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Abstract. The present paper considers a model selection criterion in regression models

using generalized estimating equation (GEE). Using the prediction mean squared error

(PMSE) normalized by the covariance matrix, we propose a new model selection

criterion called PMSEG that reflects the correlation between responses. Numerical

studies reveal that the PMSEG has better performance than previous other criteria for

model selection.

1. Introduction

In real data analysis, correlated data are often discussed in health sciences,

medical sciences, economics and many other fields. Longitudinal data, defined

from observations of subjects measured repeatedly over time, often arise in

these fields as an important example. In general, observations from each sub-

ject in longitudinal data are correlated. Liang and Zeger [11] introduced an

extension of the generalized linear model (Nelder and Wedderburn, [13]) to

the analysis of longitudinal data, known as the generalized estimating equa-

tion (GEE) method. Defining features of the GEE method are that we can

use a working (but not necessarily correct) correlation matrix as the correla-

tion matrix, and a full specification of the joint distribution is not required.

Hence, the GEE method is widely used in many fields for analyzing longi-

tudinal data.

In addition, the model selection problem in the GEE methodology is

also important. The goodness of fit of the model is commonly measured by

some risk function, and the model selection is performed by obtaining a certain

estimator of the risk function. For example, the risk function based on the

expected Kullback-Leibler (KL) information (Kullback and Leibler, [10]) is

often used, and the most famous estimator of the risk function is Akaike’s

information criterion (AIC) proposed by Akaike [1, 2]. The AIC is obtained
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by using the likelihood, it can be simply defined as AIC ¼ �2� ðthe maximum

log likelihoodÞ þ 2� ðthe number of parametersÞ. Furthermore, Nishii [14],

Rao [16] proposed the generalized information criterion (GIC) as a general

extension of the AIC, which is widely applied for selecting the best model, and

considered about various properties in many literatures.

However, in the GEE method, the maximum likelihood based model

selection criteria such as the AIC or GIC, are not applicable directly because

the GEE method is not likelihood based. Some model selection criteria like

the AIC or GIC in the GEE method have been already proposed. For

example, Pan [15] proposed the QIC (quasi-likelihood under the independence

model criterion) and Imori [9] proposed the modified QIC. These criteria are

estimators of the risk function based on the quasi likelihood (Wedderburn,

[17]). Cantoni et al. [4] proposed the GCp (generalized version of Mallows’s

Cp) as a general extension of the Mallows’s Cp (Mallows, [12]). Hin and

Wang [8], Gosho et al. [6] proposed the correlation information criterion (CIC)

to select the correlation structure. Unfortunately, above model selection crite-

ria are not derived by taking account into the correlation between responses.

For example, the risk function of the QIC is based on the independent quasi

likelihood. In this respect, these criteria may not be reflective of the significant

feature in longitudinal data.

The principal aim of the present paper is to obtain a new model selection

criterion that reflects the correlation between responses. In this study, we have

focused on deciding the best subset of variables. By using the risk function

based on the prediction mean squared error (PMSE) normalized by the covari-

ance matrix, we propose a new model selection criterion called the PMSEG

(the prediction mean squared error in the GEE).

The remainder of the present paper is organized as follows: In Section 2,

we consider a stochastic expansion of a GEE estimator. In Section 3, we

propose the PMSEG. In Section 4, we verify that the proposed PMSEG has

good properties by conducting numerical experiments. In Section 5, we con-

clude our discussion. Technical details are provided in the Appendix.

2. Stochastic expansion of the GEE estimator

Let yij be a scalar response variable, and let x�; ij be a l-dimensional

nonstochastic vector consists of all possible explanatory variables for the ith

subject at the jth occasion, where i ¼ 1; . . . ; n and j ¼ 1; . . . ;mi. Assume that

response variables from di¤erent subjects are independent and response vari-

ables from the same subject are correlated. For i ¼ 1; . . . ; n, let yi ¼ ðyi1; . . . ;
yimi

Þ>, X�; i ¼ ðx�; i1; . . . ; x�; imi
Þ>, and let X i ¼ ðxi1; . . . ; ximi

Þ> be a mi � p sub-

matrix of the matrix X�; i. Liang and Zeger [11] used the GLM to model the

308 Yu Inatsu and Shinpei Imori



marginal density of yij ,

f ðyij ; xij ; b; fÞ ¼ exp½fyijyij � aðyijÞg=fþ bðyij ; fÞ�; ð1Þ

where, að�Þ and bð�Þ are known functions, yij is an unknown location parameter

and f is a scale parameter. In the GLM framework, the location parameter

depends on xij as yij ¼ uðhijÞ ¼ yijðbÞ, where uð�Þ is a known function, hij ¼ x>
ij b

and b is a p-dimensional unknown parameter. In the present paper, we

assume that f is known, and we also assume Y to be the natural parameter

space (see, Xie and Yang, [18]) of the exponential family of distributions

presented in (1), and the interior of Y is denoted as Y0. Then Y is convex,

and in the Y0, all derivatives of að�Þ and all moments of yij exist. Under such

model conditions, the first two moments of yij are given by

mijðbÞ ¼ EðyijÞ ¼ _aaðyijÞ; s2
ijðbÞ ¼ CovðyijÞ ¼ €aaðyijÞf1 nfmijðbÞg ðsayÞ:

In this situation, the expectation of the response yij is modeled by a link

function gðtÞ ¼ ð _aa � uÞ�1ðtÞ and the linear predictor hij, i.e., gfmijðbÞg ¼ hij ¼
x>
ij b. When uðsÞ ¼ s, we say that gðtÞ ¼ ð _aaÞ�1ðtÞ is the natural link func-

tion. For example, the logistic regression model is defined with the natural

link function. We call the model with x�; ij or xij as the full or candidate

model, respectively. We assume that the true probability density function

of yij can be written as (1), i.e., the true model is one of the candidate

models.

Denote miðbÞ ¼ ðmi1ðbÞ; . . . ; mimi
ðbÞÞ>, AiðbÞ ¼ diagfs2

i1ðbÞ; . . . ; s2
imi
ðbÞg

and DiðbÞ ¼ diagðqyi1=qhi1; . . . ; qyim=qhimÞ, where diagða1; . . . ; asÞ denotes the

s� s diagonal matrix whose the ði; iÞth element is ai. We write DiðbÞ ¼
AiðbÞDiðbÞX i, SiðbÞ ¼ A

1=2
i ðbÞRi;0A

1=2
i ðbÞ, where Ri;0 is the true correlation

matrix, and Viðb; aÞ ¼ A
1=2
i ðbÞRiðaÞA1=2

i ðbÞ. Here, RiðaÞ is the working cor-

relation matrix that one can choose freely, which may possibly have a nuisance

parameter a. Depending on the situation, we can choose some useful working

correlation matrices. For example,

Independence: ðRÞjk ¼ 0; if j0 k;

Exchangeable: ðRÞjk ¼ a; if j0 k;

AR-1: ðRÞjk ¼ ðRÞkj ¼ a j�k; if j > k;

1-dependent: ðRÞjk ¼ ðRÞkj ¼ a; if j ¼ k þ 1

and ðRÞjk ¼ ðRÞkj ¼ 0; if j > k þ 1;

Unstructured: ðRÞjk ¼ ðRÞkj ¼ ajk; if j > k:
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If RiðaÞ is equal to Ri;0, then Viðb0; aÞ ¼ Siðb0Þ ¼ A
1=2
i ðb0ÞRi;0A

1=2
i ðb0Þ ¼

Cov½yi�, where b0 is the true value of b.

Liang and Zeger [11] proposed the GEE as follows:

snðbÞ ¼
Xn
i¼1

D>
i ðbÞV�1

i ðb; aÞfyi � miðbÞg ¼ 0p; ð2Þ

where 0p is a p-dimensional vector of zeros. An estimator b̂b of b0 is defined as

a solution of the equation (2), and the estimator is called the GEE estimator.

In the present paper, we assume the following important assumptions:

Assumption 1: m1 ¼ � � � ¼ mn ¼ m.

Assumption 2: RiðaÞ ¼ RðaÞ and Ri;0 ¼ R0.

