The skew growth functions for the monoid of type $B_{i i}$ and others

Tadashi Ishibe
(Received February 18, 2015)
(Revised November 24, 2016)

Abstract

For a class of positive homogeneously presented cancellative monoids whose heights are greater than or equal to 2 , we will present several explicit calculations of the skew growth functions for them. By the inversion formula, the spherical growth functions for them can be determined. For most of them, the direct calculations are not known. The datum of certain lemmas for proving the cancellativity of the monoids are indispensable to the calculations of the skew growth functions. By improving the technique to show the lemmas, we succeed in the calculations.

1. Introduction

Let M be a positive homogeneously finitely presented monoid $\langle L \mid R\rangle_{\text {mo }}$ that satisfies the cancellation condition (i.e. $a x b=a y b$ implies $x=y$). Due to the homogeneity of the defining relations in the monoid M, we naturally define a map deg : $M \rightarrow \mathbb{Z}_{\geq 0}$ defined by assigning to each equivalence class of words the length of the words. In [S1], by considering the set $\operatorname{Tmcm}(M)$ of all towers $T=\left(I_{0}, J_{1}, J_{2}, \ldots, J_{n}\right)$ in M, the author defined the skew growth function (see $\S 3$ for details) as

$$
N_{M, \operatorname{deg}}(t):=1+\sum_{T \in \operatorname{Tmcm}(M)}(-1)^{\# J_{1}+\cdots+\# J_{n}-n+1} \sum_{\Delta \in \operatorname{mcm}\left(J_{n}\right)} t^{\operatorname{deg}(\Delta)} .
$$

In this article, for four kinds of positive homogeneously presented cancellative monoids $G_{\mathrm{B}_{\mathrm{i}}}^{+}, G_{m}^{+}, H_{m}^{+}$and $M_{\mathrm{abel}, m}$, we will present several explicit calculations of the skew growth functions for them. The monoid $G_{\mathrm{B}_{\mathrm{i}}}^{+}$is studied in [I1]. The presentation of it is associated with a Zariski-van Kampen presentation of the fundamental group of the complement of a certain divisor in \mathbb{C}^{3}. The difining equation of the divisor is $z\left(-2 y^{3}+4 x^{3} z+18 x y z+27 z^{2}\right)$. The monoids G_{m}^{+}, H_{m}^{+}and $M_{\text {abel }, m}$ are constructed artificially, for which the towers of them do not stop on the first stage J_{1}. The presentations of the monoids $G_{\mathrm{B}_{\mathrm{i}}}^{+}, G_{m}^{+}, H_{m}^{+}$and $M_{\mathrm{abel}, m}$ are the following

[^0]\[

$$
\begin{aligned}
G_{\mathrm{B}_{\mathrm{i}}}^{+} & :=\left\langle a, b, c \left\lvert\, \begin{array}{l}
c b b=b b a, \\
a b=b c, \\
a c=c a
\end{array}\right.\right\rangle_{m o}, \\
G_{m}^{+} & :=\left\langle a, b, c \left\lvert\, \begin{array}{l}
c b^{m}=b^{m} a, \\
a b=b c, \\
a c=c a
\end{array}\right.\right\rangle_{m o} \quad(m=3,4, \ldots), \\
H_{m}^{+} & :=\left\langle a, b, c \left\lvert\, \begin{array}{l}
b(a b)^{m} b a=c b(a b)^{m} b, \\
a b=b c, \\
a c=c a
\end{array}\right.\right\rangle_{m o} \quad(m=1,2, \ldots), \\
M_{\mathrm{abel}, m} & :=\left\langle a, b \left\lvert\, \begin{array}{l}
a^{m}=b^{m}, \\
a b=b a
\end{array}\right.\right\rangle_{m o} \quad(m=2,3, \ldots) .
\end{aligned}
$$
\]

For a class of positive homogeneously presented cancellative monoids whose heights are greater than or equal to 2 , calculations of the skew growth functions have not been known yet. For the calculations, the datum of certain lemmas for proving the cancellativity of the monoids are indispensable. The results of calculations of the skew growth functions are the following

$$
\begin{aligned}
N_{G_{\mathrm{B}_{\mathrm{i}}}^{+}, \operatorname{deg}}(t) & =\frac{(1-t)^{4}}{1-t+t^{2}}, \\
N_{G_{m}^{+}, \operatorname{deg}}(t) & =(1-t)\left(t^{m+2}+t^{m+1}-2 t+1\right), \\
N_{H_{m}^{+}, \operatorname{deg}}(t) & =(1-t)\left(t^{2 m+5}+t^{2 m+4}+t^{2 m+3}-2 t+1\right), \\
N_{M_{\mathrm{abel}, m}, \operatorname{deg}}(t) & =\frac{(1-t)^{2}}{1-t^{m}} .
\end{aligned}
$$

The spherical growth function for a monoid M is defined as

$$
P_{M, \operatorname{deg}}(t):=\sum_{u \in M} t^{\operatorname{deg}(u)} .
$$

In [S1], K. Saito has shown the inversion formula for M with respect to the map deg : $M \rightarrow \mathbb{Z}_{\geq 0}$

$$
P_{M, \operatorname{deg}}(t) \cdot N_{M, \operatorname{deg}}(t)=1
$$

Hence, by the inversion formula, we can calculate the spherical growth function $P_{M, \operatorname{deg}}(t)$ for the monoids $G_{B_{\mathrm{i}}}^{+}, G_{m}^{+}, H_{m}^{+}$and $M_{\mathrm{abel}, m}$.

Let us explain more details of the contents. In analogy with the spherical growth function for a finitely generated group, the spherical growth function for a monoid is defined. That has been studied by several authors ([A-N] [B]
[Bro] [Del] [I1] [S2, S3, S4, S5] [Xu]). If $M=\langle L \mid R\rangle_{\text {mo }}$ satisfies the condition \mathscr{L} that any subset J of $I_{0}(:=$ the image of the set L in $M)$ admits either the least right common multiple Δ_{J} or no common multiple in M, then the inversion function $P_{M, \operatorname{deg}}(t)^{-1}$ is given in a form of polynomial. Since a positive homogeneously presented cancellative monoid $M=\langle L \mid R\rangle_{m o}$ does not always satisfy the condition \mathscr{L}, if we try to generalize the formula, the consideration to obtain the above formula is invalid. To resolve this obstraction, for a subset J of I_{0} we will examine the set $\mathrm{mcm}(J)$ of minimal common right multiples of elements of J. However, the datum $\{\operatorname{mcm}(J)\}_{J \subset I_{0}}$ is still not sufficient to recover the inversion formula, since a subset J^{\prime} of $\mathrm{mcm}(J)$ in general may have common right multiples. Thus we need to consider the set $\mathrm{mcm}\left(J^{\prime}\right)$ for a subset J^{\prime} of $\mathrm{mcm}(J)$. Then, we may again need to consider $\mathrm{mcm}\left(J^{\prime \prime}\right)$ for a subset $J^{\prime \prime}$ of $\mathrm{mcm}\left(J^{\prime}\right)$, and so on. Repeating this process, we are naturally led to consider a notion of tower: a finite sequence $J_{1}, J_{2}, \ldots, J_{n}$ of subsets of M such that $J_{1} \subset I_{0}, J_{2} \subset \operatorname{mcm}\left(J_{1}\right), \ldots, J_{n} \subset \operatorname{mcm}\left(J_{n-1}\right)$. In [S1], K. Saito has succeeded in generalizing the inversion formula for a rather wider class of monoids (in this article, we explain it in a restricted form).

For the set $\operatorname{Tmcm}(M)$ of all towers $T=\left(I_{0}, J_{1}, J_{2}, \ldots, J_{n}\right)$ in M, we put

$$
h(M, \operatorname{deg}):=\max \left\{n \mid T=\left(I_{0}, J_{1}, J_{2}, \ldots, J_{n}\right) \in \operatorname{Tmcm}(M)\right\}
$$

and call it the height of the monoid M. The inversion formula covers all the cases $0 \leq h(M, \operatorname{deg}) \leq \infty$. For a non-abelian monoid $M=\langle L \mid R\rangle_{m o}$ whose $h(M, \operatorname{deg})$ is equal to ∞, one may think that calculations of the skew growth functions are not practicable. However, in $\S 5$, we will carry out the non-trivial calculation for the monoid $G_{\mathrm{B}_{\mathrm{i}}}^{+}$, partially because for any tower $T=\left(I_{0}, J_{1}, J_{2}, \ldots, J_{n}\right)$ the set $\mathrm{mcm}\left(J_{i}\right)$ can be calculated explicitly for each J_{i} due to Lemma 3. For the same reason, for the monoids G_{m}^{+}and H_{m}^{+}whose $h(M, \mathrm{deg})$ is equal to 2 and the abelian monoid $M_{\text {abel }, m}$ whose $h(M, \mathrm{deg})$ is equal to ∞, we can calculate the skew growth functions in $\S 5$.

As far as we know, for non-abelian monoids that do not satisfy the condition \mathscr{L}, there are few examples for which the cancellativity of them has been shown, since the pre-existing technique to show the cancellativity has only limited applicability ([G] [B-S] [Deh1] [Deh2]). For calculations of the skew growth functions, improvement of the technique to show the cancellativity is expected. In [Deh1], [Deh2], if presentation of a positive homogeneously presented monoid satisfies some condition, called completeness, the cancellativity of it can be trivially checked. However, in general, the presentation of a monoid is not complete. When the presentation is not complete, to obtain a complete presentaion, some procedure, called completion, is carried out. From our experience, for most of non-abelian monoids that do not satisfy the
condition \mathscr{L}, these procedures do not finish in finite steps. For monoids of this kind, nothing is discussed in [Deh1], [Deh2]. Thus we attempt improving the technique for this class of monoids. On the other hand, the presentations of the examples $G_{\mathrm{B}_{\mathrm{i}}}^{+}, G_{m}^{+}$and H_{m}^{+}are not complete and the procedures do not finish in finite steps (Remark 5). Nevertheless, in §4, we show the cancellativity of them successfully by improving the technique. Other successful examples are contained in [I1], [I2], [S-I].

In $\S 6$ we will deal with two monoids M_{4} and $G^{+}\left(4_{1}\right)$ whose towers do not stop on the first stage J_{1}. The skew growth functions for them can be calculated with comparative ease.

2. Positive homogeneous presentation

In this section, we first recall from [S-I], [B-S] some basic definitions and notations. Secondly, for a positive homogeneously finitely presented group

$$
G=\langle L \mid R\rangle,
$$

we associate a monoid defined by it. We give some basic definitions in a positive homogeneously presented monoid. Lastly, we define two operations on the set of subsets of a monoid.

First, we recall from [S-I] basic definitions on a monoid M.
Definition 1. 1. A monoid M is called cancellative, if a relation $A X B=A Y B$ for $A, B, X, Y \in M$ implies $X=Y$.
2. For two elements u, v in M, we denote

$$
\left.u\right|_{l} v
$$

if there exists an element x in M such that $v=u x$. We say that u divides v from the left, or, v is a right-multiple of u.
3. We say that M is conical, if 1 is the only invertible element in M.

