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Abstract. In the present paper, we study the pseudo-Hermitian almost CR structure

of unit tangent sphere bundle T1M over a Riemannian manifold M. Then we prove

that if the unit tangent sphere bundle T1M is pseudo-Einstein, that is, the pseudo-

Hermitian Ricci tensor is proportional to the Levi form, then the base manifold M is

Einstein. Moreover, when dim M ¼ 3 or 4, we prove that T1M is pseudo-Einstein if

and only if M is of constant curvature 1.

1. Introduction

It is well-known that the unit tangent sphere bundle T1M over a

Riemannian manifold M admits a pseudo-Hermitian, strictly pseudo-convex,

almost CR structure ðh;LÞ (or ðh; JÞ), where L is the Levi form associated with

an endomorphism J on Dð¼ kernel of hÞ such that J 2 ¼ �id. Here, J defines

an almost CR structure H ¼ fX � iJX : X A GðDÞg, that is H \H ¼ f0g.
We say that the almost CR structure is integrable if ½H;H� � H. For com-

plex analytical considerations, it is desirable to have integrability of the almost

complex structure J (on D). If this is the case, we speak of an (integrable)

CR structure and of a CR manifold. Indeed, S. Webster ([16]) introduced

the term pseudo-Hermitian structure for a CR manifold with a non-degenerate

Levi-form. In earlier works [3], [5], [7], we started the intriguing study of

the interactions between the contact metric structure and the contact strictly

pseudo-convex almost CR structure. In the present paper, we treat the

pseudo-Hermitian structure on T1M as an extension to the case of non-

integrable H.

There is a canonical a‰ne connection in a non-degenerate CR manifold,

the so-called pseudo-Hermitian connection (or the Tanaka-Webster connection).

S. Tanno ([15]) extends the Tanaka-Webster connection for strictly pseudo-

convex almost CR manifolds (in which H is in general non-integrable). We

call it the generalized Tanaka-Webster connection.
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We define the pseudo-Hermitian Ricci curvature tensor in a strictly pseudo-

convex almost CR manifold ðM; h; JÞ by

r̂rðX ;YÞ ¼ trace of fV 7! R̂RðV ;XÞYg;

where X , Y and V are any vector fields on M.

If the pseudo-Hermitian Ricci curvature tensor is proportional to the Levi

form in a strictly pseudo-convex almost CR manifold, then it is said to have

the pseudo-Einstein structure. In Section 3, we obtain the pseudo-Hermitian

curvature tensor and the pseudo-Hermitian Ricci curvature tensor (of gener-

alized Tanaka-Webster connection) on T1M. In Section 4, we prove that

T1M is pseudo-Einstein, then M is Einstein (Theorem 4). Moreover, when

dim M ¼ 3 or 4, we prove that T1M is pseudo-Einstein if and only if M is of

constant curvature 1 (Corollary 5 and Theorem 6).

The authors are thankful to the referee for a careful reading of the

manuscript and useful comments.

2. Preliminaries

First, we review some fundamental facts on contact metric manifolds.

We refer to [1] for more details. All manifolds are assumed to be connected

and of class Cy. A ð2n� 1Þ-dimensional manifold M is said to be an almost

contact manifold if its structure group of the linear frame bundle is reducible to

Uðn� 1Þ � f1g. This is equivalent to the existence of a ð1; 1Þ-tensor field f, a

vector field x and a 1-form h satisfying

hðxÞ ¼ 1 and f2 ¼ �id þ hn x: ð1Þ

Here ðf; x; hÞ is called an almost contact structure. Then one can always find

a compatible Riemannian metric g:

gðfX ; fY Þ ¼ gðX ;Y Þ � hðX ÞhðY Þ ð2Þ

for all vector fields X and Y on M. Such a metric is called an associated

metric and ðM; f; x; h; gÞ is said to be an almost contact metric manifold. The

fundamental 2-form F is defined by FðX ;Y Þ ¼ gðX ; fY Þ. If M satisfies in

addition dh ¼ F, then M is called a contact metric manifold, where d is the

exterior di¤erential operator. We call the structure vector field x the Reeb

vector field or the characteristic vector field. From (1) and (2) it follows that

fx ¼ 0; h � f ¼ 0; hðXÞ ¼ gðX ; xÞ: ð3Þ

Given a contact metric manifold M, we define the structural operator h by

h ¼ 1
2Lxf, where Lx denotes Lie di¤erentiation for x. Then we may observe
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that h is self-adjoint and satisfies

hx ¼ 0 and hf ¼ �fh; ð4Þ

‘Xx ¼ �fX � fhX ; ð5Þ

where ‘ is the Levi-Civita connection on M. From (4) and (5) we see that

each trajectory of x is a geodesic. For a contact metric manifold M one may

define naturally an almost complex structure ~JJ on M �R;

