ¥y, of all R-ideals in
T 18 @ continuous Boolean algebra.

Of course, the zero element of n, is the function ¢(a) such that
¢(a)=0 for all acL.

Appli,cafion to the Spectral Theory.

7. Let  be a complete complex Euclidean space, with elements f, g,....,
that is, a space which satisfies all the axioms of Hilbert space except the
axiom of separability. Let E(a) be a projection defined for all elements a
of an X,-Boolean algebra L. If E(a) satisfies the following conditions, then
we say that E(a) is a resolution of identity in the generalized sense.“’

(1) This definition is a generahzatlon of that used by M.H. Stone. Cf. M. H. Stone,
Linear Transformations in Hilbert Space, (1932), 214.

(2) Direct proof of this theorem, using the functional property of ¢(a), is given in
Sec. 9.

(8) From Theorem 6.4, Fy, is closed with respect to the operatlon of meet of any sub-
class of .

(4) This is a generalization of the ordinary defined resolution of 1dent1ty E@). (CL.F.
Maeda [1], 78 ; K. Friedrichs [1], 54-58; F. Wecken [1], 443.) .
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(@) E(a)E(b)=0 when a~b=0; :
(8) E(@)=E(a)+E(ap)+ ----+E(a)+ -+ when a=3Da,
(T) E(l)"—‘l. 3

Let a, b be any elements in L. And let ay, by be the inverses of a~bd
in a and b respectively. That is,

: a=(a~b)®ay, b=(a~b)®b,.
From (B), we have

E(a)=E(a~b)+E(a;), E@b)=E(anb)+E(b).
Since a;Ab;=0, from (a) we have ‘ ‘
(@) E(@)E®)=E(@~b).
(«") shows the permutability of E(a).

Let f be any element in . Then, from ('),

(E(a)f, EQ)f) = E(@)E(b)f IP=1 E(@~b) fIF = o(a~b) ,
where s(a)=|E(a)fI2. Hence

(E(@)f, E(®)f)=0 when anb=0. )
From (8), when a=>®a,, .
E(a)f=E(a)f+E(af+ - - - - +E(a;)f+ - - @

From (1) and (2), we have
a(a)—a(a1)+o(a2)+ cotola)+ -
Then o(a) is a measure function as defined in Sec. 5.

Let f be any element in ©, and let a; be the class of all elements aeL
such that E(a)f=0. If we put |E(a)flP=s(a), then o(a) is a measure
function, and-a;=a,. Hence a; is an ¥;-ideal in L contained in Q4 and
therefore in Py, ‘

Denote by IM(f)- the closed hnear manifold determined by E(a)f when
a runs over L.

LemMA 7.1, If ge(S), then a;ca,. -
Proor. If geIN(f), then g is a limit of a sequence of elements of

the form
h = alE (al)f + (IzE (az)f + - -+ anE,(a/n) f

where o’s are complex numbers. Hence, by (o), E(b)g is the limit of the
sequence of elements of the form

E(b)h—alE(bAal)f+azE(b/\a2)f+ e +’1nE(b/\an)f'

But if beas then E(bra;)f=0 (:=1,2,....,n) and E(b)h=0, Hence
E(b)g=0, Consequently ar<a,.
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LEMMA 7.2. If asva,=e, then M(S)-LM(g).
PROOF. Let g=g,+9; where g;eM(f) and g»-L M(f). Smce E(a)g=

E(@)g+E(a)g, and (E(a)gy E(a)g:)=(E(a)gs, gz) =0,

we have 1 E(a)gIP=|E(a)g, >+ E(a)g.|?.

Hence Gy ay, .

Since g, M(f), by Lemma 7.1 we have a;< qa,,. Consequently a,, DasVva,=e.

