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ABSTRACT. In this paper we give a new Koksma-Hlawka type inequality for Quasi-
Monte Carlo (QMC) integration. QMC integration of a function f :[0,1)* — R by a
finite point set 2 C [0,1)" is the approximation of the integral I(f) := f[o‘l).x f(x)dx by
the average I»(f) := L}7|ery f(x). We treat a certain class of point sets # called
digital nets. A Koksma-Hlawka type inequality is an inequality providing an upper
bound on the integration error Err(f;2):=I(f)— I»(f) of the form |Err(f;2)| <
C-||f|l-D(2). We can obtain a Koksma-Hlawka type inequality by estimating bounds
on |f(k)|, where f(k) is a generalized Fourier coefficient with respect to the Walsh
system. In this paper we prove bounds on the Walsh coefficients f (k) by introducing
an operator called ‘dyadic difference’ 0;,. By converting dyadic differences 0;, to
derivatives %, we get a new bound on |f(k)| for a function f whose mixed partial
derivatives up to order o in each variable are continuous. This new bound is smaller
than the known bound on | f (k)| under some instances. The new Koksma-Hlawka type
inequality is derived using this new bound on the Walsh coefficients.

1. Introduction and the main results

Quasi-Monte Carlo (QMC) integration of a function f:[0,1)* — R by
a finite point set 2 C [0,1)° is the approximation of the integral I(f) :=
Jo.1y f(x)dx by the average I»(/f) ::ﬁzxeg,f(x) (see [10, 20, 24] for
details). We want to find a quadrature point set 2 making the absolute
value of the integration error |Err(f;2)| :=|I(f) — I»(f)| small for a set of
functions f. This problem is formulated as follows: We consider a function
space H with norm || f||;; and the worst case error supj, |Err(f;2)| by a
QMC rule using a point set & (for example, see [10, 17] for details). Then,

The work was supported by the Program for Leading Graduate Schools, MEXT, Japan and
Australian Research Council Discovery Projects funding scheme (project number DP150101770).

2010 Mathematics Subject Classification. 65D30, 65D32.

Key words and phrases. Quasi-Monte Carlo integration, Walsh coefficients, Koksma-Hlaka
inequality.



156 Takehito YOSHIKI

it holds that, for any f € H,

[Ere(f; 2) < 1/ 1| Sup |Brr(f;2)]. (1)

Thus in order to make the integration error |Err(f;Z)| small, it suffices
to obtain quadrature point sets < making the worst case error

supy sy, <1|Err(f;2)| small. Since dealing with the worst case error directly
is not easy, we often consider a manageable upper bound Wy (%) on it;

[Ere(52) < 1l x Wa(2). (2)

Here we call Wy (2) a figure of merit of 2 and these types of inequalities
(2) are called Koksma-Hlawka type inequalities (for example, see [18] for
details).

We often treat a point set 2 called ‘digital net’ (for example, see [10, 20]).
A digital net 2 is defined as follows. Let n,m > 1 and b > 2 be integers with
n>m. Let 0 <h<b™ be an integer and Cj,...,Cy be n x m matrices over
the finite group Z, = Z/bZ. We write the b-adic expansion 7=} ", hibi~!
and take a vector h= (hy,... hy) € (ZZ’)T, where /; is considered to be an
element in Z,. For 1 <i<s, we define a vector (yu1,..., Vnin) =h- (C,-)T
and a real number x;(h) = Zlgjsn yni b €[0,1), where y,;; is considered
to be an element of {0,...,h—1} CZ. Then we define a digital net 2 by
{x0, ..., Xpm_1} where x;, = (x;(h)),.;o,- In order to analyze QMC rules by
digital nets, we use a dual net 2+ [9, 21]:

Pt ={k=(k,..., k) e NU{0})*|CTk +---+ C]ks =0e Z}"},

where Ei: (K,-,l,...,;c,;n)T for k; with b-adic expansion k; :ijl}{i’jb]
Here x; ; is considered to be an element of Z,. Throughout this paper, when
we take a point set £, we assume that 2 is a digital net with b = 2.