Next, we recall from [B-S] some terminologies and concepts. Let L be a finite set. We denote by $F(L)$ the free group generated by L, and by L^{*} the free monoid generated by L inside $F(L)$. We call the elements of $F(L)$ words and the elements of L^{*} positive words. The empty word ε is the identity element of L^{*}. Let $G=\langle L \mid R\rangle$ be a positive homogeneously presented group (i.e. the set R of relations consists of those of the form $R_{i}=S_{i}$ where R_{i} and S_{i} are positive words of the same length), where R is the set of relations. We often use the same symbols for the images of the letters and words under the quotient homomorphism $F(L) \rightarrow G$ and the equivalence relation on elements A and B in G is denoted by $A=B$.

Next, we recall from [S-I], [I1] some basic concepts on positive homogeneously presented monoid.

Definition 2. Let $G=\langle L \mid R\rangle$ be a positive homogeneously finitely presented group, where L is the set of generators (called alphabet) and R is the set of relations. Then we associate a monoid $G^{+}=\langle L \mid R\rangle_{\text {mo }}$ defined as the quotient of the free monoid L^{*} generated by L by the equivalence relation defined as follows:
i) two words U and V in L^{*} are called elementarily equivalent if either $U=V$ in L^{*} or V is obtained from U by substituting a substring R_{i} of U by S_{i} where $R_{i}=S_{i}$ is a relation of $R\left(S_{i}=R_{i}\right.$ is also a relation if $R_{i}=S_{i}$ is a relation),
ii) two words U and V in L^{*} are called equivalent, denoted by $U=V$, if there exists a sequence $W_{0}, W_{1}, \ldots, W_{n}$ of words in L^{*} for $n \in \mathbb{Z}_{\geq 0}$ such that $U=W_{0}, V=W_{n}$ and W_{i} is elementarily equivalent to W_{i-1} for $i=1, \ldots, n$.

Due to the homogeneity of the relations, we define a homomorphism:

$$
\operatorname{deg}: G^{+} \rightarrow \mathbb{Z}_{\geq 0}
$$

by assigning to each equivalence class of words the length of the words.
Remark 1. For a positive homogeneously presented group $G=\langle L \mid R\rangle$, the associated monoid $G^{+}=\langle L \mid R\rangle_{m o}$ is conical.

Remark 2. In $[\mathrm{S} 1]$, for a monoid M, the quotient set M / \sim is considered, where the equivalence relation \sim on M is defined by putting $u \sim v \Leftrightarrow_{\text {def. }}$. $\left.\left.u\right|_{l} v \& v\right|_{l} u$. Due to the conicity, if M is a positive homogeneously presented monoid, then we see that $M / \sim=M$.

Lastly, we consider two operations on the set of subsets of a monoid M. For a subset J of M, we put

$$
\begin{aligned}
\operatorname{cm}_{r}(J) & :=\left\{u \in M|j|_{l} u, \text { for any } j \in J\right\}, \\
\min _{r}(J) & :=\left\{u \in J \mid \exists v \in J \text { such that }\left.v\right|_{l} u \Rightarrow v=u\right\}
\end{aligned}
$$

and their composition: the set of minimal common multiples of the set J by

$$
\operatorname{mcm}(J):=\min _{r}\left(\operatorname{cm}_{r}(J)\right)
$$

3. Generating functions $P_{M, \operatorname{deg}}$ and $N_{M, \operatorname{deg}}$

In this section, for a positive homogeneous presented cancellative monoid

$$
M=\langle L \mid R\rangle_{m o}
$$

we define a spherical growth function $P_{M, \text { deg }}$ and a skew growth function $N_{M, \text { deg }}$. Next, we recall from [S1] the inversion formula for the spherical growth function of M.

First, we introduce a concept of towers of minimal common multiples in M.

Definition 3. A tower of M of height $n \in \mathbb{Z}_{\geq 0}$ is a sequence

$$
T:=\left(I_{0}, J_{1}, J_{2}, \ldots, J_{n}\right)
$$

of subsets of M satisfying the followings.
i) $I_{0}:=$ the image of the set L in M.
ii) $\operatorname{mcm}\left(J_{k}\right) \neq \varnothing$ and we put $I_{k}:=\operatorname{mcm}\left(J_{k}\right)$ for $k=1, \ldots, n$.
iii) $J_{k} \subset I_{k-1}$ such that $1<\# J_{k}<\infty$ for $k=1, \ldots, n$.

Here, we call I_{0}, J_{k} and I_{k}, the ground, the k th stage and the set of minimal common multiples on the k th stage of the tower T, respectively. In particular, the set of minimal common multiples on the top stage is denoted by $|T|:=I_{n}$.

The set of all towers of M shall be denoted by $\operatorname{Tmcm}(M)$. We put

$$
h(M, \operatorname{deg}):=\max \{\text { the height of } T \in \operatorname{Tmcm}(M)\}
$$

and call it the height of the monoid M.
Remark 3. i) It is clear that M is a free monoid if and only if $h(M, \operatorname{deg})=0$.
ii) All of the monoids discussed in [A-N], [B-S], [S2], [S3] have $h(M, \mathrm{deg}) \leq 1$.
iii) For the following cancellative monoid $G_{\mathrm{B}_{\mathrm{i}}}^{+}$, we have $h\left(G_{\mathrm{B}_{\mathrm{i}}}^{+}, \mathrm{deg}\right)=\infty$ (see Proposition 6 in §5).
iv) For the two cancellative monoids G_{m}^{+}and $H_{m}^{+}(m=1,2, \ldots)$, we have $h\left(G_{m}^{+}, \mathrm{deg}\right)=2$ (see Proposition 8 in §5) and $h\left(H_{m}^{+}, \mathrm{deg}\right)=2$ (see Proposition 11 in §5).
v) For the abelian cancellative monoid $M_{\mathrm{abel}, m}(m=2,3, \ldots)$, we have $h\left(M_{\mathrm{abel}, m}, \mathrm{deg}\right)=\infty($ see Lemma 6 in §5).

Secondly, we define a spherical growth function $P_{M \text {, deg }}$ and a skew growth function $N_{M, \text { deg. }}$. In the previous section, we have fixed a degree map $\operatorname{deg}: M \rightarrow \mathbb{Z}_{\geq 0}$. Then, we define the spherical growth function of the monoid (M, deg) by

$$
P_{M, \operatorname{deg}}:=\sum_{u \in M} t^{\operatorname{deg}(u)} .
$$

We define the skew growth function of the monoid (M, deg) by

$$
\begin{equation*}
N_{M, \operatorname{deg}}(t):=1+\sum_{T \in \operatorname{Tmcm}(M)}(-1)^{\# J_{1}+\cdots+\# J_{n}-n+1} \sum_{\Delta \in|T|} t^{\operatorname{deg}(4)} . \tag{3.1}
\end{equation*}
$$

Remark 4. In the definition (3.1), we can write down directly the coefficient of the term t. Namely, we write

$$
N_{M, \operatorname{deg}}(t)=1-\#\left(I_{0}\right) t+\sum_{\text {height of } T \geq 1}(-1)^{\# J_{1}+\cdots+\# J_{n}-n+1} \sum_{\Delta \in|T|} t^{\operatorname{deg}(\Delta)} .
$$

Therefore, if M is a free monoid of rank n, then we have $N_{M, \operatorname{deg}}(t)=1-n t$.
Lastly, we recall from [S1] the inversion formula for the spherical growth function of the monoid (M, deg).

Theorem 1. We have the inversion formula

$$
P_{M, \operatorname{deg}}(t) \cdot N_{M, \operatorname{deg}}(t)=1
$$

4. Cancellativity of G_{m}^{+}and H_{m}^{+}

In this section, for a preparation for calculations of the skew growth functions for the monoids G_{m}^{+}and H_{m}^{+}in $\S 5$, we prove the cancellativity of them.
4.1. Cancellativity of G_{m}^{+}. In this subsection, we show the cancellativity of the monoid G_{m}^{+}.

Theorem 2. The monoid G_{m}^{+}is a cancellative monoid.
Proof. First, we remark the following.
Proposition 1. The left cancellativity on G_{m}^{+}implies the right cancellativity.

Proof. Consider a map $\varphi: G_{m}^{+} \rightarrow G_{m}^{+}, W \mapsto \varphi(W):=\sigma(\operatorname{rev}(W))$, where σ is a permutation $\binom{a, b, c}{c, b, a}$ and $\operatorname{rev}(W)$ is the reverse of the word $W=x_{1} x_{2} \ldots x_{k}$ (x_{i} is a letter) given by the word $x_{k} \ldots x_{2} x_{1}$. In view of the defining relation of G_{m}^{+}, φ is well-defined and is an anti-isomorphism. If $\beta \alpha=\gamma \alpha$, then $\varphi(\beta \alpha)=\varphi(\gamma \alpha)$, i.e., $\varphi(\alpha) \varphi(\beta)=\varphi(\alpha) \varphi(\gamma)$. By using the left cancellativity, we obtain $\varphi(\beta)=\varphi(\gamma)$ and, hence, $\beta=\gamma$.

The following is sufficient to show the left cancellativity on the monoid G_{m}^{+}.

Proposition 2. Let Y be a positive word in G_{m}^{+}of length $r \in \mathbb{Z}_{\geq 0}$ and let $X^{(h)}$ be a positive word in G_{m}^{+}of length $r-h \in\{r-m+1, \ldots, r\}$.
(i) If $v X^{(0)}=v Y$ for some $v \in\{a, b, c\}$, then $X^{(0)}=Y$.
(ii) If $a X^{(0)}=b Y$, then $X^{(0)}=b Z$ and $Y=c Z$ for some positive word Z.
(iii) If $a X^{(0)}=c Y$, then $X^{(0)}=c Z$ and $Y=a Z$ for some positive word Z.
(iv-0) If $b X^{(0)}=c Y$, then there exist an integer $k(0 \leq k \leq r-m)$ and a positive word Z such that $X^{(0)}=c^{k} b^{m-1} a \cdot Z$ and $Y=a^{k} b^{m} \cdot Z$.
(iv-1-a) There do not exist words $X^{(1)}$ and Y that satisfy an equality $b a \cdot X^{(1)}=c Y$.
(iv-1-b) If $b b \cdot X^{(1)}=c Y$, then $X^{(1)}=b^{m-2} a \cdot Z$ and $Y=b^{m} \cdot Z$ for some positive word Z.
(iv-1-c) If $b c \cdot X^{(1)}=c Y$, then there exists an integer $k \quad(0 \leq k \leq$ $r-m-1)$ and a positive word Z such that $X^{(1)}=c^{k} b^{m-1} a \cdot Z$ and $Y=$ $a^{k-1} b^{m} \cdot Z$.

If $m \geq 4$, then, for $2 \leq h \leq m-2$, we need prepare the following propositions (iv-h-a) (iv-h-b) and (iv-h-c).
(iv-h-a) There do not exist positive words $X^{(h)}$ and Y that satisfy an equality $b^{h} a \cdot X^{(h)}=c Y$.
(iv- h - b) If $b^{h+1} \cdot X^{(h)}=c Y$, then $X^{(h)}=b^{m-h-1} a \cdot Z$ and $Y=b^{m} \cdot Z$ for some positive word Z.
(iv-h-c) There do not exist positive words $X^{(h)}$ and Y that satisfy an equality $b^{h} c \cdot X^{(h)}=c Y$.
(iv- $(m-1)-a$) If $b^{m-1} a \cdot X^{(m-1)}=c Y$, then $X^{(m-1)}=b a \cdot Z \quad$ and $Y=$ $b^{m} c \cdot Z$ for some positive word Z.
(iv- $(m-1)-b)$ If $b^{m} \cdot X^{(m-1)}=c Y$, then $X^{(m-1)}=a Z$ and $Y=b^{m} \cdot Z$ for some positive word Z.
(iv- $(m-1)-c) \quad$ There do not exist positive words $X^{(m-1)}$ and Y that satisfy an equality $b^{m-1} c \cdot X^{(m-1)}=c Y$.

