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Abstract. We consider the cosmetic surgery problem for two-bridge knots in the

3-sphere. We first verify by using previously known results that all the two-bridge

knots of at most 9 crossings admit no purely cosmetic surgery pairs except for the

knot 927. Then we show that any two-bridge knot corresponding to the continued

fraction ½0; 2x; 2;�2x; 2x; 2;�2x� for a positive integer x admits no cosmetic surgery

pairs yielding homology 3-spheres, where 927 appears when x ¼ 1. Our advantage to

prove this is using the SLð2;CÞ Casson invariant.

1. Introduction

Dehn surgery can be regarded as an operation to make a ‘new’ 3-manifold

from a given one. Of course, the trivial Dehn surgery leaves the manifold

unchanged, but ‘most’ non-trivial ones would change the topological type.

In fact, Gordon and Luecke showed as the famous result in [10] that any

non-trivial Dehn surgery on a non-trivial knot in the 3-sphere S3 never yields

S3 again.

As a natural generalization, the following conjecture was raised.

Cosmetic Surgery Conjecture ([14, Problem 1.81(A)]): Two surgeries on inequi-

valent slopes are never purely cosmetic.

Here we say that two slopes are equivalent if there exists a homeo-

morphism of the exterior of a knot K taking one slope to the other, and two

surgeries on K along slopes r1 and r2 are purely cosmetic if there exists

an orientation preserving homeomorphism between the pair of the surgered

manifolds.
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Remark 1. The Cosmetic Surgery Conjecture for ‘‘chirally cosmetic’’ case

is not true: there exist counter-examples given by Mathieu [16, 17]. In fact,

for example, ð18k þ 9Þ=ð3k þ 1Þ- and ð18k þ 9Þ=ð3k þ 2Þ-surgeries on the right-

hand trefoil knot in S3 yield orientation-reversingly homeomorphic pairs of

3-manifolds for any non-negative integer k, and it can be shown that such pairs

of slopes are inequivalent. That is to say, the trefoil knot admits chirally

cosmetic surgery pairs along inequivalent slopes.

In this paper, we consider cosmetic surgeries on a well-known class of

knots in S3, the two-bridge knots. First, by using known results, we have the

following in Section 2.

Proposition 1. All the two-bridge knots of at most 9 crossings admit no

purely cosmetic surgery pairs except for the knot 927 in Rolfsen’s knot table.

Here the knot 927 is a two-bridge knot illustrated in Figure 1, which

corresponds to the following continued fraction expansion.

18

49
¼ ½0; 2; 2;�2; 2; 2;�2� ¼ 0þ 1

2þ 1

2þ 1

�2þ 1

2þ 1

2þ 1

� 2

We refer the knot by Sð49; 18Þ. Our notations basically follow those in [3],

but we use Sða; bÞ instead of Kða; bÞ in [3].

In view of this, let us focus on the knot 927. Previously, for the same

reason, the first author considered this knot in [13], and it was shown that 10=3-

and �10=3-surgeries on 927 give distinct manifolds by using non-orientable

surfaces in surgered manifolds.

In this paper, for a family of knots including the knot 927, we have the

following.

Theorem 1. Let Kx be the two-bridge knot described by Sðð8x2 � 1Þ2;
32x3 � 8x2 � 8xþ 2Þ with the continued fraction expansion ½0; 2x; 2;�2x; 2x; 2;

�2x� for a positive integer x. Then Kx admits no purely cosmetic surgery pairs

Fig. 1. The knot 927 ¼ Sð49;18Þ with the continued fraction expansion ½0; 2; 2;�2; 2; 2;�2� for 18=49
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yielding homology 3-spheres, i.e., any 1
n
- and 1

m
-surgeries on Kx are not purely

cosmetic for m0 n. In other words, all the homology 3-spheres obtained by

Dehn surgeries on Kx are mutually distinct.

Remark 2. This cannot be achieved by using known invariants; the

(original) Casson invariant and the t-invariant defined by Ozsváth-Szabó in

[20], and the correction term in Heegaard Floer homology. See Section 5 for

details.

Our advantage in this paper is to use the SLð2;CÞ version of the Casson

invariant. Very roughly speaking, for a closed orientable 3-manifold S, the

SLð2;CÞ Casson invariant lSLð2;CÞðSÞ is defined by counting the (signed)

equivalence classes of representations of the fundamental group p1ðSÞ in

SLð2;CÞ. Based on the method to enumerate the boundary slopes for two-

bridge knots developed in [18], we give calculations of the SLð2;CÞ Casson

invariant for the knots Kx’s. The calculations will be given in Section

4. Before that the formulae and the method used in the calculations will

be explained in Section 3.

Remark 3. It is known that the SLð2;CÞ Casson invariant cannot

distinguish the mirror images. In other words, the orientation-reversingly

homeomorphic pair of 3-manifolds have the same SLð2;CÞ Casson invariant.

It implies that if a pair of 3-manifolds have di¤erent values of the SLð2;CÞ
Casson invariant, then they are not homeomorphic. Thus, as in the statement,

we can say that all the homology 3-spheres obtained by Dehn surgeries on

Kx are mutually distinct.

Practically our method can be applied further. However it seems not

enough to prove that all the Kx’s have no purely cosmetic surgery pairs. See

Remark 4 in detail.

Here we recall basic definitions and terminology about Dehn surgery.

A Dehn surgery is the following operation for a given knot K in a

3-manifold M. Take the exterior EðKÞ of K, and then, glue a solid torus

back to EðKÞ. On the peripheral torus qEðKÞ of K in M, let g be the slope

represented by the curve identified with the meridian of the attached solid torus

via the surgery. Then, by KðgÞ, we denote the manifold which is obtained

by the Dehn surgery on K along g, and call it the 3-manifold obtained by

Dehn surgery on K along g. In particular, the Dehn surgery on K along the

meridional slope is called the trivial Dehn surgery.