That is, E(a)g;=0 for all aeL. Therefore g;=0, and gL M(f). ~ That is,
M(g) L M(f).©

LEMMA 7.3. Let b be any xl-wleal contained in Py, such that b:)a_f'
Then there exists an element ceL such that
b=qa, where g=E()f.
ProoF. By Theorem 4.10, there exists an ¥;-ideal ¢ in Py, such that
‘bve=e, bAac=qr.
By Theorem 2.1, smce lee, we have
1=bve where beb, cec.
Now, put g=E(c)f. If aeb, then E(a)g=0. For
| E(a)g=E@E(@)f=E@ro) f
by (o), and ancebrc=as .
If adb, then E(a)g30. For if not, then E(a~c)f=E(a)g=0 and
anrcea, b, Since
a=anl=an(bve)=(anbd)v(arc)

and a~beb, we have aeb, which is absurd.
Thus aeb when, and only when, E(a)g=0. That is, b= a,

THEOREM 7.1. Class (a,; geM(f)) is a principal dual Ri-ideal A*(ay),
m Py, (or in Q). ’

Proor. (i) If geIM(f), then, by Lemma 7.1, a,=a,.

(i) Next, let b be any Ny-ideal in Py, (or in Qy,) such that bDay
Then, by Lemma 7.3, there exists an element ge M(f) such that b=aq,.

From (i) and (ii), the theorem is proved.

THEOREM 7.2. Class Re of all ar such that fe$ is a dual Nl-'ideal n
PBu'?. Especially when © is separable, Rg is a principal dual R;-ideal
in §BN1

ProoF. There exists a system (f;; fie®, 7eI) such that the closed
linear manifolds M(f;) are mutually orthogonal and

(1) For, since (g, E(a)f)=0 for all a ¢ L, (E(b)g, E(@)f)=(g, E(bAa)f)=0 for all a,bel.
(2 Or in Qy,.
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Since A*(ar) is a dual Xy-ideal in Py,, if we apply Theorem 2.1* to Py,

instead of L, then join %*=Z(?I*(afi); ieI) is a dual X;-ideal in Py,.
Let' g be any element in $, and g; be the component of g in IM(f).

Then g;=0 for all ¢ except a denumerable subset I, of 1. And ¢g=>g.

Then llE(a)gl|2=i§lllE(a)gi[l?. Hence a,=1l(a,,; vely). Since, by Thezcjxfém
7.1, a,eA*(a;) =B*, we have a,eB*. Consequently
Re =B*.
Next, let a be any element in B*. Then, by Theorem 2.1%,
a=11(a,,; a,,e%*(az), iel),
where [; is a denumerable subset of I. Put g=i§1aigi’ where (a;; 1ely) is
a system of complex numbers such that aglaigi converges. Then, since
lIE(a)gllz=i§‘| ;2| E(a)g;®, we have a,=II(a,,; iel;). Thatis, a=aq, Hence
B* < Rg.

Consequently Rg=23%, and the first part of the theorem is proved.
Especially when 9 is separable, then I in (1) is denumerable. Hence
put f =Zl_a,-f,-, where (a;; 7¢I) is a system of complex numbers such that

2of; converges. Then, since |E(@)fF=3|aIE@)fiF, we have a/=
Mas;; iel). And B*=%A"(ap).

From Theorem 7.2, Rg is a generalized X;-Boolean subalgebra of Py,
with unit element e¢. And especially when $ is separable, Rgp is an ;-
Boolean subalgebra of Py, with zero and unit elements.

Let 0% be the class of all dual X;-ideals A* in Rg. Since Re is a dual
Rj-ideal in Py,, and, by Theorem 4.13, class @y, of all dual X;-ideals in Py,
is a continuous Boolean algebra, 6%z being the set of all dual X-ideals UA*
such that A* = Rg, 6% is also a continuous Boolean algebra.