In the classical theory, many researchers studied the integration error of
a function f with bounded variation (or function with square integrable partial
derivatives up to first order in each variable) (for example, see [10, 18]). In
particular, they constructed many types of digital nets which achieve the
optimal rate of convergence utilizing the theory of dual nets and Koksma-
Hlawka type inequalities.

An extension to smooth periodic functions was established in [3], while
a further extension to smooth (non-periodic) functions was shown in [4]. The
QMC rules constructed in these papers, called higher order QMC rules, achieve
the optimal rate of convergence. These rules are also constructed by obtaining
a Koksma-Hlawka type inequality and analyzing properties of digital nets and
their dual nets for higher order QMC rules. See also [5] for more background
on higher order QMC rules.
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Our main result in this paper is obtaining new Koksma-Hlawka type
inequalities of digital nets for smooth function spaces, which leads to making
practical optimal higher order QMC rules. One concrete application of this
improvement is to substantially improve the constants in the bounds on
integration error in [4], which is crucial in problems in uncertainty quantifi-
cation [8, 12]. In particular, Gantner and Schwab [12] point out that the
large constants from [4] cause problems in the CBC construction of interlaced
polynomial lattice rules, which are construction methods to obtain a point set
whose worst case error achieves the optimal order [7, 13]. To avoid this
problem, it is suggested to use much smaller constants which are more realistic
n [12]. This paper provides the theoretical justification for doing so.

We explain the details of our main result by comparing our result to the
one in [8]. Dick et al. [8] introduced a smooth function space whose functions
f satisfy that their norms (5) (see below) are finite. If f is a function whose
mixed partial derivatives up to order o in each variable are continuous, then f
is contained in this space. This space has some parameters called weights
{Votoes CRso={xeR:x >0}, where S:={l,...,s}, which model the im-
portance of different coordinate projections [25].

To state the results in [8], we introduce projected dual spaces and weight
functions which correspond to the subsets v C S as follows. For k, e NI,
let (k,;0) € (NU{0})" denote the vector whose jth component is k; if j € v and
0 otherwise. The dual space which corresponds to the subset (J # v C S is
defined by 2+ := {k, e N |k = (k,;0) € 21} (note that none of the compo-
nents in v is 0). The weight on a projected dual space is defined in the
following way.

117.. IH Z a,j
j<a

i=1

for /; with dyadic expansion /; = Ej]i'l 2%, with a;1 > -~ >a; . Let 1<,
r'yq < co with 1/r+ 1/ =1. Dick et al. [8] showed the following bound on
the worst case error (they also showed the results for a digital net with b > 2):

sup |Err(f§ P)| < e5.0y.0(2),
1Nl 2,54, <1

with
’,/ l/l‘l

eanr(P) = | D2 | Cllp 3o 2 ) ()

P #0CS ke
This implies the following inequality of the form (2):
‘Err(f; @)‘ < ”f”s,ot,;gq,r X e&%}'ﬁ,"’('ﬂ})? (4)
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where

AP Z Y

vCu

J[o‘ 1

with the obvious modifications if ¢ or r is infinite.! Here (@, 7,0,0) denotes
a vector (v;);_; with v; =a for jewv, vy=1; for jeu\v, and v; =0 for j ¢ u.
And we write () = j:]r :n;j .

Based on these bounds on the integration error, Dick constructed ‘inter-
laced digital nets’ to obtain a point set with small integration error [3, 4].
He showed that the worst case error of this type of point sets achieves the
order O(N *(log N)*) in terms of the cardinality N of a point set [4]. This
is known to be optimal up to log terms [23]. In [1, 2, 7, 8, 12, 13], there are
component-by-component (CBC) algorithms to obtain point sets which achieve
the same order. This construction is also based on the bounds of the form (4).