When K is a knot in S3, by using the standard meridian-longitude system,

slopes on the peripheral torus are parametrized by rational numbers with 1=0

(corresponding to the meridian). Thus, when a slope g corresponds to a
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rational number r, Dehn surgery along g is said to be r-Dehn surgery, or simply

r-surgery, and we use KðrÞ in stead of KðgÞ.

2. Two-bridge knots

For two-bridge knots, see [5] as a standard reference. Our notations

basically follows from those in [3].

To show Proposition 1, we use the following two known results.

One ingredient is the Casson invariant of 3-manifolds introduced by

Casson. By using the Casson invariant, Boyer and Lines in [4] proved

that a knot K in S3 satisfying D 00
Kð1Þ0 0 has no cosmetic surgeries. Here

DKðtÞ denotes the (symmetrized) Alexander polynomial for K . That is, DKðtÞ
satisfies that DKðt�1Þ ¼ DKðtÞ and DKð1Þ ¼ 1.

The other one is the following excellent result recently obtained by Ni and

Wu in [19]. Suppose that K is a non-trivial knot in S3 and r1; r2 A Q [ f1=0g
are two distinct slopes such that the surgered manifolds Kðr1Þ, Kðr2Þ are

orientation-preservingly homeomorphic. Then r1, r2 satisfy that (a) r1 ¼ �r2,

(b) q2 1�1 mod p for r1 ¼ p=q, (c) tðKÞ ¼ 0, where t is the invariant defined

by Ozsváth-Szabó in [20]. This result is obtained by using Heegaard Floer

homology. We remark that, for alternating knots, tðKÞ ¼ �sðKÞ holds [20,

Theorem 1.4], where sðKÞ denotes the signature of K .

Now Proposition 1 follows from Table 1. To fill the table, we use the

values given in Knotinfo [6]. Also we can use the fact that the half of D 00
Kð1Þ is

equal to the second coe‰cient of the Conway polynomial. This well-known

fact is due to Casson, and, for details, see [1] and [12, Section 1] for example.

Table 1. Two-bridge knots of at most 9 crossings with trivial t-invariant

Name Sða; bÞ Alexander Polynomial D 00
K ð1Þ

41 Sð5; 2Þ �t�1 þ 3� t �2

61 Sð9; 7Þ �2t�1 þ 5� 2t �4

63 Sð13; 5Þ t�2 � 3t�1 þ 5� 3tþ t2 2

77 Sð21; 8Þ t�2 � 5t�1 þ 9� 5tþ t2 �2

81 Sð13; 11Þ �3t�1 þ 7� 3t �6

83 Sð17; 4Þ �4t�1 þ 9� 4t �8

88 Sð25; 9Þ 2t�2 � 6t�1 þ 9� 6tþ 2t2 4

89 Sð25; 7Þ �t�3 þ 3t�2 � 5t�1 þ 7� 5tþ 3t2 � t3 �4

812 Sð29; 12Þ t�2 � 7t�1 þ 13� 7tþ t2 �6

813 Sð29; 11Þ 2t�2 � 7t�1 þ 11� 7tþ 2t2 2

914 Sð37; 14Þ 2t�2 � 9t�1 þ 15� 9tþ 2t2 �2

919 Sð41; 16Þ 2t�2 � 10t�1 þ 17� 10tþ 2t2 �4

927 Sð49; 18Þ �t�3 þ 5t�2 � 11t�1 þ 15� 11tþ 5t2 � t3 0
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3. SLð2;CÞ Casson invariant

We here recall briefly the definition of the SLð2;CÞ Casson invariant,

denoted by lSLð2;CÞ, based on [3]. Let M be a closed, orientable 3-manifold

with a Heegaard splitting H1 [F H2 with handlebodies H1, H2 and a Heegaard

surface F , that is, H1 [H2 ¼ M and qH1 ¼ qH2 ¼ H1 \H2 ¼ F . Then the

inclusion maps F ! Hi and Hi ! M for i ¼ 1; 2 induce surjections on the

fundamental groups. It then follows that X ðMÞ ¼ X ðH1Þ \ X ðH2Þ � XðF Þ,
where XðMÞ, XðH1Þ, XðH2Þ and XðF Þ denote the SLð2;CÞ-character varieties

for M, H1, H2 and F respectively. There are natural orientations on all

the character varieties determined by their complex structures. The invariant

lSLð2;CÞ is (roughly) defined as an oriented intersection number of the subspaces

of characters of irreducible representations in XðH1Þ and X ðH2Þ, which counts

only compact, zero-dimensional components of the intersection. See [7] and

[8], also [3] for detailed definition.

For the 3-manifolds obtained by Dehn surgeries on two-bridge knots,

Boden and Curtis studied the SLð2;CÞ Casson invariant lSLð2;CÞ in detail in [3],

and showed that lSLð2;CÞ can be calculated as follows ([3, Theorem 2.5]): Let

K be a two-bridge knot Sða; bÞ and Kðp=qÞ the 3-manifold obtained by p=q-

surgery on K . Suppose that p=q is not a strict boundary slope and no p 0-th

root of unity is a root of DKðtÞ, where p 0 ¼ p if p is odd and p 0 ¼ p=2 if p is

even. Then

lSLð2;CÞðKðp=qÞÞ ¼
kp=qkT

2
if p is even;

kp=qkT
2

� a� 1

4
if p is odd:

8>>><
>>>:

Here kp=qkT denotes the total Culler-Shalen seminorm of p=q.

