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Classification of bi-polarized 3-folds ðX ;L1;L2Þ with

h0ðKX þ L1 þ L2Þ ¼ 1
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Abstract. Let X be a complex smooth projective variety of dimension 3, and let

L1 and L2 be ample line bundles on X . In this paper we classify ðX ;L1;L2Þ with

h0ðKX þ L1 þ L2Þ ¼ 1.

1. Introduction

Let X be a complex smooth projective variety of dimension n, and let

L be an ample line bundle on X . Then ðX ;LÞ is called a polarized manifold.

There are several problems about the positivity of h0ðKX þ tLÞ, the dimension

of H 0ðKX þ tLÞ, for some positive integer t. In [25], P. Ionescu proposed the

following conjecture.

Conjecture 1 ([25, Open problems, P. 321]). Let ðX ;LÞ be a polarized

manifold of dimension n. Assume that KX þ L is nef. Then h0ðKX þ LÞ > 0.

It is known that Conjecture 1 is true for dim X a 3 (see [13], [21]).

On the other hand, there is the following conjecture due to Beltrametti and

Sommese, which is weaker than Conjecture 1.

Conjecture 2 ([2, Conjecture 7.2.7]). Let ðX ;LÞ be a polarized manifold

of dimension n. Assume that KX þ ðn� 1ÞL is nef. Then h0ðKX þ ðn� 1ÞLÞ
> 0.

If na 4, then Conjecture 2 is true (see [12], [19]). In general, Conjecture

2 is also true if h0ðLÞ > 0 (see [21]). We see from the adjunction theory [2]

that if Conjecture 2 is true, then we can characterize ðX ;LÞ with h0ðKX þ
ðn� 1ÞLÞ ¼ 0. Namely if h0ðKX þ ðn� 1ÞLÞ ¼ 0, then KX þ ðn� 1ÞL is not

nef by Conjecture 2, and by [4] and [22] we obtain that ðX ;LÞ is one of

some special types. Therefore we can characterize ðX ;LÞ with na 4 and

h0ðKX þ ðn� 1ÞLÞ ¼ 0.
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Moreover the classification of ðX ;LÞ with the following cases has been

obtained.

( i ) The case where n ¼ 3 and h0ðKX þ 2LÞa 2 (see [12] and [18]).

(ii) The case where n ¼ 4 and h0ðKX þ 3LÞa 1 (see [19] and [20]).

Furthermore we consider a generalization of Conjecture 2. Assume that

X is smooth with n ¼ dim X and let L1; . . . ;Ln�1 be ample line bundles on

X . Then ðX ;L1; . . . ;Ln�1Þ is called a multi-polarized manifold of type n� 1.

In particular, if n ¼ 3, then ðX ;L1;L2Þ is also called a bi-polarized manifold.

Conjecture 3 ([15, Conjecture 5.1]). Let ðX ;L1; . . . ;Ln�1Þ be a multi-

polarized manifold of type n� 1 with dim X ¼ nb 3. Assume that KX þ L1

þ � � � þ Ln�1 is nef. Then h0ðKX þ L1 þ � � � þ Ln�1Þ > 0.

In [15, Theorem 5.2], we proved that Conjecture 3 is true for n ¼ 3.

Moreover, for n ¼ 3, this implies the classification of ðX ;L1;L2Þ with

h0ðKX þ L1 þ L2Þ ¼ 0 (see [15, Corollary 5.1]). As the next step, in this

paper we study ðX ;L1;L2Þ with h0ðKX þ L1 þ L2Þ ¼ 1.

2. Preliminaries

Definition 1 ([14, Definition 2.1 (2), Remark 2.2 (2)], [16, Proposition

6.1.1]). Let X be a smooth projective variety of dimension 3 and let L1 and

L2 be ample line bundles on X . Then the first sectional geometric genus

g1ðX ;L1;L2Þ is defined by the following.

g1ðX ;L1;L2Þ ¼ 1þ 1

2
ðKX þ L1 þ L2ÞL1L2:

In particular if L1 ¼ L2 ¼ L, then g1ðX ;L;LÞ is the sectional genus of ðX ;LÞ,
which is denoted by gðX ;LÞ.

Definition 2. Let ðX ;LÞ be a polarized manifold of dimension n.

( i ) We say that ðX ;LÞ is a scroll (resp. quadric fibration) over a normal

projective variety Y of dimension m with 1am < n if there exists

a surjective morphism with connected fibers f : X ! Y such that

KX þ ðn�mþ 1ÞL ¼ f �A (resp. KX þ ðn�mÞL ¼ f �A) for some

ample line bundle A on Y .

( ii ) ðX ;LÞ is called a classical scroll over a normal variety Y if there

exists a vector bundle E on Y such that X GPY ðEÞ and L ¼ HðEÞ,
where HðEÞ is the tautological line bundle.

(iii) We say that ðX ;LÞ is a pure quadric fibration over a smooth projective

curve C if ðX ;LÞ is a quadric fibration over C such that the mor-

phism f : X ! C is the contraction morphism of an extremal ray.
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Remark 1.