Proof. The statement in Proposition 2 for a positive word Y of wordlength r and $X^{(h)}$ of word-length $r-h \in\{r-m+1, \ldots, r\}$ will be referred to as $\mathrm{H}_{r, h}$. We will show the general theorem by induction ${ }^{1}$. It is easy to show that, for $r=0,1, \mathrm{H}_{r, h}$ is true. If a positive word U_{1} is transformed into U_{2} by using t single applications of the defining relations of G_{m}^{+}, then the whole transformation will be said to be of chain-length t. For the induction hypothesis, we assume
(A) $\mathrm{H}_{s, h}$ is true for $s=0, \ldots, r$ and arbitrary h for transformations of all chain-lengths,

[^1]and
(B) $\mathrm{H}_{r+1, h}$ is true for $0 \leq h \leq m-1$ for all chain-lengths $\leq t$.

We will show the claim $\mathrm{H}_{r+1, h}$ for chain-lengths $t+1$. For the sake of simplicity, we devide the proof into two steps.

Step 1. We shall prove the claim $\mathrm{H}_{r+1, h}$ for $h=0$. Let X, Y be of word-length $r+1$, and let

$$
v_{1} X=v_{2} W_{2}=\cdots=v_{t+1} W_{t+1}=v_{t+2} Y
$$

be a sequence of single transformations of $t+1$ steps, where $v_{1}, \ldots, v_{t+2} \in$ $\{a, b, c\}$ and W_{2}, \ldots, W_{t+1} are positive words of length $r+1$. By the assumption $t>1$, for any index $\tau \in\{2, \ldots, t+1\}$ we can decompose the sequence into two steps

$$
v_{1} X=v_{\tau} W_{\tau}=v_{t+2} Y
$$

in which each step satisfies the induction hypothesis (B).
If there exists τ_{0} such that $v_{\tau_{0}}$ is equal to either to v_{1} or v_{t+2}, then by the induction hypothesis, $W_{\tau_{0}}$ is equivalent either to X or to Y. Hence, we obtain the statement for the $v_{1} X=v_{t+2} Y$. Thus, we assume from now on $v_{\tau} \neq v_{1}$ and $v_{\tau} \neq v_{t+2}$ for $1<\tau \leq t+1$.

We suppose that $v_{1}=v_{t+2}$. If there exists τ_{0} such that $\left\{v_{1}=v_{t+2}, v_{\tau_{0}}\right\} \neq$ $\{b, c\}$, then each of the equivalences says the existence of $\alpha, \beta \in\{a, b, c\}$ and positive words Z_{1}, Z_{2} such that $X=\alpha Z_{1}, W_{\tau_{0}}=\beta Z_{1}=\beta Z_{2}$ and $Y=\alpha Z_{2}$. Applying the induction hypothesis (A) to $\beta Z_{1}=\beta Z_{2}$, we get $Z_{1}=Z_{2}$. Hence, we obtain the statement $X=\alpha Z_{1}=\alpha Z_{2}=Y$. Thus, we exclude these cases from our considerations. Next, we consider the case where $\left(v_{1}=v_{t+2}, v_{\tau}\right)=$ (b, c) for $1<\tau \leq t+1$. Namely, we have $v_{2}=\cdots=v_{t+1}=c$. Hence, we consider the following case

$$
b X=c W_{1}=\cdots=c W_{t+1}=b Y
$$

Applying the induction hypothesis (B) to each step, we see that there exist positive words Z_{3} and Z_{4} such that

$$
\begin{array}{ll}
X=b^{m-1} a \cdot Z_{3}, & W_{1}=b^{m} \cdot Z_{3} \\
W_{t+1}=b^{m} \cdot Z_{4}, & Y=b^{m-1} a \cdot Z_{4}
\end{array}
$$

Since an equality $W_{1}=W_{t+1}$ holds, we see that

$$
b^{m} \cdot Z_{3}=b^{m} \cdot Z_{4}
$$

By the induction hypothesis, we have $X=Y$.
In the case of $\left(v_{1}=v_{t+2}, v_{\tau}\right)=(c, b)$ for $1<\tau \leq t+1$, we can prove the statement in a similar manner.

Suppose $v_{1} \neq v_{t+2}$. We consider the following three cases.
Case 1: $\quad\left(v_{1}, v_{\tau}, v_{t+2}\right)=(a, b, c)$.
Because of the above consideration, we consider the case where $\tau=t+1$, namely

$$
a X=b W_{t+1}=c Y
$$

Applying the induction hypothesis to each step, we see that there exist positive words Z_{1} and Z_{2} such that

$$
\begin{aligned}
& X=b Z_{1}, \quad W_{t+1}=c Z_{1} \\
& W_{t+1}=b^{m-1} a \cdot Z_{2}, \quad Y=b^{m} \cdot Z_{2}
\end{aligned}
$$

Thus, we see that $c \cdot Z_{1}=b^{m-1} a \cdot Z_{2}$. Applying the induction hypothesis (A) to this equality, we see that there exists a positive word Z_{3} such that

$$
Z_{1}=b^{m} c \cdot Z_{3}, \quad Z_{2}=b a \cdot Z_{3}
$$

Hence, we have $X=c b^{m+1} \cdot Z_{3}$ and $Y=a b^{m+1} \cdot Z_{3}$.
Case 2: $\quad\left(v_{1}, v_{\tau}, v_{t+2}\right)=(a, c, b)$.
We consider the case where $\tau=t+1$, namely

$$
a X=c W_{t+1}=b Y
$$

Applying the induction hypothesis to each step, we see that there exist positive words Z_{1} and Z_{2} such that

$$
\begin{aligned}
& X=c Z_{1}, \quad W_{t+1}=a Z_{1} \\
& W_{t+1}=b^{m} \cdot Z_{2}, \quad Y=b^{m-1} a \cdot Z_{2}
\end{aligned}
$$

Thus, we see that $a Z_{1}=b^{m} \cdot Z_{2}$. Applying the induction hypothesis (A) to this equality, we see that there exists a positive word Z_{3} such that

$$
Z_{1}=b^{m+1} \cdot Z_{3}, \quad Z_{2}=b a \cdot Z_{3}
$$

Hence, we have $X=b \cdot b^{m} c \cdot Z_{3}$ and $Y=c \cdot b^{m} c \cdot Z_{3}$.
Case 3: $\quad\left(v_{1}, v_{\tau}, v_{t+2}\right)=(b, a, c)$.
Then, we consider the following case

$$
b X=a W_{\tau}=c Y .
$$

Applying the induction hypothesis to each step, we see that there exist positive words Z_{1} and Z_{2} such that

$$
\begin{aligned}
X=c Z_{1}, & W_{\tau} & =b Z_{1}, \\
W_{\tau}=c Z_{2}, & Y & =a Z_{2} .
\end{aligned}
$$

Moreover, we see that there exist a positive word Z_{3} and an integer $k \in \mathbb{Z}_{\geq 0}$ such that

$$
Z_{1}=c^{k} b^{m-1} a \cdot Z_{3}, \quad Z_{2}=a^{k} b^{m} \cdot Z_{3}
$$

Thus, we have

$$
X=c^{k+1} b^{m-1} a \cdot Z_{3}, \quad Y=a^{k+1} b^{m} \cdot Z_{3}
$$

Step 2. We shall prove the claim $\mathrm{H}_{r+1, h}$ for $0 \leq h \leq m-1$. We will show the general claim $\mathrm{H}_{r+1, h}$ by induction on h. The case where $h=0$ is proved in Step 1. First, we show the case where $h=1$. Let $X^{(1)}$ be of wordlength r and Y of word-length $r+1$. We consider a sequence of single transformations of $t+1$ steps

$$
V \cdot X^{(1)}=\cdots=c Y
$$

where V is a positive word of length 2 . We discuss the following three cases.

Case 1: $\quad V=b a$.
We consider the following case

$$
\begin{equation*}
b a \cdot X^{(1)}=\cdots=c Y \tag{4.1}
\end{equation*}
$$

By the result of Step 1, we see that there exists a positive word Z_{1} and an integer $k \in \mathbb{Z}_{\geq 0}$ such that

$$
a X^{(1)}=c^{k} b^{m-1} a \cdot Z_{1}, \quad Y=a^{k} b^{m} \cdot Z_{1}
$$

Applying the induction hypothesis (A), we see that there exists a positive word Z_{2} such that

$$
X^{(1)}=c^{k} \cdot Z_{2}, \quad b^{m-1} a \cdot Z_{1}=a Z_{2}
$$

Moreover, we see that there exists a positive word Z_{3} such that

$$
b^{m-2} a \cdot Z_{1}=c Z_{3}, \quad Z_{2}=b Z_{3}
$$

By the induction hypothesis, we have a contradiction. Hence, there does not exist positive words $X^{(1)}$ and Y that satisfy the equality (4.1).

Case 2: $\quad V=b b$.
We consider the following case

$$
b b \cdot X^{(1)}=V_{2} \cdot W_{2}=\cdots=V_{t+1} \cdot W_{t+1}=c Y
$$

where V_{2} and V_{t+1} are positive words. It is enough to discuss the case where $\left(V_{2}, V_{t+1}\right)=\left(b c b^{m}, a c\right)$. Applying the induction hypothesis (A) to the equality

$$
\begin{equation*}
b c b^{m} \cdot W_{2}=a c \cdot W_{t+1} \tag{4.2}
\end{equation*}
$$

we see that there exists a positive word Z_{1} such that $c W_{t+1}=b Z_{1}$. Applying the induction hypothesis, we see that there exists a positive word Z_{2} and an integer $k \in \mathbb{Z}_{\geq 0}$ such that

$$
\begin{equation*}
W_{t+1}=a^{k} b^{m} \cdot Z_{2}, \quad Z_{1}=c^{k} b^{m-1} a \cdot Z_{2} \tag{4.3}
\end{equation*}
$$

Applying (4.3) to the equality (4.2), we have

$$
b c b^{m} \cdot W_{2}=a c \cdot a^{k} b^{m} \cdot Z_{2}
$$

Moreover, we see

$$
\begin{equation*}
b^{m} \cdot W_{2}=c^{k} b^{m-1} a \cdot Z_{2} . \tag{4.4}
\end{equation*}
$$

We consider the following two cases.
Case 2-1: $k=0$.
There exists a positive word Z_{3} such that

$$
W_{2}=c Z_{3}, \quad Z_{2}=b Z_{3} .
$$

Thus, we have

$$
\begin{aligned}
& X^{(1)}=b^{m-1} a \cdot c Z_{3}=b^{m-2} a \cdot b a \cdot Z_{3}, \\
& Y=a b^{m} b \cdot Z_{3}=b^{m} \cdot b a Z_{3} .
\end{aligned}
$$