Recall that a slope on the boundary of a knot exterior M is called a

boundary slope if there exists an essential surface F embedded in M with

nonempty boundary representing the slope, and a boundary slope is called

strict if it is the boundary slope of an essential surface that is not the fiber of

any fibration over the circle.

In this paper, we omit the detailed definition of the total Culler-Shalen

seminorm (see [3] for example), while the calculation of the total Culler-

Shalen seminorm of a slope for a two-bridge knot was essentially given in

[22]. In fact, the following explicit formula is presented as [3, Proposition

2.3].

kp=qkT ¼ 1

2
�jpj þ

X
i

WiDðp=q;NiÞ
 !

:
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Here N1; . . . ;Nn denote the boundary slopes for a two-bridge knot K , and

Dðp=q;NiÞ :¼ jp� qNij denotes the distance between slopes p=q and Ni, that is,

the minimal geometric intersection number of the representatives of p=q and

Ni. By the result given in [11], a boundary slope for a two-bridge knot Sða; bÞ
is associated to a continued fraction expansion ½c; n1; . . . ; nk� of b=a. Then

Wi is set to be
Q

jðjnj j � 1Þ for the continued fraction expansion ½c; n1; . . . ; nk�
associated to Ni.

Combining these formulae, we see the following.

lSLð2;CÞðKðp=qÞÞ � lSLð2;CÞðKð�p=qÞÞ ¼ 1

2

p

q

����
����
T

� � p

q

����
����
T

� �

¼ 1

4

X
i

Wi D
p

q
;Ni

� �
� D � p

q
;Ni

� �� �

¼ 1

4

X
i

Wiðjp� qNij � j�p� qNijÞ:

In particular, we have the following when p ¼ 1.

lSLð2;CÞðKð1=qÞÞ � lSLð2;CÞðKð�1=qÞÞ

¼ 1

4

X
i

Wiðj1� qNij � j�1� qNijÞ

¼ 1

4

X
Ni>0

WiððqNi � 1Þ � ð1þ qNiÞÞ þ
X
Ni<0

Wiðð1� qNiÞ � ð�1� qNiÞÞ
 !

¼ 1

2
�
X
Ni>0

Wi þ
X
Ni<0

Wi

 !
:

Consequently, together with the result of Ni and Wu given in [19], a two-

bridge knot has no purely cosmetic surgery pairs yielding homology 3-spheres if

�
P

Ni>0 Wi þ
P

Ni<0 Wi 0 0 holds.

On the other hand, in [18, Theorem 2], the following method to enumerate

all the continued fractions associated to boundary slopes for a two-bridge knot

was given. The boundary slopes of a two-bridge knot Sða; bÞ are associated

to the continued fractions obtained by applying the following substitutions at

non-adjacent positions in the simple continued fraction (i.e., the unique one with

all terms positive and the last term greater than 1) of b=a. The following

exhibit the substitutions at position 2.

Substitution 1:

½c; n1; 2n 0
2; n3; n4; . . . ; nk� 7! ½c; n1 þ 1; ð�2; 2Þn

0
2
�1;�2; n3 þ 1; n4; . . . ; nk�
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Substitution 2:

½c; n1; 2n 0
2 þ 1; n3; n4; . . . ; nk� 7! ½c; n1 þ 1; ð�2; 2Þn

0
2 ;�n3 � 1;�n4; . . . ;�nk�

Here, the notation ð�2; 2Þn means that the pattern ‘‘�2; 2’’ is repeated n times.

Let us recall how to calculate the boundary slopes from a continued

fraction.

By the result given in [11], a continued fraction expansion is associated to

a boundary slope if it has partial quotients which are all at least two in

absolute value. We call such a continued fraction a boundary slope continued

fraction.

Given a two-bridge knot Sða; bÞ, consider a boundary slope continued

fraction expansion ½c; n1; . . . ; nk� of b=a with integer part c and jnijb 2 for 1a

ia k. Compare the signs of the terms n1; . . . ; nk to the pattern ½þ � þ � � � ��,
and let nþ (resp. n�) be the number of terms matching (resp. not matching) the

pattern. Note that, among the boundary slope continued fractions, there is a

unique one having all terms even; that is associated to the longitude (i.e., the

boundary slope of a Seifert surface). Let nþ0 and n�0 be the corresponding

values for the continued fraction associated to the longitude. Then, due to

[11], the boundary slope associated to the continued fraction is presented as

2ððnþ � n�Þ � ðnþ0 � n�0 ÞÞ.

4. Calculation

In this section, we give a proof of Theorem 1.

As explained in the previous section, to prove the theorem, it su‰ces to

enumerate all the boundary slopes by using the substitution method, and

calculate
P

Ni>0 Wi and
P

Ni<0 Wi for the obtained boundary slopes.

First we consider the case x ¼ 1, that is, the case of 927. We start with

the simple continued fraction of 18=49, which is represented as the continued

fraction ½0; 2; 1; 2; 1; 1; 2�. We use 6-tuples of the form ðb1; b2; b3; b4; b5; b6Þ
with bj ¼ 0; 1 to show where substitutions are applied. As an example,

ð0; 0; 1; 0; 0; 1Þ means the substitution rule is applied at positions 3 and 6.

Then we have a boundary slope continued fraction ½0; 2; 2;�2; 2; 2;�2� which
is the longitude continued fraction. Hence we see that nþ0 ¼ 3 and n�0 ¼ 3.

