HirosHIMA MATH. J.
48 (2018), 159-170

Classification of bi-polarized 3-folds (X, L;,L;) with
WKy + Ly + L) =1

Yoshiaki Fukuma

(Received January 26, 2017)
(Revised February 9, 2018)

ABSTRACT. Let X be a complex smooth projective variety of dimension 3, and let
L, and L, be ample line bundles on X. In this paper we classify (X,L;,L,) with
hO(KX + Ly + Lz) =1.

1. Introduction

Let X be a complex smooth projective variety of dimension n, and let
L be an ample line bundle on X. Then (X, L) is called a polarized manifold.
There are several problems about the positivity of h°(Ky + tL), the dimension
of H(Ky + tL), for some positive integer z. In [25], P. Ionescu proposed the
following conjecture.

CONJECTURE 1 ([25, Open problems, P. 321]). Let (X,L) be a polarized
manifold of dimension n. Assume that Ky + L is nef. Then h°(Ky + L) > 0.

It is known that Conjecture 1 is true for dim X <3 (see [13], [21]).
On the other hand, there is the following conjecture due to Beltrametti and
Sommese, which is weaker than Conjecture 1.

CONJECTURE 2 ([2, Conjecture 7.2.7]). Let (X,L) be a polarized manifold
of dimension n. Assume that Ky + (n — 1)L is nef. Then h°(Ky + (n— 1)L)
> 0.

If n < 4, then Conjecture 2 is true (see [12], [19]). In general, Conjecture
2 is also true if A°(L) > 0 (see [21]). We see from the adjunction theory [2]
that if Conjecture 2 is true, then we can characterize (X,L) with A°(Ky +
(n—1)L) =0. Namely if h°(Ky + (n—1)L) =0, then Ky + (n— 1)L is not
nef by Conjecture 2, and by [4] and [22] we obtain that (X,L) is one of
some special types. Therefore we can characterize (X,L) with n <4 and
h°(Ky + (n—1)L) = 0.
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Moreover the classification of (X, L) with the following cases has been
obtained.

(i) The case where n =3 and h°(Ky +2L) <2 (see [12] and [18]).

(i) The case where n =4 and h°(Ky +3L) <1 (see [19] and [20]).

Furthermore we consider a generalization of Conjecture 2. Assume that
X is smooth with n =dim X and let L;,...,L,_; be ample line bundles on
X. Then (X,Ly,...,L,1) is called a multi-polarized manifold of type n— 1.
In particular, if n =3, then (X, Ly, L,) is also called a bi-polarized manifold.

CoNIECTURE 3 ([15, Conjecture 5.1]). Let (X,Ly,...,L,—1) be a multi-
polarized manifold of type n—1 with dim X =n > 3. Assume that Ky + L;
44 L, 1 is nef. Then h°(Ky + Ly +---+ L, 1) > 0.

In [15, Theorem 5.2], we proved that Conjecture 3 is true for n = 3.
Moreover, for n =3, this implies the classification of (X,L;,L;) with
h°(Ky 4+ Ly + Ly) =0 (see [15, Corollary 5.1]). As the next step, in this
paper we study (X, L, Ly) with A°(Ky + Ly + L) = 1.

2. Preliminaries

DeriNiTION 1 ([14, Definition 2.1 (2), Remark 2.2 (2)], [16, Proposition
6.1.1]). Let X be a smooth projective variety of dimension 3 and let L; and
L, be ample line bundles on X. Then the first sectional geometric genus
g1(X, Ly, L) is defined by the following.

1
gl(X,L],Lz) =1 —|—§(KX + L +L2)L1L2.

In particular if L; = L, = L, then ¢;(X, L, L) is the sectional genus of (X,L),
which is denoted by g(X,L).

DEerFINITION 2. Let (X, L) be a polarized manifold of dimension n.

(1) We say that (X, L) is a scroll (resp. quadric fibration) over a normal
projective variety Y of dimension m with 1 <m < n if there exists
a surjective morphism with connected fibers f : X — Y such that
Ky+(mn—m+1)L=f*A (resp. Ky + (n—m)L= f*A4) for some
ample line bundle 4 on Y.