~JJ X ; f
d

dt

� �
¼ fX � f x; hðXÞ d

dt

� �
;

where X is a vector field tangent to M, t the coordinate of R and f a function

on M �R. If the almost complex structure ~JJ is integrable, M is said to be

normal or Sasakian. It is known that M is normal if and only if M satisfies

½f; f� þ 2 dhn x ¼ 0;

where ½f; f� is the Nijenhuis torsion of f. A Sasakian manifold is charac-

terized by a condition

ð‘XfÞY ¼ gðX ;Y Þx� hðY ÞX ð6Þ

for all vector fields X and Y on M.

Next, we recall the natural relation of contact metric manifolds with CR

manifolds ([3], [5], [7]). For a contact metric manifold M, the tangent space

TpM of M at each point p A M is decomposed as the direct sum TpM ¼
Dp l fxgp, where we denote Dp ¼ fv A TpM j hðvÞ ¼ 0g. Then D : p ! Dp

defines a ð2n� 2Þ-dimensional distribution orthogonal to x, which is called

the contact distribution. For a given contact metric manifold M ¼ ðM; h; gÞ,
its associated almost CR-structure is given by the holomorphic subbundle

H ¼ fX � iJX : X A Dg

of the complexification TMC of the tangent bundle TM, where J ¼ fjD, the
restriction of f to D. We see that each fiber Hx, x A M, is of complex

dimension n� 1, H \H ¼ f0g and CD ¼ HlH.

We define the Levi form L by

L : D�D ! FðMÞ; LðX ;YÞ ¼ �dhðX ; JYÞ;

where FðMÞ denotes the algebra of di¤erential functions on M. Since

dhðX ;YÞ ¼ gðX ; fYÞ on M, the Levi form is Hermitian and positive definite.

So, the pair ðh;LÞ is a strictly pseudo-convex (pseudo-Hermitian) almost CR

structure on M.
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The associated CR structure is integrable if ½H;H� � H. This property

does not hold for a general contact metric manifold. In terms of the structure

tensors, integrability is equivalent to the condition W ¼ 0, where W is the ð1; 2Þ-
tensor field on M defined as

WðX ;Y Þ ¼ ð‘XfÞY � gðX þ hX ;Y Þxþ hðY ÞðX þ hX Þ ð7Þ

for all vector fields X and Y on M (see [14, Proposition 2.1]). In this case, the

pair ðh;LÞ is called a strictly pseudo-convex (integrable) CR structure and

ðM; h;LÞ is called a strictly pseudo-convex CR manifold. From (6) and (7), we

see that the associated CR structure of a Sasakian manifold is strictly pseudo-

convex integrable. The same is true for the associated CR structure of any

three-dimensional contact metric space.

We review the generalized Tanaka-Webster connection ‘̂‘ ([14]) on a con-

tact strictly pseudo-convex almost CR manifold M ¼ ðM; h;LÞ. It is defined

by

‘̂‘XY ¼ ‘XY þ hðXÞfY þ ð‘XhÞðYÞx� hðYÞ‘Xx

for all vector fields X and Y on M. Together with (5), ‘̂‘ may be rewritten

as

‘̂‘XY ¼ ‘XY þ AðX ;Y Þ; ð8Þ

where we put

AðX ;YÞ ¼ hðXÞfY þ hðYÞðfX þ fhXÞ � gðfX þ fhX ;Y Þx: ð9Þ

We see that the generalized Tanaka-Webster connection ‘̂‘ has the torsion

T̂TðX ;YÞ ¼ 2gðX ; fYÞxþ hðYÞfhX � hðXÞfhY : ð10Þ

In particular, for a K-contact manifold we get

AðX ;YÞ ¼ hðXÞfY þ hðY ÞfX � gðfX ;YÞx: ð11Þ

The generalized Tanaka-Webster connection can also be characterized

di¤erently.

