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Abstract. We begin a global study of information geometry. In this article, we

describe the geometry of normal distributions by means of positive and negative contact

structures associated to the suspension Anosov flows on Sol 3-manifolds.

1. Introduction

The information geometry is basically a local study of a parameter space

of a family of probability distributions by means of di¤erential geometry (see

[1]). We begin a global study of this object. In this article, we restrict our-

selves to the case of normal distributions. Then the parameter space is the

upper half-plane H ¼ fðm; sÞ A R2 j s > 0g with a certain non-Kähler metric

and a non-metric connection, where m denotes the mean and s the standard

deviation. These local structures are derived from a certain global function D

on H�H, which is fundamental in information theory. On the other hand,

we know that the product H�H parametrizes abelian surfaces in moduli

theory. Precisely, the quotient of the product H�H under the action of a

Hilbert modular group is a non-compact singular complex surface which para-

metrizes the isomorphism classes of complex abelian surfaces with a real multi-

plication structure. Its topology was studied by Hirzebruch [5]. He described

each end of a Hilbert modular surface as a cusp, namely the neighborhood of

y of the quotient M of H�H under a certain action of a semi-direct product

ZyZ2 of lattices of R and R2. From the contact topological point of view,

M [ fyg is the cone with positive and negative symplectic structures whose

base N is a Sol 3-manifold with the positive and negative contact structures

associated to the suspension Anosov flow (see [7] and § 4 below for the precise

meaning). In this article, we reorganize the information geometry of normal

distributions so that it fits with the contact topology of a cusp. The result of

this article can be summarized as follows.

i) (The model in § 3.) We describe the information geometry of H
by introducing a self-correspondence F � H�H which identifies the
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convolution operation for the probability densities in each factor of

H�H to the operation of Bayesian learning for those in the other

factor.

ii) (The propositions in § 5.) The action of ZyZ2 preserves the metric

and the connection on each factor of H�H. The sum (resp. the

di¤erence) of the natural area forms descends to the positive (resp.

negative) symplectic structure on the quotient M. The surface F is

a Lagrangian correspondence which descends to a densely immersed

Lagrangian submanifold Lð� NÞ � M with respect to the negative

symplectic structure. Further L is decomposed into Legendrian sub-

manifolds of N with respect to the positive contact structure.

iii) (Theorem 1 in § 5.) We can take a contact Hamiltonian flow on

the universal cover ~NNð� H�HÞ of the Sol 3-manifold Nð� MÞ such

that

a) the surface F � ~NNð� H�HÞ is an invariant submanifold,

b) the projection of the induced flow on F to each factor of H�H
is tangent to a foliation whose leaves are geodesics for the non-

metric connection in the information geometry, and

c) the iterations of convolutions along the foliation of the first factor

and a certain Bayesian learning process along the foliation of the

second factor are identified via the correspondence F .

Note that we could take a similar contact flow just partially on the quotient.

Indeed the contact Hamiltonian function for the flow in c) is the inverse

coe‰cient of variance m=s on the first factor which is not preserved under the

Z2-action (but preserved under the Z-action). We raise open problems con-

cerning the relation between abelian varieties and pairs of normal distributions

(§ 6).

2. Information geometry

2.1. Smooth parametric statistics. In the smooth setting of parametric sta-

tistics, we consider an open set U � Rn and a positive function pðx;XÞ > 0 on

R�U ðX ¼ ðX 1; . . . ;X nÞÞ such that the normality conditionðy
�y

pðx;X Þdx ¼ 1 ðEX A UÞ

is satisfied. Here we consider that X is a parameter of a random variable x

with probability density pX ðxÞ ¼ pðx;XÞ. We notice that the absolute entropy

�
ðy
�y

pX ðxÞ log pX ðxÞdx
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is possibly negative. That is why, in information theory, the relative entropy

DðX ;Y Þ ¼ �
ðy
�y

pX ðxÞ log
pY ðxÞ
pX ðxÞ

dx b�log

ðy
�y

pX ðxÞ
pY ðxÞ
pX ðxÞ

dx ¼ 0

� �

for ðX ;YÞ A U �U is fundamental. It defines a separating premetric1 on U ,

which is called the Kullback-Leibler divergence in information theory. Using

the tensor notation only in this section, we define the Fisher metric g ¼P
i; j

gij dX
i dX j by the quadratic approximation

DðX ;X þ DXÞA 1

2!