(ii) (X,L) is called a classical scroll over a normal variety Y if there
exists a vector bundle & on Y such that X @ Py(&) and L = H(8),
where H(&) is the tautological line bundle.

(i) We say that (X, L) is a pure quadric fibration over a smooth projective
curve C if (X,L) is a quadric fibration over C such that the mor-
phism f:X — C is the contraction morphism of an extremal ray.
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REMARK 1.

(1) If (X, L) is a scroll over a smooth projective curve C, then (X,L) is a
classical scroll over C (see [2, Proposition 3.2.1]).

(ii) If (X,L) is a scroll over a normal projective surface S, then S is
smooth and (X,L) is also a classical scroll over S (see [1, (3.2.1)
Theorem| and [7, (11.8.6)]).

(iii) Assume that (X,L) is a quadric fibration over a smooth curve C
withdim X =n>3. Let f: X — C be its morphism. By [1, (3.2.6)
Theorem| and the proof of [22, Lemma (c) in Section 1], we see that
(X,L) is one of the following:

(@) A pure quadric fibration over C.
(b) A classical scroll over a smooth surface with dim X =3. (We
note that this is a very restricted case. See [23] for detail.)

The following notation is used in Theorem 1.

NortaTtioN 1. Let (X, L) be a pure quadric fibration over a smooth curve
C with dim X =»n, and let f: X — C be its morphism. We put & := f.(L).
Then & is a locally free sheaf of rankn+1 on C. Let n:Pc(8) — C be the
projection. Then there exists an embedding i : X — P¢(&) such that f =7 o i,
X €|2H(&) + n*(B)| for some BePic(C) and L= H(&)|y. Let e:=degé,
b:=deg B and d:=L".

Here we recall the definition of k-bigness.

DErFINITION 3 (See [2, p. 5]). Let X be a projective variety and let 4 be a
line bundle on X. Then A is said to be k-big if x(4) > dim X — k.

REMARK 2. Let (X,L) be a polarized manifold of dimension 3. If (X,L)
is a classical scroll over a smooth surface S with g(X,L) =2 and h'(Ox) > 0,
then (X, L) is 1), 2-i), 2-ii) or 3) in [6, (2.25) Theorem]. If (X, L) is the type 1),
2-1), or 2-ii), then (X,L) is a scroll over S. But if (X,L) is the type 3), then
(X, L) is not a scroll over S, but a quadric fibration over a smooth elliptic curve
because Ky + 2L is not 1-big, but 2-big.

Lemma 1. Let (X,Ly,Ly) be a bi-polarized manifolds of dimension 3.
Assume that (Ky + Li + Ly) >0 and h'(Ox) >0. Then g(X,Li,Ly)>2
holds.

ProOF. Assume that ¢;(X,L;,L;) <1. Then ¢;(X,L;,L,) =1 because
we assume that h'(Oy) > 0 (see [16, Theorem 6.1.1]). Since x(Ky + L + L,)
>0, we have Ky + L; + L, = Ox by [16, Theorem 6.1.2]. But this is impos-
sible because /'(Cy) > 0. ]
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REMARK 3. Let (X,Ly,L,) be a bi-polarized manifold of dimension 3.
Then we see from [15, Theorem 5.1] that

h'(Kx + Ly + Ly) = h°(Kx + L1) + g2(X, La) + g1(X, Ly, Ly) — h'(Ox), (1)
WKy + Ly + Ly) = h°(Kx + L) + g2(X, L1) + g1(X, Ly, Ly) — k' (Ox).  (2)

Here ¢y(X,L) denotes the second sectional geometric genus of (X,L) (see
[9, Definition 2.1]). Moreover assume that there exist a smooth projective curve
C and a fiber space f: X — C. Then we have

g1(X, Ly, L) = ¢g(C) +%(KX/C + Ly + L) L1 Ly + (g(C) — (L1 LF = 1), (3)

Here F is a general fiber of f.

If dim X =3, then we have a lower bound for the second sectional
geometric genus of (X, L).

LemMA 2. Let (X,L) be a polarized manifold of dimension 3. Then

hl(@x), if K(KX +L) >0,
W(0y), if ©(X) = —.