This paper gives a new Koksma-Hlawka type inequality of digital nets to
bound the integration error of smooth functions which improves upon (4) in
some instances. Here we use the following notation:

117.. l\b\ ZZa,]+2

i=l j<a

0 € { Loy o 1}V

q
[ I G

for /; = Zj'i"l 2% instead of Dick’s weight function u,.

THEOREM 1. Let o e NU {00} such that o > 2. Assume that the function
f has continuous mixed partial derivatives up to order o in each variable x; on
[0,11°, and 1 < p,q,q' < oo such that 1/q+1/q' =1. Then we have

B (5P < |, pp.ar X Wara(P),

where
a\1/4
%J,q(«@) = Z yl} Z 27/‘;<er) ,
d#vCS k,-E,’L?i_L
q/ l/q
Il = | 2 (nlz”“’ sup |/ ||p> NG
g#vCS ale{l,.. oM

! The norm in [8, Definition 3.3] has been corrected in arXiv:1309.4624v3. The correct version is
restated here in Eq. (5).
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P 1/p
@) — J x| |
1/, ( o1 )

with the obvious modifications if either p, q or q' is infinite. ~ Here (a,,0) denotes
a sequence (v;); with v; € {1,... a} for jev and v =0 for j ¢ v and Sflmnns) —

an1+v--+l1\vf‘

and where

J [0,1)*" 1" SO x)dxs

P A .
ox, 1. 0xg

This result yields a significant improvement of (4). In particular, this is
crucial when using the bound in a CBC algorithm, since a large constant (as it
appears in [8, Theorem 3.5]) may make it impractical to perform the CBC
construction. For instance, [12, Section 4.1] write that “The resulting large
values of the worst-case error bounds [referring to the large constants in
[8, Theorem 3.5]] have been found to lead to generating vectors with bad
projections.”  Additionally, we also include the case o = co which has not been
studied before in the context of digital nets. In [8, Theorem 3.5], the case
o= oo is not included since in this case the constant C, appearing in (4) is
infinite. Furthermore, we can define a modified version of Walsh Figure of
Merit (WAFOM) [19] when we consider this new bound (see [15] for details).
WAFOM is a computable figure of merit to find good quadrature point sets
for QMC rules for integrands with large enough smoothness o (see [15, 16, 19]
for details).

Theorem 1 is based on the estimation of Err(f;#) by ‘(dyadic) Walsh
coefficients’. In this paper, we make elaborate works for obtaining bounds
on them. Dyadic Walsh coefficients are defined as follows (see [11, 22] for
details).

DEerFINITION 1 (Walsh functions and Walsh coefficients). Let f:[0,1)° —
R and k = (ky,...,k;) e NU{0})’. We define the k-th dyadic Walsh func-
tion waly by

S

walk(x) = H(_l)(Z,é] a,:,bf.j),

i=1

where for 1 <i <s, we write the dyadic expansion of k; by k; = ijl a; 277!
and x; by xi:ijlbiﬁ ;277, where for each i, infinitely many digits b;;
are 0.

Using Walsh functions, we also define the k-th dyadic Walsh coefficient

f(k) as follows:

f(k):= J f(x) - walk(x)dx.
[0,1)°
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Using the Walsh coefficients f (k), the integration error Err(f;Z) by a
digital net # can be represented as follows [10, Chapter 15]:

En(fi2)= Y f&= > > fk:0)

ke2+\{0} F#vCSk,e 2+

The proof of Theorem 1 is facilitated by the following improved bound on the
Walsh coefficients of smooth functions.

THEOREM 2. We assume the same assumptions as in Theorem 1. Let
F#vc{l,....st=S. For k,e N we have

|f(kv;0)| < oll/p  p=i(k) ||f(min(%~,Nkp))Hp7 (7)

where 1 < p < oo and || -||, is the norm defined in Theorem 1. Here we define

the symbol min(o,Ny) = (min(e, Ny), ..., min(e, Nyy)) for 1= (l1,... 1) with
; . Ni ~a

dyadic expansion I; = ZFI 241,

This inequality follows from the formula for the Walsh coefficients by
dyadic differences, which are defined in Section 3.