X
i; j

gijDX
iDX jðADðX þ DX ;XÞÞ

and the e(xponential or Efron)-connection ‘ by the cubic approximation

DðX þ DX ;X Þ �DðX ;X þ DXÞ

A
1

3!

X
i; j;k

ðqigjk þ qjgki � qkgij � 2G ij;kÞDX iDX jDX k;

where

jDX j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDX 1Þ2 þ � � � þ ðDX nÞ2

q
f 1;

‘qiqj ¼
X
k

G k
ijqk; G ij;k ¼

X
l

gklG
l
ij ; gij ¼ gji; and

qigjk þ qjgki � qkgij � 2G ij;k ¼ qjgki þ qkgij � qigjk � 2G jk; i:

The coe‰cients of the e-connection all vanish for an exponential family

pX ðxÞ ¼ exp
Xn
i¼1

X ifiðxÞ þ f0ðxÞ � nðXÞ
 !

;

where fiðxÞ are preferable functions and nðXÞ the normalizer.

The space of torsion-free connections on U is an a‰ne space containing

the Levi-Civita connection, and the underlying vector space consists of sym-

metric bilinear map from XðUÞ � XðUÞ to XðUÞð¼ fvector fields on UgÞ.
We may regard any torsion-free connection as a vector starting at the Levi-

Civita connection. Then we define the a-connection as the multiplication of

the vector going to the above e-connection ‘ by a scalar a A R. This draws

1A premetric or prametric on a set U is a non-negative function on U �U which vanishes along

the diagonal set. If it is positive elsewhere, we say that it is separating. The value of a premetric

is called a distance.

293Information geometry in a global setting



the line through ‘ and the Levi-Civita connection unless they coincide, i.e.,

unless all of the equations G ij;k ¼ 1
2 ðqigjk þ qjgki � qkgijÞ hold. Particularly, the

Levi-Civita connection is the 0-connection, and ‘ is the 1-connection. Intui-

tively, the di¤erence between these connections linearizes the asymmetry of

DðX ;YÞ along the diagonal set of U �U . On the other hand, the ð�1Þ-
connection is called the m(ixture)-connection since its coe‰cients vanish for any

mixture pX ðxÞ ¼
Pn
l¼0

X lqlðxÞ of probability densities q0ðxÞ; . . . ; qnðxÞ, where

X ¼ ðX 1; . . . ;X nÞ and

U ¼ fX 0 :¼ 1� X 1 � � � � � X n > 0; X1 > 0; . . . ;Xn > 0g � Rn:

It is remarkable that an a-connection is flat (meaning that its coe‰cients

vanish with respect to some coordinate system on U) if and only if the ð�aÞ-
connection is flat. In particular, the m-connection for the exponential family

vanishes with respect to a certain coordinate system. (The expected values of

f1ðxÞ; . . . ; fnðxÞ provide such coordinates.) See the book [1] for this fact and

other fundamental results in the information geometry.