Proor. See [10, Corollary 2.4] and [11, Theorem 3.2.1 and Theorem 3.3.1
(2)]. O

Lemma 3. Let (X, Ly, Ly) be a bi-polarized manifold of dimension 3.  As-
sume that hl(@‘X) > 0, hO(KX + L1+ Ly) =1 and there exist a smooth projective
curve C and a fiber space f : X — C such that LiLoF > 2 and h'(Ox) = g(C),
where F is a fiber of f. Then g(C) =1, g1(X,Ly,Ly) =2, h°(Ky +L;) =0,
h(Kx + L) =0, g2(X,L1) =0 and g>(X,Ls) = 0.

92(X, L) 2{

Proor. Since h°(Ky + Ly +Ly) =1, we have h°(Kp+ (Li); + (L2)y)
> 0. Hence we see from [17, Lemma 2.1] that f.(Ky,c + L + L») is ample
and we have (Ky,c + Li + Ly)L1L; > 0 by the same argument as [8, Lemma
1.4.1]. By (3) in Remark 3 we have

gi1(X, L1, L2) 2 g(C) + 1+ (9(C) = D)(L1 LoF — 1) 4)

because (Ky;c + L1+ La)LiL, is even. Hence ¢i(X,Li,Ly)>g(C)+1=
h'(Ox)+1, and by (1) and (2) in Remark 3 we have h°(Ky + L + L,) >
hO(Ky 4+ L1) 4+ g2(X,Ly) + 1 and h°(Ky + Ly + L) > h°(Ky + L) + g>(X, Ly)
+1. Since h°(Ky + L; + Ly) =1, we see from Lemma 2 that h°(Ky + L;)
=0, i%Ky +Ly) =0, g2(X,L;) =0 and ¢»(X,L;) =0. In particular

1=h"(Ky + L + L) = g1(X, L1, Ly) — h' (Oy).
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By (4) and the assumption that L;L,F—1>1, we have ¢g(C)=1 and
gl(X7L17L2):2' |:|

LemmA 4. Let (X,Li,L,) be a bi-polarized manifold of dimension 3.
Assume that Ky + 2L, and Ky + 2L, are nef and 2-big, and g\(X,L;,L;) = 2.
Then the following hold.

(1) g(X,L)=2 and g(X,L,) =2.

(i) Ly =Ly.!

Proor. (i) By assumption we get (Ky + L;+ Ly)L1L, =2. We also
note that

2(Kxy + Ly + Ly)LiLy = (Kx +2Ly)Li Ly + (Kx + 2L>) L L,.
Hence we have
(Ky +2L1)LiLy + (Ky +2L,)L L, = 4. (5)
By Hodge index Theorem [2, Proposition 2.5.1] we have
((Ky +2L1)L1L2)* = ((Kx +2L0) L) ((Kx + 2L1)L3). (6)

If (Ky+2L)LiL, =1, then we have (Ky +2L;)L? =1 since Ky + 2L,
is nef and 2-big (see [2, Lemma 2.5.8]). But this is impossible because
(Kx +2L))L} is even by genus formula. Therefore we may assume that
(Kxy +2L,)LiL, > 2. By the same argument as this, we may assume that
(Kxy +2L;)L1L, >2. By (5), we have (Ky+2Li)L1L, =2 and (Ky+
2L,)L Ly = 2.

First we consider (Ky +2L;)L;L, =2. Here we note that KyL3 is even
by [2, Lemma 1.1.11]. Therefore (Ky +2L;)L3 is even. Since (Ky + 2L;)L3
> 0 (see [2, Lemma 2.5.8]), we have (Ky + 2L;)L3 > 2. Hence by (6) we have
(Kx +2L))L} <2, that is, g(X,Ly) <2. But since Ky + 2L, is nef and 2-big,
we have (Ky +2L;)L} >0. Since (Ky +2L;)L} is even, we have g(X,L;)
> 2. Hence we get g(X, L) =2.

Next we consider (Ky + 2L,)L1L, =2. By the same argument as above
we get g(X,L,) =2. Therefore we get the assertion of (i).