Now we compare Theorem 2 with [6, Theorem 14] and its higher
dimensional analogue in [8] (both of two papers also showed the results for
b-adic Walsh coefficients with 5 > 2). Our bound (7) includes the case « =
for the case b =2 (they treat only the case « is finite). Further (7) is better
than [6, Theorem 14] in some instances. For example, assume that s=1.
Then for Ny > o, if we multiply our bound by (5/3)* % our bound is still
smaller than the bound by Dick for any k| = lei ' 2% (see [10, chapter 14]).
If Ny <o it is in general not clear which bound is better. In higher dimen-
sions s > 1, we can also compare our result with the bound in [8, In the proof
of Theorem 3.5]. As in the univariate case, if we multiply our result by c*"l
for some instant ¢ > 1, it is still smaller than the bound in [8, In the proof of
Theorem 3.5].

The remainder of this paper is organized as follows. In Section 2 we
give necessary definitions and their properties. We give the proof of
Theorem 2 in Section 3 using two lemmas, which allows readers to under-
stand the outline of this proof. In Section 4 we show the proofs of lemmas
to complete the proof of Theorem 2. In Section 5, we give the proof of
Theorem 1.

In the followmg, we denpg:v NU{0} by Ny and continue to use the
symbol 7 instead of % for (n; )f . € N§.  Further we assume that
k € Ny has dyadic expansion 'with k = Z ', 2% where N is some integer and
ai,...,ay € Ny satisfying a; > --->ay. Here we set N =0, {q;} = for
k=0.
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2. Preliminaries

In this section, we introduce some operators and functions, and give their
properties.

2.1. Definitions of dyadic differences and important functions. We begin
with the introduction of the dyadic difference 0;, and the weight function
Hy-

DEerFINITION 2 (dyadic difference). Let s,n,i € N with i <s. For a func-
tion ¢g:[0,1)" — R, we define the operator ‘dyadic difference’ 0;, by

gX1, e, X @27 LX) — g(X e Xy ey Xy)
2-n ’

ai,n(g)(-xl, .. ,XS) =

where (x1,...,x,) €[0,1)* and we write z@® 2" :=z+27"(—1)™ for z having
dyadic expansion z = Z;i 1 Z;277, where infinitely many digits z; are 0.

Let S={1,...,s}. Let k= (ki,....k)eN}, u= (up,...,us) € (WoU
{o0})* with k,-:ZjN:"] 2%i,. For any vector k we define the subset v =
{ie S|k #0}. In this paper we use the symbol di, to denote the compo-

sition of the operators {0, +1}icy 1< <min(v,u)-

ReMARK 1. Since any two dyadic differences commute, di, is defined
independent of the order of a composition.

DErFINITION 3 (the new weight function g (k)). We use the same symbols
as in Definition 2. The weight function wu, (k) of k is defined by

Hy(K) == > (@i +2),

iev,1 <j<min(N;,u;)

and we define y(0) =0.

For any vector k= (k;)._, we write k, = (k;),.,, where the subset v
appeared in Definition 2. Further, we write k = (k,;0). When uw; =ae€
N U{oo} for every i, u;(ky;0) corresponds with ) (k,), which already appeared
in Theorem 1.

We also need the following two functions y, and W (k). These functions
have important roles in order to prove the main results.

DEFINITION 4. For ne N, we define the function y, : [0,1)* — R by

2" if y e [min(x,x @ 27"), max(x,x ®27")],
0  otherwise,

In(X, ) == {

where x, y € [0,1).
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Using this, we define the 1-dimensional function W (k) :[0,1) — R induc-
tively by

1
W@ (y) = j Y1 (%, y)d,

1
WP 4+ 2 (3) 5 | a0 )W - 27 (),

where y€[0,1) and ny,...ny4 € Ny satisfies ny > -+ > nyyq.
The s-dimensional function W(k):[0,1)" =R for a vector k=
(ki,...,ks) e INj is defined as follows:

WO = [[ W) (). ¥= (0w e 0.1)"
i=1

REMARK 2. By this definition, W(k) is continuous on [0,1) for any
kGNo.