( i ) If ðX ;LÞ is a scroll over a smooth projective curve C, then ðX ;LÞ is a

classical scroll over C (see [2, Proposition 3.2.1]).

( ii ) If ðX ;LÞ is a scroll over a normal projective surface S, then S is

smooth and ðX ;LÞ is also a classical scroll over S (see [1, (3.2.1)

Theorem] and [7, (11.8.6)]).

(iii) Assume that ðX ;LÞ is a quadric fibration over a smooth curve C

with dim X ¼ nb 3. Let f : X ! C be its morphism. By [1, (3.2.6)

Theorem] and the proof of [22, Lemma (c) in Section 1], we see that

ðX ;LÞ is one of the following:

(a) A pure quadric fibration over C.

(b) A classical scroll over a smooth surface with dim X ¼ 3. (We

note that this is a very restricted case. See [23] for detail.)

The following notation is used in Theorem 1.

Notation 1. Let ðX ;LÞ be a pure quadric fibration over a smooth curve

C with dim X ¼ n, and let f : X ! C be its morphism. We put E :¼ f�ðLÞ.
Then E is a locally free sheaf of rank nþ 1 on C. Let p : PCðEÞ ! C be the

projection. Then there exists an embedding i : X ,! PCðEÞ such that f ¼ p � i,
X A j2HðEÞ þ p�ðBÞj for some B A PicðCÞ and L ¼ HðEÞjX . Let e :¼ deg E,

b :¼ deg B and d :¼ Ln.

Here we recall the definition of k-bigness.

Definition 3 (See [2, p. 5]). Let X be a projective variety and let A be a

line bundle on X . Then A is said to be k-big if kðAÞb dim X � k.

Remark 2. Let ðX ;LÞ be a polarized manifold of dimension 3. If ðX ;LÞ
is a classical scroll over a smooth surface S with gðX ;LÞ ¼ 2 and h1ðOX Þ > 0,

then ðX ;LÞ is 1), 2-i), 2-ii) or 3) in [6, (2.25) Theorem]. If ðX ;LÞ is the type 1),

2-i), or 2-ii), then ðX ;LÞ is a scroll over S. But if ðX ;LÞ is the type 3), then

ðX ;LÞ is not a scroll over S, but a quadric fibration over a smooth elliptic curve

because KX þ 2L is not 1-big, but 2-big.

Lemma 1. Let ðX ;L1;L2Þ be a bi-polarized manifolds of dimension 3.

Assume that kðKX þ L1 þ L2Þb 0 and h1ðOX Þ > 0. Then g1ðX ;L1;L2Þb 2

holds.

Proof. Assume that g1ðX ;L1;L2Þa 1. Then g1ðX ;L1;L2Þ ¼ 1 because

we assume that h1ðOX Þ > 0 (see [16, Theorem 6.1.1]). Since kðKX þ L1 þ L2Þ
b 0, we have KX þ L1 þ L2 ¼ OX by [16, Theorem 6.1.2]. But this is impos-

sible because h1ðOX Þ > 0. r
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Remark 3. Let ðX ;L1;L2Þ be a bi-polarized manifold of dimension 3.

Then we see from [15, Theorem 5.1] that

h0ðKX þ L1 þ L2Þ ¼ h0ðKX þ L1Þ þ g2ðX ;L2Þ þ g1ðX ;L1;L2Þ � h1ðOX Þ; ð1Þ

h0ðKX þ L1 þ L2Þ ¼ h0ðKX þ L2Þ þ g2ðX ;L1Þ þ g1ðX ;L1;L2Þ � h1ðOX Þ: ð2Þ

Here g2ðX ;LÞ denotes the second sectional geometric genus of ðX ;LÞ (see

[9, Definition 2.1]). Moreover assume that there exist a smooth projective curve

C and a fiber space f : X ! C. Then we have

g1ðX ;L1;L2Þ ¼ gðCÞ þ 1

2
ðKX=C þ L1 þ L2ÞL1L2 þ ðgðCÞ � 1ÞðL1L2F � 1Þ: ð3Þ

Here F is a general fiber of f .

If dim X ¼ 3, then we have a lower bound for the second sectional

geometric genus of ðX ;LÞ.

Lemma 2. Let ðX ;LÞ be a polarized manifold of dimension 3. Then

g2ðX ;LÞb h1ðOX Þ; if kðKX þ LÞb 0;

h2ðOX Þ; if kðXÞ ¼ �y:

�

Proof. See [10, Corollary 2.4] and [11, Theorem 3.2.1 and Theorem 3.3.1

(2)]. r

Lemma 3. Let ðX ;L1;L2Þ be a bi-polarized manifold of dimension 3. As-

sume that h1ðOX Þ > 0, h0ðKX þ L1 þ L2Þ ¼ 1 and there exist a smooth projective

curve C and a fiber space f : X ! C such that L1L2F b 2 and h1ðOX Þ ¼ gðCÞ,
where F is a fiber of f . Then gðCÞ ¼ 1, g1ðX ;L1;L2Þ ¼ 2, h0ðKX þ L1Þ ¼ 0,

h0ðKX þ L2Þ ¼ 0, g2ðX ;L1Þ ¼ 0 and g2ðX ;L2Þ ¼ 0.