Here recall that each term of boundary slope continued fractions must

be at least two in absolute value. Hence ð0; 0; 0; b4; b5; b6Þ does not fit in our

case since the term of 1 at position 2 remains after substitutions. Similarly, we

can eliminate the possibility of ðb1; b2; 0; 0; 0; b6Þ and ðb1; b2; b3; 0; 0; 0Þ. We

also note that no two terms of 1 are adjacent in a 6-tuple. It is therefore

enough to consider the following 10 cases to obtain all the boundary slope

continued fractions.
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Case 1. ð0; 0; 1; 0; 0; 1Þ.
Then we have ½0; 2; 2;�2; 2; 2;�2�.
Hence nþ1 ¼ 3, n�1 ¼ 3 and N1 ¼ 0.

Case 2. ð0; 0; 1; 0; 1; 0Þ.
Then we have ½0; 2; 2;�2; 3;�3�.
Hence nþ2 ¼ 1, n�2 ¼ 4, N2 ¼ �6 and W2 ¼ 4.

Case 3. ð0; 1; 0; 0; 1; 0Þ.
Then we have ½0; 3;�3;�2; 3�.
Hence nþ3 ¼ 2, n�3 ¼ 2 and N3 ¼ 0.

Case 4. ð0; 1; 0; 1; 0; 0Þ.
Then we have ½0; 3;�4; 2; 2�.
Hence nþ4 ¼ 3, n�4 ¼ 1, N4 ¼ 4 and W4 ¼ 6.

Case 5. ð0; 1; 0; 1; 0; 1Þ.
Then we have ½0; 3;�4; 3;�2�.
Hence nþ5 ¼ 4, n�5 ¼ 0, N5 ¼ 8 and W5 ¼ 12.

Case 6. ð1; 0; 0; 0; 1; 0Þ.
Then we have ½1;�2; 2; 2; 2;�3�.
Hence nþ6 ¼ 1, n�6 ¼ 4, N6 ¼ �6 and W6 ¼ 2.

Case 7. ð1; 0; 0; 1; 0; 0Þ.
Then we have ½1;�2; 2; 3;�2;�2�.
Hence nþ7 ¼ 2, n�7 ¼ 3, N7 ¼ �2 and W7 ¼ 2.

Case 8. ð1; 0; 0; 1; 0; 1Þ.
Then we have ½1;�2; 2; 3;�3; 2�.
Hence nþ8 ¼ 3, n�8 ¼ 2, N8 ¼ 2 and W8 ¼ 4.

Case 9. ð1; 0; 1; 0; 0; 1Þ.
Then we have ½1;�2; 3;�2; 2; 2;�2�.
Hence nþ9 ¼ 2, n�9 ¼ 4, N9 ¼ �4 and W9 ¼ 2.

Case 10. ð1; 0; 1; 0; 1; 0Þ.
Then we have ½1;�2; 3;�2; 3;�3�.
Hence nþ10 ¼ 0, n�10 ¼ 5, N10 ¼ �10 and W10 ¼ 8.

We therefore see that

lSLð2;CÞðM1=qÞ � lSLð2;CÞðM�1=qÞ ¼
1

2
�
X
Ni>0

Wi þ
X
Ni<0

Wi

 !
¼ �2:

Next we consider the general case, where xb 2.
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We remark that the knot Kx is described as Kðð8x2 � 1Þ2; 32x3 � 8x2 �
8xþ 2Þ. Thus its simple continued fraction is given as ½0; 2x; 1; 1; 2x� 2; 1;

2x� 1; 1; 1; 2x� 1�. We in turn use 9-tuples of the form ðb1; b2; b3; b4; b5;
b6; b7; b8; b9Þ with bj ¼ 0; 1 to show where substitutions are applied. The

longitude continued fraction is obtained from ð0; 0; 1; 0; 1; 0; 0; 1; 0Þ and is

½0; 2x; 2;�2x; 2x; 2;�2x�.
There is no possibility of ð0; 0; 0; b4; b5; b6; b7; b8; b9Þ, ðb1; 0; 0; 0; b5; b6; b7;

b8; b9Þ, ðb1; b2; b3; 0; 0; 0; b7; b8; b9Þ, ðb1; b2; b3; b4; b5; 0; 0; 0; b9Þ and ðb1; b2; b3; b4;
b5; b6; 0; 0; 0Þ since each term of boundary slope continued fractions is at least

two in absolute value. We again note that no two terms of 1 are adjacent in

a 9-tuple. It is therefore enough to consider the following 25 cases to obtain

all the boundary slope continued fractions.

Case 1. ð0; 0; 1; 0; 0; 1; 0; 0; 1Þ.
Then we have ½0; 2x; 2;�2xþ 1;�2; ð2;�2Þx�1; 2; 2; ð�2; 2Þx�1�.
Hence nþ1 ¼ 2xþ 1, n�1 ¼ 2xþ 1 and N1 ¼ 0.

Case 2. ð0; 0; 1; 0; 0; 1; 0; 1; 0Þ.
Then we have ½0; 2x; 2;�2xþ 1;�2; ð2;�2Þx�1; 3;�2x�.
Hence nþ2 ¼ 2xþ 2, n�2 ¼ 2, N2 ¼ 4x and W2 ¼ 4ðx� 1Þð2x� 1Þ2.

Case 3. ð0; 0; 1; 0; 1; 0; 0; 1; 0Þ.
Then we have ½0; 2x; 2;�2x; 2x; 2;�2x�.
Hence nþ3 ¼ 3, n�3 ¼ 3 and N3 ¼ 0.

Case 4. ð0; 0; 1; 0; 1; 0; 1; 0; 0Þ.
Then we have ½0; 2x; 2;�2x; 2xþ 1;�2;�2xþ 1�.
Hence nþ4 ¼ 2, n�4 ¼ 4, N4 ¼ �4 and W4 ¼ 4xðx� 1Þð2x� 1Þ2.