2.2. Evaluation of the L”-norm of W (k). In Section 3, the bounds on the
Walsh coefficients in Theorem 2 are deduced by using Hoélder’s inequality for
derivatives of f and the function W (k), where we need the L?-norm of W (k).
In this subsection we give a bound on this value.

2.2.1. Important properties of y, and W (k). We show the important proper-
ties of y, and W(k) necessary to calculate ||[W (k)||,,.
We first show the following technical lemma in terms of y,,.

Lemma 1. Let ne N and c,é e Ny satisfy c,¢ < 2"L.
(1) Let x,y€[0,27"*Y), then we have

Ln(x+ 27"y 27 = 5 (x, ).

(2) Let xe[27 (c+ 127N and yele27" (¢ + 1)27")  with
¢ # ¢ Then we have y,(x,y) =0.

PRrOOF.

(1) We have (x+ 27" @27 = (x®27") + 27", Thus the result
follows from the fact that y e [min(x,x @ 27"), max(x,x @ 27")] is
equivalent to

y+ 27" e min(x 4+ 27" (x+ 27 @27,

max(x + 27" (x + 27 @ 27)).
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(2) Let xe[d27",(d+1)27") for d e Ny where d = 2¢ or 2c+ 1. When
d = 2¢, it holds that 27" < x < x@®2"=x+27" < (c+1)27"
In the case d =2c+ 1, it holds that 27" ' <x@2"=x-2"<
x < (c+1)27"*1 Thus, in both cases, we have

[min(x,x @ 27"), max(x,x ®@27")] C [27" (¢ +1)27"1).
Then if ye[27"! (¢4 1)27"!) with é # ¢, we have
¥ ¢ [min(x,x @ 27"), max(x,x ®27")],
which implies y,(x,y) =0. O

In the next Lemma, we rewrite y,(x, y) using a characteristic function of x
for a fixed y.

LEmMA 2. Let ye[0,1), neN and ¢ € Ny satisfy y€[27"¢,27"(c+ 1)).
If ¢ =2c¢" for some integer ¢', we have
2" if xe 27, y] U2 e+ 1),y + 27",
0  otherwise.
And if ¢ =2+ 1 for some integer ¢', we have
2" if xely—27"27"¢) Uy, 2 "(c + 1)),
0  otherwise.

Proor. We only prove the case ¢ =2¢’ here since the case ¢ =2c¢' + 1
follows from the same argument. In this case, by Item 2 of Lemma 1, we
have that for all ye [27"*¢/ 27" (¢/ + 1)),

1n(x,¥) =0, x¢ 27" 27 (e 1), (8)

Let x€[0,1) and d € Ny satisfy x € [27"d,27"(d + 1)). We calculate y,(x, y)
in the three cases: d ¢ {2¢,2¢'+1}, d =2¢ and d =2¢' + 1.
We consider the case d ¢ {2¢’,2¢’ + 1}. By Condition (8), we have

In(x,») =0, xe27"d,27"(d + 1)).

In the case d =2¢/, that is, xe [27"1¢/,27"(2¢" + 1)), since x® 27" =
x+27", the fact that y,(x,y) =2" is equivalent to

X<y<x+27", 27 <y <2720 4 1).
So we have

2" if xe 27"y,

e = {5 L e,
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When d =2¢’ + 1, by a similar argument to the case d = 2¢’, we have

gy = (2 I R+, 27
X =
I Z 00 xe(y+27m 272 + 2)).

By combining these cases, we have the result. O
In the last lemma, we show that the function W (k) is periodic.