In other words, we assume that all subjects have the common occasion size m

(the number of occasions) and the common true correlation matrix R0. As

a result, we consider a common working correlation matrix RðaÞ, not RiðaÞ.
These strong assumptions are necessary for deriving a new model selection

criterion. Hereafter, we replace mi, RiðaÞ and Ri;0 with m, RðaÞ and R0,

respectively. Moreover, to simplify our discussion, we also assume that the

nuisance parameter a is known. Hence, we write Viðb; aÞ ¼ ViðbÞ.
In order to propose a new model selection criterion in Section 3, a

stochastic expansion of b̂b is needed. In this section, we obtain the stochastic

expansion of b̂b up to the order n�1. For simplicity, we omit ðbÞ from func-

tions of b. For example, mijðbÞ ¼ mij , AiðbÞ ¼ Ai, SiðbÞ ¼ Si, snðbÞ ¼ sn and

so on. Furthermore, in order to distinguish a function of b evaluated at the

true parameter b0, we write such as mijðb0Þ ¼ mij;0, Aiðb0Þ ¼ Ai;0, Siðb0Þ ¼ Si;0,

snðb0Þ ¼ sn;0 and so on. Similarly, in the functions of the GEE estimator b̂b,

we write such as mijð b̂bÞ ¼ m̂mij, Aið b̂bÞ ¼ ÂAi, Sið b̂bÞ ¼ ŜSi, snð b̂bÞ ¼ ŝsn and so on.

Furthermore, in order to ensure asymptotic properties of the GEE estimator,

we consider the following regularity assumptions (see, e.g., Xie and Yang, [18]):

C1.: b0 is in an admissible set B, where B is an open set in Rp for the

parameter b.

C2.: x>
ij b A gðMÞ for all b A B, where M is the image of _aaðY0Þ.

C3.: uðhijÞ is four times continuously di¤erentiable and _uuðhijÞ > 0 in

gðMÞ0.
C4.: Hn;0 and Mn;0 are positive definite when n is large, where

HnðbÞ ¼
Xn
i¼1

D>
i V

�1
i Di 1Hn; Hn;0 ¼ Hnðb0Þ;

MnðbÞ ¼
Xn
i¼1

D>
i V

�1
i SiV

�1
i Di 1Mn; Mn;0 ¼ Mnðb0Þ:
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Conditions C1 and C2 are necessary to have the GLM for all b. Conditions

C3 and C4 are necessary to calculate the bias. In addition, in order to ensure

the strong consistency, asymptotic normality and uniqueness of the GEE esti-

mator, we consider the following additional assumptions, which can be derived

slightly modifying the results reported by Xie and Yang [18]:

C5.: lim inf
n!y

lminðHn;0=nÞ > 0, where lminðAÞ is the smallest eigenvalue of

symmetric matrix A.

C6.: Sequence fxijg lies in X with uðx>
ij bÞ A Y0, b A B, where X is a

compact set for regressors xij .

C7.: In a neighborhood of b0, say N, there exist a constant c0 > 0 and

some d > 0, independent of n, such that, when n ! y, for any

p-dimensional vector l, klk ¼ 1,

l>
qsn

qb> lb c0l
ð1=2Þþd
max ðMn;0Þ; a:s: for b A N;

where lmaxðAÞ is the largest eigenvalue of symmetric matrix A.

C8.: The equation (2) has a unique solution when n is large.

Note that conditions C1–C7 are su‰cient conditions of Theorem 7 and Cor-

ollary 1 in Xie and Yang [18]. Hence, according to Theorem 7 and Corollary

1, b̂b has the strong consistency and asymptotic normality. Moreover, from the

condition C8, b̂b is a unique solution of the GEE (2). Furthermore, from C5,

Hn;0 ¼ OðnÞ.
Based on the above conditions, to perform the stochastic expansion of b̂b,

we focus on the fact that ŝsn ¼ 0p. By applying Taylor’s expansion around

b̂b ¼ b0 to this equation, we obtain the stochastic expansion of b̂b.

The GEE estimator b̂b can be expanded as

b̂b � b0 ¼ b1;0 þ b2;0 þOpðn�3=2Þ; ð3Þ

where

b1;0 ¼ H�1
n;0sn;0; b2;0 ¼ H�1

n;0ðb>1;0 n IpÞG3;0b1;0=2� G1;0b1;0 � G2;0b1;0;

and G1;0, G2;0 and G3;0 are given by

G1;0 ¼ �H�1
n;0

Xn
i¼1

D>
i;0

q

qb> nV�1
i

����
b¼b0

 !
fIp n ðyi � mi;0Þg;

G2;0 ¼ �H�1
n;0

Xn
i¼1

q

qb> nD>
i

����
b¼b0

 !
½Ip n fV�1

i;0 ðyi � mi;0Þg�;

G3;0 ¼ EfL1ðb0Þg; L1ðb0Þ ¼
q

qb
n

qsn

qb>

� �����
b¼b0

:
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The derivation of (3) is given in Appendix. Note that for a matrix W ¼ ðwijÞ,
the derivative of W by b ¼ ðb1; . . . ; bpÞ

> and bk are respectively defined as

follows:

q

qb> nW ¼ qW

qb1
; . . . ;

qW

qbp

 !
;

q

qb
nW ¼ qW>

qb1
; . . . ;

qW>

qbp

 !>
;

qW

qbk
¼ qwij

qbk

� �
:

Also note that b1;0 and b2;0 are Opðn�1=2Þ and Opðn�1Þ, respectively.

3. Main result

In this section, we propose a new model selection criterion. The goodness

of fit of the model is measured by the risk function based on the PMSE

normalized by the covariance matrix as follows:

RiskP ¼ PMSE�mn ¼ Ey Ez

Xn
i¼1

ðzi � m̂miÞ
>S�1

i;0 ðzi � m̂miÞ
( )" #

�mn;

where zi ¼ ðzi1; . . . ; zimÞ> is an m-dimensional random vector that is indepen-

dent of yi and has the same distribution as yi. It is easy to show that if b̂b

is b0, then RiskP has the minimum value of zero, i.e., the PMSE has the

minimum value of mn. For this reason, we would like to select the model,

which has the minimum PMSE. However, since the PMSE is typically

unknown, we must estimate it.

We define ~RRðbÞ, Lðb1; b2Þ and ~LLðbÞ as follows:

~RRðbÞ ¼ 1

n

Xn
i¼1

A
�1=2
i ðyi � miÞðyi � miÞ

>A
�1=2
i ;

Lðb1; b2Þ ¼
Xn
i¼1

fyi � miðb1Þg
>A

�1=2
i ðb2Þ ~RR�1ðb2ÞA

�1=2
i ðb2Þfyi � miðb1Þg;

~LLðbÞ ¼
Xn
i¼1

ðyi � miÞ
>S�1

i;0 ðyi � miÞ:

Based on the above, we estimate PMSE by Lð b̂b; b̂bf Þ, where b̂bf is a GEE

estimator that is obtained under the ‘‘full’’ model. Specifically, b̂bf is defined as

the solution to the following equation:

sf ;nðb�Þ ¼
Xn
i¼1

D>
i ðb�ÞV�1

i ðb�; ayÞfyi � miðb�Þg ¼ 0l ;
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where Diðb�Þ ¼ Aiðb�ÞDiðb�ÞX�; i, Viðb�; ayÞ ¼ A
1=2
i ðb�ÞRiðayÞA1=2

i ðb�Þ and RiðayÞ
is a positive definite working correlation matrix that one can choose freely.

We assume that the nuisance parameter ay is known. Note that b� is an

l-dimensional unknown parameter under the full model. Also note that RiðayÞ
is the same for all candidate models. The reason for using b̂bf is discussed

later. For simplicity, we write Lðb0; b2Þ ¼ Lðb2Þ and ~LLðb0Þ ¼ ~LL.

Since Lð b̂b; b̂bf Þ is not an asymptotically unbiased estimator of PMSE,

we evaluate the asymptotic bias in order to propose the new model selec-

tion criterion. The bias when we estimate the PMSE by Lð b̂b; b̂bf Þ is given

as

Bias ¼ PMSE � EyfLð b̂b; b̂bf Þg ¼ ½RiskP � Eyf ~LLð b̂bÞg� þ ½Eyf ~LLð b̂bÞ � ~LLg�

þ ½Eyf ~LL�Lð b̂bf Þg� þ ½EyfLð b̂bf Þ �Lð b̂b; b̂bf Þg�

¼ Bias1þ Bias2þ Bias3þ Bias4: ð4Þ

Here, we can see that Bias3 in (4) satisfies

Bias3 ¼ Ey

Xn
i¼1

ðyi � mi;0Þ
>fS�1

i;0 � A
�1=2
i ð b̂bf Þ ~RR�1ð b̂bf ÞA

�1=2
i ð b̂bf Þgðyi � mi;0Þ

" #

¼ mn� Ey

Xn
i¼1

ðyi � mi;0Þ
>A

�1=2
i ð b̂bf Þ ~RR�1ð b̂bf ÞA

�1=2
i ð b̂bf Þðyi � mi;0Þ

( )
:

Therefore, we can ignore the calculation of Bias3 because it is not dependent

on candidate models.

On the other hand, Bias1þ Bias2þ Bias4 in (4) is given by

Bias1þ Bias2þ Bias4 ¼ 2pþOðn�1Þ: ð5Þ

The derivation of (5) is given in Appendix.