Proposition 1 ([14]). The generalized Tanaka-Webster connection ‘̂‘ on a

contact metric manifold M ¼ ðM; h; gÞ is the unique linear connection satisfying

the following conditions:

(i) ‘̂‘h ¼ 0, ‘̂‘x ¼ 0;

(ii) ‘̂‘g ¼ 0;

(iii-1) T̂TðX ;YÞ ¼ 2LðX ; JYÞx, X ;Y A D;

(iii-2) T̂Tðx; fYÞ ¼ �fT̂Tðx;YÞ, Y A D;

(iv) ð‘̂‘XfÞY ¼ WðX ;Y Þ, X ;Y A TM.
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We note that the Tanaka-Webster connection ([13], [16]) was originally

defined for a non-degenerate integrable CR manifold, in which case condition

(iv) reduces to ‘̂‘J ¼ 0.

The curvature tensor R̂R of generalized Tanaka-Webster connection ‘̂‘ is

defined by R̂RðX ;YÞZ ¼ ½‘̂‘X ; ‘̂‘Y �Z � ‘̂‘½X ;Y �Z for all vector fields X , Y and Z

on M. First we have quite generally

Proposition 2.

R̂RðX ;YÞZ ¼ �R̂RðY ;X ÞZ;

LðR̂RðX ;YÞZ;WÞ ¼ �LðR̂RðX ;YÞW ;ZÞ:

The first identity follows trivially from the definition of R̂R. Since the con-

nection is metrical with respect to its associated metric g, ‘̂‘g ¼ 0, the second

identity is proved in a similar way as for the case of Riemanian curvature

tensor. Since the generalized Tanaka-Webster connection is not torsion-free,

the Jacobi- or Bianchi-identies do not hold, in general. Before we study the

curvature tensor R̂R, from (4), (8) and (9) we have

ð‘̂‘XhÞY ¼ ð‘XhÞY þ AðX ; hYÞ � hAðX ;Y Þ

¼ ð‘XhÞY þ 2hðXÞfhY þ gððfhþ fh2ÞX ;Y Þx

þ hðYÞðfhX þ fh2X Þ: ð12Þ

We denote by R the Riemannian curvature tensor of M. Then, from the

definition of R̂R, together with (8), taking account of ‘̂‘h ¼ 0, ‘̂‘x ¼ 0, ‘̂‘g ¼ 0

and (12), straightforward computations yield

R̂RðX ;Y ÞZ ¼ RðX ;YÞZ

þ hðZÞðWðX ;YÞ �WðY ;XÞ þWðX ; hYÞ �WðY ; hXÞ

þ fPðX ;YÞ þ fðAðX ;YÞ � AðY ;XÞÞ

þ fðAðX ; hYÞ � AðY ; hXÞÞÞ

� gðWðX ;Y Þ �WðY ;X Þ þWðX ; hYÞ �WðY ; hXÞ

þ fPðX ;YÞ þ fðAðX ;YÞ � AðY ;XÞÞ

þ fðAðX ; hYÞ � AðY ; hXÞÞ;ZÞx

� 2gðfX ;Y ÞfZ � hðX ÞðWðY ;ZÞ þ fAðY ;ZÞÞ

þ hðY ÞðWðX ;ZÞ þ fAðX ;ZÞÞ
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þ hðAðX ;ZÞÞðfY þ fhY Þ � hðAðY ;ZÞÞðfX þ fhX Þ