Case 2-2: $k \geq 1$.
Applying the induction hypothesis to the equality (4.4), we see that there exists a positive word Z_{3} such that

$$
W_{2}=a^{k} \cdot Z_{3} .
$$

Thus, we consider the equality $b^{m} \cdot Z_{3}=b^{m-1} a \cdot Z_{2}$. We see that there exists a positive word Z_{4} such that

$$
Z_{2}=b Z_{4}, \quad Z_{3}=c Z_{4}
$$

Thus, we have

$$
\begin{aligned}
& X^{(1)}=b^{m-1} a \cdot a^{k} c \cdot Z_{3}=b^{m-2} a \cdot b a^{k+1} Z_{3}, \\
& Y=a a^{k} b^{m} b \cdot Z_{3}=b^{m} \cdot b a^{k+1} Z_{3} .
\end{aligned}
$$

Case 3: $\quad V=b c$.
Then, we consider the following case

$$
b c \cdot X^{(1)}=\cdots=c Y
$$

By the induction hypothesis, we see that there exist a positive word Z_{1} and an integer $k \in \mathbb{Z}_{\geq 0}$ such that

$$
c X^{(1)}=c^{k} b^{m-1} a \cdot Z_{1}, \quad Y=a^{k} b^{m} \cdot Z_{1}
$$

We consider the following two cases.
Case 3-1: $k=0$.
By the induction hypothesis, we see that there exists a positive word Z_{2} such that

$$
X^{(1)}=b^{m} c \cdot Z_{2}, \quad Z_{1}=b a \cdot Z_{2}
$$

Thus, we have

$$
X^{(1)}=b^{m-1} a \cdot b Z_{2}, \quad Y=b^{m} b a \cdot Z_{2}=a b^{m} \cdot b Z_{2}
$$

Case $3-2$: $k \geq 1$.
Then, we have

$$
X^{(1)}=c^{k-1} b^{m-1} a \cdot Z_{1}, \quad Y=a^{k} b^{m} \cdot Z_{1}
$$

Second, when $m \geq 4$, we show the claim $\mathrm{H}_{r+1, h}(2 \leq h \leq m-2)$ by induction on h. We assume $h=1,2, \ldots, j(j \leq m-3)$. The case where $h=1$ has been proved. Let $X^{(j+1)}$ be of word-length $r-j$ and Y of word-length $r+1$. We consider a sequence of single transformations of $t+1$ steps

$$
\begin{equation*}
V \cdot X^{(j+1)}=\cdots=c Y \tag{4.5}
\end{equation*}
$$

where V is a positive word of length $j+2$. We discuss the following three cases.

Case 1: $\quad V=b b^{j} a$.
Applying the induction hypothesis, we see that there exists a positive word Z_{1} such that

$$
a X^{(j+1)}=b^{m-j-1} a \cdot Z_{1}, \quad Y=b^{m} \cdot Z_{1}
$$

By the induction hypothesis, we see that there exists a positive word Z_{2} such that

$$
X^{(j+1)}=b Z_{2}, \quad b^{m-j-2} a \cdot Z_{1}=c Z_{2}
$$

By the induction hypothesis, we have a contradiction. Hence, there do not exist positive words $X^{(j+1)}$ and Y that satisfy the equality (4.5).

Case 2: $\quad V=b b^{j+1}$.
Applying the induction hypothesis, we see that there exists a positive word Z_{1} such that

$$
b X^{(j+1)}=b^{m-j-1} a \cdot Z_{1}, \quad Y=b^{m} \cdot Z_{1}
$$

Thus, we have $X^{(j+1)}=b^{m-j-2} a \cdot Z_{1}$.

Case 3: $\quad V=b b^{j} c$.
Applying the induction hypothesis, we see that there exists a positive word Z_{1} such that

$$
c X^{(j+1)}=b^{m-j-1} a \cdot Z_{1}, \quad Y=b^{m} \cdot Z_{1} .
$$

By the induction hypothesis, we have a contradiction. Hence, there do not exist positive words $X^{(j+1)}$ and Y that satisfy the equality (4.5).

Lastly, we show the claim $\mathrm{H}_{r+1, m-1}$. Let $X^{(m-1)}$ be of word-length $r-m+2$ and Y of word-length $r+1$. We consider a sequence of single transformations of $t+1$ steps

$$
\begin{equation*}
V \cdot X^{(m-1)}=\cdots=c Y \tag{4.6}
\end{equation*}
$$

where V is a positive word of length m. We discuss the following three cases.
Case 1: $\quad V=b^{m-1} a$.
By the above result, we see that there exists a positive word Z_{1} such that

$$
a X^{(m-1)}=b a \cdot Z_{1}, \quad Y=b^{m} \cdot Z_{1}
$$

By the induction hypothesis, we see that there exists a positive word Z_{2} such that

$$
X^{(m-1)}=b a \cdot Z_{2}, \quad Z_{1}=c Z_{2}
$$

Thus, we have $Y=b^{m} c \cdot Z_{2}$.
Case 2: $\quad V=b^{m-1} b$.
By the above result, we see that there exists a positive word Z_{1} such that

$$
b X^{(m-1)}=b a \cdot Z_{1}, \quad Y=b^{m} \cdot Z_{1} .
$$

Thus, we have $X^{(m-1)}=a Z_{1}$.
Case 3: $\quad V=b^{m-1} c$.
By the above result, we see that there exists a positive word Z_{1} such that

$$
c X^{(m-1)}=b a \cdot Z_{1}, \quad Y=b^{m} \cdot Z_{1} .
$$

We have a contradiction. Hence, there do not exist positive words $X^{(m-1)}$ and Y that satisfy the equality (4.6).

This completes the proof of Theorem 2.
4.2. Cancellativity of H_{m}^{+}. In this subsection, we show the cancellativity of the monoid H_{m}^{+}.

Theorem 3. The monoid H_{m}^{+}is a cancellative monoid.
Proof. First, we remark the following.

Proposition 3. The left cancellativity on H_{m}^{+}implies the right cancellativity.

Proof. Consider a map $\varphi: H_{m}^{+} \rightarrow H_{m}^{+}, W \mapsto \varphi(W):=\sigma(\operatorname{rev}(W))$, where σ is a permutation $\binom{a, b, c}{c, b, a}$. By a similar arguments in the proof in Proposition 1, we can show the statement.

To prove the cancellativity of the monoid H_{m}^{+}, it suffices to show the following proposition.

Proposition 4. Let Y be a positive word in H_{m}^{+}of length $r \in \mathbb{Z}_{\geq 0}$ and let $X^{(h)}$ be a positive word in H_{m}^{+}of length $r-h \in\{2 m, \ldots, r\}$.
(i) If $v X^{(0)}=v Y$ for some $v \in\{a, b, c\}$, then $X^{(0)}=Y$.
(ii) If $a X^{(0)}=b Y$, then $X^{(0)}=b Z$ and $Y=c Z$ for some positive word Z.
(iii) If $a X^{(0)}=c Y$, then $X^{(0)}=c Z$ and $Y=a Z$ for some positive word Z.
(iv) If $b X^{(0)}=c Y$, then there exists an integer $k(0 \leq k \leq r-2 m-2)$ and a positive word Z such that $X^{(0)}=c^{k}(a b)^{m} b a \cdot Z$ and $Y=a^{k} b(a b)^{m} b \cdot Z$.
(v) If $b b \cdot X^{(1)}=c Y$, then $X^{(1)}=c(a b)^{m-1} b a \cdot Z$ and $Y=b(a b)^{m} b \cdot Z$ for some positive word Z.

For $2 \leq h \leq r-2 m$, we prepare the following propositions.
(vi-h) If $c^{h-1} b b \cdot X^{(h)}=b Y$, then $X^{(h)}=c(a b)^{m-1} b \cdot Z \quad$ and $\quad Y=$ $(a b)^{m} b a^{h-1} \cdot Z$ for some positive word Z.

Proof. The statement in Proposition 4 for a positive word Y of wordlength r and $X^{(h)}$ of word-length $r-h \in\{r-2 m, \ldots, r\}$ will be referred to as $\mathrm{H}_{r, h}$. We will show the general claim by induction. It is easy to show that, for $r=0,1, \mathrm{H}_{r, h}$ is true. For the induction hypothesis, we assume
(A) $\mathrm{H}_{s, h}$ is true for $s=0, \ldots, r$ and arbitrary h for transformations of all chain-lengths,
and
(B) $\mathrm{H}_{r+1, h}$ is true for $0 \leq h \leq \max \{0, r+1-2 m\}$ for all chain-lengths $\leq t$.

We will show the claim $\mathrm{H}_{r+1, h}$ for chain-lengths $t+1$. For the sake of simplicity, we devide the proof into two steps.

Step 1. We shall prove the claim $\mathrm{H}_{r+1, h}$ for $h=0$. Let X, Y be of wordlength $r+1$, and let

$$
v_{1} X=v_{2} W_{2}=\cdots=v_{t+1} W_{t+1}=v_{t+2} Y
$$

be a sequence of single transformations of $t+1$ steps, where $v_{1}, \ldots, v_{t+2} \in$ $\{a, b, c\}$ and W_{2}, \ldots, W_{t+1} are positive words of length $r+1$. By the assumption $t>1$, for any index $\tau \in\{2, \ldots, t+1\}$ we can decompose the sequence into
two steps

$$
v_{1} X=v_{\tau} W_{\tau}=v_{t+2} Y
$$

in which each step satisfies the induction hypothesis (B).
If there exists τ_{0} such that $v_{\tau_{0}}$ is equal to either to v_{1} or v_{t+2}, then by the induction hypothesis, $W_{\tau_{0}}$ is equivalent either to X or to Y. Hence, we obtain the statement for the $v_{1} X=v_{t+2} Y$. Thus, we assume from now on $v_{\tau} \neq v_{1}$ and $v_{\tau} \neq v_{t+2}$ for $1<\tau \leq t+1$.

Suppose $v_{1}=v_{t+2}$. If there exists τ_{0} such that $\left\{v_{1}=v_{t+2}, v_{\tau_{0}}\right\} \neq\{b, c\}$, then each of the equivalences says the existence of $\alpha, \beta \in\{a, b, c\}$ and positive words Z_{1}, Z_{2} such that $X=\alpha Z_{1}, W_{\tau_{0}}=\beta Z_{1}=\beta Z_{2}$ and $Y=\alpha Z_{2}$. Applying the induction hypothesis (A) to $\beta Z_{1}=\beta Z_{2}$, we get $Z_{1}=Z_{2}$. Hence, we obtain the statement $X=\alpha Z_{1}=\alpha Z_{2}=Y$. Thus, we exclude these cases from our considerations. Next, we consider the case where $\left(v_{1}=v_{t+2}, v_{\tau}\right)=(b, c)$ for $1<\tau \leq t+1$. Namely we have $v_{2}=\cdots=v_{t+1}=c$. Hence, we consider the following case

$$
b X=c W_{1}=\cdots=c W_{t+1}=b Y
$$

Applying the induction hypothesis (B) to each step, we see that there exist positive words Z_{3} and Z_{4} such that

$$
\begin{aligned}
& X=(a b)^{m} b a \cdot Z_{3}, \quad W_{1}=b(a b)^{m} b \cdot Z_{3} \\
& W_{t+1}=b(a b)^{m} b \cdot Z_{4}, \quad Y=(a b)^{m} b a \cdot Z_{4}
\end{aligned}
$$

Since the equality $W_{1}=W_{t+1}$ holds, we see that $X=Y$.
In the case of $\left(v_{1}=v_{t+2}, v_{\tau}\right)=(c, b)$ for $1<\tau \leq t+1$, we can prove the statement in a similar manner.