Consequently, by substituting (5) into (4), we obtain the asymptotic expan-

sion of Bias up to order 1 as

Bias ¼ 2pþ Bias3þOðn�1Þ: ð6Þ

Recall that Bias3 is not dependent on candidate models. Hence, the PMSEG

can then be defined by adding an estimated ðBias� Bias3Þ to Lð b̂b; b̂bf Þ, i.e.,

PMSEG ¼ Lð b̂b; b̂bf Þ þ 2p: ð7Þ

(7) is our proposed model selection criterion called the PMSEG (the prediction

mean squared error in the GEE). Recall that b̂bf is estimated under the full

model and it is not dependent on candidate models. Since the covariance
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matrix in the PMSEG is estimated by b̂bf , the PMSEG can be simply defined.

If the covariance matrix is estimated by b̂b, Bias3 in (7) is di¤erent for each

candidate model. Unfortunately, it is di‰cult and too expensive to calculate

Bias3. This is one of the advantages of using b̂bf for estimating the covariance

matrix. For actual use, we recommend to use the independence working cor-

relation matrix in order to obtain b̂bf since we can get b̂bf easily by omitting

the calculations of the working correlation matrix. Fitzmaurice [5] mentioned

that the GEE estimator under the working independence assumption is often

ine‰cient. Nevertheless, from some simulation results, we confirmed that the

estimation of the covariance matrix using the ine‰cient estimator does not

dramatically influence the performance of the PMSEG (see, Subsection 4.2).

4. Numerical studies

In this section, we confirm a usefulness of the PMSEG through compar-

isons with the QIC and modified QIC (called mQIC in this paper), which are

representative model selection criteria. The QIC and mQIC are estimators of

a risk function based on the quasi likelihood under the independence assump-

tion. The risk function that is estimated by the QIC (or mQIC), which is

called RiskQ in this paper, and the quasi likelihood Qð�Þ are defined as follows:

RiskQ ¼ Ey Ez �2
Xn
i¼1

Xm
j¼1

Qð b̂b; zijÞ
( )" #

; Qð b̂b; zijÞ ¼
ð g�1ðx>

ij b̂bÞ

zij

zij � t

nðtÞ dt;

where zi ¼ ðzi1; . . . ; zimÞ> is an m-dimensional random vector that is indepen-

dent of yi and has the same distribution as yi. Note that since the RiskQ
is considered under the independence assumption, all of the RiskQ, QIC and

mQIC are not reflective of the correlation between responses. Also note that

the PMSEG and QIC (or mQIC) are estimators of the RiskP and RiskQ,

respectively. In general, the RiskP and RiskQ are di¤erent, i.e., the PMSEG

and QIC (or mQIC) are criteria from di¤erent viewpoints.

4.1. Selection probability and prediction error. At the beginning, we examine

the numerical studies for the frequencies of the selected candidate models

and the prediction error of the best models selected by the PMSEG, QIC and

mQIC. We prepare the fifteen candidate models with n ¼ 100 and m ¼ 3.

First, we construct a 3� 5 explanatory variable matrix X�; i ¼ ðx�; i1; x�; i2;
x�; i3Þ>, i ¼ 1; . . . ; 100. The first column of X�; i is 13, where 13 is a

3-dimensional vector of ones, and the second column of X�; i is 13 � vi, where

v1; . . . ; v100 are independent and identically distributed (i.i.d.) random variables

from binomial distribution Bð1; 0:5Þ. The third column of X�; i is ð0; 1; 2Þ>,
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and the remaining six elements of X�; i are defined by realizations of inde-

pendent variables with uniform distribution on the interval ½�1; 1�.
In this simulation, we prepare two situations, as follows:

Case 1: Corr½yij; yij � � ¼ 0:85j j�j �j; b0 ¼ ð0:25;�0:25;�0:25; 0; 0Þ>;

Case 2: Corr½yij; yij � � ¼ 0:35þ djj �0:65; b0 ¼ ð0:25;�0:25;�0:25; 0; 0Þ>;

where djj � is the Kronecker delta, i.e., djj � ¼ 1 if j ¼ j � and djj � ¼ 0 if j0 j �.

The explanatory variables matrix for the ith subject in the ð5aþ bÞth model

consists of the first b column of X�; i, a ¼ 0; 1; 2, b ¼ 1; . . . ; 5. For the working

correlation matrix, we prepare three di¤erent matrices, exchangeable working

correlation matrix ða ¼ 0Þ, AR-1 working correlation matrix ða ¼ 1Þ and inde-

pendence working correlation matrix ða ¼ 2Þ. Thus, in Case 1, the true model

is the eighth model, and in Case 2, the true model is the third model. We

simulate 10,000 realizations of y ¼ ðy11; . . . ; y13; . . . ; y100;1; . . . ; y100;3Þ> in the

logistic regression model, i.e., yij @Bð1; pijÞ, where pij ¼ logit�1ðx>
ij b0Þ, i ¼

1; . . . ; 100, j ¼ 1; 2; 3. Note that we use the independence working correlation

matrix for obtaining b̂bf in this simulation. The average values of estimates

of the GEE estimator for each model and its variances are given in Tables 1

and 2. Furthermore, Tables 3 and 4 list the following characteristics.

Table 1. Average values of estimates of the GEE estimator and its variances for each model

in Case 1

1 2 3 4 5

b̂b Varðb̂bÞ b̂b Varðb̂bÞ b̂b Varðb̂bÞ b̂b Varðb̂bÞ b̂b Varðb̂bÞ

�0.119 0.035 �0.002 0.070 0.254 0.078 0.255 0.078 0.255 0.078

�0.248 0.149 �0.251 0.154 �0.251 0.154 �0.251 0.155
Exchange- �0.256 0.006 �0.256 0.006 �0.256 0.006
able

0.000 0.013 0.000 0.013

0.000 0.011

�0.118 0.034 �0.002 0.069 0.254 0.077 0.254 0.077 0.255 0.077

�0.247 0.147 �0.251 0.152 �0.251 0.152 �0.251 0.153

AR-1 �0.256 0.006 �0.256 0.006 �0.256 0.006

0.000 0.011 0.000 0.009

0.000 0.011

�0.119 0.035 �0.002 0.070 0.254 0.077 0.255 0.078 0.256 0.078

�0.248 0.149 �0.251 0.153 �0.251 0.154 �0.252 0.155
Indepen- �0.256 0.006 �0.257 0.006 �0.258 0.006
dence �0.002 0.042 �0.003 0.044

0.003 0.039
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(1): Prediction error of the best model in the RiskP=RiskQ ðPEBP=PEBQÞ:
the RiskP and RiskQ of the model selected by the criterion as the best

model, which are respectively estimated as

PEBP ¼ 1

10000

X10000
u¼1

Ez

Xn
i¼1

fzi � mið b̂bBu
Þg>S�1

i;0fzi � mið b̂bBu
Þg

" #
�mn;

PEBQ ¼ 1

10000

X10000
u¼1

Ez �2
Xn
i¼1

Xm
j¼1

Qð b̂bBu
; zijÞ

( )
:

(2): Selection probability: the frequency of the best model chosen by min-

imizing each criterion. In particular, the SPC=SPM is the frequency

that the working correlation matrix/mean structure of the selected

model is correctly specified.

Here zi is a future observation, and b̂bBu
is the value of b̂b of the selected model

at the uth iteration. In particular, both the PEBP and PEBQ are important

properties because these are equivalent to the RiskP and RiskQ of the best

model selected by the criterion, respectively. Moreover, the values in paren-

thesis indicate standard errors in Tables 3 and 4. We would like to note

that the PMSEG selects the model which minimizes the RiskP, and the QIC

Table 2. Average values of estimates of the GEE estimator and its variances for each model

in Case 2

1 2 3 4 5

b̂b Varðb̂bÞ b̂b Varðb̂bÞ b̂b Varðb̂bÞ b̂b Varðb̂bÞ b̂b Varðb̂bÞ

�0.119 0.022 0.000 0.044 0.255 0.059 0.256 0.059 0.256 0.060

�0.249 0.096 �0.252 0.099 �0.253 0.099 �0.254 0.100
Exchange- �0.255 0.014 �0.256 0.014 �0.257 0.014
able

0.001 0.036 0.001 0.037

0.002 0.035

�0.119 0.022 �0.001 0.045 0.254 0.060 0.255 0.060 0.256 0.061

�0.249 0.097 �0.252 0.100 �0.253 0.101 �0.254 0.102

AR-1 �0.255 0.014 �0.256 0.014 �0.257 0.014

0.001 0.038 0.000 0.039

0.002 0.037

�0.119 0.022 0.000 0.044 0.255 0.059 0.256 0.059 0.257 0.060

�0.249 0.096 �0.252 0.099 �0.253 0.099 �0.254 0.100
Indepen- �0.255 0.014 �0.256 0.014 �0.257 0.014
dence

0.000 0.044 0.000 0.045

0.003 0.042
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(or mQIC) selects the model which minimizes the RiskQ. Thus, the model

selected by the PMSEG does not necessarily minimize the RiskQ and the model

selected by the QIC (or mQIC) does not necessarily minimize the RiskP. In

other words, in order to evaluate the goodness of the criterion, the PEBP and

PEBQ are favorable indicators for the PMSEG and both QIC and mQIC,

respectively.