Proof. Since h0ðKX þ L1 þ L2Þ ¼ 1, we have h0ðKF þ ðL1ÞF þ ðL2ÞF Þ
> 0. Hence we see from [17, Lemma 2.1] that f�ðKX=C þ L1 þ L2Þ is ample

and we have ðKX=C þ L1 þ L2ÞL1L2 > 0 by the same argument as [8, Lemma

1.4.1]. By (3) in Remark 3 we have

g1ðX ;L1;L2Þb gðCÞ þ 1þ ðgðCÞ � 1ÞðL1L2F � 1Þ ð4Þ

because ðKX=C þ L1 þ L2ÞL1L2 is even. Hence g1ðX ;L1;L2Þb gðCÞ þ 1 ¼
h1ðOX Þ þ 1, and by (1) and (2) in Remark 3 we have h0ðKX þ L1 þ L2Þb
h0ðKX þ L1Þ þ g2ðX ;L2Þ þ 1 and h0ðKX þ L1 þ L2Þb h0ðKX þ L2Þ þ g2ðX ;L1Þ
þ 1. Since h0ðKX þ L1 þ L2Þ ¼ 1, we see from Lemma 2 that h0ðKX þ L1Þ
¼ 0, h0ðKX þ L2Þ ¼ 0, g2ðX ;L1Þ ¼ 0 and g2ðX ;L2Þ ¼ 0. In particular

1 ¼ h0ðKX þ L1 þ L2Þ ¼ g1ðX ;L1;L2Þ � h1ðOX Þ:
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By (4) and the assumption that L1L2F � 1b 1, we have gðCÞ ¼ 1 and

g1ðX ;L1;L2Þ ¼ 2. r

Lemma 4. Let ðX ;L1;L2Þ be a bi-polarized manifold of dimension 3.

Assume that KX þ 2L1 and KX þ 2L2 are nef and 2-big, and g1ðX ;L1;L2Þ ¼ 2.

Then the following hold.

( i ) gðX ;L1Þ ¼ 2 and gðX ;L2Þ ¼ 2.

(ii) L1 1L2.1

Proof. (i) By assumption we get ðKX þ L1 þ L2ÞL1L2 ¼ 2. We also

note that

2ðKX þ L1 þ L2ÞL1L2 ¼ ðKX þ 2L1ÞL1L2 þ ðKX þ 2L2ÞL1L2:

Hence we have

ðKX þ 2L1ÞL1L2 þ ðKX þ 2L2ÞL1L2 ¼ 4: ð5Þ

By Hodge index Theorem [2, Proposition 2.5.1] we have

ððKX þ 2L1ÞL1L2Þ2 b ððKX þ 2L1ÞL2
1ÞððKX þ 2L1ÞL2

2Þ: ð6Þ

If ðKX þ 2L1ÞL1L2 ¼ 1, then we have ðKX þ 2L1ÞL2
1 ¼ 1 since KX þ 2L1

is nef and 2-big (see [2, Lemma 2.5.8]). But this is impossible because

ðKX þ 2L1ÞL2
1 is even by genus formula. Therefore we may assume that

ðKX þ 2L1ÞL1L2 b 2. By the same argument as this, we may assume that

ðKX þ 2L2ÞL1L2 b 2. By (5), we have ðKX þ 2L1ÞL1L2 ¼ 2 and ðKX þ
2L2ÞL1L2 ¼ 2.

First we consider ðKX þ 2L1ÞL1L2 ¼ 2. Here we note that KXL
2
2 is even

by [2, Lemma 1.1.11]. Therefore ðKX þ 2L1ÞL2
2 is even. Since ðKX þ 2L1ÞL2

2

> 0 (see [2, Lemma 2.5.8]), we have ðKX þ 2L1ÞL2
2 b 2. Hence by (6) we have

ðKX þ 2L1ÞL2
1 a 2, that is, gðX ;L1Þa 2. But since KX þ 2L1 is nef and 2-big,

we have ðKX þ 2L1ÞL2
1 > 0. Since ðKX þ 2L1ÞL2

1 is even, we have gðX ;L1Þ
b 2. Hence we get gðX ;L1Þ ¼ 2.

Next we consider ðKX þ 2L2ÞL1L2 ¼ 2. By the same argument as above

we get gðX ;L2Þ ¼ 2. Therefore we get the assertion of (i).

(ii) First we note that ðKX þ L1 þ L2ÞL2
1 b 2 and ðKX þ L1 þ L2ÞL2

2 b 2

hold. Actually since KX þ 2L1 and KX þ 2L2 are nef and 2-big, we have

ðKX þ 2L1ÞL2
i > 0 and ðKX þ 2L2ÞL2

i > 0 for i ¼ 1; 2. Since KXL
2
i is even,

we see that ðKX þ 2L1ÞL2
i and ðKX þ 2L2ÞL2

i are even for i ¼ 1; 2. Hence

ðKX þ 2L1ÞL2
i b 2 and ðKX þ 2L2ÞL2

i b 2 for i ¼ 1; 2. Therefore 2ðKX þ L1 þ
L2ÞL2

i b 4, that is, ðKX þ L1 þ L2ÞL2
i b 2 for i ¼ 1; 2.