Suppose $v_{1} \neq v_{t+2}$. It suffices to consider the following two cases.
Case 1: $\quad\left(v_{1}, v_{\tau}, v_{t+2}\right)=(a, b, c)$.
Because of the above consideration, we consider the case where $\tau=t+1$, namely

$$
a X=b W_{t+1}=c Y
$$

Applying the induction hypothesis to each step, we see that there exist positive words Z_{1} and Z_{2} such that

$$
\begin{aligned}
& X=b Z_{1}, \quad W_{t+1}=c Z_{1} \\
& W_{t+1}=(a b)^{m} b a \cdot Z_{2}, \quad Y=b(a b)^{m} b \cdot Z_{2} .
\end{aligned}
$$

Thus, we see that $c Z_{1}=(a b)^{m} b a \cdot Z_{2}$. Applying the induction hypothesis (A) to this equality, we see that there exists a positive word Z_{3} such that

$$
Z_{1}=a Z_{3}, \quad b(a b)^{m-1} b a \cdot Z_{2}=c Z_{3} .
$$

Hence, we have $b b c(a b)^{m-2} b a \cdot Z_{2}=c Z_{3}$. Applying the induction hypothesis (A) to this equality, there exists a positive word Z_{4} such that

$$
c(a b)^{m-2} b a \cdot Z_{2}=c(a b)^{m-1} b a \cdot Z_{4}, \quad Z_{3}=b(a b)^{m} b \cdot Z_{4} .
$$

Hence, we have $b a \cdot Z_{2}=a b b a \cdot Z_{4}$. Moreover, we see that there exists a positive word Z_{5} such that

$$
Z_{2}=c b a \cdot Z_{5}, \quad Z_{4}=c Z_{5}
$$

Thus, we have

$$
\begin{aligned}
& X=b a b(a b)^{m} b c \cdot Z_{5}=c \cdot b(a b)^{m} b c b \cdot Z_{5}, \\
& Y=b(a b)^{m} b c b a \cdot Z_{5}=a \cdot b(a b)^{m} b c b \cdot Z_{5}
\end{aligned}
$$

Case 2: $\quad\left(v_{1}, v_{\tau}, v_{t+2}\right)=(a, c, b)$.
We consider the case where $\tau=t+1$, namely

$$
a X=c W_{t+1}=b Y
$$

Applying the induction hypothesis to each step, we see that there exist positive words Z_{1} and Z_{2} such that

$$
\begin{aligned}
& X=c Z_{1}, \quad W_{t+1}=a Z_{1} \\
& W_{t+1}=b(a b)^{m} b \cdot Z_{2}, \quad Y=(a b)^{m} b a \cdot Z_{2}
\end{aligned}
$$

Thus, we see that $a Z_{1}=b(a b)^{m} b \cdot Z_{2}$. Applying the induction hypothesis (A) to this equality, we see that there exists a positive word Z_{3} such that

$$
Z_{1}=b Z_{3}, \quad(a b)^{m} b \cdot Z_{2}=c Z_{3}
$$

Hence, there exists a positive word Z_{4} such that

$$
b(a b)^{m-1} b \cdot Z_{2}=c Z_{4}, \quad Z_{3}=a Z_{4}
$$

We have $b b c(a b)^{m-2} b \cdot Z_{2}=c Z_{4}$. Applying the induction hypothesis (A) to this equality, we see that there exists a positive word Z_{5} such that

$$
c(a b)^{m-2} b \cdot Z_{2}=c(a b)^{m-1} b a \cdot Z_{5}, \quad Z_{4}=b(a b)^{m} b \cdot Z_{5} .
$$

Hence, we have $Z_{2}=c b a \cdot Z_{5}$. Thus, we obtain

$$
\begin{aligned}
& X=c b a b(a b)^{m} b \cdot Z_{5}=b(a b)^{m} b a c b \cdot Z_{5} \\
& Y=(a b)^{m} b a c b a \cdot Z_{5}=c(a b)^{m} b a c b \cdot Z_{5}
\end{aligned}
$$

Step 2. We shall prove the claim $\mathrm{H}_{r+1, h}$ for $1 \leq h \leq r+1-2 m$. We will show the general claim $\mathrm{H}_{r+1, h}$. First, we show the case where $h=1$. Then,
we consider the following case

$$
b b \cdot X^{(1)}=\cdots=c Y
$$

By the result of Step 1, we see that there exists a positive word Z_{1} and an integer $k \in \mathbb{Z}_{\geq 0}$ such that

$$
b X^{(1)}=c^{k}(a b)^{m} b a \cdot Z_{1}, \quad Y=a^{k} b(a b)^{m} b \cdot Z_{1} .
$$

Thus, we have $b X^{(1)}=a c^{k} b(a b)^{m-1} b a \cdot Z_{1}$. Applying the induction hypothesis (A), we see that there exists a positive word Z_{2} such that

$$
X^{(1)}=c Z_{2}, \quad b Z_{2}=c^{k} b(a b)^{m-1} b a \cdot Z_{1}=c^{k} b b c(a b)^{m-2} b a \cdot Z_{1} .
$$

We consider the case where $k \geq 1$. By the induction hypothesis, we see that there exists a positive word Z_{3} such that

$$
Z_{2}=(a b)^{m} b a^{k} \cdot Z_{3}, \quad c(a b)^{m-2} b a \cdot Z_{1}=c(a b)^{m-1} b \cdot Z_{3} .
$$

Hence we have $b a \cdot Z_{1}=a b b \cdot Z_{3}$ and therefore we have $a Z_{1}=c b \cdot Z_{3} . \quad$ By the induction hypothesis, there exists a positive word Z_{4} such that

$$
Z_{1}=c b \cdot Z_{4}, \quad Z_{3}=c Z_{4}
$$

Thus, we have

$$
\begin{aligned}
& X^{(1)}=c(a b)^{m} b a^{k} c \cdot Z_{4}=c(a b)^{m-1} b a \cdot c b a^{k} \cdot Z_{4}, \\
& Y=a^{k} b(a b)^{m} b c b \cdot Z_{4}=b(a b)^{m} b \cdot c b a^{k} \cdot Z_{4} .
\end{aligned}
$$

Next, we consider the case where $2 \leq k \leq r+1-2 m$. We consider the following case

$$
\begin{equation*}
c^{h-1} b b \cdot X^{(h)}=\cdots=b Y \tag{4.7}
\end{equation*}
$$

By the result of Step 1, we see that there exists a positive word Z_{1} and an integer $k_{1} \in \mathbb{Z}_{\geq 0}$ such that

$$
c^{h-2} b b \cdot X^{(h)}=a^{k_{1}} b(a b)^{m} b \cdot Z_{1}, \quad Y=c^{k_{1}}(a b)^{m} b a \cdot Z_{1}
$$

By repeating the same process $h-1$ times, there exist integers $k_{2}, \ldots, k_{h-1} \in$ $\mathbb{Z}_{\geq 0}$ and a positive word Z_{h-1} such that

$$
b b \cdot X^{(h)}=a^{k_{h-1}} \cdot b(a b)^{m} b \cdot Z_{h-1}
$$

Then, we have $b \cdot X^{(h)}=c^{k_{h-1}} \cdot(a b)^{m} b \cdot Z_{h-1}=a c^{k_{h-1}} \cdot b(a b)^{m-1} b \cdot Z_{h-1}$. By the induction hypothesis, there exists a positive word Z_{h} such that

$$
X^{(h)}=c Z_{h}, \quad c^{k_{h-1}} \cdot b(a b)^{m-1} b \cdot Z_{h-1}=b Z_{h}
$$

Hence, we have $b Z_{h}=c^{k_{h-1}} \cdot b b c(a b)^{m-2} b \cdot Z_{h-1}$. By the induction hypothesis, there exists a positive word Z_{0} such that

$$
c(a b)^{m-2} b \cdot Z_{h-1}=c(a b)^{m-1} b \cdot Z_{0}, \quad Z_{h}=(a b)^{m} b a^{k_{h-1}} \cdot Z_{0}
$$

Thus, we have $b Z_{h-1}=a b b \cdot Z_{0}$. We obtain $Z_{h-1}=c b \cdot Z_{0}$, and hence we have

$$
X^{(h)}=c(a b)^{m} b a^{k_{h-1}} \cdot Z_{0}=c(a b)^{m-1} b \cdot c b a^{k_{h-1}} \cdot Z_{0}
$$

Applying this result to (4.7), we have

$$
b Y=c^{h-1} b b \cdot c(a b)^{m-1} b \cdot c b a^{k_{h-1}} \cdot Z_{0}=b(a b)^{m} b a^{h-1} \cdot c b a^{k_{h-1}} \cdot Z_{0}
$$

Therefore we have $Y=(a b)^{m} b a^{h-1} \cdot c b a^{k_{h-1}} \cdot Z_{0}$.
This completes the proof of Theorem 3.
We have a remark on the presentation of the two monoids G_{m}^{+}and H_{m}^{+}.

Remark 5. Since the presentation of the monoid G_{m}^{+}(resp. H_{m}^{+}) is not complete, the sufficient criterion for the cancellativity given in [Deh1], [Deh2] is not satisfied for the monoid $H_{m}^{+}\left(\right.$resp. $\left.H_{m}^{+}\right)$. Moreover, some procedures, called completion ([Deh1], [Deh2]), do not stop in finite steps in both cases. Thus, the cancellativity of them cannot be checked by the method in [Deh1], [Deh2].

5. Calculations of the skew growth functions

In this section, we will calculate the skew growth functions for the monoids $G_{\mathrm{B}_{\mathrm{i}}}^{+}, G_{m}^{+}, H_{m}^{+}$and $M_{\mathrm{abel}, m}$. The datum for proving the cancellativity of the monoids are indispensable to the calculations of the skew growth functions.
5.1. The skew growth function $N_{G_{\mathrm{B}_{\mathrm{in}}}^{+}, \operatorname{deg}}(t)$. In this subsection, we present an explicit calculation of the skew growth function for the monoid $G_{\mathrm{B}_{\mathrm{i}}}^{+}$. In [I1], we have made a success in calculating the spherical growth function $P_{G_{B_{\mathrm{i}}}^{+}, \operatorname{deg}}(t)$ by using the normal form for the monoid $G_{\mathrm{B}_{\mathrm{i}}}^{+}$. By the inversion formula, we can calculate the skew growth function $N_{G_{\mathrm{B}_{\mathrm{i}}}^{+}, \operatorname{deg}}(t)$. Nevertheless, we present an explicit calculation, because, in spite of the fact that the monoid is nonabelian and the height of it is infinite, we succeed in the non-trivial calculation.

First of all, we recall a fact from [I1, Section 7].
Lemma 1. Let X and Y be positive words in $G_{\mathrm{B}_{\mathrm{i}}}^{+}$of length $r \in \mathbb{Z}_{\geq 0}$.
(i) If $v X=v Y$ for some $v \in\{a, b, c\}$, then $X=Y$.
(ii) If $a X=b Y$, then $X=b Z$ and $Y=c Z$ for some positive word Z.
(iii) If $a X=c Y$, then $X=c Z$ and $Y=a Z$ for some positive word Z.
(iv) If $b X=c Y$, then there exist an integer $k \in \mathbb{Z}_{\geq 0}$ and a positive word Z such that $X=c^{k} b a \cdot Z$ and $Y=a^{k} b b \cdot Z$.