2.2. Normal distributions. Hereafter we restrict ourselves to the case of the

normal distributions, namely we consider the probability density

pðm; sÞðxÞ ¼
1ffiffiffiffiffiffi
2p

p
s
exp �ðx�mÞ2

2s2

 !

for ðm; sÞ A H ¼ R�R>0 and put U ¼ H and ðX 1;X 2Þ ¼ ðm; sÞ. Then the

Kullback-Leibler divergence DðX ;Y Þ is expressed as

Dððm; sÞ; ðm 0; s 0ÞÞ

¼
ðy
�y

1ffiffiffiffiffiffi
2p

p
s
exp �ðx�mÞ2

2s2

 !
�ðx�mÞ2

2s2
þ ðx�m 0Þ2

2ðs 0Þ2
� log

s

s 0

( )
dx

¼ � 1

2
þ s2

2ðs 0Þ2
þ 0þ ðm 0 �mÞ2

2ðs 0Þ2
� log

s

s 0
:

From this we can see that the Fisher metric g and the e-connection ‘ satisfy

g ¼ dm2 þ 2 ds2

s2
; G12;1 ¼ G21;1 ¼

�2

s3
; and G22;2 ¼

�6

s3
;

and the other coe‰cients G ij;k vanish. Writing the probability density as

pðm; sÞðxÞ ¼ exp
m

s2
xþ �1

2s2
x2 � m2

2s2
� logð

ffiffiffiffiffiffi
2p

p
sÞ

� �
;
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we see that the normal distributions form an exponential family parametrized

by the coe‰cients
m

s2
;
�1

2s2

� �
of ðx; x2Þ. The e-connection vanishes with respect

to this parametrization. Thus a geodesic for the e-connection is one of the

following: a horizontal line with a‰ne parameter m, a vertical half-line with

s�2, or an upper semi-parabola s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amþ b

p
ða; b A RÞ with s�2. On the other

hand, the m-connection vanishes with respect to the other coordinate system

ðm;m2 þ s2Þ consisting of expected values of ðx; x2Þ. This implies that a

geodesic for the m-connection is either a vertical half-line with a‰ne parameter

s2 or an upper semi-circle with m. Whereas its image appears as that of a

geodesic for the Poincaré metric
dm2 þ 1 ds2

s2
ð0 gÞ, the a‰ne parametrization is

di¤erent.

3. The basic model

Let ðm; s;M;SÞ denote the coordinate system of H�H. Take the corre-

spondence

F : M ¼ �m

s2
and S ¼ 1

s

, m

s
þM

S
¼ 0 and sS ¼ 1

� �

and regard it as a submanifold of H�H. For any point ðm; s;M;SÞ in

H�H, we put

f ðs;m;S;MÞ ¼

M

S
þ expð�hÞm

s

� �2
þ expð�2hÞ � 1þ 2h

2
;

where h ¼ �logðsSÞ.

Proposition 1. Suppose that under the correspondence F a point ðm 0; s 0Þ of
the first factor of H�H is identified with the point ðM;SÞ of the second factor,

i.e., ðm 0; s 0;M;SÞ A F. Then the function f ðm; s;M;SÞ presents the Kullback-

Leibler divergence Dððm; sÞ; ðm 0; s 0ÞÞ.

Proof.

2f s;m;
1

s 0
;
�m 0

ðs 0Þ2

 !
¼ �m 0

s 0
þ s

s 0
�m
s

� �2
þ s2

ðs 0Þ2
� 1� 2 log

s

s 0

¼ 2Dððm; sÞ; ðm 0; s 0ÞÞ r
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We define the product ðm; sÞ � ðm 0; s 0Þ on the first factor of H�H by

putting

ðm; sÞ � ðm 0; s 0Þ ¼ ðmþm 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðs 0Þ2

q
Þ:

It represents the convolution of probability density functions

pðm; sÞ�ðm 0; s 0ÞðxÞ ¼ ðpðm; sÞ � pðm; sÞÞðxÞ:

We define another product ðM;SÞ � ðM 0;S 0Þ on the second factor by

putting

ðM;SÞ � ðM 0;S 0Þ ¼ MðS 0Þ2 þ ðM 0ÞS2

S2 þ ðS 0Þ2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðS 0Þ2

S2 þ ðS 0Þ2

s !
:

This represents the normalized pointwise product

pðM;SÞ�ðM 0;S 0Þ ¼ pðM;SÞðxÞ � pðM 0;S 0ÞðxÞ
�ðy

�y
pðM;SÞðxÞ � pðM 0;S 0ÞðxÞdx;

which can be interpreted as a Bayesian learning as follows: In Bayesian

statistics, the observation is an event, and the parameter x of the population

distribution is a random variable. Since the population is unknown, the

distribution of x is also unknown. Thus we have to fix a prior probability

density pðxÞ before the observation. Since the observation is an event, it has

the probability r. It also has the conditional probability for the population

at each x. This is not a probability density of x, but the non-negative func-

tion of x called the likelihood. Suppose that we obtain a probability density

qðxÞ from the likelihood by multiplying with it a positive constant. Then we

obtain the posterior probability density p 0ðxÞ ¼ pðxÞqðxÞ=r from Bayes’ rule.

The posterior probability density p 0ðxÞ presents the updated prior probability

density learned from the present observation. We will use p 0ðxÞ ¼ pðxÞ � qðxÞ
as the prior probability density in the next observation. Although pðxÞ is

arbitrary and subjective, we can update it to pðxÞ � qðxÞ by the observation.

We call this procedure a Bayesian learning.

Proposition 2. The above correspondence F on H�H identifies the

product � on the first factor (resp. the second factor) with the product � on the

second factor (resp. the first factor).

Proof. Let ðm; s;M;SÞ and ðm 0; s 0;M 0;S 0Þ be two points on F . Then

we have ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðS 0Þ2

S2 þ ðS 0Þ2

s
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ ðs 0Þ2
q
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and

MðS 0Þ2 þ ðM 0ÞS2

S2 þ ðS 0Þ2
¼

� m

s2
1

ðs 0Þ2
� m 0

ðs 0Þ2
1

s2

1

s2
þ 1

ðs 0Þ2
¼ �ðmþm 0Þ

s2 þ ðs 0Þ2
;

which prove the identification between � on the first factor and � on the second

factor. They also prove the other identification because F is invariant under

the interchange of the order of the product H�H. r

Thus the correspondence F defines a Fourier-like transformation on H,

hence the notation.

4. Contact/foliation topology of Sol 3-manifolds

4.1. Topology of contact structures. Contact geometry is soft enough to

interest topologists since Gray’s stability [4] says that any smooth homotopy

of contact structures on a closed manifold (i.e. a compact manifold without

boundary) can be traced by an isotopy of the ambient manifold. However, the

isotopy class of a contact structure is not determined by the homotopy class

of almost contact structures containing it. Among the isotopy classes, geo-

metrically interesting ‘‘tight’’ ones e.g., the examples in the next subsection are

known to be rather exceptional. See [2] and [8] to see their importance in

current contact topology.

On the other hand, contact geometry and symplectic geomatry are deeply

related. To see this, let x be a co-oriented positive contact structure on an

oriented ð2nþ 1Þ-manifold N. Then we can take a 1-form a on N which

satisfies x ¼ ker a and a5ðdaÞn > 0. Here we consider that �a does not

define x in that co-orientation while eja does ðEj A CyðNÞÞ. Note that eja

satisfies ðejaÞ5ðdðejaÞÞn ¼ eðnþ1Þja5ðdaÞn > 0. Let us temporarily fix a con-

tact form a presenting x. Then the cylinder M ¼ R�N carries the symplectic

form dðezaÞ, where z is the coordinate on R. We call this symplectic manifold

the symplectization of ðN; aÞ, and R� f�g its R-fiber. A section of the

R-fibration can be considered as the graph z ¼ j of a function j A CyðNÞ.
Then considering z 0 ¼ z� j as a new coordinate, we get another description of

the same R-fibration where the section z ¼ j becomes the zero-section. Then

from dðezaÞ ¼ dðez 0 ðejaÞÞ we see that another contact form eja defines the

same symplectization up to di¤eomorphism preserving the R-fibration (but

changing the zero section). For a fixed contact form a and a function H on

N, we can define the contact Hamiltonian vector field Y for H as the well-

defined push-forward of the usual Hamiltonian vector field ~YY for the func-
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tion ~HH ¼ ezH on the symplectization of ðN; aÞ to the base space N of the