THEOREM 7.3. Let A* ez, and My« be the class of all elements e
such that areA*. Then My« 18 a closed linear manifold, and

SIRQ[* -Lmsx*\, ﬂnm*@gﬁsj{*\=®,

iuhere A** s the inverse of A*,
Proor. (i) Let feMyx, geMys«. Then aeA*, a,eA™. Since

(1) Give % a well-order type. We find the elements of P=(f;; fie®, ieI) by trans-
finite induction as follows: g belongs to P when, and only when, l[gl>0 and g is ortho-
gonal to M(f) for all feP which have lower rank than g in the well-order type. Since
(E(@)f, E(b)g)=(E(aAb)f,g)=0, M(f) (feP) are mutually orthogonal. (5 means the
closed linear sum.) E vel
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A*AA*' =0 we have, by Theorem 2.1%, arva,=e¢. Hence, by Lemma
7.2, fLg. Consequently Wgs L WMors-. . ~

(i) Let g be any element in © such that gL My«.. Then A* AA*(a,)
=90*. For if not, by Theorem 4.12 there exists bePy such that

A AA*(a,)=A*(0).

Since A*(H)<=A*(a,), we have b>a,. Then, by Lemma 7.3, there exists
an element ¢;=E(c)g such that b=aq,. Let f be any element in My
Then, since E(c)fe My, we have

(9, )= (E()g, f)=(g, E(c)f)=0.

Hence ¢;-L My«. But, since A*(b)=A™', we have a, =0eA*. Hence
g1€ Myx, which is absurd.

Consequently : A*(a,) =A™,
that ‘is, a,e%A*. Hence, from (i), My« is composed of all elements g such
that gL My«. Therefore Wy« is a closed linear manifold.

(iii) Let 2 be any element in . And put

h=f+g where feMMy+, g-L My

By (li), geﬁmm*\. Hence -€)=§D}m*@ﬂnﬁ*\.

THEOREM 7.4. WMy« defined for all A* e B has the following properties :

(i) S)Rsz(* -LEJR;B* when QI*/\%*=Q*, ‘ ‘

(ii) mu*-—-agmm; when A*=1AT; ael),

(i) Dy« =(§®imm: when A*=>(AT; ael),

(iV) m(}*:O(D and m}@*=&),
where O and €* are zero and unit elements of OF respectively.

Proor. (i) If A*AB*=90% then B* =A™ and My« < My+.. Since,
by Theorem 7.3, Myx L My, we have Myx -L M.

() If A*=IIA;; ael), then A*=A; and WMope < Myx for all ael.
Hence , WMo < aIeII Doy . 1)

Let feMMyx for all ael; that is, a;e; (ael). Then areA™. Consequently
SeMyx. Therefore v .

: Wogx Da]eIIm%: . (2)
From (1) and (2), (ii) is proved. -

(iii) If A*=(AS; ael), then A* DA and Warx D WMyex for all el
Hence . Do« DE@ Do . (3)
Let f be any element orthogonal fo all WMy (ael). Then, by Theofem 7.3,
feMyx: for all ael. Since A=I(AX; ael), by (ii) EUIW*\=IIIEIRW;‘.
Hence fe My« Therefore, by Theorem 7.3, f-L Myx. Consequentf; .

(1) This means that Mo is composed of only one element 0 in $.
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Wayx < %@mm; . 4

From (8) and (4), (iii) is proved.
(iv) This is evident from the definition of Myx.

8. By Theorem 7.4 My« satisfies the following conditions :
(a m;;I*J-ﬂnm* when QI*/\$*=>9*,
%)) mm*=2@%; when A*=>1DA;,

N Mex=9.

That is, (My+; A*eOE) is a complete orthogonal system of closed linear
manifolds in § whose index is the element of the continuous Boolean algebra
6. Let F(A™) be the projection of  on My«; then F(A*) satisfies the
following conditions:

(@) FA*)F(B*)=0 when A*AB*=O%, ,

B FAY)=FA)+FA3)+---+-+FA;)+ ---- when 2I*=¥@2I,T,

() F(E")=1.

As defined in Sec. 7, F(A*) is a resolution of identity in the generalized
sense defined in 6% Thus, from a resolution of identity E(a) defined in
L, we obtain a resolution of identity F(N*) defined in 6z In what follows,
I shall investigate the relation between E(a) and F(X*). :

THEOREM 8.1. Let UA; be the class of all areRg such that ar>a(b’),
where b 18 the inverse of b. Then Ui 6%, and the system (UAF; bel) is
an Ry-Boolean algebra which is isomorphic to L with respect to the join
and the meet of subsets of power <¥,.