Thanks to Lemma 1, we have proved the cancellativity in [S-I]. Moreover, we can prove the following Lemma.

Lemma 2. If an equality $b b \cdot X=c Y$ in $G_{\mathrm{B}_{\mathrm{i}}}^{+}$holds, then $X=a Z$ and $Y=b b \cdot Z$ for some positive word Z.

Proof. Due to Lemma 1, we see that there exists an integer $k \in \mathbb{Z}_{\geq 0}$ and a positive word Z_{0} such that

$$
\begin{equation*}
b X=c^{k} b a \cdot Z_{0}, \quad Y=a^{k} b b \cdot Z_{0} \tag{5.1}
\end{equation*}
$$

We consider the case $k \geq 1$. Due to Lemma 1 , we see that there exist an integer $i_{1} \in \mathbb{Z}_{\geq 0}$ and a positive word Z_{1} such that

$$
X=c^{i_{1}} b a \cdot Z_{1}, \quad c^{k-1} b a \cdot Z_{0}=a^{i_{1}} b b \cdot Z_{1} .
$$

Moreover, we see that there exists a positive word $Z_{0}^{(1)}$ such that

$$
Z_{0}=c^{i_{1}} \cdot Z_{0}^{(1)}, \quad c^{k-1} b a \cdot Z_{0}^{(1)}=b b \cdot Z_{1}
$$

Repeating the same process k-times, there exist integers $i_{2}, \ldots, i_{k} \in \mathbb{Z}_{\geq 0}$ and positive words $Z_{0}^{(k)}$ and Z_{k} such that

$$
Z_{0}=c^{i_{1}+i_{2}+\cdots+i_{k}} \cdot Z_{0}^{(k)}, \quad b a \cdot Z_{0}^{(k)}=b b \cdot Z_{k}
$$

Moreover, we see that there exists a positive word Z^{\prime} such that

$$
Z_{0}^{(k)}=b Z^{\prime}, \quad Z_{k}=c Z^{\prime}
$$

Applying this result to (5.1), we have

$$
\begin{aligned}
& b X=c^{k} b a c^{i_{1}+i_{2}+\cdots+i_{k}} b \cdot Z^{\prime}=b a c^{i_{1}+i_{2}+\cdots+i_{k}} b a^{k} \cdot Z^{\prime} \\
& Y=a^{k} b b c^{i_{1}+i_{2}+\cdots+i_{k}} b \cdot Z^{\prime}=b b \cdot c^{i_{1}+i_{2}+\cdots+i_{k}} b a^{k} \cdot Z^{\prime}
\end{aligned}
$$

Thus, we have $X=a \cdot c^{i_{1}+i_{2}+\cdots+i_{k}} b a^{k} \cdot Z^{\prime}$.
As a consequence of Lemma 2, we obtain the followings.
Corollary 1. If an equality $b b \cdot X=c^{l} \cdot Y$ in $G_{\mathrm{B}_{\mathrm{i}}}^{+}$holds for some positive integer l, then $X=a^{l} \cdot Z$ and $Y=b b \cdot Z$ for some positive word Z.

Due to Corollary 1, we can solve the following equation.
Proposition 5. If an equality $c^{i} b \cdot X=c^{j} b \cdot Y$ in $G_{\mathrm{B}_{\mathrm{i}}}^{+}$holds for $0 \leq i<j$, then there exists an integer $k \in \mathbb{Z}_{\geq 0}$ and a positive word Z such that

$$
X=c^{k} b a^{j-i} \cdot Z, \quad Y=c^{k} b \cdot Z
$$

Proof. Due to the cancellativity, $c^{i} b \cdot X=c^{j} b \cdot Y$ if and only if $b X=$ $c^{j-i} b \cdot Y$. Thanks to Lemma 1, we see that there exist an integer $k \in \mathbb{Z}_{\geq 0}$ and a positive word Z_{1} such that

$$
X=c^{k} b a \cdot Z_{1}, \quad c^{j-i-1} b \cdot Y=a^{k} b b \cdot Z_{1}
$$

Moreover, we see that there exists Y^{\prime}

$$
Y=c^{k} \cdot Y^{\prime}, \quad c^{j-i-1} b \cdot Y^{\prime}=b b \cdot Z_{1}
$$

Due to Corollary 1, there exists a positive word Z_{2} such that

$$
b Y^{\prime}=b b \cdot Z_{2}, \quad Z_{1}=a^{j-1-1} \cdot Z_{2}
$$

Thus, we have

$$
X=c^{k} b a^{j-i} \cdot Z_{2}, \quad Y=c^{k} b \cdot Z_{2}
$$

As a corollary of Proposition 5, we show the following lemma.
Lemma 3. For $0 \leq \kappa_{1}<\kappa_{2}<\cdots<\kappa_{p}$,

$$
\operatorname{mcm}\left(\left\{c^{\kappa_{1}} b, c^{\kappa_{2}} b, \ldots, c^{\kappa_{p}} b\right\}\right)=\left\{c^{\kappa_{p}} b \cdot c^{k} b \mid k=0,1, \ldots\right\}
$$

By using Lemma 3, we easily show the following.
Proposition 6. We have $h\left(G_{\mathrm{B}_{\mathrm{i}}}^{+}, \mathrm{deg}\right)=\infty$.
Proof. Due to Lemma 1, we show

$$
\operatorname{mcm}(\{b, c\})=\left\{c b \cdot c^{k} b \mid k=0,1, \ldots\right\} .
$$

Due to Lemma 1, for $0 \leq \kappa_{1}<\kappa_{2}<\cdots<\kappa_{p}$, we have

$$
\operatorname{mcm}\left(\left\{c b \cdot c^{\kappa_{1}} b, c b \cdot c^{\kappa_{2}} b, \ldots, c b \cdot c^{\kappa_{p}} b\right\}\right)=\left\{c b \cdot c^{\kappa_{p}} b \cdot c^{k} b \mid k=0,1, \ldots\right\} .
$$

By using Lemma 3 repeatedly, we show $h\left(G_{\mathrm{B}_{\mathrm{i}}}^{+}, \mathrm{deg}\right)=\infty$.
By using Lemma 3, we calculate the skew growth function. We have to consider four cases where $J_{1}=\{a, b\},\{a, c\},\{b, c\}$ or $\{a, b, c\}$. We denote by $\operatorname{Tmcm}\left(G_{\mathrm{B}_{\mathrm{i}}}^{+}, J_{1}\right)$ the set of all the towers starting from a fixed J_{1}. If $J_{1}=\{a, b\}$ or $\{a, c\}$, due to Lemma 1 , then $\operatorname{mcm}(\{a, b\})$ and $\operatorname{mcm}(\{a, c\})$ consist of only one element, respectively. Next, we consider the case where $J_{1}=\{b, c\}$. For a fixed tower T, if there exists an element $\Delta \in|T|$ such that $\operatorname{deg}(\Delta)=l+2$, then, from Lemma 3, we see the uniqueness. For any fixed $l \in \mathbb{Z}_{>0}$, we calculate the coefficient of the term t^{l+2} which is denoted by a_{l}, by counting all the signs $(-1)^{\# J_{1}+\cdots+\# J_{n}-n+1}$ in the definition (3.1) associated with the towers $T=\left(I_{0}, J_{1}, J_{2}, \ldots, J_{n}\right)$ for which $\operatorname{deg}(\Delta)$ can take a value $l+2$. To calculate
the coefficient a_{l}, we consider the set

$$
\mathscr{T}_{G_{\mathrm{Bi}_{\mathrm{i}}}^{+}}^{l}:=\left\{T \in \operatorname{Tmcm}\left(G_{\mathrm{B}_{\mathrm{i}}}^{+}, J_{1}\right)|\Delta \in| T \mid \text { such that } \operatorname{deg}(\Delta)=l+2\right\} .
$$

By using Lemma 3 repeatedly, we show

$$
\max \left\{\text { the height of } T \in \mathscr{T}_{G_{\mathrm{B}_{\mathrm{i}}}^{+}}^{l}\right\}=\lfloor(l+1) / 2\rfloor .
$$

For $u \in\{1, \ldots,\lfloor(l+1) / 2\rfloor\}$, we define the set

$$
\mathscr{T}_{G_{\mathrm{Bin}^{+}, u}^{\prime}, u}^{l}:=\left\{T \in \mathscr{T}_{G_{\mathrm{B}_{\mathrm{i}}}^{+}}^{l} \mid \text { the height of } T=u\right\} .
$$

Hereafter, we write simply \mathscr{T}^{l} (resp. \mathscr{T}_{u}^{l}) for $\mathscr{T}_{G_{\mathrm{B}_{\mathrm{ij}}}^{+}}^{l}\left(\right.$ resp. $\left.\mathscr{T}_{G_{\mathrm{B}_{\mathrm{i}}}^{+}, u}^{l}\right)$. Thus, we have the decomposition:

$$
\begin{equation*}
\mathscr{T}^{l}=\bigsqcup_{u} \mathscr{T}_{u}^{l} \tag{5.2}
\end{equation*}
$$

Claim 1. For any u, we show the following equality

$$
(-1)^{u-1}{ }_{l-u} C_{u-1}=\sum_{T \in \mathscr{T}_{u}^{l}}(-1)^{\nexists J_{1}+\cdots+\# J_{u}-u+1} .
$$

Proof. For the case of $u=1$, the equality holds. For the case of $u=2$, we calculate the sum $\sum_{T \in \mathscr{F}_{2}^{\prime}}(-1)^{\# J_{2}-1}$. By indices $0 \leq \kappa_{1}<\kappa_{2}<\cdots<\kappa_{p}$, the set J_{2} is generally written by $\left\{c b \cdot c^{\kappa_{1}} b, c b \cdot c^{\kappa_{2}} b, \ldots, c b \cdot c^{\kappa_{p}} b\right\}$. Due to Lemma 3 , we show that the maximum index κ_{p} can range from 1 to $l-2$. For a fixed index $\kappa_{p}=\kappa \in\{1, \ldots, l-2\}$, we easily show

$$
\sum_{T \in \mathscr{T}_{2}^{l}, \kappa_{p}=\kappa}(-1)^{\# J_{2}-1}=-1
$$

Therefore, we show that the sum $\sum_{T \in \mathscr{F}_{2}}(-1)^{\# J_{2}-1}=-(l-2)={ }_{l-2} C_{2-1}$.
We show the case for $3 \leq u \leq\lfloor(l+1) / 2\rfloor$ by induction on u. We assume the case where $u=j$. For the case of $u=j+1$, we focus our attention to the set J_{2}. Since the set J_{2} can be written as $\left\{c b \cdot c^{\kappa_{1}} b, c b \cdot c^{\kappa_{2}} b, \ldots\right.$, $\left.c b \cdot c^{\kappa_{p}} b\right\}$, due to Lemma 3, we show that the maximum index κ_{p} can range from 1 to $l-2 j$. By the induction hypothesis, it suffices to show the following equality

$$
\sum_{k=1}^{l-2 j}{ }_{l-j-k-1} C_{j-1}={ }_{l-j-1} C_{j} .
$$

Therefore, we have shown the case $u=j+1$. This completes the proof.