1The symbol 1 denotes the numerical equivalence.
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Since g1ðX ;L1;L2Þ ¼ 2, we have ðKX þ L1 þ L2ÞL1L2 ¼ 2. Hence we see

from [2, Proposition 2.5.1] that ðKX þ L1 þ L2ÞL2
1 ¼ 2 and ðKX þ L1 þ L2ÞL2

2

¼ 2 hold. So we get L2
1L2 ¼ L3

1 and L1L
2
2 ¼ L3

2 because ðKX þ 2L1ÞL2
1 ¼ 2

and ðKX þ 2L2ÞL2
2 ¼ 2 hold by gðX ;L1Þ ¼ 2 and gðX ;L2Þ ¼ 2 (see (i) above).

If L2
1L2 > L1L

2
2 holds, then we have ðL2

1L2ÞðL3
2Þ > ðL1L

2
2Þ

2. But this is

impossible by [2, Proposition 2.5.1]. If L2
1L2 < L1L

2
2 holds, then we have

ðL1L
2
2ÞðL3

1Þ > ðL2
1L2Þ2. But this is also impossible by [2, Proposition 2.5.1].

Hence L2
1L2 ¼ L1L

2
2 holds. Since L1L

2
2 ¼ L3

2, we get ðL2
1L2ÞðL3

2Þ ¼ ðL1L
2
2Þ

2

and by [2, Corollary 2.5.4] we get L1 1L2.

Therefore we get the assertion of (ii). r

3. Main result

Theorem 1. Let ðX ;L1;L2Þ be a bi-polarized manifold of dimension 3.

Assume that h0ðKX þ L1 þ L2Þ ¼ 1. Then, exchanging L1 and L2 if necessary,

ðX ;L1;L2Þ is one of the following types.

( i ) ðX ;LÞ is a Del Pezzo manifold for some ample line bundle L on X

and Lj ¼ L for j ¼ 1; 2.

( ii ) ðP3;OP3ð3Þ;OP3ð1ÞÞ.
( iii ) ðQ3;OQ3ð2Þ;OQ3ð1ÞÞ.
( iv ) X GP2 � P1, L1 ¼ p�

1 ðOP2ð2ÞÞ þ p�
2 ðOP1ð1ÞÞ and L2 ¼ p�

1 ðOP2ð1ÞÞ þ
p�
2 ðOP1ð1ÞÞ, where pi is the ith projection.

( v ) ðX ;L1Þ is a scroll over a smooth elliptic curve, and ðL2ÞF ¼ OP2ð2Þ
for any fiber F of the projection.

( vi ) ðX ;L1Þ is a quadric fibration over a smooth elliptic curve C, L1 1L2

and ðX ;L1Þ is one of the following types. (Here we use Notation 1.)

(vi.1) ðX ;L1Þ is a pure quadric fibration over C with ðb; e; dÞ ¼
ð1; 0; 1Þ.

(vi.2) ðX ;L1Þ is a pure quadric fibration over C with ðb; e; dÞ ¼
ð0; 1; 2Þ.

(vi.3) ðX ;L1Þ is a pure quadric fibration over C with ðb; e; dÞ ¼
ð�1; 2; 3Þ.

(vi.4) ðX ;L1Þ is a classical scroll ðPSðEÞ;HðEÞÞ over SGPBðFÞ,
where EG r�GnHðFÞ for some semistable vector bundles F

and G of rank two on an elliptic curve B. Here r denotes the

morphism S ! B. Moreover ðc1ðFÞ; c1ðGÞÞ ¼ ð1; 0Þ or ð0; 1Þ.
X is the fiber product of PBðFÞ and PBðGÞ over B. In this

case L3
1 ¼ 3.

(vii) ðX ;L1Þ is a scroll over a smooth projective surface S and L1 1L2.

Then there exists an ample vector bundle E on S such that ðX ;L1ÞG
ðPSðEÞ;HðEÞÞ, and ðS;EÞ is one of the following types.
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(vii.1) S is the Jacobian variety of a smooth projective curve C of

genus two and EGE2ðC; oÞnN for some numerically trivial

line bundle N on S, where E2ðC; oÞ is the Jacobian bundle of

rank 2 for some point o on C (see [6, (2.18)]). In this case

L3
1 ¼ 1.

(vii.2) SGPCðFÞ for some stable vector bundle F of rank two on

an elliptic curve C with c1ðFÞ ¼ 1. There is an exact se-

quence 0! OSð2HðFÞþ r�GÞ ! E! OSðHðFÞþ r�TÞ ! 0,

where G and T are line bundles on C and r is the morphism

S ! C. Then one of the following holds.

(vii.2.1) deg T ¼ 1, deg G ¼ �2 and L3
1 ¼ 1.

(vii.2.2) deg T ¼ 0, deg G ¼ �1 and L3
1 ¼ 2.

Proof. (I) Assume that kðKX þ L1Þb 0 or kðKX þ L2Þb 0.