ProoF. (i) It is evident that 2 is a dual X;-ideal in Rg, that is,
A3 € OF. ‘ :

(i) If b>ec, then a(®’) =a(c’); hence Ay DA . :
(iii) Let b=3>1(c;;1=1,2,....); then V' =II(c}; 7=1,2,....). Since

*b>De;, by (i) A :D%I;‘;. for all <. Hence
A D(AZ; i=1,2,....). 1)

Next, let ar be any element in A;. -Then, by Theorem 2.2,
afDa(b’)=II(a(c§) ; 1=1,2,... ) .
Put b;=asvalc), and E(c;)f=g;; then, since E(a)g;=E(a)E(c,)f=E(anc,)f,
we have a, =b;e?;. Now
ar=asv Il(a(cé) s 1=1,2,... ) =H(afva(c§) s i=1, 2... .)‘2’
=1l(a,,; i=1,2,....).
Hence Ay =AU 1=1,2,....)%, 2)

(1) Cf. F Maeda [2], 111.
(2) By Theorem 2.1.
(3) By Theorem 2.1.*
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From (1) and (2), we have

A =33(A; i=1,2,....).
(iv) Let b=1Il(c;; ©=1,2,....); then ¥'=3l(c}; 1=1,2,....). Since
bce;, by (i) QIQ‘CQIZ. for all 7. Hence '
A < HQAU; i=1,2,....). 3)

Next, let ar be any element in /I(Z; i=1,2,....). Then asDa(c;) for
all <. Hence

0,25 (ale); i=1,2,....)=a(®).
Therefore A DAL ; i=1,2,....). “4)
From (3) and (4), A =M(A; 1=1,2,....).

(ii), (iii), (iv) show that the correspondence b<>; between L and
(A7 ; beL) is an isomorphism with respect to the join and the meet of
subsets of power <<¥;. :

THEOREM 8.2. E(a) is imbedded in F(A*) in such a manner that

E()=F}) forall aeL. _

ProOF. Let E(b) be the projection of  on the closed linear manifold

Ne. If feN,, then E@B)f=f and
E@)f=E(@E@®) f=E(anbd)f.
Hence a,>a(Y), that is, feMyy. Consequently

N, = imax;f . (1)
Next, if feMyy, then ayDa(¥’). Hence E(Y)f=0, and feN,. Consequently
Wzm;zk [ ‘Rb . (2)

From (1) and (2), we have %R,=Myx, which shows that E(b)=F(A3).

From Theorem 8.2, we may say that F(U*) is an extension of E(a).®

Direct Proof of Theorem 6.1.

9. In Sec. 6, we have Theorem 6.1 as a simple application of the
general theory of ideals in a Boolean algebra. In what follows, I shall
give a direct proof of this theorem, using the functional property of ¢(a).
For this purpose I shall first prove the following lemmas:

LeMMA 9.1, Let ¢(a)eSy, and let b be an Ny-ideal such that b>a,.
Then there exists an element beb such that, if we put ¢ (a) pland’),
¢ *(@)=g¢(anb), ¥ being the inverse of b, then

(1) When L is a ¢-field of Borel sets in the space of real numbers, E(a) is a resolution
of identity of a self-adjoint operator A. And in this case the extended resolution of identity
F(%*) is useful for the investigation of the unitary invariance of A. (Cf. F. Wecken [1])
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(a)=¢"(a)+¢"*()

and b=a 6% QA =e.