By the decomposition (5.2), we show the following equality.
Claim 2. $a_{l}=\sum_{k=0}^{\lfloor(l-1) / 2\rfloor}(-1)^{k}{ }_{l-k-1} C_{k}$.
Then, we easily show the following.
Claim 3. $a_{l+2}-a_{l+1}+a_{l}=0$.
Proof. Since an equality ${ }_{n+1} C_{k}-{ }_{n} C_{k}={ }_{n} C_{k-1}$ holds, we can show our statement.

We easily show $a_{1}=a_{2}=1$. Hence, the sequence $\left\{a_{l}\right\}_{l=1}^{\infty}$ has a period 6 . Lastly, we consider the case where $J_{1}=\{a, b, c\}$. For any fixed $l \in \mathbb{Z}_{>0}$, we calculate the coefficient of the term t^{l+3} which is denoted by b_{l}. Since $\operatorname{mcm}(\{a, b, c\})=\left\{c b \cdot c^{k} b \mid k=1,2, \ldots\right\}$, we can reuse Lemma 3. In a similar manner, we have the following conclusion.

Claim 4. $b_{l+2}-b_{l+1}+b_{l}=0$.
Since $b_{1}=b_{2}=1$, we also show that the sequence $\left\{b_{l}\right\}_{l=1}^{\infty}$ has a period 6 . After all, we can calculate the skew growth function for the monoid $G_{\mathrm{B}_{\mathrm{i}}}^{+}$:

$$
N_{G_{\mathrm{B}_{\mathrm{i}}^{+}}^{+}, \operatorname{deg}}(t)=1-3 t+2 t^{2}+\frac{t^{3}}{1-t+t^{2}}-\frac{t^{4}}{1-t+t^{2}}=\frac{(1-t)^{4}}{1-t+t^{2}} .
$$

5.2. The skew growth function $N_{G_{m}^{+}, \operatorname{deg}}(t)$. In this subsection, we present an explicit calculation of the skew growth function for the monoid G_{m}^{+}.

First of all, we show the following proposition.
Proposition 7. If an equation $c^{i} b^{m-1} \cdot X=c^{j} b^{m-1} \cdot Y$ in G_{m}^{+}holds for $0 \leq i<j$, then there exists a positive word Z such that

$$
X=b a^{j-i} \cdot Z \quad \text { and } \quad Y=b Z
$$

Proof. Since we have shown the cancellativity in $\S 4, c^{i} b^{m-1} \cdot X=$ $c^{j} b^{m-1} \cdot Y$ if and only if $b^{m-1} \cdot X=c^{j-i} b^{m-1} \cdot Y$. Thanks to Proposition 2 (iv- $(m-2)-b)$, we see that there exists a positive word Z such that

$$
X=b a^{j-i} \cdot Z, \quad Y=b Z
$$

As a corollary of Proposition 7, we show the following lemma.
Lemma 4. For $0 \leq \kappa_{1}<\kappa_{2}<\cdots<\kappa_{p}$,

$$
\operatorname{mcm}\left(\left\{c^{\kappa_{1}} b^{m-1}, c^{\kappa_{2}} b^{m-1}, \ldots, c^{\kappa_{p}} b^{m-1}\right\}\right)=\left\{c^{\kappa_{p}} b^{m}\right\}
$$

Thus, we obtain the following proposition.
Proposition 8. $\quad h\left(G_{m}^{+}, \mathrm{deg}\right)=2$.
By using Lemma 4, we calculate the skew growth function. We have to consider four cases where $J_{1}=\{a, b\},\{a, c\},\{b, c\}$ or $\{a, b, c\}$. We denote by
$\operatorname{Tmcm}\left(G_{m}^{+}, J_{1}\right)$ the set of all the towers starting from a fixed J_{1}. If $J_{1}=\{a, b\}$ or $\{a, c\}$, due to Proposition 2, then $\operatorname{mcm}(\{a, b\})$ and $\operatorname{mcm}(\{a, c\})$ consist of only one element, respectively. Next, we consider the case where $J_{1}=\{b, c\}$. For any fixed $l \in \mathbb{Z}_{>0}$, we calculate the coefficient of the term t^{m+l} which is denoted by c_{l}. To calculate the coefficient c_{l}, we consider the set

$$
\mathscr{T}_{G_{m}^{+}}^{l}:=\left\{T \in \operatorname{Tmcm}\left(G_{m}^{+}, J_{1}\right)|\Delta \in| T \mid \text { such that } \operatorname{deg}(\Delta)=m+l\right\} .
$$

For $u \in\{1,2\}$, we define the set

$$
\mathscr{T}_{G_{m}^{+}, u}^{l}:=\left\{T \in \mathscr{T}_{G_{m}^{+}}^{l} \mid \text { the height of } T=u\right\} .
$$

Since $\operatorname{mcm}(\{b, c\})=\left\{c b \cdot c^{k} b^{m-1} \mid k=0,1, \ldots\right\}$, we easily show $c_{1}=c_{2}=1$. Moreover, we show the following.

Proposition 9. $\quad c_{l}=0(l=3,4, \ldots)$.
Proof. From the consideration in Claim 1 of Example 1, for $u=2$, we also show

$$
\sum_{T \in \mathscr{G}_{G_{m}^{+}, u}^{\prime}}(-1)^{\# J_{1}+\cdots+\# J_{u}-u+1}=-1 .
$$

Thus, we have $c_{l}=0(l=3,4, \ldots)$.
Lastly, we consider the case where $J_{1}=\{a, b, c\}$. For any fixed $l \in \mathbb{Z}_{>0}$, we calculate the coefficient of the term t^{m+l+1} which is denoted by d_{l}. In a similar way, we show $d_{1}=d_{2}=1$ and $d_{l}=0(l=3,4, \ldots)$. After all, we calculate the skew growth function for the monoid G_{m}^{+}:

$$
\begin{aligned}
N_{G_{m}^{+}, \operatorname{deg}}(t) & =1-3 t+2 t^{2}+\left(t^{m+1}+t^{m+2}\right)-\left(t^{m+2}+t^{m+3}\right) \\
& =(1-t)\left(t^{m+2}+t^{m+1}-2 t+1\right) .
\end{aligned}
$$

Remark 6. By the inversion formula, we are able to calculate the spherical growth function $P_{G_{m}^{+}, \operatorname{deg}}(t)$ through the skew growth function $N_{G_{m}^{+}, \operatorname{deg}}(t)$. We can not find the direct calculation of the spherical growth function $P_{G_{m}^{+}, \operatorname{deg}}(t)$ in the existence literatures.
5.3. The skew growth function $N_{H_{m}^{+}, \operatorname{deg}}(t)$. In this subsection, we present an explicit calculation of the skew growth function for the monoid H_{m}^{+}.

First of all, we show the following proposition.
Proposition 10. If an equality $c^{i} b(a b)^{m-1} b a \cdot X=c^{j} b(a b)^{m-1} b a \cdot Y$ in H_{m}^{+}holds for $0 \leq i<j$, then there exists a positive word Z such that

$$
X=c b a^{j-i} \cdot Z, \quad Y=c b \cdot Z
$$

Proof. Since we have shown the cancellativity of H_{m}^{+}in $\S 4$, we show $c^{i} b(a b)^{m-1} b a \cdot X=c^{j} b(a b)^{m-1} b a \cdot Y \Leftrightarrow b(a b)^{m-1} b a \cdot X=c^{j-i} b(a b)^{m-1} b a \cdot Y$. Thanks to Proposition 4 (vi- h), we see that there exists a positive word Z_{1} such that

$$
(a b)^{m-1} b a \cdot X=(a b)^{m} b a^{j-i} \cdot Z_{1}, \quad c(a b)^{m-2} b a \cdot Y=c(a b)^{m-1} b \cdot Z_{1} .
$$

Therefore, we see that there exists a positive word Z_{2} such that

$$
X=c b a^{j-i} \cdot Z_{2}, \quad Y=c b \cdot Z_{2}
$$

As a corollary of Proposition 10, we show the following lemma.
Lemma 5. For $0 \leq \kappa_{1}<\kappa_{2}<\cdots<\kappa_{p}$,

$$
\begin{aligned}
\operatorname{mcm} & \left(\left\{c^{\kappa_{1}} b(a b)^{m-1} b a, c^{\kappa_{2}} b(a b)^{m-1} b a, \ldots, c^{\kappa_{p}} b(a b)^{m-1} b a\right\}\right) \\
& =\left\{c^{\kappa_{p}} b(a b)^{m-1} b a c b\right\}
\end{aligned}
$$

Thus, we obtain the following proposition.
Proposition 11. $h\left(H_{m}^{+}, \mathrm{deg}\right)=2$.
Thanks to Lemma 5, we can calculate the skew growth function. We have to consider four cases where $J_{1}=\{a, b\},\{a, c\},\{b, c\}$ or $\{a, b, c\}$. We denote by $\operatorname{Tmcm}\left(H_{m}^{+}, J_{1}\right)$ the set of all the towers starting from a fixed J_{1}. If $J_{1}=\{a, b\}$ or $\{a, c\}$, due to Proposition 4, then $\operatorname{mcm}(\{a, b\})$ and $\operatorname{mcm}(\{a, c\})$ consist of only one element, respectively. Next, we consider the case where $J_{1}=\{b, c\}$. For any fixed $l \in \mathbb{Z}_{>0}$, we calculate the coefficient of the term $t^{2 m+3+l}$ which is denoted by e_{l}. In order to calculate the coefficient e_{l}, we consider the set

$$
\mathscr{T}_{H_{m}^{+}}^{l}:=\left\{T \in \operatorname{Tmcm}\left(H_{m}^{+}, J_{1}\right)|\Delta \in| T \mid \text { such that } \operatorname{deg}(\Delta)=2 m+3+l\right\} .
$$

For $u \in\{1,2\}$, we define the set

$$
\mathscr{T}_{H_{m}^{+}, u}^{l}:=\left\{T \in \mathscr{T}_{H_{m}^{+}}^{l} \mid \text { the height of } T=u\right\} .
$$

Since $\operatorname{mcm}(\{b, c\})=\left\{b c^{k}(a b)^{m} b a \mid k=0,1, \ldots\right\}$, we easily show $e_{1}=e_{2}=$ $e_{3}=1$. Moreover, we show the following.

Proposition 12. $e_{l}=0(l=4,5, \ldots)$.
Proof. From the consideration in Claim 1 of Example 1, for $u=2$, we also show

$$
\sum_{T \in \mathscr{T}_{H_{m}^{\prime}, u}^{\prime}}(-1)^{\# J_{1}+\cdots+\# J_{u}-u+1}=-1 .
$$

Thus, we have $e_{l}=0(l=4,5, \ldots)$.