LeEMMA 3. We have that W (k) is a periodic function with period 2= for a
positive integer k = le 24,

ProoF. We proceed by induction on N. We prove the result for k = 2.
Let ¢ € Ny satisty ¢ <2%. We have that for ye[0,27%),

1
WRMY(y+2™) = | fys1(x, ¥+ c27")dx
0

(c+1)27

= ) ;{al+1(xay+ Czial)dx

C *(/l

274

= Hayr1(Z 427y +c27")dz
0

2-a 1

- 0 XalJrl(Z’ y)dZ - Jo XaHrl(Z? y)dZ = W(Zal)(y)

The second and fifth equalities follow from Item 2 of Lemma 1, the forth
equality follows from Item 1 of Lemma 1, and we use the change of variables
X=1z4 27 in the third equality.

Now we assume that the lemma holds for any ky = >~ 2% Then we
prove the result for the case k = ky + 29V satisfying ay,; < ay. Let c e Ny
satisfy ¢ < 29+, Then we have that for y e [0,271),

W(k}v + ZGNH)(J}_’_ CZ*GNH)

1
= | Hayor1 (¥ + 270 - Wik ) (x)dx
0

(c+1)279N+1
= Kay 11X ¥+ 27) - Wky ) (x)dx
2 7IN+1
27N+1
= Kay11(2 + €270y 427V - W(ky)(z 4 €27 )dz.
0 )

The second equality follows from Item 2 of Lemma 1, and we use the change
of variables x = z + ¢27%+! in the last equality. By the induction assumption
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and the fact ay,; < ay, we have that W(ky)(z+ d27+) = W(ky)(z) for
z€[0,27%+) and an integer d satisfying 0 < d < 2+. Thus we obtain

W(k]v + 211N+1)(y + 02*01\41)
27N+
N J Kay.41(Z 427Ny 4 270 - W(ky)(2)dz.
0

Then we continue the computation as follows:

274N+

Wky +29)(y + 27 = J Tay+1(29) - Wky)(2)dz
0

1

=, o) W) Gt
= Wi(ky +2)(p).

The first equality follows from Item 1 of Lemma 1 and the second equality

follows from Item 2 of Lemma 1. O]

2.2.2. Bound on the L? norm of the function W (k). Now we prove the
following bound on |[W(k)||,, using the properties of W (k) we proved
above.

LemMA 4. Let ke N.  We have that W(k)(x) = 0 for any x€[0,1) and,
for 1 < p < oo, we have

W), <2717

ProOF. By the definition of y,, it holds that
I 9) 20, x,yel01). ©)
By using this, we can show that
W(k)(x) =0, xel0,1), keN (10)

by induction, which is easy. We omit the proof here. We use this result to
prove the second statement.
Using Hoélder’s inequality, we have for 1 < p < oo,
1

WL, = L W (k)] - [ (k) (x)" e < W (K)o | W (R

Thus we have

W) < W)W ()P
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Then if we have ||W (k)| =1 and ||[W(k)|/,. =2, we have
1 1-1 _
IW )| < W E)| PN ()27 = 20-1r),

Therefore we need to prove that ||[W (k)| =1 and |W (k)| ;. =2 for any
k e N to complete the proof.

We prove the case k = S, 24 by induction on N. In the case k = 2%,
we have

1 pl
W@l = | | s

1 pmax(x,x@2"4")
:J J 20+ dydx = 1.
0 Jmin(x,x@2"41")

The first equality follows from Condition (9). We prove ||W(24)||;. =2 to
complete the case k =2%. By Lemma 3, we have

(W2 = sup [W2") ()= sup [W(2)(p)|
yelo,1) yel0,27m)

By Condition (9), we have

1
W@l = sup jmﬂmww
yelo,271) Jo

1 1
= max( sup J Kai+1 <X7 y)dxa sup J Aaj+1 (X, y)dx) .
yel0,27171) JO ye—a-12-a)J0

We calculate the supremum on [0,27%~!) and [27“~! 27@) separately. We
assume that ye[0,274~!). By Lemma 2, we have

2—a|—l+y

1 y
J Ty 1 (X, y)dx = J 20+ gx J 20+ g,
0 0 2-a-1

If we choose y =2"“~! we can maximize the right hand side. Hence we
obtain

2-a

1
sup J XLI]-H(X? y)dx = J 2(!]+1 Xm =2.
yel0,2-a-1) Jo 0

By the same argument we get the same result in the case ye [274~1 2-),
We omit the details. Therefore we have |[|[W(24)]||,. = 2.