þ gðfX þ fhX ;AðY ;ZÞÞx� gðfY þ fhY ;AðX ;ZÞÞx; ð13Þ

where we put PðX ;Y Þ ¼ ð‘XhÞY � ð‘YhÞX . By using (3), (4) and (9), we

have

R̂RðX ;Y ÞZ ¼ RðX ;Y ÞZ þ BðX ;YÞZ; ð14Þ

where

BðX ;Y ÞZ ¼ hðZÞðWðX ;YÞ �WðY ;XÞ þWðX ; hYÞ �WðY ; hX Þ þ fPðX ;Y ÞÞ

� gðWðX ;Y Þ �WðY ;X Þ þWðX ; hY Þ �WðY ; hX Þ þ fPðX ;YÞ;ZÞx

� hðZÞfhðYÞðX þ hX Þ � hðX ÞðY þ hYÞg

� hðX ÞWðY ;ZÞ þ hðYÞWðX ;ZÞ

þ hðY ÞgðX þ hX ;ZÞx� hðX ÞgðY þ hY ;ZÞx

þ gðfY þ fhY ;ZÞðfX þ fhX Þ � gðfX þ fhX ;ZÞðfY þ fhYÞ

� 2gðfX ;Y ÞfZ ð15Þ

for all vector fields X , Y and Z on M. The pseudo-Hermitian Ricci curvature

tensor r̂r is given by

r̂rðX ;YÞ ¼ rðX ;Y Þ þ
X2n�1

i¼1

gðBðEi;XÞY ;EiÞ; ð16Þ

where fEig ð1a ia 2n� 1Þ is an orthonormal basis on M and r denotes the

Ricci curvature tensor of the Levi-Civita connection.

Definition 1 ([6]). Let ðM; h; JÞ be a strictly pseudo-convex almost CR

manifold. Then the pseudo-Hermitian structure ðh; JÞ is said to be pseudo-

Einstein if the pseudo-Hermitian Ricci tensor is proportional to the Levi form,

namely,

r̂rðX ;YÞ ¼ lLðX ;YÞ;

where X ;Y A GðDÞ and l ¼ r̂r=ð2n� 2Þ. Here r̂r is the scalar curvature of

generalized Tanaka-Webster connection.

3. Unit tangent sphere bundles

The basic facts and fundamental formulas about tangent bundle and

unit tangent sphere bundle are well-known ([2], [7], [8]). Let ðM; gÞ be an
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n-dimensional Riemannian manifold and ‘ the associated Levi-Civita connec-

tion. The tangent bundle over ðM; gÞ is denoted by TM and consists of pairs

ðp; uÞ, where p is a point in M and u a tangent vector to M at p. The

mapping p : TM ! M, pðp; uÞ ¼ p, is the natural projection from TM onto

M. For a vector field X on M, its vertical lift X v on TM is the vector field

defined by X vo ¼ oðX Þ � p, where o is a 1-form on M. For the Levi-Civita

connection ‘ on M, the horizontal lift X h of X is defined by X ho ¼ ‘Xo.

The tangent bundle TM can be endowed in a natural way with a Riemannian

metric ~gg, the so-called Sasaki metric, depending only on the Riemannian metric

g on M. It is determined by

~ggðX h;Y hÞ ¼ ~ggðX v;Y vÞ ¼ gðX ;YÞ � p; ~ggðX h;Y vÞ ¼ 0

for all vector fields X and Y on M. Also, TM admits an almost complex

structure tensor J defined by JX h ¼ X v and JX v ¼ �X h. Then ~gg is a

Hermitian metric for the almost complex structure J.

The unit tangent sphere bundle p : T1M ! M is a hypersurface of TM

given by gpðu; uÞ ¼ 1. Note that p ¼ p � i, where i is the immersion of T1M

into TM. A unit normal vector field N ¼ uv to T1M is given by the vertical

lift of u for ðp; uÞ. The horizontal lift of a vector is tangent to T1M, but the

vertical lift of a vector is not tangent to T1M in general. So, we define the

tangential lift of X to ðp; uÞ A T1M by

X t
ð p;uÞ ¼ ðX � gðX ; uÞuÞv:

Clearly, the tangent space Tðp;uÞT1M is spanned by vectors of the form X h and

X t, where X A TpM. We now define the standard contact metric structure of

the unit tangent sphere bundle T1M over a Riemannian manifold ðM; gÞ. The

metric g 0 on T1M is induced from the Sasaki metric ~gg on TM. Using the

almost complex structure J on TM, we define a unit vector field x 0, a 1-form h 0

and a ð1; 1Þ-tensor field f 0 on T1M by

x 0 ¼ �JN; f 0 ¼ J � h 0 nN:

Since g 0ðX ; f 0YÞ ¼ 2 dh 0ðX ;Y Þ, ðh 0; g 0; f 0; x 0Þ is not a contact metric structure.