Lastly, we consider the case where $J_{1}=\{a, b, c\}$. For any fixed $l \in \mathbb{Z}_{>0}$, we calculate the coefficient of the term $t^{2 m+4+l}$ which is denoted by f_{l}. In a similar way, we show $f_{1}=f_{2}=f_{3}=1$ and $f_{l}=0(l=4,5, \ldots)$. After all, we calculate the skew growth function for the monoid H_{m}^{+}:

$$
\begin{aligned}
N_{H_{m}^{+}, \operatorname{deg}}(t) & =1-3 t+2 t^{2}+\left(t^{2 m+3}+t^{2 m+4}+t^{2 m+5}\right)-\left(t^{2 m+4}+t^{2 m+5}+t^{2 m+6}\right) \\
& =(1-t)\left(t^{2 m+5}+t^{2 m+4}+t^{2 m+3}-2 t+1\right)
\end{aligned}
$$

Remark 7. By the inversion formula, we are able to calculate the growth function $P_{H_{m}^{+}, \operatorname{deg}}(t)$ through the skew growth function $N_{H_{m}^{+}, \operatorname{deg}}(t)$. We can not find the direct calculation of the spherical growth function $P_{H_{m}^{+}, \operatorname{deg}}(t)$ in the literatures.
5.4. The skew growth function $N_{M_{\text {abel }, m}, \text { deg }}(t)$. In this subsection, we calculate the skew growth function for the monoid $M_{\mathrm{abel}, m}$.

First of all, we easily show the following proposition.
Proposition 13. Let X and Y be positive words in $M_{\mathrm{abel}, m}$ of length $r \in \mathbb{Z}_{\geq 0}$.
(i) If $v X=v Y$ for some $v \in\{a, b\}$, then $X=Y$.
(ii) If $a X=b Y$, then either $X=a^{m-1} \cdot Z_{1}$ and $Y=b^{m-1} \cdot Z_{1}$ for some positive word Z_{1} or $X=b Z_{2}$ and $Y=a Z_{2}$ for some positive word Z_{2}.

Lemma 6. There exists a unique tower $T_{n}=\left(I_{0}, J_{1}, J_{2}, \ldots, J_{n}\right)$ of height $n \in \mathbb{Z}_{>0}$ with the ground set $I_{0}=\{a, b\}$ such that

$$
\begin{aligned}
& J_{2 k-1}=\left\{a^{(k-1) m+1}, a^{(k-1) m} b\right\} \quad(k=1, \ldots,\lfloor(n+1) / 2\rfloor), \\
& J_{2 k}=\left\{a^{k m}, a^{(k-1) m+1} b\right\} \quad(k=1, \ldots,\lfloor n / 2\rfloor) .
\end{aligned}
$$

Proof. We easily show $J_{1}=\{a, b\}$ and $J_{2}=\left\{a^{m}, a b\right\}$. Thanks to Proposition 13, we show our statement by induction on k.

Therefore, we immediately show $h\left(M_{\mathrm{abel}, m}, \mathrm{deg}\right)=\infty$. Moreover, from the definition (3.1), we can calculate the skew growth function

$$
N_{M_{\mathrm{abel}, m,}, \operatorname{deg}}(t)=\left(1-2 t+t^{2}\right)\left(1+t^{m}+t^{2 m}+\cdots\right)=\frac{(1-t)^{2}}{1-t^{m}}
$$

6. Appendix

In this section, we deal with two monoids M_{4} and $G^{+}\left(4_{1}\right)$ whose towers do not stop on the first stage J_{1}. The skew growth functions for them can be calculated with comparative ease.

Example 1. In [Deh2], the author investigated a certain monoid that we rename to M_{4}. The presentation is the following

$$
M_{4}:=\left\langle a, b, c, d \left\lvert\, \begin{array}{l}
a b=b c=c a \\
b a=d b=a d \\
c a a=d b b
\end{array}\right.\right\rangle_{m o} .
$$

By referring to Higman-Garside's method (see $[\mathrm{G}],[\mathrm{B}-\mathrm{S}]$), we easily show the following proposition.

Proposition 14. Let X and Y be positive words in M_{4} of length $r \in \mathbb{Z}_{\geq 0}$.
(i) If $v X=v Y$ for some $v \in\{a, b, c, d\}$, then $X=Y$.
(ii) If $a X=b Y$, then either $X=b Z_{1}$ and $Y=c Z_{1}$ for some positive word Z_{1} or $X=d Z_{2}$ and $Y=a Z_{2}$ for some positive word Z_{2}.
(iii) If $a X=c Y$, then $X=b Z$ and $Y=a Z$ for some positive word Z.
(iv) If $a X=d Y$, then $X=d Z$ and $Y=b Z$ for some positive word Z.
(v) If $b X=c Y$, then $X=c Z$ and $Y=a Z$ for some positive word Z.
(vi) If $b X=d Y$, then $X=a Z$ and $Y=b Z$ for some positive word Z.
(vii) If $c X=d Y$, then $X=a a \cdot Z$ and $Y=b b \cdot Z$ for some positive word Z.

Thanks to Proposition 14, we see that the monoid M_{4} is a left cancellative monoid. In the monoid M_{4}, we have an anti-homomorphism $\varphi: M_{4} \rightarrow M_{4}$, $W \mapsto \varphi(W):=\sigma(\operatorname{rev}(W))$, where σ is a permutation $\binom{a, b, c, c}{b, a, c, d}$ and $\operatorname{rev}(W)$ is the reverse of the word $W=x_{1} x_{2} \ldots x_{k}$ (x_{i} is a letter) given by the word $x_{k} \ldots x_{2} x_{1}$. By a similar argument in $\S 5.1$, we can show that the monoid M_{4} is a cancellative monoid. Due to Proposition 14, we can calculate the skew growth function. We have to consider the case where $J_{1}=\{a, b\}$. We have $\operatorname{mcm}(\{a, b\})=\{a b, a d\}$ and $\operatorname{mcm}(\{a b, a d\})=\{a b a\}$, and therefore $h\left(M_{4}, \mathrm{deg}\right)=2$. From the definition (3.1), we can calculate the skew growth function for the monoid M_{4} as follows:

$$
N_{M_{4}, \operatorname{deg}}(t)=1-4 t+4 t^{2}-t^{3}=(1-t)\left(1-3 t+t^{2}\right)
$$

Example 2. For the figure-eight knot, a Wirtinger presentation of the knot group $G\left(4_{1}\right)$ can be shown to be

$$
G\left(4_{1}\right) \cong\left\langle a, b, c, d \left\lvert\, \begin{array}{l}
c a=d c, b d=d a, \\
a c=b a, d b=b c
\end{array}\right.\right\rangle
$$

For this presentation, we associate the monoid defined by it, which is denoted by $G^{+}\left(4_{1}\right)$. By referring to Higman-Garside's method (see [G], [B-S]), we easily show the following proposition.

Proposition 15. Let X and Y be positive words in $G^{+}\left(4_{1}\right)$ of length $r \in \mathbb{Z}_{\geq 0}$.
(i) If $v X=v Y$ for some $v \in\{a, b, c, d\}$, then $X=Y$.
(ii) If $a X=b Y$, then $X=c Z$ and $Y=a Z$ for some positive word Z.
(iii) There do not exist positive words X and Y that satisfy an equation $a X=c Y$.
(iv) There do not exist positive words X and Y that satisfy an equation $a X=d Y$.
(v) There do not exist positive words X and Y that satisfy an equation $b X=c Y$.
(vi) If $b X=d Y$, then either $X=d Z_{1}$ and $Y=a Z_{1}$ for some positive word Z_{1} or $X=c Z_{2}$ and $Y=b Z_{2}$ for some positive word Z_{2}.
(vii) If $c X=d Y$, then $X=a Z$ and $Y=c Z$ for some positive word Z.

Thanks to Proposition 15, we see that the monoid $G^{+}\left(4_{1}\right)$ is a left cancellative monoid. In the monoid $G^{+}\left(4_{1}\right)$, we have an anti-homomorphism $\varphi: G^{+}\left(4_{1}\right) \rightarrow G^{+}\left(4_{1}\right), \quad W \mapsto \varphi(W):=\sigma(\operatorname{rev}(W))$, where σ is a permutation $\binom{a, b, c, d}{b, c, d, a}$ and $\operatorname{rev}(W)$ is the reverse of the word $W=x_{1} x_{2} \ldots x_{k}\left(x_{i}\right.$ is a letter) given by the word $x_{k} \ldots x_{2} x_{1}$. By a similar argument in $\S 5.1$, we can show that the monoid $G^{+}\left(4_{1}\right)$ is a cancellative monoid. Due to Proposition 15, we easily have $h\left(G^{+}\left(4_{1}\right), \operatorname{deg}\right)=2$. From the definition (3.1), we can calculate the skew growth function for the monoid $G^{+}\left(4_{1}\right)$ as follows:

$$
N_{G^{+}\left(4_{1}\right), \operatorname{deg}}(t)=1-4 t+4 t^{2}-t^{3}=(1-t)\left(1-3 t+t^{2}\right) .
$$

Acknowledgement

The author is grateful to Kyoji Saito for very interesting discussions and encouragement. This research is supported by JSPS Fellowships for Young Scientists (24.10023). This researsh is also supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. The author thanks the referee and the editor for many suggetions and comments that lead to improvements of the text.

References

[A-N] M. Albenque and P. Nadeau: Growth function for a class of monoids, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 25-38.
[B] M. Brazil: Growth functions for some one-relation monoids, Comm. Algebra 21, (1993), no. 9, 3135-3146.
[Bro] A. Bronfman: Growth functions of a class of monoids, preprint, 2001.
[B-S] E. Brieskorn and K. Saito: Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271, English translation by C. Coleman, R. Corran, J. Crisp, D. Easdown, R. Howlett, D. Jackson and A. Ram at the University of Sydney, 1996.
[Deh1] P. Dehornoy: Complete positive group presentations, J. Algebra 268 (2003), no. 1, 156-197.
[Deh2] P. Dehornoy: The subword reversing method, Internat. J. Algebra. Comput. 21 (2011), no. 1-2, 71-118.
[Del] P. Deligne: Les immeubles des groupes de tresses généralizé, Invent. Math. 17 (1972), 273-302.
[G] F. A. Garside: The braid groups and other groups, Quart. J. Math. Oxford Ser. (2), 20 (1969), 235-254.
[I1] T. Ishibe: On the monoid in the fundamental group of type B_{ii}, Hiroshima Math. J. 42, no. 1, (2012), 99-114.
[I2] T. Ishibe: Infinite examples of cancellative monoids that do not always have least common multiple, Vietnam J. Math. 42 (2014), no. 3, 305-326.
[S1] K. Saito: Inversion formula for the growth function of a cancellative monoid, J. Algebra 385 (2013), 314-332.
[S2] K. Saito: Growth functions associated with Artin monoids of finite type, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 10, 179-183.
[S3] K. Saito: Growth functions for Artin monoids, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 7, 84-88.
[S4] K. Saito: Limit elements in the configuration algebra for a cancellative monoid, Publ. Res. Inst. Math. Sci. 46 (2010), no. 1, 37-113.
[S5] K. Saito: Growth partition functions for cancellative infinite monoids, preprint RIMS1705 (2010).
[S-I] K. Saito and T. Ishibe: Monoids in the fundamental groups of the complement of logarithmic free divisors in \mathbb{C}^{3}, J. Algebra 344 (2011), 137-160.
[Xu] P. Xu: Growth of the positive braid semigroups, J. Pure and Appl. Algebra 80 (1992), no. 2, 197-215.

Tadashi Ishibe
E-mail: tishibe@ms.u-tokyo.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 20M05.
 Key words and phrases. Cancellative monoid, growth function, inversion formula.

[^1]: ${ }^{1}$ For the proof, we refer to the technique of the triple induction (see proof of Proposition 4 in [I2]).