R-fibration. Then we have aðYÞ ¼ H. Note that Y is contact, i.e., it

preserves the contact structure ker a since

L~YYe
za ¼ i ~YYdðezaÞ þ di ~YY ðezaÞ ¼ �dðezHÞ þ dðezHÞ ¼ 0:

From the non-integrability of x, we see that a contact vector field Y 0 tangent

to x (i.e., aðY 0Þ ¼ 0) must be zero. This implies that any contact vector field

is a contact Hamiltonian vector field with H ¼ aðY Þ. If we fix ~HH and change

the section of the R-fibration of M, we obtain another pair of contact form

eja and contact Hamiltonian function e�jH on the base manifold N which

defines the same contact vector field Y . Thus we can say that a contact form

fixes an isomorphism between the space of functions and the space of contact

vector fields, while we need no functions to characterize contact Hamiltonian

system.

4.2. On Sol 3-manifolds. Honda [6] completed the isotopy classification of

contact structures on (the total spaces of ) T 2-bundles over the circle. On the

other hand, given an element A A SLð2;ZÞ with hyperbolicity tr A > 2, the

T 2-bundle with monodromy A possesses a canonical pair ðxþ; x�Þ of posi-

tive and negative contact structures associated to the suspension Anosov flow.

Several authors studied the isotopy classes of these contact structures in

terms of Honda’s classification. Kasuya [7], without appealing to the classi-

fication, related the contact structures xG to Hirzebruch’s construction [5] of

Hilbert modular cusp. Hereafter we use relevant part of Kasuya’s description

of xG.

It is well-known that any element A of SLð2;ZÞ with tr A > 2 is conjugate

to a positive word of
1 1

0 1

� �
and

1 0

1 1

� �
which uses both letters. Note that

the conjugacy class is not determined by the trace unlike in the case of

SLð2;RÞ. Then since trðA�1Þ > 2, we can take a map

Z=rZ C k 7! bk A Zb2

not identically 2 such that A�1 is conjugate to

1 1

0 1

� �
1 0

1 1

� �bkþr�1�2

� � � 1 1

0 1

� �
1 0

1 1

� �bk�2

:

Then from the formula

1 0

1 1

� ��1 1 1

0 1

� �
1 0

1 1

� �bk�2
 !

1 0

1 1

� �
¼ bk 1

�1 0

� �
;
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we see that A�1 is conjugate to

sk tk

uk vk

� �
:¼ bkþr�1 1

�1 0

� �
bkþr�2 1

�1 0

� �
� � � bk 1

�1 0

� �
:

One may start with a given recurring sequence bk b 2 other than the constant

sequence bk ¼ 2 since the trace of the above composition map is greater than 2

unless identically bk ¼ 2. On the other hand the continued fractions

wk ¼ bk �
1

bkþ1 �
1

bkþ2 þ � � �

ðk A Z=rZÞ

and the sum c ¼ logðw1Þ þ � � � þ logðwrÞ of their logarithms satisfy

bk 1

�1 0

� � �1

wk

� �
¼ 1

wkþ1

�1

wk

� �

and

sk tk

uk vk

� � �1

wk

� �
¼ e�c �1

wk

� �
:

Putting k ¼ 1, we see that the irrational number w1 and its irrational conjugate

w1 are the solutions of the quadratic equation

t1w
2
1 � ðs1 � v1Þw1 � u1 ¼ 0

which satisfy 0 < w1 < 1 < w1. This implies the formula

s1 t1

u1 v1

� � �1 �1

w1 w1

� �
¼ �1 �1

w1 w1

� �
e�c 0

0 ec

� �
:

Now we take any K > 0 to fix the vectors

x1

x2

� �
¼ �1 �1

w1 w1

� ��1
K

0

� �

and

y1

y2

� �
¼ �1 �1

w1 w1

� ��1 0

K

� �
;

which satisfy

e�c 0

0 ec

� �
x1

x2

� �
¼ s1

x1

x2

� �
þ u1

y1

y2

� �

299Information geometry in a global setting



and

e�c 0

0 ec

� �
y1

y2

� �
¼ t1

x1

x2

� �
þ v1

y1

y2

� �
:

We define the quotient manifold Mðx; y; cÞ ¼ H�H=@ by the equivalences

ðm; s;M;SÞ@ ðecm; ecs; e�cs; e�cSÞ;

ðm; s;M;SÞ@ ðmþ x1; s;M þ x2;SÞ;

and

ðm; s;M;SÞ@ ðmþ y1; s;M þ y2;SÞ

for any ðm; s;M;SÞ A H�H. Note that the map

ðm; s;M;SÞ 7! ðecm; ecs; e�cs; e�cSÞ

preserves the lattice on the mM-plane generated by x ¼ ðx1; x2Þ and y ¼
ðy1; y2Þ. Thus Mðx; y; cÞ is a 4-manifold di¤eomorphic to a T 2-bundle over

the open annulus S1 �R.

Next we take the function h ¼ �logðsSÞ on H�H � C�C. It is strictly

plurisubharmonic since the Hessian diag
1

4s2
;
1

4S2

� �
is clearly positive definite.

Now we shift our ground from the complex structure Jstd to the exact sym-

plectic structure dlþ with fixed primitive

lþ ¼ �J �
std dh ¼ dm

s
þ dM

S
¼ exp

hþ t

2

� �
dmþ exp

h� t

2

� �
dM;

where t ¼ log
S

s
. The plurisubharmonicity can also be expressed as dhðXÞ > 0

by means of a Liouville vector field X . Here we choose X so that iX dlþ ¼
lþ holds. Note that this equation uniquely determines the vector field X since

the non-degeneracy of dlþ.

The flow foliation of X carries the holonomy invariant transverse contact

structure which is defined by the 1-form lþ. Conversely the symplectic mani-

fold H�H is the symplectization of the section fh ¼ 0g, where the flow lines

of X are the R-fibers with fiber coordinate z ¼ h=2. The function h descends

to the quotient Mðx; y; cÞ, so that the 0-level set is a closed contact 3-manifold

Nðx; y; cÞ. Then Mðx; y; cÞ is the symplectization of Nðx; y; cÞ. The function

t (mod 2cZ) also descends to Mðx; y; cÞ, so that its restriction to the section

Nðx; y; cÞ defines a T 2-bundle projection to the circle R=2cZ. The T 2-fiber

is the quotient of the mM-plane by the lattice generated by x and y. The
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monodromy map
ec 0

0 e�c

� �
with respect to the fundamental basis of the

mM-plane is written as
s1 t1

u1 v1

� ��1

A SLð2;ZÞ with respect to the basis fx; yg.

This finally leads us to consider the contact structure xþ on the T 2-bundle with

monodromy A instead of (the primitive lþ of ) the symplectic structure dlþ.