From Tables 3 and 4, we can see that the value of the PEBP from the

model selected by the PMSEG is smaller than that from the model selected by

the QIC (or mQIC). This result is justified since the PEBP is the favorable

indicator for the PMSEG. However, surprisingly, although the PEBQ is the

favorable indicator for the QIC (or mQIC), the value of the PEBQ from

the model selected by the PMSEG is also smaller. This result means that the

PMSEG is better than the QIC and mQIC whether evaluating the goodness of

the criterion by the PEBP or PEBQ. Moreover, both the frequency of selecting

Table 3. Selection probability and prediction error in Case 1

Criterion b 1 2 3 4 5 SPC SPM PEBP PEBQ

Exchangeable 0.95 0.08 11.02 2.62 1.10

PMSEG AR-1 2.61 0.48 50.71 9.77 6.92
70.49 95.61 4.37 416.66

(0.46) (0.20) (0.04) (0.06)
Independence 0.22 0.05 12.72 0.67 0.08

Exchangeable 4.36 0.01 2.60 3.46 3.60

QIC AR-1 38.36 0.26 22.20 6.11 5.86
72.79 55.50 10.54 418.09

(0.45) (0.50) (0.07) (0.07)
Independence 1.51 0.00 3.09 5.17 3.41

Exchangeable 4.58 0.02 2.30 3.52 4.06

mQIC AR-1 38.62 0.23 21.34 5.96 5.87
72.02 55.25 10.70 418.05

(0.45) (0.50) (0.07) (0.06)
Independence 1.30 0.00 3.01 5.08 4.11

Table 4. Selection probability and prediction error in Case 2

Criterion b 1 2 3 4 5 SPC SPM PEBP PEBQ

Exchangeable 13.97 0.89 26.28 8.06 6.76

PMSEG AR-1 7.67 1.77 9.10 1.97 1.20
55.96 72.79 4.88 416.24

(0.50) (0.45) (0.03) (0.05)
Independence 2.06 0.85 17.00 1.73 0.69

Exchangeable 29.70 1.14 20.06 7.46 5.64

QIC AR-1 2.55 0.19 1.70 1.17 1.14
64.00 57.93 5.53 416.61

(0.48) (0.49) (0.04) (0.05)
Independence 7.53 0.96 16.64 2.56 1.56

Exchangeable 21.63 3.27 19.76 6.27 4.77

mQIC AR-1 9.62 1.25 6.72 2.65 2.16
55.70 58.21 5.54 416.53

(0.50) (0.49) (0.04) (0.05)
Independence 5.13 0.89 12.27 2.15 1.46
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the true model and SPM of the PMSEG are larger than those of the QIC and

mQIC in two cases. On the other hand, the SPC of the QIC is larger in two

cases. Furthermore, by comparing Tables 3 and 4, we can see that the di¤er-

ence between the PMSEG and both QIC and mQIC is more salient when the

correlation is large. We simulated several other models and obtained similar

results.

4.2. Estimation of the covariance matrix using an ine‰cient GEE estimator.

Recall that we must estimate the covariance matrix to calculate the PMSEG.

As we mentioned before, in order to calculate the covariance matrix in the

PMSEG, we suggest using the b̂bf obtained by solving the GEE with the

independence working correlation matrix and all explanatory variables. In this

subsection, we use working independence, exchangeable and AR-1 matrices to

obtain the b̂bf , and using these GEE estimators we calculate the covariance

matrix in the PMSEG. In this setting, we confirm the influence on the predic-

tion mean by using di¤erent working correlation matrices through numerical

experiments.

We prepare the fifteen candidate models with n ¼ 100 and m ¼ 5. First,

we construct a 5� 5 matrix X�; i ¼ ðx�; i1; x�; i2; x�; i3; x�; i4; x�; i5Þ>, i ¼ 1; . . . ; 100.

The first column of X�; i is 15, and the second column of X�; i is 15 � vi, where

v1; . . . ; v100 are i.i.d. random variables from Bð1; 0:5Þ. The third column of

X�; i is ð0; 1; 2; 3; 4Þ>. The fourth and the fifth columns of X�; i are defined by

realizations of independent variables with uniform distribution on the interval

½�0:5; 0:5� and ½�1:5;�0:5�, respectively.

In this simulation, we consider the following situation:

Corr½yij ; yij � � ¼ 0:3j j�j �j; b0 ¼ ð�0:45;�0:35; 0:3; 0; 0Þ>:

The explanatory variables matrix for the ith subject in the ð5aþ bÞth model

consists of the first b column of X�; i, a ¼ 0; 1; 2, b ¼ 1; . . . ; 5. For the working

correlation matrix, we prepare three di¤erent matrices, AR-1 working corre-

lation matrix ða ¼ 0Þ, exchangeable working correlation matrix ða ¼ 1Þ, and

independence working correlation matrix ða ¼ 2Þ. We simulate 10,000 real-

izations of y ¼ ðy11; . . . ; y15; . . . ; y100;1; . . . ; y100;5Þ> in the logistic regression

model, i.e., yij @Bð1; pijÞ, where pij ¼ logit�1ðx>
ij b0Þ, i ¼ 1; . . . ; 100, j ¼ 1; . . . ;

5. Under this setting, average values of estimates, variances and variance

ratios (VR) of the GEE estimator for using each working correlation matrix are

given in Table 5. Here, the VR is defined by the ratio of the variance of the

GEE estimator to that for using the AR-1 working correlation matrix. For

example, the value of the variance of the GEE estimator using the AR-1 and

independence structures in b4 are 0.093 and 0.108, respectively. Hence, the
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VR is calculated as VR ¼ 0:108=0:093A1:161. Moreover, the PEBP for using

each working correlation matrix is also given in Table 5 and the values in

parenthesis indicate standard errors.

From Table 5, we can see that the GEE estimator using the AR-1

(Independence) structure is the most e‰cient (ine‰cient). However, the values

of the PEBP using working AR-1 and independence matrices are 4.147 and

4.150, respectively. Therefore, we can see that the estimation of the covariance

matrix using the ine‰cient estimator does not dramatically influence the PEBP.

We simulated several other settings and obtained similar results.

4.3. Selection probability when the number of occasions is not small. In this

subsection, we calculate the selection probabilities using the PMSEG, QIC and

mQIC when the number of occasions m is not small. We prepare the ten

candidate models with n individuals and m occasions. First, we construct a

m� 5 explanatory variable matrix X�; i ¼ ðx�; i1; . . . ; x�; imÞ>, i ¼ 1; . . . ; n. The

first column of X�; i is 1m, and the second column of X�; i is 1m � vi, where

v1; . . . ; vn are i.i.d. random variables from Bð1; 0:5Þ. The third column of X�; i
is ð0; . . . ;m� 1Þ>, and the remaining 2�m elements of X�; i are defined by

realizations of independent variables with uniform distribution on the interval

½�1; 1�.
In this simulation, we prepared two situations, as follows:

Case 1: Corr½yij ; yij � � ¼ 0:2j j�j �j; b0 ¼ ð�1:2;�0:2; 0:2; 0; 0Þ>; m ¼ 2þ n

25
;

Case 2: Corr½yij ; yij � � ¼ 0:2j j�j �j; b0 ¼ ð�1:2;�0:2; 0:2; 0; 0Þ>;

m ¼ maxf6; 0:1ng:

Table 5. Average of estimate (Est), variance (Var), variance ratio (VR) of the GEE estimator

of the full model, and PEBP for using each working correlation matrix

AR-1 Exchangeable Independence

Est Var VR Est Var VR Est Var VR

b1 �0.456 0.137 1.000 �0.457 0.145 1.058 �0.458 0.152 1.109

b2 �0.354 0.056 1.000 �0.353 0.057 1.018 �0.353 0.057 1.018

b3 0.304 0.005 1.000 0.304 0.005 1.000 0.304 0.005 1.000

b4 �0.007 0.093 1.000 �0.006 0.101 1.086 �0.008 0.108 1.161

b5 0.001 0.086 1.000 �0.001 0.093 1.081 �0.001 0.100 1.163

4.147 4.148 4.150
PEBP

(0.034) (0.034) (0.034)
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The explanatory variables matrix for the ith subject in the ð5aþ bÞth model

consists of the first b column of X�; i, a ¼ 0; 1, b ¼ 1; . . . ; 5. For the working

correlation matrix, we prepare two di¤erent matrices, independence working

correlation matrix ða ¼ 0Þ and AR-1 working correlation matrix ða ¼ 1Þ. We

simulated 1,000 realizations of y ¼ ðy11; . . . ; y1m; . . . ; yn;1; . . . ; yn;mÞ> in the

logistic regression model, i.e., yij @Bð1; pijÞ, where pij ¼ logit�1ðx>
ij b0Þ, i ¼

1; . . . ; n, j ¼ 1; . . . ;m. Note that we used the independence working correla-

tion matrix for obtaining b̂bf in this simulation.