If we rescale this structure by

x ¼ 2x 0; h ¼ 1

2
h 0; f ¼ f 0; g ¼ 1

4
g 0;

we get the standard contact metric structure ðh; g; f; xÞ. Here the tensor f is

explicitly given by

fX t ¼ �X h þ 1

2
gðX ; uÞx; fX h ¼ X t; ð17Þ
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where X and Y are vector fields on M. From now on, we consider T1M ¼
ðT1M; h; g; f; xÞ with the standard contact metric structure. The Levi-Civita

connection ‘ of T1M is described by

‘X tY t ¼ �gðY ; uÞX t;

‘X tY h ¼ 1

2
ðRðu;X ÞY Þh;

‘X hY t ¼ ð‘XY Þ t þ 1

2
ðRðu;YÞXÞh;

‘X hY h ¼ ð‘XY Þh � 1

2
ðRðX ;YÞuÞ t

ð18Þ

for all vector fields X and Y on M. The Riemann curvature tensor R of T1M

is given by

RðX t;Y tÞZt ¼ �ðgðX ;ZÞ � gðX ; uÞgðZ; uÞÞY t

þ ðgðY ;ZÞ � gðY ; uÞgðZ; uÞÞX t;

RðX t;Y tÞZh ¼ fRðX � gðX ; uÞu;Y � gðY ; uÞuÞZgh

þ 1

4
f½Rðu;X Þ;Rðu;YÞ�Zgh;

RðX h;Y tÞZt ¼ � 1

2
fRðY � gðY ; uÞu;Z � gðZ; uÞuÞXgh

� 1

4
fRðu;YÞRðu;ZÞXgh;

RðX h;Y tÞZh ¼ 1

2
fRðX ;ZÞðY � gðY ; uÞuÞg t � 1

4
fRðX ;Rðu;Y ÞZÞug t

þ 1

2
fð‘XRÞðu;Y ÞZgh;

RðX h;Y hÞZt ¼ fRðX ;YÞðZ � gðZ; uÞuÞg t

þ 1

4
fRðY ;Rðu;ZÞX Þu� RðX ;Rðu;ZÞYÞug t

þ 1

2
fð‘XRÞðu;ZÞY � ð‘YRÞðu;ZÞXgh;

RðX h;Y hÞZh ¼ ðRðX ;YÞZÞh þ 1

2
fRðu;RðX ;YÞuÞZgh

ð19Þ

420 Jong Taek Cho and Sun Hyang Chun



� 1

4
fRðu;RðY ;ZÞuÞX � Rðu;RðX ;ZÞuÞYgh

þ 1

2
fð‘ZRÞðX ;Y Þug t

for all vector fields X , Y and Z on M.

Now, using (14) and (15), we calculate the curvature tensor R̂R of gener-

alized Tanaka-Webster connection of T1M. Then we have

R̂RðX t;Y tÞZt ¼ RðX t;Y tÞZt;

R̂RðX t;Y tÞZh

¼ RðX t;Y tÞZh � gðX ;ZÞ Y h � 1

2
gðY ; uÞx� 1

2
ðRuYÞh

� �

þ gðY ;ZÞ X h � 1

2
gðX ; uÞx� 1

2
ðRuXÞh

� �
þ 1

2
gðRuX ;ZÞ Y h � 1

2
ðRuYÞh

� �

� 1

2
gðRuY ;ZÞ X h � 1

2
ðRuXÞh

� �

� gðZ; uÞ
�
ðRðX ;Y ÞuÞh � 1

4
ðRðu;X ÞRuYÞh þ 1

4
ðRðu;YÞRuX Þh

� gðX ; uÞ Y h � 3

2
ðRuYÞh

� �
þ gðY ; uÞ X h � 3

2
ðRuXÞh

� ��

þ
�
1

2
gðRðX ;Y Þu;ZÞ � 1

8
gðRðu;XÞRuY ;ZÞ þ 1

8
gðRðu;Y ÞRuX ;ZÞ

þ 3

4
gðX ; uÞgðRuY ;ZÞ � 3

4
gðY ; uÞgðRuX ;ZÞ

�
x;