(i) First we note that (Ky + Ly + L,)L? > 2 and (Ky + Ly + Ly)L3 > 2
hold. Actually since Ky +2L; and Ky + 2L, are nef and 2-big, we have
(Ky +2L)L? >0 and (Ky +2Ly)L? >0 for i=1,2. Since KyL? is even,
we see that (Ky +2L)L} and (Ky+2L,)L? are even for i=1,2. Hence
(Ky + 2L1)Li2 >2 and (Ky + 2L2)L[2 > 2 for i = 1,2. Therefore 2(Ky + L +
Ly)L? > 4, that is, (Ky + Ly + Ly)L? >2 for i=1,2.

! The symbol = denotes the numerical equivalence.
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Since ¢g;(X, Ly, L;) =2, we have (Ky + Ly + Ly)L;L, =2. Hence we see
from [2, Proposition 2.5.1] that (Ky + Ly + L,)L} =2 and (Ky + L + L»)L3
=2 hold. So we get L}L, =L} and L L3 = L3 because (Ky +2L)L} =2
and (Ky +2L;)L3 =2 hold by g(X,L;) =2 and g(X,L,) =2 (see (i) above).
If L}L, > LiL} holds, then we have (L}L,)(L3)> (LiL3)>. But this is
impossible by [2, Proposition 2.5.1]. If L?L; < L;L3 holds, then we have
(L L3)(L}) > (L?Ly)*. But this is also impossible by [2, Proposition 2.5.1].
Hence L2L, = L;L} holds. Since L;L2=L3, we get (L2L,)(L3) = (L,L3})*
and by [2, Corollary 2.5.4] we get L; = L,.

Therefore we get the assertion of (ii). O

3. Main result

THEOREM 1. Let (X, L1,Ly) be a bi-polarized manifold of dimension 3.
Assume that hO(KX + L+ Ly) =1 Then, exchanging L, and L, if necessary,
(X,Ly,Ly) is one of the following types.

(i) (X,L) is a Del Pezzo manifold for some ample line bundle L on X

and Ly =L for j=1,2

(i) (P Cps(3), Cps(1).

(iii) (@7, Og3(2), Cgs(1)).

(iv) X =P x P, L = p{(Cp(2)) + p3(Cpr (1)) and Ly = pi (Cpe(1)) +

;3 (Opi(1)), where p; is the ith projection.

(v) (X,Li) is a scroll over a smooth elliptic curve, and (Ly)p = Op2(2)

for any fiber F of the projection.

(vi) (X,Ly) is a quadric fibration over a smooth elliptic curve C, Ly = L,

and (X, L)) is one of the following types. (Here we use Notation 1.)

(vi.) (X,Ly) is a pure quadric fibration over C with (b,e,d) =
(1,0,1).

(vi.2) (X,Ly) is a pure quadric fibration over C with (b,e,d) =
(0,1,2).

(vi.3) (X,L) is a pure quadric fibration over C with (b,e,d) =
(—1,2,3).

(vi.4) (X, L)) is a classical scroll (Ps(&),H(&)) over S =TPp(F),

where & = p*9 Q@ H(F) for some semistable vector bundles F
and 9 of rank two on an elliptic curve B. Here p denotes the
morphism S — B.  Moreover (¢|(F),c1(9)) = (1,0) or (0,1).
X is the fiber product of Pg(F) and Pg(¥%) over B. In this
case L} =3.
(vii) (X, Ly) is a scroll over a smooth projective surface S and Ly = L,.
Then there exists an ample vector bundle & on S such that (X,L;) =
(Ps(&),H(&)), and (S, &) is one of the following types.
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(vii.1) S is the Jacobian variety of a smooth projective curve C of
genus two and & = &,(C,0) ® N for some numerically trivial
line bundle N on S, where &,(C,0) is the Jacobian bundle of
rank 2 for some point o on C (see [6, (2.18)]). In this case
Ly =1

(vii.2) S = Pc(F) for some stable vector bundle F of rank two on
an elliptic curve C with ¢;(F)=1. There is an exact se-
quence 0 — OsQH(F) +p*G) — & — Os(H(F ) +p*T) — 0,
where G and T are line bundles on C and p is the morphism
S — C. Then one of the following holds.

(vii.2.1) degT =1, degG=-2 and L} = 1.
(vii.2.2) deg T =0, deg G=—1 and L} =2.

Proor. (I) Assume that x(Ky + L;) >0 or x(Kx + L) = 0.