Case 5. ð0; 0; 1; 0; 1; 0; 1; 0; 1Þ.
Then we have ½0; 2x; 2;�2x; 2xþ 1;�3; ð2;�2Þx�1�.
Hence nþ5 ¼ 1, n�5 ¼ 2xþ 2, N5 ¼ �4x� 2 and W5 ¼ 4xð2x� 1Þ2.

Case 6. ð0; 1; 0; 0; 0; 1; 0; 0; 1Þ.
Then we have ½0; 2xþ 1;�2;�2xþ 2;�2; ð2;�2Þx�1; 2; 2; ð�2; 2Þx�1�.
Hence nþ6 ¼ 2xþ 2, n�6 ¼ 2x, N6 ¼ 4 and W6 ¼ 2xð2x� 3Þ.

Case 7. ð0; 1; 0; 0; 0; 1; 0; 1; 0Þ.
Then we have ½0; 2xþ 1;�2;�2xþ 2;�2; ð2;�2Þx�1; 3;�2x�.
Hence nþ7 ¼ 2xþ 3, n�7 ¼ 1, N7 ¼ 4xþ 4 and W7 ¼ 4xð2x� 1Þð2x� 3Þ.

Case 8. ð0; 1; 0; 0; 1; 0; 0; 1; 0Þ.
Then we have ½0; 2xþ 1;�2;�2xþ 1; 2x; 2;�2x�.
Hence nþ8 ¼ 4, n�8 ¼ 2, N8 ¼ 4 and W8 ¼ 4xðx� 1Þð2x� 1Þ2.
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Case 9. ð0; 1; 0; 0; 1; 0; 1; 0; 0Þ.
Then we have ½0; 2xþ 1;�2;�2xþ 1; 2xþ 1;�2;�2xþ 1�.
Hence nþ9 ¼ 3, n�9 ¼ 3 and N9 ¼ 0.

Case 10. ð0; 1; 0; 0; 1; 0; 1; 0; 1Þ.
Then we have ½0; 2xþ 1;�2;�2xþ 1; 2xþ 1;�3; ð2;�2Þx�1�.
Hence nþ10 ¼ 2, n�10 ¼ 2xþ 1, N10 ¼ �4xþ 2 and W10 ¼ 16x2ðx� 1Þ.

Case 11. ð0; 1; 0; 1; 0; 0; 0; 1; 0Þ.
Then we have ½0; 2xþ 1;�3; ð2;�2Þx�1;�2xþ 1;�2; 2x�.
Hence nþ11 ¼ 2xþ 2, n�11 ¼ 1, N11 ¼ 4xþ 2 and W11 ¼ 8xðx� 1Þð2x� 1Þ.

Case 12. ð0; 1; 0; 1; 0; 0; 1; 0; 0Þ.
Then we have ½0; 2xþ 1;�3; ð2;�2Þx�1;�2x; 2; 2x� 1�.
Hence nþ12 ¼ 2xþ 1, n�12 ¼ 2, N12 ¼ 4x� 2 and W12 ¼ 8xðx� 1Þð2x� 1Þ.

Case 13. ð0; 1; 0; 1; 0; 0; 1; 0; 1Þ.
Then we have ½0; 2xþ 1;�3; ð2;�2Þx�1;�2x; 3; ð�2; 2Þx�1�.
Hence nþ13 ¼ 2x, n�13 ¼ 2x and N13 ¼ 0.

Case 14. ð0; 1; 0; 1; 0; 1; 0; 0; 1Þ.
Then we have ½0; 2xþ 1;�3; ð2;�2Þx�2; 2;�3; ð2;�2Þx�1; 2; 2; ð�2; 2Þx�1�.
Hence nþ14 ¼ 4x� 1, n�14 ¼ 2x� 1, N14 ¼ 4x and W14 ¼ 8x.

Case 15. ð0; 1; 0; 1; 0; 1; 0; 1; 0Þ.
Then we have ½0; 2xþ 1;�3; ð2;�2Þx�2; 2;�3; ð2;�2Þx�1; 3;�2x�.
Hence nþ15 ¼ 4x, n�15 ¼ 0, N15 ¼ 8x and W15 ¼ 16xð2x� 1Þ.

Case 16. ð1; 0; 0; 1; 0; 0; 0; 1; 0Þ.
Then we have ½1; ð�2; 2Þx; 2; ð�2; 2Þx�1; 2x� 1; 2;�2x�.
Hence nþ16 ¼ 2xþ 1, n�16 ¼ 2xþ 1 and N16 ¼ 0.

Case 17. ð1; 0; 0; 1; 0; 0; 1; 0; 0Þ.
Then we have ½1; ð�2; 2Þx; 2; ð�2; 2Þx�1; 2x;�2;�2xþ 1�.
Hence nþ17 ¼ 2x, n�17 ¼ 2xþ 2, N17 ¼ �4 and W17 ¼ 2ðx� 1Þð2x� 1Þ.

Case 18. ð1; 0; 0; 1; 0; 0; 1; 0; 1Þ.
Then we have ½1; ð�2; 2Þx; 2; ð�2; 2Þx�1; 2x;�3; ð2;�2Þx�1�.
Hence nþ18 ¼ 2x� 1, n�18 ¼ 4x, N18 ¼ �4x� 2 and W18 ¼ 2ð2x� 1Þ.