First we assume that kðKX þ L1Þb 0. Then we see from Lemma 2

that g2ðX ;L1Þ � h1ðOX Þb 0 holds. Hence by (2) in Remark 3 we have

g1ðX ;L1;L2Þa 1. But in this case h0ðKX þ L1 þ L2Þ ¼ 1 is impossible by

[16, Theorems 6.1.1 and 6.1.2] because kðKX þ L1Þb 0. By the same argu-

ment as this, we see from (1) in Remark 3 that kðKX þ L2Þb 0 is also

impossible.

(II) Assume that kðKX þ L1Þ ¼ �y and kðKX þ L2Þ ¼ �y.

(II.1) Suppose that h1ðOX Þ ¼ 0. Then (1) in Remark 3 g1ðX ;L1;L2Þa 1

because g2ðX ;L2Þb 0 by Lemma 2. We see from [15, Corollary 5.1] and [16,

Theorems 6.1.1 and 6.1.2] that ðX ;L1;L2Þ satisfies KX þ L1 þ L2 ¼ OX . Then

by [16, Theorem 6.1.3] ðX ;L1;L2Þ is one of the following four types, and these

cases satisfy h0ðKX þ L1 þ L2Þ ¼ 1.

(A) ðX ;LÞ is a Del Pezzo manifold for some ample line bundle L on X

and Lj ¼ L for j ¼ 1; 2.

(B) ðP3;OP3ð3Þ;OP3ð1ÞÞ.
(C) ðQ3;OQ3ð2Þ;OQ3ð1ÞÞ.
(D) X GP2 � P1, L1 ¼ p�

1 ðOP2ð2ÞÞ þ p�
2 ðOP1ð1ÞÞ and L2 ¼ p�

1 ðOP2ð1ÞÞ þ
p�
2 ðOP1ð1ÞÞ, where pi is the ith projection.

(II.2) Assume that h1ðOX Þ > 0. Then for any i ¼ 1 and 2, we see from

adjunction theory (see e.g. [2, Proposition 7.2.2, Theorems 7.2.3, 7.2.4, 7.3.2

and 7.3.4]) that ðX ;LiÞ is one of the following types.

( i ) A scroll over a smooth projective curve. In this case KX þ 2Li is

not nef.

( ii ) A quadric fibration over a smooth curve. In this case KX þ 2Li is

nef and 2-big.

(iii) A scroll over a smooth projective surface. In this case KX þ 2Li is

nef and 1-big.
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(iv) M is a P2-bundle over a smooth curve C and for any fiber F 0 of it,

ðF 0;AjF 0 ÞG ðP2;OP2ð2ÞÞ, where ðM;AÞ is the reduction of ðX ;LiÞ.
In this case KX þ 2Li is nef and big.

(i.1) Assume that ðX ;L1Þ is a scroll over a smooth projective curve C.

Let f : X ! C be its fibration. Here we note that gðCÞ ¼ h1ðOX Þ > 0. Then

g1ðX ;L1;L2Þ ¼ 1þ 1

2
ðKX þ L1 þ L2ÞL1L2

¼ gðCÞ þ 1

2
ðKX=C þ L1 þ L2ÞL1L2 þ ðgðCÞ � 1ÞðL1L2F � 1Þ;

where F is a fiber of f .

By assumption we have ðL1ÞF ¼ OP2ð1Þ, and we put ðL2ÞF ¼ OP2ðaÞ.
(i.1.1) If a ¼ 1, then g1ðX ;L1;L2Þ ¼ h1ðOX Þ (see [14, Example 2.1 (H)]),

g2ðX ;L1Þ ¼ 0 (see [9, Example 2.10 (8)]) and h0ðKX þ L2Þ ¼ 0. But then

h0ðKX þ L1 þ L2Þ ¼ 0 and this case cannot occur.

(i.1.2) If ab 3, then h0ððKX þ L2ÞF Þ0 0. Therefore h0ðKX þ L2Þ0 0 by

[3, Lemma 4.1]. But this is impossible by Lemma 3.

(i.1.3) By (i.1.1) and (i.1.2) we have a ¼ 2. Then by Lemma 3 we have

gðCÞ ¼ 1, g1ðX ;L1;L2Þ ¼ 2, h0ðKX þ L1Þ ¼ 0, h0ðKX þ L2Þ ¼ 0, g2ðX ;L1Þ ¼ 0

and g2ðX ;L2Þ ¼ 0.

(i.2) Assume that ðX ;L2Þ is a scroll over a smooth curve. Then by the

same argument as (i.1), we have ðL2ÞF ¼ OP2ð1Þ and ðL1ÞF ¼ OP2ð2Þ, gðCÞ ¼ 1,

g1ðX ;L1;L2Þ ¼ 2, h0ðKX þ L1Þ ¼ 0, h0ðKX þ L2Þ ¼ 0, g2ðX ;L1Þ ¼ 0 and

g2ðX ;L2Þ ¼ 0. This gives the type (v) in Theorem 1.