From Tables 6 and 7, we can see that the selection probability of an

underspecified model, which does not include the true model, converges to

zero for all criteria. In addition, its convergence speed becomes faster when

the number of occasions becomes large. On the other hand, we can also see

that the selection probability of the true model does not tend to one for all

criteria. Incidentally, in multivariate normal linear regression models, it is

known that the AIC has consistency under the high-dimensional framework

(see, Yanagihara et al. [19]). However, although the PMSEG, QIC and mQIC

Table 6. Selection probability (%) by using each criterion for ten candidate models in Case 1

1 2 3 4 5

N m Criterion Ind AR-1 Ind AR-1 Ind AR-1 Ind AR-1 Ind AR-1

QIC 20.0 29.7 4.5 6.4 8.8 17.7 2.4 5.1 1.8 3.6

50 4 mQIC 16.6 33.3 3.5 7.4 7.8 18.7 1.9 5.4 1.4 4.0

PMSEG 21.1 17.9 4.2 6.9 12.9 16.8 4.5 7.2 3.2 5.3

QIC 0.6 1.6 0.1 0.3 22.6 54.7 2.7 9.8 1.4 6.2

100 6 mQIC 0.5 1.7 0.1 0.3 13.9 63.4 1.7 10.9 1.0 6.5

PMSEG 0.8 0.9 0.1 0.1 28.9 47.5 4.5 8.2 2.2 6.8

QIC 0.0 0.0 0.0 0.0 18.1 54.9 3.6 12.6 2.9 7.9

150 8 mQIC 0.0 0.0 0.0 0.0 12.9 60.1 3.1 13.2 2.3 8.4

PMSEG 0.0 0.0 0.0 0.0 26.1 44.7 5.0 11.9 3.0 9.3

QIC 0.0 0.0 0.0 0.0 19.5 57.3 3.0 10.7 1.0 8.5

200 10 mQIC 0.0 0.0 0.0 0.0 12.3 64.7 2.6 11.1 1.1 8.2

PMSEG 0.0 0.0 0.0 0.0 30.8 45.2 4.6 8.9 2.7 7.8

QIC 0.0 0.0 0.0 0.0 20.5 57.0 2.9 11.1 1.3 7.2

250 12 mQIC 0.0 0.0 0.0 0.0 14.2 63.2 2.1 11.9 1.2 7.4

PMSEG 0.0 0.0 0.0 0.0 30.4 45.7 3.8 9.5 2.9 7.7

QIC 0.0 0.0 0.0 0.0 24.0 53.5 2.8 11.7 1.3 6.7

300 14 mQIC 0.0 0.0 0.0 0.0 14.3 63.2 2.3 12.3 1.3 6.6

PMSEG 0.0 0.0 0.0 0.0 30.9 45.4 4.6 9.8 2.6 6.7
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are similar to the AIC, from Tables 6 and 7 we can see that these criteria do

not have consistency. Actually, the number of regression parameters for a

candidate model considered by Yanagihara et al. [19] becomes large when the

number of dimensions becomes large. As a result, the penalty term of the

AIC becomes large, and the di¤erence between penalty terms of two candidate

models also becomes large. This is the key point to prove consistency of the

AIC. By contrast, in our considered model, the penalty term of the PMSEG

is 2� the number of explanatory variables even if the number of occasions

m becomes large. Similarly, the order of penalty terms of the QIC and mQIC

is OðpÞ. Hence, for all criteria, the di¤erence between penalty terms of two

candidate models is a constant even if the number of occasions becomes large.

This is probably one of reasons why the consistency of the PMSEG, QIC and

mQIC is not confirmed in our simulation study.

4.4. Real data analysis. Next, for the purpose of analyzing the GEE method,

we consider the Mother’s Stress and Child Morbidity (MSCM) data reported in

Alexander and Markowitz [3], who studied the relationship between maternal

Table 7. Selection probability (%) by using each criterion for ten candidate models in Case 2

1 2 3 4 5

N m Criterion Ind AR-1 Ind AR-1 Ind AR-1 Ind AR-1 Ind AR-1

QIC 7.8 10.5 0.8 1.5 21.5 37.6 4.8 9.0 1.7 4.8

50 6 mQIC 6.3 12.2 0.9 1.4 16.2 42.8 4.0 9.7 0.8 5.7

PMSEG 5.5 5.7 1.8 1.2 24.7 33.9 6.5 9.4 3.2 8.1

QIC 0.0 0.0 0.0 0.0 23.6 51.1 5.0 10.1 1.7 8.5

100 10 mQIC 0.0 0.0 0.0 0.0 15.2 59.7 3.5 11.4 1.4 8.8

PMSEG 0.0 0.0 0.0 0.0 30.9 42.0 5.7 9.2 4.5 7.7

QIC 0.0 0.0 0.0 0.0 28.1 48.9 2.8 10.4 2.2 7.6

150 15 mQIC 0.0 0.0 0.0 0.0 19.6 57.5 2.2 11.0 1.7 8.0

PMSEG 0.0 0.0 0.0 0.0 33.5 39.1 6.1 8.4 4.7 8.2

QIC 0.0 0.0 0.0 0.0 29.7 47.2 3.8 11.3 1.6 6.4

200 20 mQIC 0.0 0.0 0.0 0.0 21.7 55.6 2.9 11.7 1.3 6.8

PMSEG 0.0 0.0 0.0 0.0 35.2 38.6 5.9 9.2 3.8 7.3

QIC 0.0 0.0 0.0 0.0 27.7 50.3 3.2 9.6 1.9 7.3

250 25 mQIC 0.0 0.0 0.0 0.0 20.6 57.1 2.6 10.3 1.9 7.5

PMSEG 0.0 0.0 0.0 0.0 35.1 38.4 6.9 7.1 4.8 7.7

QIC 0.0 0.0 0.0 0.0 26.8 50.2 3.3 10.1 1.8 7.8

300 30 mQIC 0.0 0.0 0.0 0.0 21.9 54.9 2.9 10.6 1.7 8.0

PMSEG 0.0 0.0 0.0 0.0 35.5 39.4 4.1 8.8 5.5 6.7
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employment and pediatric health care utilization. The MSCM data contain

the information of mothers and children in the study for 28 days, and there are

167 mothers and preschool children enrolled. In this analysis, we focus on the

child illness for the first 9 days. The response variable is the child illness on

the study day (1 ¼ yes, 0 ¼ no), and there were six predictor variables: Race

(child race, 1 ¼ non-white, 0 ¼ white), Household (size of household, 1 ¼ more

than 3 people, 0 ¼ other), Stress (today’s mother’s stress, 1 ¼ yes, 0 ¼ no), and

additionally, St1, St2 and St3 are the mother’s stress of one, two and three days

before, respectively. This data have a few missing value, and we assume that

the missingness mechanism is missing completely at random. Thus, we use

complete 146 mothers and children data. We also assume that the response

variable yij is distributed according to Bð1; pijÞ, i ¼ 1; . . . ; 146, j ¼ 1; . . . ; 9.

For the link function, we prepare the logistic link function. For the working

correlation matrix, we prepare three matrices: the working AR-1, exchangeable

and independence matrices. In this analysis, we select the working correlation

matrix and variables.

Table 8 shows the selection probability of the model selected by minimiz-

ing the criterion and the estimated prediction error of the best model selected

by the criterion, where the values in parenthesis indicate standard errors.