ProoF. Let a be the least upper bound of ¢(a) for all a such that
aeb. Then there exists a sequence of elements (a;; 7=1,2,....) such that
a;eb and lim¢(a;)=a. Put b=>(a;; i=1,2,....). Then beb. Hence

>0

#p(b)<a. Since b>Da; ¢(b)=¢(a;). Hence ¢(b)2]j;£ ¢(a;)=a. Consequent-

ly ¢(b)=a.
Let b’ be the inverse of b. And put

¢*(a@)=¢land’) and ¢**(@)=¢(and). 1)
Then it is evident that ¢*(a), ¢**(a) belong to Fy,, and
pla)=¢(a)+¢**(a). (2)

If apeb, then, since a,\beb, we have ¢(apvb)<a. But a=
#(b) < ¢(agvb). Hence ¢(agvb)=g¢(b). Now
$(a0\/ )+ plag A b) = plan) + p(b) .
Hence ¢(aonb)=¢(ag). And, by (1), ¢**(ag)=¢(a,). Consequently, from
(2), ¢*(ag)=0. Hence '

b=a,x. 3)

Next we shall prove that b Da o For tlr;is purpose, let ¢*(ag)=0;
then, from (1), ¢(ay~Abd)=0; hence apAb’eaz;=b. Since ao/\beb we have
ag=(agAb)\(ag~b)eb. Consequently

b>a,. 4

From (3) and (4), b=a,

Let a be any element in L; then

a=(anb)v(and).

Since, by (1), a/\bea¢x, aAbfeq¢xx, we have BEA N A xx

Hence e=0,x V0 xx

LEMMA 9.2. When ¢<¢, there exists an element b, such that byeay
and ¢(by) is the least upper bound of ¢la) for all aeay; and if we put
gi(@)=glandy);  ¢;*(@)=plandy),
then pla)=¢5 (@) +¢;* (@) ,P
and o~y GNPy ~0.®
PROOF. Since a;>a, if we put a, instead of b, then the present
lemma follows from Lemma 9.1..

(1) ¢;(a) and ¢ *(a) correspond to the “ Regularititsfunktion” and “Singularitatsfunk-
tion” of ¢(a) with respect to ¢(a) in the theory of set functions. Cf. H. Hahn, Theorie
der reellen Funktionen I (1921), 421. '

(2) 0 is the zero element in Fy,.
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DEFINITION 9.1. When ¢ <¢, the element 'b¢, in Lemma 9.2 is called
a basic element of ¢ with respect to ¢.V

LEMMA 9.3. The basw element b, of ¢ with respect to ¢ has the follow-
ing properties :
(1) If 5a<<¢, then ¢(by,) = ¢(by,).
(ii) n<<¢s s equivalent to @(by, ~b,,)=0.
(i) If ¢sw<<¢p and ¢(b,)=0¢(by,), them ¢1~¢a
Proor. (i) is evident, since ¢(b,) is the least upper bound of ¢(a) for
all aeay.
(i) When ¢;<¢y, put c=by,Aby,. Since by, Acby, Aby,=0, we have
P(by, v 0)=(by,) +9(c) .
Since ceay, < ay, we have by, \vcea,. Hence, ¢(bs,) being the least upper
bound of ¢(a) for all aeqay,
¢(b¢1 \/C) = ¢(bd/1) .
Consequently ¢(c)=0.
Next, assume that ¢(bj, Ab,,)=0. By Lemma 9.2,
(@) ~gi(a)=planby),  gola)~pila)=planby,).
Now, Hanby)=planby Aby)+pl@anby Abj,)
< ¢y, Aby,) + planby,) =planby,).

Consequently, 1f ¢a(a)=0, then ¢(a)=0. That is, ¢1<¢s.

Gii) If ¢, <<¢, and not ¢;~¢,, then there exists an element o such
that ¢y(@)=0 but ¢s(a)>0, and a~b,,=0. Since ¢»<¢, ¢(a)0, and since
d(@)=0, ¢1(by,\va)=0. Hence, by the property of by, we have

P(by, ™ a)=p(by,) . 1)
From ¢, <¢s, by (ii), ¢(by, ~by,)=0. Hence
¢(b¢1 N b‘/’z) = ¢(b¢'2) . (2)

Now ¢(a)30 and a~by,=0; we have, by (1) and (2),
| B(by,) < Plby,) + P(@)=9(by, @) < Plby, by @)
= $(b4)+ Pbs, @) — ¢(bgu ~ (by, v @)
= @(by,) + P(bg,) — $(by, A by, )P = p(by,) .
Consequently, if ¢(bs,)=¢(b,,), then it must follow that ¢1~¢».