R̂RðX h;Y tÞZt

¼ RðX h;Y tÞZt þ 1

2
ðgðX ;Y Þ � gðX ; uÞgðY ; uÞÞ Zh � 1

2
gðZ; uÞx

� �

þ 1

4
gðX ; uÞfðRðu;YÞZÞh þ gðZ; uÞðRuYÞhg

þ 1

4
gðRuX ;ZÞf2Y h � gðY ; uÞx� ðRuYÞhg

þ 1

4

�
gðRðX ; uÞY ;ZÞ þ gðZ; uÞgðRuX ;YÞ � gðY ; uÞgðRuX ;ZÞ

� 1

2
gðX ; uÞgðRuY ;ZÞ þ 1

2
gðRðX ;RuY Þu;ZÞ

�
x; ð20Þ
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R̂RðX h;Y tÞZh

¼ RðX h;Y tÞZh � 1

2
ðgðX ;YÞ � gðX ; uÞgðY ; uÞÞZt þ 1

4
gðX ; uÞðRðu;Y ÞZÞ t

� 1

2
gðY ;ZÞ � gðY ; uÞgðZ; uÞ � 1

2
gðRuY ;ZÞ

� �
ðRuXÞ t

� 1

4
gðZ; uÞf2ðRðX ; uÞY Þ t þ ðRðX ;RuYÞuÞ t � gðX ; uÞðRuY Þ t

� 2ðð‘XRÞðY ; uÞuÞhg � 1

4
gðð‘XRÞðY ; uÞu;ZÞx;

R̂RðX h;Y hÞZt

¼ RðX h;Y hÞZt þ 1

4
gðY ; uÞfðRðu;X ÞZÞ t � gðZ; uÞðRuX Þ tg

� 1

4
gðX ; uÞfðRðu;YÞZÞ t � gðZ; uÞðRuY Þ tg � 1

4
gðRuX ;ZÞðRuY Þ t

þ 1

4
gðRuY ;ZÞðRuXÞ t � 1

4
fgðð‘XRÞðY ; uÞu;ZÞ � gðð‘YRÞðX ; uÞu;ZÞgx;

R̂RðX h;Y hÞZh

¼ RðX h;Y hÞZh þ 1

4
gðY ; uÞðRðu;X ÞZÞh � 1

4
gðX ; uÞðRðu;Y ÞZÞh

� 1

2
gðZ; uÞ

�
2ðRðX ;Y ÞuÞh � ðRuðRðX ;Y ÞuÞÞh � 1

2
ðRðu;RuY ÞXÞh

þ 1

2
ðRðu;RuX ÞYÞh þ 1

2
gðX ; uÞðRuYÞh � 1

2
gðY ; uÞðRuXÞh

� ðð‘XRÞðY ; uÞuÞ t þ ðð‘YRÞðX ; uÞuÞ t
�

þ 1

8
f4gðRðX ;YÞu;ZÞ � gðRðu;RuYÞX ;ZÞ þ gðRðu;RuX ÞY ;ZÞ

� 2gðRuðRðX ;Y ÞuÞ;ZÞ þ gðX ; uÞgðRuY ;ZÞ � gðY ; uÞgðRuX ;ZÞgx

for all vector fields X , Y and Z on M. From (19) and (20), we have the

pseudo-Hermitian Ricci curvature tensor r̂r of T1M

r̂rðX t;Y tÞ ¼ n� 3

2

� �
ðgðX ;Y Þ � gðX ; uÞgðY ; uÞÞ þ 1

4

Xn

i¼1

gðRðu;XÞei;Rðu;Y ÞeiÞ

þ 1

2
gðRuX ;YÞ � 1

2
gðR2

uX ;YÞ;
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r̂rðX t;Y hÞ ¼ 1

2
fð‘urÞðX ;YÞ � ð‘XrÞðu;Y Þg

� 1

2
gðY ; uÞfð‘urÞðX ; uÞ � ð‘XrÞðu; uÞg �

1

2
gðR 0

uX ;YÞ;

r̂rðX h;Y tÞ ¼ 1

2
fð‘urÞðX ;YÞ � ð‘YrÞðu;X Þg � 1

2
gðR 0

uX ;YÞ;

r̂rðX h;Y hÞ ¼ rðX ;YÞ þ 1

2
ðgðX ;Y Þ � gðX ; uÞgðY ; uÞÞ � gðY ; uÞrðX ; uÞ

� 1

2

Xn

i¼1

gðRðu; eiÞX ;Rðu; eiÞYÞ þ 1

2
gðY ; uÞ

Xn

i¼1

gðRðu; eiÞX ;Rðu; eiÞuÞ

� 1

2
gðRuX ;YÞ þ 1

2
gðR2

uX ;Y Þ ð21Þ

for all vector fields X , Y and Z on M.