We divide the MSCM data into calibration data and validation data. The

numbers of subjects in the calibration data and validation data were 136 and

10, respectively. The best subset of variables and working correlation matrices

are selected by each criterion derived from the calibration data. The selection

probabilities are obtained from only the calibration data. The estimated pre-

diction errors are obtained as follows. Let d t ¼ ðd1t; . . . ; d146tÞ> be a 146-

dimensional binary vector that contains 136 zeros and 10 ones at the tth

iteration, t ¼ 1; . . . ; 100, i.e., dit ¼ 0 or 1 and
P146

i¼1 dit ¼ 10. In addition, we

denote that b̂bB; ½�d t� is a GEE estimator b̂b½�d t� of the best model selected from

Table 8. Selection probability and estimated prediction error with the MSCM data

PMSEG QIC mQIC

Variables Auto Ex Ind Auto Ex Ind Auto Ex Ind

Race, Household, Stress, St1 55 7 0 0 0 74 0 0 74

Race, Household, Stress, St2 18 12 0 0 0 26 0 0 26

Race, Household, Stress, St1, St2 5 3 0 0 0 0 0 0 0

1.92 4.39 4.39dPEBPPEBP
(0.10) (1.55) (1.55)

1001.88 1003.82 1003.82dPEBQPEBQ
(6.26) (6.31) (6.31)
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the calibration data, where b̂b½�d t� is the solution of the following equation:

X146
i¼1

ð1� ditÞD>
i V

�1
i ðyi � miÞ ¼ 0p:

Finally, the estimated PEBP and PEBQ are given as

dPEBPPEBP ¼ 136� 1

100

X100
t¼1

1

10
Lð b̂bB; ½�d t�; b̂bf ; t; tÞ � 9

( )
;

dPEBQPEBQ ¼ 136� 1

100

X100
t¼1

1

10
�2
X146
i¼1

X9
j¼1

dit �Qð b̂bB; ½�d t�; yijÞ
( )

;

where Lðb1; b2; tÞ is defined as follows:

Lðb1; b2; tÞ ¼
X146
i¼1

dit � fyi � miðb1Þg
>A

�1=2
i ðb2Þ ~RR�1ðb2ÞA

�1=2
i ðb2Þfyi � miðb1Þg:

Note that we used the independence working correlation matrix for obtaining

b̂bf from the calibration data in this study. Also note that we denote b̂bf ; t as the

value of b̂bf from the calibration data at the tth iteration. From Table 8, we

can see that the model most selected by each criterion is di¤erent. However,

both the dPEBPPEBP and dPEBQPEBQ of the PMSEG were smaller than those of the QIC

and mQIC. Hence, using the PMSEG is better than using the QIC (or mQIC)

for selecting models in this study.

Consequently, from Tables 3, 4 and 8, we recommend the use of the

PMSEG rather than the QIC (or mQIC) for selecting models in the GEE

method.

5. Conclusion and discussion

In the present paper, we proposed the PMSEG as a model selection

criterion that reflects the correlation in the GEE method. The PMSEG is the

simple criterion such as the AIC. Nowadays, the GEE method is one of the

mainstream of longitudinal analysis methods and many statistical softwares

(e.g., SAS, R, etc.) support the GEE method. For these reasons, it is impor-

tant to propose a more useful criterion for analyzing longitudinal data using

the GEE method.

In all situations of the simulation results of Section 4, we showed that

the PMSEG has better performance than the QIC and mQIC for the variable

selection, and the di¤erence between the performances of the PMSEG and both

QIC and mQIC is more salient when the correlation is large. Recall that the
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PMSEG reflects the correlation between responses, however, both the QIC and

mQIC are not reflective. This is probably one of the reasons why the PMSEG

has better performance than the QIC and mQIC. In the study of the MSCM

data, we also showed that the PMSEG is useful as same as the QIC and mQIC.

Nevertheless, computational costs of the PMSEG are lower than those of the

QIC and mQIC because the bias term of the PMSEG is 2� (the number of

parameters). On the other hand, many previous studies including the QIC

and mQIC require the calculation of the bias term for each candidate model.

Therefore, the PMSEG is useful and user friendly.

As for the future work, we will consider the following three problems.

First, we recall that, in deriving the PMSEG, we assume that the nuisance

parameter a is known. Actually, we often estimate a because a is unknown in

many cases. In fact, we estimate a in Section 4. However, Liang and Zeger

[11] showed that an estimator of a is consistent under the standard assumption,

and we confirmed that the estimation of a dose not dramatically influence the

performance of the PMSEG from some simulation results. Theoretical study

of the influence of estimating a to the PMSEG is left for the future work.

Second, in this paper, we assume that all individuals have the same number

of repeated observations and a common correlation structure. Since this is a

strong assumption, we should consider to relax it. Finally, in Subsection 4.3,

we confirmed the performance of the selection probability of the PMSEG when

the number of occasions is not small. However, since this is merely a numeri-

cal result, we should show the theoretical property of the PMSEG.

Appendix

Derivation of (3)

The GEE is expanded as follows:

0p ¼ sn;0 þ
qsn

qb>

����
b¼b0

ð b̂b � b0Þ

þ 1

2
fð b̂b � b0Þ

> n Ipg
q

qb
n

qsn

qb>

� �����
b¼b ?

ð b̂b � b0Þ

¼ sn;0 �Hn;0ðIp þ G1;0 þ G2;0Þð b̂b � b0Þ

þ 1

2
fð b̂b � b0Þ

> n IpgL1ðb ?Þð b̂b � b0Þ; ð8Þ

where b ? lies between b0 and b̂b (i.e., be1 A ð0; 1Þ s:t: b ? ¼ b0 þ e1ð b̂b � b0Þ), Ip is

a p-dimensional identity matrix, G1;0, G2;0 and L1ðb ?Þ are defined by

324 Yu Inatsu and Shinpei Imori



G1;0 ¼ �H�1
n;0

Xn
i¼1

D>
i;0

q

qb> nV�1
i

����
b¼b0

 !
fI p n ðyi � mi;0Þg;

G2;0 ¼ �H�1
n;0

Xn
i¼1

q

qb> nD>
i

����
b¼b0

 !
½Ip n fV�1

i;0 ðyi � mi;0Þg�;

L1ðb ?Þ ¼ q

qb
n

qsn

qb>

� �����
b¼b ?

:

Note that L1ðb ?Þ ¼ OpðnÞ, sn;0 ¼ Opðn1=2Þ, b̂b � b0, G1;0 and G2;0 ¼ Opðn�1=2Þ.
Thus, (8) yields

b̂b � b0 ¼ H�1
n;0sn;0 þOpðn�1Þ ¼ b1;0 þOpðn�1Þ: ð9Þ

Similarly, the GEE can also be expanded as follows:

sn;0 ¼ Hn;0ðIp þ G1;0 þ G2;0Þð b̂b � b0Þ

� 1

2
fð b̂b � b0Þ

> n I pgfG3;0 þ ðL1ðb0Þ � G3;0Þgð b̂b � b0Þ

� 1

6
fð b̂b � b0Þ

> n I pg
q

qb> n
q

qb
n

qsn

qb>

� �� �����
b¼b ??

� fð b̂b � b0Þn ð b̂b � b0Þg; ð10Þ

where b ?? lies between b0 and b̂b (i.e., be2 A ð0; 1Þ s:t: b ?? ¼ b0 þ e2ð b̂b � b0Þ), and
G3;0 ¼ EfL1ðb0Þg.

Note that the order of the last term of equation (10) is Opðn�1=2Þ. Also

note that G3;0 ¼ OðnÞ and L1ðb0Þ � G3;0 ¼ Opðn1=2Þ. Therefore, by using equa-

tion (9) and (10), we get the stochastic expansion (3), and b1;0 ¼ Oðn�1=2Þ and

b2;0 ¼ Oðn�1Þ.

Calculation of Bias1

Bias1 in (4) is expanded as

Bias1 ¼ Ey Ez

Xn
i¼1

ðzi � m̂miÞ
>S�1

i;0 ðzi � m̂miÞ
( )

�
Xn
i¼1

ðyi � m̂miÞ
>S�1

i;0 ðyi � m̂miÞ
" #

¼ 2Ey

Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0 ðm̂mi � mi;0Þ
( )

: ð11Þ
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Applying Taylor’s expansion around b̂b ¼ b0 to m̂mi yields

m̂mi ¼ mi;0 þ
qmi
qb>

����
b¼b0

ð b̂b � b0Þ

þ 1

2
fð b̂b � b0Þ

> n Img
q

qb
n

qmi
qb>

� �����
b¼b0

ð b̂b � b0Þ

þ 1

6
fð b̂b � b0Þ

> n Img
q

qb> n
q

qb
n

qmi
qb>

� �� �����
b¼b ???

fð b̂b � b0Þn ð b̂b � b0Þg

¼ mi;0 þDi;0ð b̂b � b0Þ þ
1

2
fð b̂b � b0Þ

> n ImgDð1Þ
i;0 ð b̂b � b0Þ þOpðn�3=2Þ; ð12Þ

where D
ð1Þ
i;0 is given by

D
ð1Þ
i;0 ¼ q

qb
nDi

� �����
b¼b0

:

Here, b ??? lies between b0 and b̂b. Substituting the stochastic expansion of b̂b

in (3) into (12) yields the following:

m̂mi � mi;0 ¼ Di;0b1;0 þ Di;0b2;0 þ
1

2
ðb>1;0 n ImÞDð1Þ

i;0b1;0

� �
þOpðn�3=2Þ: ð13Þ

By combining (11) and (13), we obtain

1

2
Bias1 ¼ Ey

Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0Di;0b1;0

( )