By (i.1) and (i.2) above, we may assume that ðX ;LiÞ is either (ii), (iii) or

(iv) for i ¼ 1 and 2. In particular

KX þ 2L1 and KX þ 2L2 are nef and 2-big: ð7Þ

(ii) Assume that ðX ;L1Þ is a quadric fibration over a smooth projective

curve C. Let f : X ! C be its fibration. Here we note that gðCÞ ¼ h1ðOX Þ >
0. By assumption we have ðL1ÞF ¼ OQ2ð1Þ, and we put ðL2ÞF ¼ OQ2ðbÞ.

By Lemma 3, we have g1ðX ;L1;L2Þ ¼ 2. So by (7) and Lemma 4 we

have gðX ;L1Þ ¼ 2, gðX ;L2Þ ¼ 2 and L1 1L2. By Remark 1 (iii), ðX ;L1Þ is

one of the following types.

(a) A pure quadric fibration over C.

(b) A classical scroll over a smooth surface.

If ðX ;L1Þ is the type (a), then we see from [5, (3.7)] that ðX ;L1Þ is one of the

types (vi.1), (vi.2) and (vi.3) in Theorem 1.

If ðX ;L1Þ is the type (b), then we see from [6, (2.25) Theorem] that ðX ;L1Þ
is the type (vi.4) in Theorem 1.

(iii) Assume that ðX ;L1Þ is a scroll over a smooth projective surface S.
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Then by [9, Example 2.10 (8)] we have g2ðX ;L1Þ ¼ h2ðOX Þ and by (2) in

Remark 3 we have

h0ðKX þ L1 þ L2Þ ¼ h0ðKX þ L2Þ þ h2ðOX Þ þ g1ðX ;L1;L2Þ � h1ðOX Þ: ð8Þ

We also note that wðOX Þ ¼ wðOSÞ. Let f : X ! S be the projection.

(iii.1) Assume that kðSÞ ¼ 2. Then wðOSÞb 1. Hence by (8)

h0ðKX þ L1 þ L2Þ ¼ h0ðKX þ L2Þ þ wðOX Þ þ
1

2
ðKX þ L1 þ L2ÞL1L2

b h0ðKX þ L2Þ þ 1þ 1

2
ðKX þ L1 þ L2ÞL1L2:

Since h0ðKX þ L1 þ L2Þ ¼ 1, we get ðKX þ L1 þ L2ÞL1L2 ¼ 0, that is,

g1ðX ;L1;L2Þ ¼ 1. But by Lemma 1 this is impossible.

(iii.2) Assume that kðSÞ ¼ 1. Then wðOSÞb 0.

(iii.2.1) If wðOSÞb 1, then wðOX Þb 1 and by the same argument as (iii.1),

this is impossible.

(iii.2.2) If wðOSÞ ¼ 0. Then by (8)

1 ¼ h0ðKX þ L1 þ L2Þ

¼ h0ðKX þ L2Þ þ g1ðX ;L1;L2Þ � h1ðOX Þ þ h2ðOX Þ

¼ h0ðKX þ L2Þ þ g1ðX ;L1;L2Þ � h1ðOSÞ þ h2ðOSÞ: ð9Þ

Let p : S ! T be its elliptic fibration, where T is a smooth projective

curve. Let h :¼ p � f : X ! S ! T . We note that ðKX=T þ L1 þ L2ÞL1L2 b

2 holds by the same argument as the first part of the proof of Lemma 3. We

also note that gðTÞa h1ðOSÞa gðTÞ þ 1. Then

g1ðX ;L1;L2Þ

¼ gðTÞ þ 1

2
ðKX=T þ L1 þ L2ÞL1L2 þ ðgðTÞ � 1ÞðL1L2Fh � 1Þ

b gðTÞ þ 1þ ðgðTÞ � 1ÞðL1L2Fh � 1Þ: ð10Þ

(iii.2.2.1) If h1ðOSÞ ¼ gðTÞ, then gðTÞ > 0, and by (10) we have

g1ðX ;L1;L2Þb h1ðOSÞ þ 1. By (9) we have h0ðKX þ L2Þ ¼ 0 and

h2ðOSÞ ¼ 0. Hence h1ðOSÞ ¼ 1 because wðOSÞ ¼ 0. Since

h0ðKX þ L1 þ L2Þ ¼ 1, we have g1ðX ;L1;L2Þ ¼ 2.

(iii.2.2.2) If h1ðOSÞ ¼ gðTÞ þ 1 and gðTÞb 1, then by (10) g1ðX ;L1;L2Þ
b gðTÞ þ 1 ¼ h1ðOSÞ. Since h1ðOSÞ ¼ gðTÞ þ 1b 2, we have h2ðOSÞb 1.

Hence by (9) we have h0ðKX þ L2Þ ¼ 0, h2ðOSÞ ¼ 1 and g1ðX ;L1;L2Þ ¼
h1ðOX Þ ¼ 2. Moreover we have h1ðOSÞ ¼ 2 and gðTÞ ¼ 1.
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(iii.2.2.3) If h1ðOSÞ ¼ gðTÞ þ 1 and gðTÞ ¼ 0, then h1ðOSÞ ¼ 1. More-

over we have g1ðX ;L1;L2Þb 2 by Lemma 1. Therefore by (9) we have

h0ðKX þ L2Þ ¼ 0, h2ðOSÞ ¼ 0 and g1ðX ;L1;L2Þ ¼ 2.