4. Pseudo-Einstein unit tangent sphere bundles

In this section, we study the pseudo-Einstein structure of unit tangent

sphere bundle T1M. First, we prove

Theorem 1. Let M ¼ ðM; gÞ be an n-dimensional Riemannian manifold of

constant curvature c and let T1M be the unit tangent sphere bundle with the

standard contact metric structure ðh; g; f; xÞ over M. Then T1M is pseudo-

Einstein if and only if M is a 2-dimensional manifold or a space of constant

curvature 1.

Proof. Let M be a space of constant curvature c and T1M has pseudo-

Einstein structure, i.e., r̂rðX ;YÞ ¼ lgðX ;YÞ for any vector fields X and Y

orthogonal to x. Then from the definition of pseudo-Einstein and (21), we

have two equations;

nþ c

2
� 3

2
� l

4
¼ 0; ð22Þ

cn� 3

2
cþ 1

2
� l

4
¼ 0: ð23Þ

From the above two equations, we obtain n ¼ 2 or c ¼ 1. Using (21), the

converse is easily proved. r

Theorem 2. Let M be an nðb 3Þ-dimensional Riemannian manifold and

let T1M be the unit tangent sphere bundle with the standard contact metric
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structure ðh; g; f; xÞ over M. If T1M admits a pseudo-Einstein structure, then M

is Einstein.

Proof. Suppose that T1M admits a pseudo-Einstein structure. Then

from (21), we obtain two equations;

n� 3

2
� l

4

� �
ðgðX ;YÞ � gðX ; uÞgðY ; uÞÞ þ 1

4

Xn

i¼1

gðRðu;X Þei;Rðu;Y ÞeiÞ

þ 1

2
gðRuX ;YÞ � 1

2
gðR2

uX ;YÞ ¼ 0; ð24Þ

rðX ;YÞ þ 1

2
� l

4

� �
gðX ;Y Þ � 1

2
gðX ; uÞgðY ; uÞ � gðY ; uÞrðX ; uÞ

� 1

2

Xn

i¼1

gðRðu; eiÞX ;Rðu; eiÞY Þ þ 1

2
gðY ; uÞ

Xn

i¼1

gðRðu; eiÞX ;Rðu; eiÞuÞ

� 1

2
gðRuX ;Y Þ þ 1

2
gðR2

uX ;YÞ ¼ 0: ð25Þ

Combining (24) and (25), we have

rðX ;YÞ þ n� 1� l

2

� �
gðX ;Y Þ � n� 1� l

4

� �
gðX ; uÞgðY ; uÞ � gðY ; uÞrðX ; uÞ

� 1

2

Xn

i¼1

gðRðu; eiÞX ;Rðu; eiÞY Þ þ 1

2
gðY ; uÞ

Xn

i¼1

gðRðu; eiÞX ;Rðu; eiÞuÞ

þ 1

4

Xn

i¼1

gðRðu;X Þei;Rðu;YÞeiÞ ¼ 0: ð26Þ

Let feig ð1a ia nÞ be an orthonormal basis of the tangent space of M at any

point p A M. Putting X ¼ Y ¼ ea and u ¼ eb ða0 bÞ in (26), we get

raa þ n� 1� l

2

� �
daa �

1

2

Xn

i; j¼1

ðRbiajÞ2 þ
1

4

Xn

i; j¼1

ðRbaijÞ2 ¼ 0; ð27Þ

where dab denotes the Kronecker’s delta, Rijkl ¼ gðRðei; ejÞek; elÞ and rij ¼
rðei; ejÞ for 1a i; j; k; l; a; ba n. Also, we put X ¼ Y ¼ eb and u ¼ ea
ða0 bÞ in (26). Then we have

rbb þ n� 1� l

2

� �
dbb �

1

2

Xn

i; j¼1

ðRaibjÞ2 þ
1

4

Xn

i; j¼1

ðRabijÞ2 ¼ 0: ð28Þ
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Comparing (27) and (28), we obtain raa ¼ rbb for all a, b ða0 bÞ, that is, M is

Einstein. r

A 3-dimensional Einstein manifold has a constant curvature, by Theorem 1

and Theorem 2, we have the following.