First we assume that x(Ky + L;) >0. Then we see from Lemma 2
that ¢»(X,L;) —h'(0Ox) =0 holds. Hence by (2) in Remark 3 we have
g1(X,Ly,Ly) < 1. But in this case h°(Ky + L + L,) =1 is impossible by
[16, Theorems 6.1.1 and 6.1.2] because x(Ky + L;) > 0. By the same argu-
ment as this, we see from (1) in Remark 3 that x(Ky + L;) >0 is also
impossible.

(II) Assume that «(Ky + L;) = —co and x(Ky + Ly) = —o0.

(IL.1)  Suppose that #'(Oy) =0. Then (1) in Remark 3 g;(X, L, L) <1
because ¢g>(X,L,) >0 by Lemma 2. We see from [15, Corollary 5.1] and [16,
Theorems 6.1.1 and 6.1.2] that (X, L, L) satisfies Kx + L; + L, = Oxy. Then
by [16, Theorem 6.1.3] (X, L, L) is one of the following four types, and these
cases satisfy h*(Ky + Ly + L,) = 1.

(A) (X,L) is a Del Pezzo manifold for some ample line bundle L on X

and L; =L for j=1,2.

(B) (IPB,@]]’3<3)7@]P3(1))'

©) (@ Cq(2). Cep(1)).

(D) X =P’ xP', L = p;(Cp(2) + pi(Cpi (1) and Ly = pi (Cps(1) +

p3(Opi (1)), where p; is the ith projection.

(I1.2) Assume that 4!(0x) > 0. Then for any i =1 and 2, we see from
adjunction theory (see e.g. [2, Proposition 7.2.2, Theorems 7.2.3, 7.2.4, 7.3.2
and 7.3.4]) that (X,L;) is one of the following types.

(i) A scroll over a smooth projective curve. In this case Ky +2L; is

not nef.

(ii) A quadric fibration over a smooth curve. In this case Ky + 2L; is

nef and 2-big.

(iii) A scroll over a smooth projective surface. In this case Ky + 2L; is

nef and 1-big.
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(iv) M is a P>-bundle over a smooth curve C and for any fiber F’ of it,
(F', A|) = (P>, 0p>(2)), where (M, A) is the reduction of (X,L;).
In this case Ky + 2L; is nef and big.
(i.1) Assume that (X,L;) is a scroll over a smooth projective curve C.
Let f: X — C be its fibration. Here we note that g(C) = h!(0x) > 0. Then

1
gi1(X,Ly,Ly) =1 +§(KX + L+ L)L, L,

1
=g(C) +§(KX/C + L+ Ly)L Ly + (g(C) — 1) (L LoF — 1),

where F is a fiber of f.

By assumption we have (L)), = Op:(1), and we put (L;)p = Op:(a).

(i.1.1) If a=1, then gy(X, L, Ly) = h'(COx) (see [14, Example 2.1 (H)]),
g2(X,L1) =0 (see [9, Example 2.10 (8)]) and A°(Ky + L,) =0. But then
h°(Ky + L1 + Ly) = 0 and this case cannot occur.

(i.1.2) Ifa> 3, then h°((Ky + L»)) #0. Therefore h°(Ky + L») # 0 by
[3, Lemma 4.1]. But this is impossible by Lemma 3.

(i.1.3) By (i.1.1) and (i.1.2) we have ¢ =2. Then by Lemma 3 we have
g(C) = 1, gl(X,L],Lz) = 2, hO(KX +L]) = 0, hO(K)( +L2) = 0, gz(X,Ll) =0
and ¢>(X,L;) =0.

(i.2) Assume that (X, L;) is a scroll over a smooth curve. Then by the
same argument as (i.1), we have (L) = Op2(1) and (L) = Op2(2), ¢9(C) =1,
gl(X,Ll,Lz) =2, hO(KX + Ll) =0, /10(KX + Lz) =0, gz(X,Ll) =0 and
g2(X,Ly) =0. This gives the type (v) in Theorem 1.

By (i.1) and (i.2) above, we may assume that (X, L;) is either (ii), (iii) or
(iv) for i=1 and 2. In particular

Ky +2L, and Ky + 2L, are nef and 2-big. (7)

(ii) Assume that (X,L;) is a quadric fibration over a smooth projective
curve C. Let f: X — C be its fibration. Here we note that g(C) = h'(Ox) >
0. By assumption we have (L1)p = Ug2(1), and we put (Lz)p = g2 ().