Hence we see from the argument above that if kðSÞ ¼ 1, then g1ðX ;L1;L2Þ
¼ 2 holds. Therefore by (7) and Lemma 4 we have gðX ;L1Þ ¼ 2, gðX ;L2Þ ¼ 2

and L1 1L2.

(iii.3) Assume that kðSÞ ¼ 0. Then wðOSÞb 0. First of all, since

h1ðOSÞ > 0, S is birationally equivalent to either a bielliptic surface or an

Abelian surface. Here we note that g1ðX ;L1;L2Þb 2 by Lemma 1.

(iii.3.1) If S is birationally equivalent to a bielliptic surface, then

h1ðOX Þ ¼ h1ðOSÞ ¼ 1. Hence g1ðX ;L1;L2Þ � h1ðOX Þb1. Since h0ðKX þL1 þ
L2Þ ¼ 1, we get g1ðX ;L1;L2Þ ¼ 2 by (1) in Remark 3 and Lemma 2.

(iii.3.2) If S is birationally equivalent to an Abelian surface, then

h1ðOX Þ ¼ h1ðOSÞ ¼ 2 and h2ðOX Þ ¼ h2ðOSÞ ¼ 1. Hence g1ðX ;L1;L2Þ � h1ðOX Þ
b 0. On the other hand, by Lemma 2, we have g2ðX ;L1Þb h2ðOX Þ ¼ 1.

Since h0ðKX þ L1 þ L2Þ ¼ 1, we get g1ðX ;L1;L2Þ ¼ 2 by (2) in Remark 3.

(iii.3.3) We see from (iii.3.1), (iii.3.2), (7) and Lemma 4 that gðX ;L1Þ ¼
2, gðX ;L2Þ ¼ 2 and L1 1L2.

(iii.4) Assume that kðSÞ ¼ �y.

Lemma 5. If kðSÞ ¼ �y, then g1ðX ;L1;L2Þ ¼ 2.

Proof. Since h1ðOSÞ ¼ h1ðOX Þ > 0, we can take the Albanese fibration

a : S ! C, where C is a smooth projective curve with gðCÞb 1. Here we note

that h1ðOSÞ ¼ h1ðOX Þ ¼ gðCÞ. Let h :¼ a � f . Since h0ðKX þ L1 þ L2Þ ¼ 1,

we have h�ðKX=C þ L1 þ L2Þ0 0. Since ðKX=C þ L1 þ L2ÞL1L2 is even, we

get ðKX=C þ L1 þ L2ÞL1L2 b 2 by the same argument as the first part of the

proof of Lemma 3, and g1ðX ;L1;L2Þ ¼ gðCÞ þ 1
2 ðKX=C þ L1 þ L2ÞL1L2 þ

ðgðCÞ � 1ÞðL1L2Fh � 1Þb gðCÞ þ 1 ¼ h1ðOX Þ þ 1, where Fh is a fiber of h.

Hence h0ðKX þ L2Þ ¼ 0 and h2ðOX Þ ¼ 0 by (8) because h0ðKX þ L1 þ L2Þ ¼ 1.

By [3, Lemma 4.1], h0ðKX þ L2Þ ¼ 0 implies h0ðKFh
þ ðL2ÞFh

Þ ¼ 0 for any

general fiber Fh of h. Hence by [13, Theorem 2.8] we see that kðKFh
þ ðL2ÞFh

Þ
¼ �y. In particular KFh

þ ðL2ÞFh
is not nef.

Claim 1. ðFh; ðL2ÞFh
Þ is a scroll over P1.

Proof. First we note that h1ðOFh
Þ ¼ 0. So, by [24, 1.3 Remark], we

obtain that ðFh; ðL2ÞFh
Þ is either ðP2;OP2ð1ÞÞ, ðP2;OP2ð2ÞÞ or a scroll over

P1. But we note that ðP2;OP2ð1ÞÞ and ðP2;OP2ð2ÞÞ are impossible because

PicðP2ÞGZ. So we get the assertion of Claim 1. r

By Claim 1, we infer that Fh is a Hirzebruch surface. Hence we have

ððL1ÞFh
Þ2 b 2 and ððL2ÞFh

Þ2 b 2 because ðL1ÞFh
and ðL2ÞFh

are very ample.

168 Yoshiaki Fukuma



Therefore ððL1ÞFh
ÞððL2ÞFh

Þb 2 by the Hodge index theorem. By Lemma 3, we

get gðCÞ ¼ 1 and g1ðX ;L1;L2Þ ¼ 2. r

By (7) and Lemma 4 we have gðX ;L1Þ ¼ 2, gðX ;L2Þ ¼ 2 and L1 1L2.

By the above argument and [6, (2.25) Theorem], ðX ;L1;L2Þ is one of the types

(vii.1), (vii.2.1) and (vii.2.2) in Theorem 1 (see Remark 2).