Case 19. ð1; 0; 0; 1; 0; 1; 0; 0; 1Þ.
Then we have ½1; ð�2;2Þx;2; ð�2;2Þx�2;�2;3; ð�2;2Þx�1;�2;�2; ð2;�2Þx�1�.
Hence nþ19 ¼ 4x� 2, n�19 ¼ 4x� 1, N19 ¼ �2 and W19 ¼ 2.
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Case 20. ð1; 0; 0; 1; 0; 1; 0; 1; 0Þ.
Then we have ½1; ð�2; 2Þx; 2; ð�2; 2Þx�2;�2; 3; ð�2; 2Þx�1;�3; 2x�.
Hence nþ20 ¼ 4x� 1, n�20 ¼ 2x, N20 ¼ 4x� 2 and W20 ¼ 4ð2x� 1Þ.

Case 21. ð1; 0; 1; 0; 0; 1; 0; 0; 1Þ.
Then we have ½1; ð�2; 2Þx�1;�2; 3;�2xþ 1;�2; ð2;�2Þx�1; 2; 2; ð�2; 2Þx�1�.
Hence nþ21 ¼ 2x, n�21 ¼ 4x, N21 ¼ �4x and W21 ¼ 4ðx� 1Þ.

Case 22. ð1; 0; 1; 0; 0; 1; 0; 1; 0Þ.
Then we have ½1; ð�2; 2Þx�1;�2; 3;�2xþ 1;�2; ð2;�2Þx�1; 3;�2x�.
Hence nþ22 ¼ 2xþ 1, n�22 ¼ 2xþ 1 and N22 ¼ 0.

Case 23. ð1; 0; 1; 0; 1; 0; 0; 1; 0Þ.
Then we have ½1; ð�2; 2Þx�1;�2; 3;�2x; 2x; 2;�2x�.
Hence nþ23 ¼ 2, n�23 ¼ 2xþ 2, N23 ¼ �4x and W23 ¼ 2ð2x� 1Þ3.

Case 24. ð1; 0; 1; 0; 1; 0; 1; 0; 0Þ.
Then we have ½1; ð�2; 2Þx�1;�2; 3;�2x; 2xþ 1;�2;�2xþ 1�.
Hence nþ24 ¼ 1, n�24 ¼ 2xþ 3, N24 ¼ �4x� 4 and W24 ¼ 8xðx� 1Þð2x� 1Þ.

Case 25. ð1; 0; 1; 0; 1; 0; 1; 0; 1Þ.
Then we have ½1; ð�2; 2Þx�1;�2; 3;�2x; 2xþ 1;�3; ð2;�2Þx�1�.
Hence nþ25 ¼ 0, n�25 ¼ 4xþ 1, N25 ¼ �8x� 2 and W25 ¼ 8xð2x� 1Þ.

Since we are assuming xb 2,

lSLð2;CÞðM1=qÞ � lSLð2;CÞðM�1=qÞ ¼
1

2
�
X
Ni>0

Wi þ
X
Ni<0

Wi

 !

¼ 8x2 � 12xþ 2

¼ 8 x� 3

4

� �2
� 5

2

> 0:

Remark 4. As stated in Introduction, our method can be applied further,

but not su‰cient even for knots with 10 crossings. In fact, there are two

2-bridge knots, 1033 and 1042, which are unknown to admit purely cosmetic

surgeries by using the (original) Casson invariant and the t-invariant. Since

the knot 1033 is amphicheiral, it has a symmetric boundary slope set, and

so, our technique above is not applicable. Also the boundary slope set for

the knot 1042 is symmetric, though the knot is not amphicheiral. Again our

technique above is not applicable to this knot.
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5. Alexander polynomial

In this section, we justify Remark 2 in Section 1 as follows.

Proposition 2. Let Kx be a two-bridge knot associated to the continued

fraction expansion ½0; 2x; 2;�2x; 2x; 2;�2x� for a positive integer x. Then

D 00
Kx
ð1Þ ¼ 0 and tðKxÞ ¼ 0 hold. Here DKx

ðtÞ denotes the Alexander polynomial

of Kx normalized to be symmetric and to satisfy DKx
ð1Þ ¼ 1.

Proof. Let Kx be a two-bridge knot associated to the continued fraction

expansion ½0; 2x; 2;�2x; 2x; 2;�2x� for a positive integer x. Then Kx is a slice

knot, originally observed by Casson and Gordon, and see [15, Lemma 8.2] for

a proof. On the other hand, the invariant t must vanish for slice knots as

shown in [20, Corollary 1.3]. Thus we have tðKxÞ ¼ 0.

Now let us calculate the Alexander polynomial for Kx. This is just a

straightforward calculation, but we include it for readers’ convenience.

In general, a two-bridge knot associated to the continued fraction expan-

sion ½0; 2A;�2B; 2C;�2D; 2E;�2F � is depicted as in Figure 2. Note that such

a knot is of genus three, and any two-bridge knot of genus three admits such

a description. In the figure, A to F denote the numbers of horizontal full-

twists with signs of the twists.

Such a Seifert surface of genus three can be deformed into the one as

shown in Figure 3. To calculate the Seifert matrix, we set a basis a1; . . . ; a6
of the first homology group of the surface, as illustrated in Figure 3.