þ Ey

Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0 Di;0b2;0 þ
1

2
ðb>1;0 n ImÞDð1Þ

i;0b1;0

� �" #

þ EyfOpðn�1=2Þg: ð14Þ

Note that Efðyi � mi;0Þ
>ðyj � mj;0Þg ¼ 0, ði0 jÞ, the first term of (14) can be

calculated as

Ey

Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0Di;0b1;0

( )

¼ Ey

Xn
i¼1

Xn
j¼1

ðyi � mi;0Þ
>S�1

i;0Di;0H
�1
n;0D

>
j;0V

�1
j;0 ðyj � mj;0Þ

" #
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¼ Ey

Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0Di;0H
�1
n;0D

>
i;0V

�1
i;0 ðyi � mi;0Þ

" #

¼ tr H�1
n;0

Xn
i¼1

D>
i;0V

�1
i;0 Di;0

" #
¼ tr½H�1

n;0Hn;0� ¼ p: ð15Þ

Similarly, since E½ðyi � mi;0Þn ðyj � mj;0Þ
>ðyk � mk;0Þ� ¼ 0m, (not i ¼ j ¼ k),

the second term of (14) can be expanded as

Ey

Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0 Di;0b2;0 þ
1

2
ðb>1;0 n ImÞDð1Þ

i;0b1;0

� �" #

¼ Ey

Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0 Di;0b2i;0 þ
1

2
ðb>1i;0 n ImÞDð1Þ

i;0b1i;0

� �" #
;

where b1i;0 ¼ H�1
n;0D

>
i;0V

�1
i;0 ðyi � mi;0Þ, b2i;0 ¼ H�1

n;0ðb>1i;0 n IpÞG3;0b1i;0=2�
G1i;0b1i;0 � G2i;0b1i;0,

G1i;0 ¼ �H�1
n;0D

>
i;0

q

qb> nV�1
i

����
b¼b0

 !
fI p n ðyi � mi;0Þg;

G2i;0 ¼ �H�1
n;0

q

qb> nD>
i

����
b¼b0

 !
½I p n fV�1

i;0 ðyi � mi;0Þg�:

Note that Di;0b2i;0 þ ðb>1i;0 n ImÞDð1Þ
i;0b1i;0=2 ¼ Opðn�2Þ, the second term of (14)

can be obtained as

Ey

Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0 Di;0b2;0 þ
1

2
ðb>1;0 n ImÞDð1Þ

i;0b1;0

� �" #
¼ Oðn�1Þ: ð16Þ

Under certain conditions, the limit of the expectation is equal to the expecta-

tion of the limit. Furthermore, in many cases of practical interest, a moment

of statistic can be expanded as power series in n�1 (see e.g., Hall, [7]). There-

fore, by substituting (15) and (16) into (14), we obtain the asymptotic expansion

of Bias1 up to order 1 as

Bias1 ¼ 2pþOðn�1Þ: ð17Þ

Calculation of Bias2þ Bias4

We calculate Bias2þ Bias4. Bias2 in (4) can be calculated as
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Bias2 ¼ Ey

Xn
i¼1

ðyi � m̂miÞ
>S�1

i;0 ðyi � m̂miÞ �
Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0 ðyi � mi;0Þ
( )

¼ Ey 2
Xn
i¼1

ðyi � mi;0Þ
>S�1

i;0 ðmi;0 � m̂miÞ
( )

þ Ey

Xn
i¼1

ðmi;0 � m̂miÞ
>S�1

i;0 ðmi;0 � m̂miÞ
( )

;

and Bias4 in (4) can also be calculated as

Bias4 ¼ Ey

Xn
i¼1

ðyi � mi;0Þ
>A

�1=2
i ð b̂bf Þ ~RR�1ð b̂bf ÞA

�1=2
i ð b̂bf Þðyi � mi;0Þ

( )

� Ey

Xn
i¼1

ðyi � m̂miÞ
>A

�1=2
i ð b̂bf Þ ~RR�1ð b̂bf ÞA

�1=2
i ð b̂bf Þðyi � m̂miÞ

( )

¼ �Ey 2
Xn
i¼1

ðyi � mi;0Þ
>A

�1=2
i ð b̂bf Þ ~RR�1ð b̂bf ÞA

�1=2
i ð b̂bf Þðmi;0 � m̂miÞ

( )

� Ey

Xn
i¼1

ðmi;0 � m̂miÞ
>A

�1=2
i ð b̂bf Þ ~RR�1ð b̂bf ÞA

�1=2
i ð b̂bf Þðmi;0 � m̂miÞ

( )
:

Thus, we obtain Bias2 þ Bias4 as follows:

Bias2þ Bias4 ¼ Ey

"
2
Xn
i¼1

ðyi � mi;0Þ
>fS�1

i;0 � A
�1=2
i ð b̂bf Þ

� ~RR�1ð b̂bf ÞA
�1=2
i ð b̂bf Þgðmi;0 � m̂miÞ

#
ð18Þ

þ Ey

"Xn
i¼1

ðmi;0 � m̂miÞ
>fS�1

i;0 � A
�1=2
i ð b̂bf Þ

� ~RR�1ð b̂bf ÞA
�1=2
i ð b̂bf Þgðmi;0 � m̂miÞ

#
: ð19Þ

In order to calculate (18) and (19), we perform the stochastic expansion

of A
�1=2
i ð b̂bf Þ, ~RR�1ð b̂bf Þ, mið b̂bf Þ and b̂bf . Denote D�; i ¼ Aiðb�ÞDiðb�ÞX�; i and

D�; i;0 ¼ Ai;0Di;0X�; i. Considering the same argument in section 2 and 3, b̂bf
and mið b̂bf Þ can be expanded as
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b̂bf � b�;0 ¼ bf ;0 þOpðn�1Þ; bf ;0 ¼ H�1
f ;n;0sf ;nðb�;0Þ;

mið b̂bf Þ � mi;0 ¼ D�; i;0bf ;0 þOpðn�1Þ; ð20Þ

where b�;0 is the true value of b�, and H f ;n;0 is defined as

H f ;n;0 ¼
Xn
i¼1

D>
�; i;0A

�1=2
i;0 R�1

i ðayÞA�1=2
i;0 D�; i;0:

Let af ; ið b̂bf Þ denote the m-dimensional vector and the jth element of which is

the ð j; jÞth element of A
�1=2
i ð b̂bf Þ. Note that diagfaf ; ið b̂bf Þg ¼ A

�1=2
i ð b̂bf Þ. By

applying Taylor’s expansion around b̂bf ¼ b�;0, af ; ið b̂bf Þ is expanded as

af ; ið b̂bf Þ ¼ af ; iðb�;0Þ þ A�
f ; i;0bf ;0 þOpðn�1Þ; A�

f ; i;0 ¼
q

qb>
�
af ; iðb�Þ

����
b�¼b�; 0

:

Hence, we obtain

A
�1=2
i ð b̂bf Þ ¼ diagfaf ; ið b̂bf Þg ¼ A

�1=2
i;0 þ diagðA�

f ; i;0bf ;0Þ þOpðn�1Þ: ð21Þ

Note that bf ;0;D�; i;0bf ;0; diagðA�
f ; i;0bf ;0Þ ¼ Opðn�1=2Þ. Moreover, substituting

(20) and (21) into ~RRð b̂bf Þ yields following:

~RRð b̂bf Þ ¼ � 1

n

Xn
i¼1

A
�1=2
i;0 fD�; i;0bf ;0ðyi � mi;0Þ

> þ ðyi � mi;0ÞðD�; i;0bf ;0Þ>gA�1=2
i;0

þ 1

n

Xn
i¼1

A
�1=2
i;0 ðyi � mi;0Þðyi � mi;0Þ

>A
�1=2
i;0

þ 1

n

Xn
i¼1

diagðA�
f ; i;0bf ;0Þðyi � mi;0Þðyi � mi;0Þ

>A
�1=2
i;0

þ 1

n

Xn
i¼1

A
�1=2
i;0 ðyi � mi;0Þðyi � mi;0Þ

> diagðA�
f ; i;0bf ;0Þ þOpðn�1Þ: ð22Þ

By the Lindeberg central limit theorem, the first term of (22) is Opðn�1Þ.
Thus, using this fact and (22), we obtain

R
�1=2
0

~RRð b̂bf ÞR
�1=2
0

¼ Im � R
�1=2
0

(
R0 �

1

n

Xn
i¼1

A
�1=2
i;0 ðyi � mi;0Þðyi � mi;0Þ

>A
�1=2
i;0
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� 1

n

Xn
i¼1

diagðA�
f ; i;0bf ;0Þðyi � mi;0Þðyi � mi;0Þ

>A
�1=2
i;0

� 1

n

Xn
i¼1

A
�1=2
i;0 ðyi � mi;0Þðyi � mi;0Þ

> diagðA�
f ; i;0bf ;0Þ

)
R

�1=2
0 þOpðn�1Þ:

Therefore, by calculating the inverse matrix of R
�1=2
0

~RRð b̂bf ÞR
�1=2
0 , ~RR�1ð b̂bf Þ can

be expanded as

~RR�1ð b̂bf Þ ¼ R�1
0 þ R�1

0

(
R0 �

1

n

Xn
i¼1

A
�1=2
i;0 ðyi � mi;0Þðyi � mi;0Þ

>A
�1=2
i;0

� 1

n

Xn
i¼1

diagðA�
f ; i;0bf ;0Þðyi � mi;0Þðyi � mi;0Þ

>A
�1=2
i;0

� 1

n

Xn
i¼1

A
�1=2
i;0 ðyi � mi;0Þðyi � mi;0Þ

> diagðA�
f ; i;0bf ;0Þ

)
R�1

0

þOpðn�1Þ: ð23Þ

Note that the second term of (23) is Opðn�1=2Þ.
Next, we calculate (19). By using (21) and (23), we obtain

S�1
i;0 � A

�1=2
i ð b̂bf Þ ~RR�1ð b̂bf ÞA

�1=2
i ð b̂bf Þ

¼ �diagðA�
f ; i;0bf ;0ÞR�1

0 A
�1=2
i;0 � A

�1=2
i;0 R�1

0 diagðA�
f ; i;0bf ;0Þ

� A
�1=2
i;0 R�1

0

(
R0 �

1

n

Xn
i¼1

A
�1=2
i;0 ðyi � mi;0Þðyi � mi;0Þ

>A
�1=2
i;0

� 1

n

Xn
i¼1

diagðA�
f ; i;0bf ;0Þðyi � mi;0Þðyi � mi;0Þ

>A
�1=2
i;0

� 1

n

Xn
i¼1

A
�1=2
i;0 ðyi � mi;0Þðyi � mi;0Þ

> diagðA�
f ; i;0bf ;0Þ

)
R�1

0 A
�1=2
i;0

þOpðn�1Þ: ð24Þ

Note that S�1
i;0 � A

�1=2
i ð b̂bf Þ ~RR�1ð b̂bf ÞA

�1=2
i ð b̂bf Þ ¼ Opðn�1=2Þ and Di;0b1;0 ¼

Opðn�1=2Þ. Therefore, by substituting (13) and (24) into (19), we obtain

ð19Þ ¼ Oðn�1Þ: ð25Þ
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Recall that, in general, a moment of statistic can be expanded as power series

in n�1. Hence, the order of (25) is shown by Oðn�1Þ, not Oðn�1=2Þ.
Finally, we calculate (18). By substituting (13) and (24) into (18), we

obtain

ð18Þ ¼ Ey

"
2
Xn
i¼1

k>
i;0fdiagðA�

f ; i;0bf ;0ÞR�1
0 A

�1=2
i;0

þ A
�1=2
i;0 R�1

0 diagðA�
f ; i;0bf ;0ÞgDi;0b1;0

#

� Ey 2
Xn
i¼1

k>
i;0A

�1=2
i;0 R�1

0

1

n

Xn
j¼1

A
�1=2
j;0 kj;0k

>
j;0A

�1=2
j;0 R�1

0 A
�1=2
i;0 Di;0b1;0

 !

� Ey
2

n

X
i; j

k>
i;0A

�1=2
i;0 R�1

0 diagðA�
f ; j;0bf ;0Þkj;0k

>
j;0A

�1=2
j;0 R�1

0 A
�1=2
i;0 Di;0b1;0

( )

� Ey

2

n

X
i; j

k>
i;0A

�1=2
i;0 R�1

0 A
�1=2
j;0 kj;0k

>
j;0 diagðA�

f ; j;0bf ;0ÞR�1
0 A

�1=2
i;0 Di;0b1;0

( )

þ Ey 2
Xn
i¼1

k>
i;0S

�1
i;0Di;0b1;0

 !
þOðn�1Þ: ð26Þ

Here, ki;0 ¼ ðyi � mi;0Þ and
P

i; j ¼
Pn

i¼1

Pn
j¼1. Moreover, in order to simplify

the calculation, we define the following notation:

X
i0j

¼
Xn
i¼1

Xn
j¼1; i0j

; bf ; i;0 ¼ H�1
f ;n;0D

>
�; i;0A

�1
i;0ki;0:

Recall that Eðki;0 n k>
j;0kk;0Þ ¼ 0m, (not i ¼ j ¼ k). Hence, the first term of

(26) is as follows:

Ey 2
Xn
i¼1

k>
i;0fdiagðA�

f ; i;0bf ;0ÞR�1
0 A

�1=2
i;0 þ A

�1=2
i;0 R�1

0 diagðA�
f ; i;0bf ;0ÞgDi;0b1;0

" #

¼ Ey

"
2
Xn
i¼1

k>
i;0fdiagðA�

f ; i;0bf ; i;0ÞR�1
0 A

�1=2
i;0

þ A
�1=2
i;0 R�1

0 diagðA�
f ; i;0bf ; i;0ÞgDi;0b1i;0

#
¼ Oðn�1Þ: ð27Þ
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Similarly, since Eyðk>
i;0kj;0k

>
j;0kk;0Þ ¼ 0 unless i ¼ k, the second term of (26) can

be calculated as

�Ey 2
Xn
i¼1

k>
i;0A

�1=2
i;0 R�1

0

1

n

Xn
j¼1

A
�1=2
j;0 kj;0k

>
j;0A

�1=2
j;0 R�1

0 A
�1=2
i;0 Di;0b1;0

 !

¼ �Ey 2
Xn
i¼1

k>
i;0A

�1=2
i;0 R�1

0

1

n

Xn
j¼1; i0j

A
�1=2
j;0 kj;0k

>
j;0A

�1=2
j;0 R�1

0 A
�1=2
i;0 Di;0b1i;0

 !

þOðn�1Þ

¼ �Ey 2
Xn
i¼1

k>
i;0S

�1
i;0Di;0b1i;0

 !
þOðn�1Þ ¼ �2pþOðn�1Þ: ð28Þ

Note that �2p in (28) is obtained from (15). Furthermore, Ey½k>
i;0ðkj;0 n k>

k;0Þ �
ðkk;0 n kl;0Þ� ¼ 0 expect in the following cases:

i ¼ j ¼ l or i ¼ j0 k ¼ l or i ¼ l0 k ¼ j or j ¼ l0 k ¼ i:

Thus, the third term of (26) is given by

�Ey

2

n

X
i; j

k>
i;0A

�1=2
i;0 R�1

0 diagðA�
f ; j;0bf ;0Þkj;0k

>
j;0A

�1=2
j;0 R�1

0 A
�1=2
i;0 Di;0b1;0

( )

¼ �Ey

2

n

Xn
i¼1

k>
i;0A

�1=2
i;0 R�1

0 diagðA�
f ; i;0bf ;0Þki;0k

>
i;0A

�1=2
i;0 R�1

0 A
�1=2
i;0 Di;0b1;0

( )

� Ey

2

n

X
i0j

k>
i;0A

�1=2
i;0 R�1

0 diagðA�
f ; j;0bf ; i;0Þkj;0k

>
j;0A

�1=2
j;0 R�1

0 A
�1=2
i;0 Di;0b1j;0

( )

� Ey

2

n

X
i0j

k>
i;0A

�1=2
i;0 R�1

0 diagðA�
f ; j;0bf ; j;0Þkj;0k>

j;0A
�1=2
j;0 R�1

0 A
�1=2
i;0 Di;0b1i;0

( )

þOðn�1Þ

¼ Oðn�1Þ: ð29Þ

In the same manner as in the calculation of the third term of (26), the fourth

term of (26) is calculated as

�Ey

2

n

X
i; j

k>
i;0A

�1=2
i;0 R�1

0 A
�1=2
j;0 kj;0k

>
j;0 diagðA�

f ; j;0bf ;0ÞR�1
0 A

�1=2
i;0 Di;0b1;0

( )

¼ Oðn�1Þ: ð30Þ
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Moreover, the fifth term of (26) is obtained from (15), as follows:

Ey 2
Xn
i¼1

k>
i;0S

�1
i;0Di;0b1;0

 !
¼ 2p: ð31Þ

Substituting (27), (28), (29), (30) and (31) into (26), (18) is given by

ð18Þ ¼ Oðn�1Þ: ð32Þ

Consequently, from (25) and (32), we obtain Bias2þ Bias4 ¼ Oðn�1Þ.
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