We can take the global frame ðe1; e2; e3Þ of TNðx; y; cÞ by putting

e1 ¼ e�t=2qm; e2 ¼ et=2qM ; and e3 ¼ 2qt:

It satisfies the sol3-relations

½e1; e2� ¼ 0; ½e3; e1� ¼ �e1; and ½e3; e2� ¼ e2:

The dual coframe ðe�1 ; e�2 ; e�3 Þ satisfies the corresponding relations

de�3 ¼ 0; de�1 ¼ �e�15e3; and de�2 ¼ e�25e�3 ;

where

e�1 ¼ et=2 dm; e�2 ¼ e�t=2 dM; and e�3 ¼ dt=2:

We call Nðx; y; cÞ the Sol3-manifold associated to A. The suspension Anosov

flow is the flow generated by e3. Since it expands e1 and contracts e2, the

1-forms aG ¼ e�1 G e�2 define a pair of positive and negative contact structures

xG, which we call the bi-contact structure associated to the flow. (This xþ
coincides with the above one, hence we use the same notation.) The suspen-

sion Anosov flow drifts the positive and negative contact structures toward the

unstable Anosov foliation defined by the equation e�2 ¼ 0. Further we have

the negative symplectic form dl� on Mðx; y; cÞ which is the symplectization of

the negative contact structure x�, where

l� ¼ eh=2ðe�1 � e�2 Þ ¼ exp
hþ t

2

� �
dm� exp

h� t

2

� �
dM:

5. Results

Now we investigate the model in § 3 in the light of the description in § 4.

Proposition 3. The correspondence F and the function f are invariant

under the monodromy map ðm; s;M;SÞ 7! ðecm; ecs; e�cs; e�cSÞ.

Proof. The monodromy map preserves the inverse coe‰cients of variance

m

s
and

M

S
, and the strictly plurisubharmonic function h ¼ �logðsSÞ. r
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Proposition 4. The symplectic structure

dlþ ¼ dm5ds

s2
þ dM5dS

S2
;

the sum of Fisher metrics

g ¼ dm2 þ 2 ds2

s2
þ dM 2 þ 2 dS2

S2
;

and the almost complex structure

J : qm 7! 1ffiffiffi
2

p qs; qM 7! 1ffiffiffi
2

p qS

on H�HðC ðm; s;M;SÞÞ satisfy gð� ; �Þ ¼
ffiffiffi
2

p
dlþð�; J�Þ and descend to the

quotient Mðx; y; cÞ.

Proof. We have

ffiffiffi
2

p
dlþ qm;

1ffiffiffi
2

p qs

� �
¼ 1

s2

and

ffiffiffi
2

p
dlþðqs;�

ffiffiffi
2

p
qmÞ ¼

2

s2
:

The rest is clear. r

Proposition 5. The ‘‘Fourier’’ correspondence F � ðH�H; dlþÞ is a

smooth surface contained in the contact-type hypersurface ~NN ¼ fh ¼ 0g with

positive contact structure ker aþ. It is the union of Legendrian lines

feT=2mþ e�T=2M ¼ 0 and t ¼ Tg ðT A RÞ:

These lines descend to the quotient Nðx; y; cÞ of ~NN as Legendrian curves which

form a dense immersion of the surface F .

Proof. We see that

et=2mþ e�t=2M ¼ 0 , m

s
þM

S
¼ 0:

Together with sS ¼ 1 ð, h ¼ 0Þ, this defines the surface F . The Legendrian

lines for T ¼ T0 þ 2c and T ¼ T0 descend to the same Legendrian immersed

curve on ðNðx; y; cÞ; ker aþÞ, which is either closed or dense in the toral fiber

ft ¼ Tg � Nðx; y; cÞ depending on whether the slope �eT is rational or irra-

tional with respect to the basis fx; yg. r
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Proposition 6. For the negative symplectic structure

dl� ¼ dm5ds

s2
� dM5dS

S2

on H�H, the surface F is a Lagrangian correspondence.

Proof. The tangent space of F is expressed as

TF ¼ spanfsqm � SqM ;mqm þ sqs �MqM � SqSg:

Then we have

dm5dsðsqm;mqm þ sqsÞ
s2

� dM5dSð�SqM ;�MqM � SqSÞ
S2

¼ 1� 1 ¼ 0: r

The correspondence F also satisfies the following interesting property.

We call the image of a geodesic for the e-connection an e-geodesic.