Direct Proof of Theorem 6.1. '(i) It is evident that $y, is a partially
ordered set with respect to the order <.

1) If L is a o-field of sets E, then ¢(E), ¢(£) are completely additive set functions,
and when ¢ < ¢, there exists a point function f(x) such that ¢(E)=S = Sf(x)dg(E). In this
case, by corresponds to the set of all points # such that f(x)=0. :

(@) For by, A(bg,Va)=(bya Abp)V (by, A@)=by, V by,.
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(ii) . Let S=(¢:; ©=1,2,....) be a denumerable subset of Tae Put
da)= 2 ¢da) . then ¢(a)eFy,. And ¢(a)=0 when, and only when,

T 2¢(1)
¢i(@)=0 for all 7. Hence

ag=1l(a4,; 1=1,2,....) and o~ (s 1=1,2,....).
EspeciaHy A1 P~ + P, (1)

Let S=(¢;; ©=1,2,....) be a denumerable subset of Fy,. Then, by
Theorem 2.1, b=31(ay,; 1=12,....) is an Ry-ideal in L, and bDa,,. By
Lemma 9.1, there exists a function ¢eFy,, such that b=a,. And

o~Il(¢;; i=1,2,....). 9

(i) Let ¢eFy, and S=(¢;; 7=1,2,....) be any denumerable subset

of Fx,. Then, by Theorem 2.1,

a¢/\2(a¢i; 1=1,2,.., .)=2(a¢/\a¢i; 1=1,2,....).
This means that ¢\ II(¢;; 1=1,2,....)~I(pv¢;; i=1,2,....).?
Similarly, ¢AD(¢i; 1=1,2,...)~(pAg:; 1=1,2,....).

Thus the distributive law in the generalized sense holds good.

(iv) Let ¢, ¢ be such that ¢<¢. Then, by Lemma 9.2, there exist
¢s(a), ¢5(a) such that

pla)=¢3(a)+¢;*(a),
and ¢;~¢, ¢;~¢;*~0. By (1), we have

pvgi ~¢,  gAgg*~0. (2)
Hence ¢;> is the inverse of ¢ in ¢.
When y<¢<¢. Put €=¢;*+y. Then we have, from (2),

p~Ppv A~ (P Pg ) v A~PvE,

and A~y ~(PAPF )y~ NE, by (iii).
Hence Ty, is complemented in the generalized sense.

Thus Fx, is a generalized X;-Boolean algebra with zero element

(v) To prove that class ¥y, of all X-ideals in Fy, is a continuous
Boolean algebra, by Theorem 2.4 it is sufficient to show that every X;-ideal
B in Fy, contained in a principal X;-ideal a(¢p) is also principal.

If 9B, then ¢<¢. Let a be the greatest lower bound of ¢(by) for
all ¢e®B. Then there exists a sequence (¢;; 1=1,2,....) such that ¢;e®B
and 1112 ¢(b¢’i)=“' Put 21(¢:;7=1,2,....)=x. Then ye®B and ¢;<x. Hence

¢(b¢i)g¢(b,) for all 7. Consequently a«=¢(b,). On ther other hand, since
2€3B, by the definition of a ¢(b,) =a. Therefore ¢(b,)=a.

(1) This proof holds good for any subset S of Fn,. Hence Fn, is closed with respect
to the meet of any subset of Fx,.

(2) This relation holds good when the power of S is =>¥;. Cf. Theorem 2.1, and foot-
note above.
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Next, let ¢ be any element in B. And put &(@)=x(a)+¢(a). From
£e®B, we have ¢(bs) =a. And from &>y, we have ¢(b;) < ¢(b,)=a. Con-
sequently #(b)=g¢(b,). Hence, by Lemma 9.3 (iii), £~x. Since E~xv¢,
we have y>¢. Therefore B is a principal xl-ldeal A (). '
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