By Lemma 3, we have g;(X,L;,L;) =2. So by (7) and Lemma 4 we
have g(X,L;) =2, g(X,L,) =2 and L, = L,. By Remark 1 (iii), (X,L;) is
one of the following types.

(a) A pure quadric fibration over C.

(b) A classical scroll over a smooth surface.

If (X,L;) is the type (a), then we see from [5, (3.7)] that (X, L) is one of the
types (vi.l), (vi.2) and (vi.3) in Theorem 1.

If (X, L) is the type (b), then we see from [6, (2.25) Theorem] that (X, L)
is the type (vi.4) in Theorem 1.

(iii) Assume that (X, L) is a scroll over a smooth projective surface S.
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Then by [9, Example 2.10 (8)] we have g»(X, L) = h*(Ox) and by (2) in
Remark 3 we have

WO (Ky + Ly + Ly) = h°(Kx + L) + h*(Ox) + g1(X, Ly, Ly) — k' (Ox).  (8)

We also note that y(Ox) = y(0s). Let f:X — S be the projection.
(iii.1) Assume that x(S) =2. Then y(0Us)>1. Hence by (8)

1
hO(KX + L+ Lz) = hO(KX + Lz) -‘r){((ﬂx) +§(KX + L+ Lz)Lle

1
> h"(Ky + Ly) + 1+ 3 (Kx + Li + Lo) L1 Ls.

Since h%(Ky +L;+L;)=1, we get (Ky+L;+ Ly)LiL, =0, that is,
g1(X,L,L;)=1. But by Lemma 1 this is impossible.

(iii.2) Assume that x(S) =1. Then x(0s) > 0.

(iii.2.1) If x(Os) = 1, then x(Ox) = 1 and by the same argument as (iii.1),
this is impossible.

(ii.2.2) If y(0s) =0. Then by (8)

1 =h"(Ky + Ly + L)
=h"(Kx + L») + g1(X, L1, L) — h' (Ox) + h*(Ox)
= h*(Kx + L) + g1(X, L1, Ly) — k' (Os) + h*(0s). )

Let #: S — T be its elliptic fibration, where 7 is a smooth projective
curve. Let h:=nof:X —S—T. We note that (Ky,7 + L + Ly)L1Ly >
2 holds by the same argument as the first part of the proof of Lemma 3. We
also note that g(7T) < h'(Os) < g(T)+1. Then

gl(Xv L17L2)

1
=g(T) +§(KX/T + Ly + La)LiLy + (g(T) — 1) (L1 LoFy, — 1)

> g(T) + 1+ (g(T) — 1)(Ly Lo Fy — 1). (10)

(iii.2.2.1) If h'(Os) = g(T), then ¢(T) >0, and by (10) we have
g1(X,Ly,Ly) > h'(0s)+1. By (9) we have #°%Ky+Ly)=0 and
h*(0s) = 0. Hence h'(0s) =1 because %(0s) = 0. Since
h°(Ky + Ly + Ly) = 1, we have g1(X, Ly, L) =2.

(iii.2.2.2) If h'(Os) = g(T)+ 1 and ¢(T) = 1, then by (10) g,(X, Ly, L,)
>g(T)+1=h"(Os). Since h'(Us)=g(T)+1>=2, we have h*(Us)>1.
Hence by (9) we have h°(Ky + L,) =0, h*’(0s)=1 and gi(X,L,L,) =
h'(Ox) =2. Moreover we have h'(0s) =2 and ¢(T) = 1.
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(iii.2.2.3) If A'(Os) =g(T)+1 and g(T) =0, then h'(0s) =1. More-
over we have ¢i(X,L;,L;) >2 by Lemma 1. Therefore by (9) we have
hO(KX + Lz) = 0, h2(@s) =0 and gl(X, Ll,Lz) =2.

Hence we see from the argument above that if x(S) = 1, then ¢, (X, Ly, L,)
=2 holds. Therefore by (7) and Lemma 4 we have g(X,L;) =2, g(X,L,) =2
and L, = L,.