(iv) Assume that ðX ;L1Þ is the case (iv), that is, M is a P2-bundle over

a smooth curve C and ðF 0;AF 0 ÞG ðP2;OP2ð2ÞÞ for any fiber F 0 of it, where

ðM;AÞ is the reduction of ðX ;L1Þ. Let p : M ! C be the projection and

m : X ! M be the reduction map. Let f : X ! C be the morphism p � m.
By Lemma 3, we have g1ðX ;L1;L2Þ ¼ 2 and gðCÞ ¼ 1. So by (7) and Lemma

4 we have g1ðX ;L1Þ ¼ 2. But since gðM;AÞ ¼ gðX ;L1Þ ¼ 2 this is impossible

by [5, (1.8)]. r
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lines and their applications to adjunction theory (with an appendix by M. C. Beltrametti

and A. J. Sommese), in Complex Algebraic Varieties, Bayreuth 1990, ed. by K. Hulek, T.

Peternell, M. Schneider, and F.-O. Schreyer, Lecture Notes in Math., 1507 (1992), 16–38,

Springer-Verlag, New York.

[ 2 ] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective

varieties, de Gruyter Expositions in Math. 16, Walter de Gruyter, Berlin, New York, (1995).

[ 3 ] J. A. Chen and C. D. Hacon, Linear series of irregular varieties, Algebraic Geometry in

East Asia (Kyoto 2001), 143–153, World Sci. Publishing, River Edge, NJ, 2002.

[ 4 ] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, in Algebraic

Geometry Sendai 1985, pp. 167–178, Adv. Stud. Pure Math. 10, Kinokuniya, 1987.

[ 5 ] T. Fujita, Classification of polarized manifolds of sectional genus two, the Proceedings

of ‘‘Algebraic Geometry and Commutative Algebra’’ in Honor of Masayoshi Nagata (1987),

73–98.

[ 6 ] T. Fujita, Ample vector bundles of small c1-sectional genera, J. Math. Kyoto Univ. 29

(1989), 1–16.

[ 7 ] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note

Ser. 155, Cambridge University Press, (1990).

[ 8 ] Y. Fukuma, A lower bound for sectional genus of quasi-polarized manifolds, J. Math. Soc.

Japan 49 (1997), 339–362.

[ 9 ] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties. I, Commun.

Algebra 32 (2004), 1069–1100.

[10] Y. Fukuma, A lower bound for the second sectional geometric genus of polarized

manifolds, Adv. Geom. 5 (2005), 431–454.

169Classification of bi-polarized 3-folds



[11] Y. Fukuma, On the second sectional H-arithmetic genus of polarized manifolds, Math. Z.

250 (2005), 573–597.

[12] Y. Fukuma, On a conjecture of Beltrametti-Sommese for polarized 3-folds, Internat. J.

Math. 17 (2006), 761–789.

[13] Y. Fukuma, On the dimension of global sections of adjoint bundles for polarized 3-folds

and 4-folds, J. Pure Appl. Algebra 211 (2007), 609–621.

[14] Y. Fukuma, Invariants of ample line bundles on projective varieties and their applications,

I, Kodai Math. J. 31 (2008), 219–256.

[15] Y. Fukuma, On the sectional geometric genus of multi-polarized manifolds and its appli-

cation, RIMS Kokyuroku Bessatsu, B9 (2008), 97–113.

[16] Y. Fukuma, Invariants of ample line bundles on projective varieties and their applications,

II, Kodai Math. J. 33 (2010), 416–445.

[17] Y. Fukuma, On quasi-polarized manifolds whose sectional genus is equal to the irregu-

larity, Rend. Sem. Mat. Univ. Padova 125 (2011), 107–117.

[18] Y. Fukuma, On classification of polarized 3-folds ðX ;LÞ with h0ðKX þ 2LÞ ¼ 2, Beitr.

Algebra Geom. 55 (2014), 77–103.

[19] Y. Fukuma, On a conjecture of Beltrametti-Sommese for polarized 4-folds, Kodai Math. J.

38 (2015), 343–351.

[20] Y. Fukuma, On polarized 4-folds ðX ;LÞ with h0ðKX þ 3LÞ ¼ 1, J. Pure Appl. Algebra 220

(2016), 1178–1187.

[21] A. Höring, On a conjecture of Beltrametti and Sommese, J. Algebraic Geom. 21 (2012),

721–751.

[22] P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc.

99 (1986), 457–472.

[23] A. Lanteri, Scrolls over surfaces allowing quadric bundle structures over curves are the

expected ones, Istit. Lombardo Accad. Sci. Lett. Rend. A 132 (1998), no. 1–2, 3–13.

[24] A. Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces,

J. Reine Angew. Math. 352 (1984), 15–23.

[25] A. Lanteri, M. Palleschi and D. C. Struppa (Eds.), Geometry of complex projective

varieties, Proceedings of the conference held in Cetraro, May 28–June 2, 1990. Seminars

and Conferences, 9. Mediterranean Press, Rende, 1993.

Yoshiaki Fukuma

Department of Mathematics

Faculty of Science

Kochi University

Akebono-cho, Kochi 780-8520

Japan

E-mail: fukuma@kochi-u.ac.jp

URL: http://www.math.kochi-u.ac.jp/fukuma/index.html

170 Yoshiaki Fukuma