Then we have the Seifert matrix as follows.

a1 a2 a3 a4 a5 a6

A B C D E F

Fig. 3

A

B

C

D

E

F

Fig. 2. A to F denote the numbers of full-twists.
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M ¼

A 0 0 0 0 0

1 B 1 0 0 0

0 0 C 0 0 0

0 0 1 D 1 0

0 0 0 0 E 0

0 0 0 0 1 F

0
BBBBBBBB@

1
CCCCCCCCA

Then DKx
ðtÞ ¼ detðM � ttMÞ is obtained as

det

ð1� tÞA �t 0 0 0 0

1 ð1� tÞB 1 0 0 0

0 �t ð1� tÞC �t 0 0

0 0 1 ð1� tÞD 1 0

0 0 0 �t ð1� tÞE �t

0 0 0 0 1 ð1� tÞF

0
BBBBBBBB@

1
CCCCCCCCA

We then have the following polynomial of degree 6;

ABCDEF ð1� tÞ6 þ ððAþ CÞDEF � ABCðDþ F Þ þ ABEFÞtð1� tÞ4

þ ðABþ EF Þt2ð1� tÞ2 þ t3

Now we consider the form ½0; 2x; 2;�2x; 2x; 2;�2x�, that is,

A ¼ x; B ¼ �1; C ¼ �x; D ¼ �x; E ¼ 1; F ¼ x:

This implies that DKx
ðtÞ ¼ �x4ð1� tÞ6 � x2tð1� tÞ4 þ t3.

After normalization, we have the following.

DKx
ðtÞ ¼ �x4ðt�3 þ t3Þ þ ð6x4 � x2Þðt�2 þ t2Þ

� ð15x4 � 4x2Þðt�1 þ tÞ þ 20x4 � 6x2 þ 1

It follows that;

D 0
Kx
ðtÞ ¼ �x4ð�3t�4 þ 3t2Þ þ ð6x4 � x2Þð�2t�3 þ 2tÞ þ ð�15x4 þ 4x2Þð�t�2 þ 1Þ

D 00
Kx
ðtÞ ¼ �x4ð12t�5 þ 6tÞ þ ð6x4 � x2Þð6t�4 þ 2Þ þ ð�15x4 þ 4x2Þð2t�3Þ

D 00
Kx
ð1Þ ¼ �18x4 þ 8ð6x4 � x2Þ þ 2ð�15x4 þ 4x2Þ ¼ 0:
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During our study, computer-experiments were quite useful. The experi-

ments were performed by using Dunfield’s program [9], which implements

Hatcher-Thurston’s algorithm to enumerate boundary slopes for two-bridge

knots.

References

[ 1 ] S. Akbulut and J. D. McCarthy, Casson’s invariant for oriented homology 3-spheres,

Mathematical Notes, 36, Princeton Univ. Press, Princeton, NJ, 1990.

[ 2 ] S. A. Bleiler, C. D. Hodgson and J. R. Weeks, Cosmetic surgery on knots, in Proceedings

of the Kirbyfest (Berkeley, CA, 1998), 23–34 (electronic), Geom. Topol. Monogr., 2, Geom.

Topol. Publ., Coventry.

[ 3 ] H. U. Boden and C. L. Curtis, The SLð2;CÞ Casson invariant for Dehn surgeries on

two-bridge knots, Algebr. Geom. Topol. 12 (2012), no. 4, 2095–2126.

[ 4 ] S. Boyer and D. Lines, Surgery formulae for Casson’s invariant and extensions to homology

lens spaces, J. Reine Angew. Math. 405 (1990), 181–220.

[ 5 ] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Mathematics, 5, de Gruyter,

Berlin, 1985.

[ 6 ] J. C. Cha and C. Livingston, KnotInfo: Table of Knot Invariants, http://www.indiana.edu/

~knotinfo, May 20, 2016.

[ 7 ] C. L. Curtis, An intersection theory count of the SL2ðCÞ-representations of the fundamental

group of a 3-manifold, Topology 40 (2001), no. 4, 773–787.

[ 8 ] C. L. Curtis, Erratum to: ‘‘An intersection theory count of the SL2ðCÞ-representations of

the fundamental group of a 3-manifold’’ [Topology 40 (2001), no. 4, 773–787], Topology

42 (2003), no. 4, 929.

[ 9 ] N. Dunfield, Program to compute the boundary slopes of a 2-bridge or Montesinos knot,

Available online at http://www.computop.org

[10] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer.

Math. Soc. 2 (1989), no. 2, 371–415.

[11] A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements,

Invent. Math. 79 (1985), no. 2, 225–246. MR0778125 (86g:57003)

[12] J. Hoste, A formula for Casson’s invariant, Trans. Amer. Math. Soc. 297 (1986), no. 2,

547–562.

[13] K. Ichihara, Cosmetic surgeries and non-orientable surfaces. Proceedings of the Institute

of Natural Sciences, Nihon University, 48 (2013), 169–174.

[14] Problems in low-dimensional topology, Edited by Rob Kirby. AMS/IP Stud. Adv. Math.,

2.2, Geometric topology (Athens, GA, 1993), 35–473, Amer. Math. Soc., Providence, RI,

1997.

[15] P. Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007),

429–472.

[16] Y. Mathieu, Sur les n�uds qui ne sont pas déterminés par leur complément et problemes
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Appendix A. Another example

After writing up this paper, in [1], new criteria for knots in S3 to admit

purely cosmetic surgeries have been established. Those are given in terms of

the Jones polynomial of knots, and actually, our examples Kx’s in this paper

can be shown to have no purely cosmetic surgeries by using them. However,

the methods in that paper are completely di¤erent from this paper. Moreover,

there exists an example of a knot which can not be identified to have no

cosmetic surgeries by the criteria given in [1], but can be shown to admit no

such surgeries yielding homology spheres by the method in this paper. In this

appendix, we describe the example, that is, the knot 11a91 in the knot table,

depicted in Figure 4. See [1, Corollary 1.2].