(iii.3) Assume that x(S)=0. Then y(0s)>0. First of all, since
h'(Os) >0, S is birationally equivalent to either a bielliptic surface or an
Abelian surface. Here we note that ¢(X,L;,L;) >2 by Lemma 1.

(iii.3.1) If S is birationally equivalent to a bielliptic surface, then
hl(@)() :hl(@s) =1. Hence g](X,Ll,LQ) —/’ll(@x) > 1. Since /’ZO(KX + L +
L,) =1, we get gi(X,L;,L,) =2 by (1) in Remark 3 and Lemma 2.

(iii.3.2) If S is birationally equivalent to an Abelian surface, then
h'(Ox) = h'(Os) =2 and h*(Ox) = h*(0s) = 1. Hence g(X, Ly, Ly) —h'(Ox)
>0. On the other hand, by Lemma 2, we have g»(X,L;) > h*(Ox)=1.
Since h°(Ky + Ly + Ly) =1, we get gi(X,Li,Ly) =2 by (2) in Remark 3.

(iii.3.3) We see from (iii.3.1), (iii.3.2), (7) and Lemma 4 that g(X,L,) =
2, g(X,LQ) =2 and Ly = L.

(iii.4) Assume that x(S) = —oo.

LemMa 5. If k(S) = —oo, then g\(X,L,Ly) = 2.

ProOF. Since h'(0s) =h'(Ox) >0, we can take the Albanese fibration
o:S — C, where C is a smooth projective curve with g(C) > 1. Here we note
that h'(Os) = h'(Ox) = g(C). Let h:=aof. Since h®(Ky +L;+Ly) =1,
we have h.(Ky,c+ Ly +Ly) #0. Since (Ky,c+ Li+ Ly)L1Ly is even, we
get (KX/C + L+ Ly)LiL, > 2 by the same argument as the first part of the
pI‘OOf of Lemma 3, and ¢ (X, Ll,Lz) = q(C) + % (KX/C + L+ Lz)Lle +
(g(C) = 1)(L1LyF, — 1) = g(C) + 1 = h'(0x) + 1, where F, is a fiber of h.
Hence h°(Ky + L) = 0 and 7%(Ox) = 0 by (8) because h®(Ky + L + L,) = 1.
By [3, Lemma 4.1], 4°(Ky + Ly) =0 implies 7°(Kp, + (L2);) =0 for any
general fiber Fj, of h. Hence by [13, Theorem 2.8] we see that x(Kp, + (L2),)
= —co. In particular Kp, + (L2)p, is not nef.

Crav 1. (Fy, (La)g,) is a scroll over P!

Proor. First we note that h!'(Ug)=0. So, by [24, 1.3 Remark], we
obtain that (Fj,(L2)p,) is either (P2, 0p>(1)), (P2, Up2(2)) or a scroll over
P'. But we note that (P>, Op>(1)) and (IP?, 0Up2(2)) are impossible because
Pic(IP?) @ Z. So we get the assertion of Claim 1. O

By Claim 1, we infer that Fj is a Hirzebruch surface. Hence we have
((Ll)F,,)Z >2 and ((LZ)F,,)Z > 2 because (Li)p and (L) are very ample.
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Therefore ((L1)f,)((L2)f,) = 2 by the Hodge index theorem. By Lemma 3, we
get g(C) =1 and gi(X, Ly, Ly) =2. O

By (7) and Lemma 4 we have g(X,L;) =2, g(X,L;) =2 and L; = L,.
By the above argument and [6, (2.25) Theorem], (X, L;, L) is one of the types
(vii.1), (vii.2.1) and (vii.2.2) in Theorem 1 (see Remark 2).

(iv) Assume that (X, L;) is the case (iv), that is, M is a IP>-bundle over
a smooth curve C and (F', Ar/) = (IP?, Up2(2)) for any fiber F’ of it, where
(M, A) is the reduction of (X,L;). Let p: M — C be the projection and
u:X — M be the reduction map. Let f: X — C be the morphism po u.
By Lemma 3, we have ¢g;(X,L;,L;) =2 and g(C) = 1. So by (7) and Lemma
4 we have ¢g;(X,L;) =2. But since g(M,A4) = g(X,L;) =2 this is impossible
by [5, (1.8)]. O
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