Proposition 7. Any e-geodesic on the first factor of H�H corresponds

to an e-geodesic on the second factor via F , and vice-versa.

Proof. (The image of ) the e-geodesics on the first factor becomes straight

if we replace the vertical coordinate function s with its square v ¼ s2. Namely

they are straight on sv-half plane. Similarly we can take V ¼ S2 as the

vertical coordinate of the second factor, so that the e-geodesics of the second

factor are also straight. On the other hand, the correspondence F induces a

connection on the second factor from the e-connection on the first factor. In

the above mentioned expression pðm; sÞðxÞ ¼ expðX 1f1ðxÞ þ X 2f2ðxÞ � nðX ÞÞ as

an exponential family with f1ðxÞ ¼ x and f2ðxÞ ¼ x2, we have the coordinates

X 1 ¼ m

s2
¼ m

v
and X 2 ¼ �1

2s2
¼ �1

2v
. With respect to these coordinates the coef-

ficients of the e-connection vanish. These coordinates can also be written as

X 1 ¼ M and X 2 ¼ �S2 ¼ �V via the correspondance F . Thus the geodesics

of the induced metric is straight (and further their a‰ne parameters are a‰ne)

on the SV -half plane. Turning to the MS-half plane, we see that the prop-

osition holds. r

Here we would like to point out that the vertical half-line on the MS-

half plane corresponding to an e-geodesic on the ms-half plane with end

ð0; 0Þ can also be considered as the image of a vertical geodesic for the

m-connection on the MS-half plane. Further the a‰ne parametrization of

the vertical geodesic for the m-connection on the MS-half plane matches

with that of the corresponding geodesic for the e-connection on the mv-half
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plane with end ð0; 0Þ via F . The contact Hamiltonian flow in the following

theorem describes this phenomena by adding an extra structure to the corre-

spondence F .

Theorem 1. The contact Hamiltonian vector field Y of the restriction of

the inverse coe‰cient of variation
m

s
to the hypersurface ~NN ¼ fh ¼ 0g � H�H

with respect to aþ is expressed as

Y ¼ m

s
e1 �

1

2
e3 ¼ mqm � 1

2
ðSqS � sqsÞj ~NN :

It is tangent to the surface F. Let Yi denote the push-forward of the restric-

tion Y jF to the i-th factor of H�H ði ¼ 1; 2Þ. Then the flow of Y1 comes

out of the origin ð0; 0Þ A H along the geodesics for the e-connection, and the flow

of Y2 goes into the M-axis fS ¼ 0g � H along the vertical geodesics for the

m-connection. The former can be discretized into the iterations of convolutions

and therefore the latter into those of Bayesian learnings.

Proof. The interior product iYd
m

s
þM

S

� �
¼ 1

2

m

s
þM

S

� �
vanishes along

F . The Lie derivative of aþ is LYaþ ¼ 1

2
aþ. The Hamiltonian function is

iYaþ ¼ m

s
. The rest is easy. r

6. Further discussions

Since the information geometry concerns parameter spaces with geometric

structures, it would have some relation to moduli theory. This was one of the

starting points of this research. In the present, we have no intrinsic relation

between the pairs of normal distributions and abelian surfaces.

Problem 1. Is there any number theoretical relation between two normal

distributions which enables us to relate the pair to an abelian surface with real

multiplication?

Another starting point was the following splitting result proved in [9] (see

also [3]): A non-singular flow on a closed 3-manifold admits a projectively

Anosov splitting (or a dominated splitting) of the normal bundle if and only

if it is simultaneously tangent to a mutually transverse pair of positive and

negative contact structures, i.e., to a bi-contact structure. Since information

theory concerns the distance of the pair of probability distributions rather than
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the entropy of a single distribution, we want to know how to split a parameter

space (with non-trivial topology) into the pair of parameter spaces. Thus pro-

jectively Anosov flows and bi-contact structures would be helpful for topolog-

ical understanding of the information geometry.
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