We remark that the knot 11a91 is the two-bridge knot Kð129; 50Þ and the

corresponding simple continued fraction is given as ½0; 2; 1; 1; 2; 1; 1; 1; 2�. As in

Section 4, we use 8-tuples of the form ðb1; b2; b3; b4; b5; b6; b7; b8Þ with bj ¼ 0; 1

to show where substitutions are applied. Then the longitude continued frac-

tion is obtained from ð0; 0; 1; 0; 1; 0; 0; 1Þ and is ½0; 2; 2;�4; 2; 2;�2�.
For 11a91, it is enough to consider the following 18 cases to obtain all the

boundary slope continued fractions.

Case 1. ð0; 0; 1; 0; 0; 1; 0; 0Þ.
Then we have ½0; 2; 2;�3;�2; 2; 2�.
Hence nþ1 ¼ 3, n�1 ¼ 3 and N1 ¼ 0.

Case 2. ð0; 0; 1; 0; 0; 1; 0; 1Þ.
Then we have ½0; 2; 2;�3;�2; 3;�2�.
Hence nþ2 ¼ 4, n�2 ¼ 2, N2 ¼ 4 and W2 ¼ 4.

Fig. 4. 11a91
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Case 3. ð0; 0; 1; 0; 1; 0; 0; 1Þ.
Then we have ½0; 2; 2;�4; 2; 2;�2�.
Hence nþ3 ¼ 3, n�3 ¼ 3 and N3 ¼ 0.

Case 4. ð0; 0; 1; 0; 1; 0; 1; 0Þ.
Then we have ½0; 2; 2;�4; 3;�3�.
Hence nþ4 ¼ 1, n�4 ¼ 4, N4 ¼ �6 and W4 ¼ 12.

Case 5. ð0; 1; 0; 0; 0; 1; 0; 0Þ.
Then we have ½0; 3;�2;�2;�2; 2; 2�.
Hence nþ5 ¼ 4, n�5 ¼ 2, N5 ¼ 4 and W5 ¼ 2.

Case 6. ð0; 1; 0; 0; 0; 1; 0; 1Þ.
Then we have ½0; 3;�2;�2;�2; 3;�2�.
Hence nþ6 ¼ 5, n�6 ¼ 1, N6 ¼ 8 and W6 ¼ 4.

Case 7. ð0; 1; 0; 0; 1; 0; 0; 1Þ.
Then we have ½0; 3;�2;�3; 2; 2;�2�.
Hence nþ7 ¼ 4, n�7 ¼ 2, N7 ¼ 4 and W7 ¼ 4.

Case 8. ð0; 1; 0; 0; 1; 0; 1; 0Þ.
Then we have ½0; 3;�2;�3; 3;�3�.
Hence nþ8 ¼ 2, n�8 ¼ 3, N8 ¼ �2 and W8 ¼ 16.

Case 9. ð0; 1; 0; 1; 0; 0; 1; 0Þ.
Then we have ½0; 3;�3; 2;�2;�2; 3�.
Hence nþ9 ¼ 4, n�9 ¼ 2, N9 ¼ 4 and W9 ¼ 8.

Case 10. ð0; 1; 0; 1; 0; 1; 0; 0Þ.
Then we have ½0; 3;�3; 2;�3; 2; 2�.
Hence nþ10 ¼ 5, n�10 ¼ 1, N10 ¼ 8 and W10 ¼ 8.

Case 11. ð0; 1; 0; 1; 0; 1; 0; 1Þ.
Then we have ½0; 3;�3; 2;�3; 3;�2�.
Hence nþ11 ¼ 6, n�11 ¼ 0, N11 ¼ 12 and W11 ¼ 16.

Case 12. ð1; 0; 0; 1; 0; 0; 1; 0Þ.
Then we have ½1;�2; 2; 2;�2; 2; 2;�3�.
Hence nþ12 ¼ 3, n�12 ¼ 4, N12 ¼ �2 and W12 ¼ 2.

Case 13. ð1; 0; 0; 1; 0; 1; 0; 0Þ.
Then we have ½1;�2; 2; 2;�2; 3;�2;�2�.
Hence nþ13 ¼ 4, n�13 ¼ 3, N13 ¼ 2 and W13 ¼ 2.

Case 14. ð1; 0; 0; 1; 0; 1; 0; 1Þ.
Then we have ½1;�2; 2; 2;�2; 3;�3; 2�.
Hence nþ14 ¼ 5, n�14 ¼ 2, N14 ¼ 6 and W14 ¼ 4.
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Case 15. ð1; 0; 1; 0; 0; 1; 0; 0Þ.
Then we have ½1;�2; 3;�3;�2; 2; 2�.
Hence nþ15 ¼ 2, n�15 ¼ 4, N15 ¼ �4 and W15 ¼ 4.

Case 16. ð1; 0; 1; 0; 0; 1; 0; 1Þ.
Then we have ½1;�2; 3;�3;�2; 3;�2�.
Hence nþ16 ¼ 3, n�16 ¼ 3 and N16 ¼ 0.

Case 17. ð1; 0; 1; 0; 1; 0; 0; 1Þ.
Then we have ½1;�2; 3;�4; 2; 2;�2�.
Hence nþ17 ¼ 2, n�17 ¼ 4, N17 ¼ �4 and W17 ¼ 6.

Case 18. ð1; 0; 1; 0; 1; 0; 1; 0Þ.
Then we have ½1;�2; 3;�4; 3;�3�.
Hence nþ18 ¼ 0, n�18 ¼ 5, N18 ¼ �10 and W18 ¼ 24.

Therefore,

lSLð2;CÞðM1=qÞ � lSLð2;CÞðM�1=qÞ ¼
1

2
�
X
Ni>0

Wi þ
X
Ni<0

Wi

 !

¼ 6

> 0:
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