Corollary 1. Let M ¼ ðM; gÞ be a 3-dimensional Riemannian manifold.

Then T1M is pseudo-Einstein if and only if M is of constant curvature 1.

Theorem 3. Let M ¼ ðM; gÞ be a 4-dimensional Riemannian manifold and

let T1M be the unit tangent sphere bundle with the standard contact metric struc-

ture ðh; g; f; xÞ over M. Then T1M is pseudo-Einstein if and only if M is of

constant curvature 1.

Proof. From the result of Theorem 2, we see that M is Einstein

ðr ¼ agÞ. Then we may choose an orthonormal basis feig ð1a ia 4Þ (known
as the Singer-Thorpe basis) at each point p A M such that

R1212 ¼ R3434 ¼ l1; R1313 ¼ R2424 ¼ l2; R1414 ¼ R2323 ¼ l3;

R1234 ¼ m1; R1342 ¼ m2; R1423 ¼ m3;

Rijkl ¼ 0 whenever just three of the indices

i; j; k; l are distinct ðcf : ½12�Þ:

8>>><
>>>:

ð29Þ

Note that

m1 þ m2 þ m3 ¼ 0 ð30Þ

by the first Bianchi identity and

l1 þ l2 þ l3 ¼ � t

4
; ð31Þ

where t is the scalar curvature of M.

We put X ¼ Y ¼ e1, u ¼ e2 in (26). Then we have

aþ 3� l

2
þ 1

2
ðm2

1 � m2
2 � m2

3Þ ¼ 0: ð32Þ

Similarly, if we put X ¼ Y ¼ e1, u ¼ e3 in (26), then we have

aþ 3� l

2
þ 1

2
ðm2

2 � m2
1 � m2

3Þ ¼ 0: ð33Þ

We put X ¼ Y ¼ e1, u ¼ e4 in (26) to have

aþ 3� l

2
þ 1

2
ðm2

3 � m2
1 � m2

2Þ ¼ 0: ð34Þ

From (32)@(34) and (30), we obtain m1 ¼ m2 ¼ m3 ¼ 0.
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On the other hand, if we put X ¼ Y ¼ e1, u ¼ e2 and X ¼ Y ¼ e1, u ¼ e3
in (25), we have

aþ 1

2
� l

4
þ 1

2
l1 �

1

2
ðm2

2 þ m2
3Þ ¼ 0;

aþ 1

2
� l

4
þ 1

2
l2 �

1

2
ðm2

1 þ m2
3Þ ¼ 0:

ð35Þ

Similarly, put X ¼ Y ¼ e1, u ¼ e4 in (25) to have

aþ 1

2
� l

4
þ 1

2
l3 �

1

2
ðm2

1 þ m2
2Þ ¼ 0 ð36Þ

Since m1 ¼ m2 ¼ m3 ¼ 0, from (31), (35) and (36), we obtain l1 ¼ l2 ¼ l3 ¼
�t=12. Next, we put X ¼ Y ¼ e1, u ¼ e2 in (24), we have

5

2
� l

4
� 1

2
l1 þ

1

2
m2
1 ¼ 0: ð37Þ

From (37), we obtain l ¼ 10þ t=6 and from (36), we see that M is of constant

curvature 1. Conversely, if M is of constant curvature 1, then by Theorem 1,

we see easily that T1M has the pseudo-Einstein structure. r

Remark 1. Some authors adopt the pseudo-Einstein structure in almost

contact metric geometry by the condition rðX ;YÞ ¼ agðX ;YÞ þ bhðXÞhðYÞ
for some functions a and b (cf. [11]). Indeed, the unit tangent sphere bundle

satisfying the above condition ([4]) and the related condition ([9]) was studied.

Another notable notion is the so-called f-Einstein structure which is defined in

[10]. In this context, it is interesting to study the unit tangent sphere bundle with

f-Einstein structure.
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