Here we assume that |[W(ky)||,» =1 and |W(ky)|,. =2 for ky =
Zi]il 24, Then we prove that for the case k = ky + 2%+ with ay > ay:



Bounds on Walsh coefficients 167

|W(ky +2)|;0 =1 and ||W(ky +2%)|;. =2. By Condition (10) and
Fubini’s Theorem, we have

1

K1 (52 ) W (k) (x)dxdy = J W (o) (x) .

1 pl
W (ke + 290, = J J
0Jo

By Condition (10) and the assumption on ky, we obtain
1
[W (ke + 291 = L W (ky)(x)dx = | W (ky)|l1 = 1.
We also prove | W (ky +2%+1)||;.. =2 as follows. By Condition (10) and

Lemma 3, we have

W (hy +29)]l = sup Wky +29) ()
y€[0,279N+1)

yel0,27N+1 -1

1
— max< sup J T 1 (5 ) W (k) (x)dx,
) 0

1
sup j Hayos1 (X, ) W(km(x)dx) |
)

ye[2 v+~ 274N+

By Lemma 2 and Condition (10), we can calculate the supremum as in the case
k=24

1 “AIN+
SUPyefo -1y Jo a1 (509 W ) ()] _ Jz e () ()
SUPy, e p-av+1-1 2-av+1) jo Lay.1+1 (x, )W (kn)(x)dx 0

Then we obtain

2-aN+1
I G 22 = [ 200 W () ()
0

24N TAN+1 —] <i+1>2"’N
— pavertl Z J W (k) (x)dx
i=0 274N

2ANTUN+1 ] -ay
J W (o) () dx

— 20N+1+1 § :

i=0 0

2-ay
=2+l J W (kn)(x)dx.
0

The third equality follows from Lemma 3. Thus we have
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2N

I e+ 20 =291 [ ) (o)
0

2981 (i41)2-%
2y J W (o) ()
i=0

i2-aN

s L W (o) (x)dlx,

where the second equality follows from Lemma 3. By the assumption on ky
and Condition (10), it follows that

1
J, wten s = 1w = 1

and hence we obtain

W (ken + 2 ) = 2 [|W (kn) | 1 = 2. O

3. Bounds on the Walsh coefficients by derivatives

In this section, we show the bounds on the Walsh coefficients f(k) in
Theorem 2 using the following Lemmas 5 and 6, which we prove in the next
section. Lemma 5 gives the formula relating f (k) to dyadic differences 0; ,.f"
Via this lemma, we can obtain the formula relating f (k) to derivatives %
in Lemma 6. The bounds on the Walsh coefficients f(k) in Theorem 2 are
deduced by this formula.

We define the symbols used in the statements.

DEerINITION 5. We use the same symbols as in Definition 2. For k and u,
we define

w Son 29 if iew, w Yoiew 2% if iev,
k" = i . ki = It .
0 if ieS\v, = 0 if ieS\v,
and
k; = (kil,l[>)ieS’ kz = (kz'L,ﬁg)ieS’
kllJl> = (kilfi>)iev’ kgg = (kilfis)iev’
min(u, Ny) := (min(u;, Ni)), s, min(u, Ni,) := (min(u;, N7)); .,

|min(u, Ng)|; = Z min(u;, N;).
ieS
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When we analyze Walsh coefficients, it is suitable to use dyadic differences.
In fact, the k-th Walsh coefficient f(k) can be represented by 0; ,f as follows:

Lemma 5. Let feL'([0,1)%), ke Nj and ue (NgU{o0})’. Then we
have dy of € L'([0,1)°) and the formula:

k) = (=N gy 1 (k). (11)
Notice that dy  is the symbol introduced in Definition 2.

Formula (11) means that dyadic differences connect the k-th Walsh
coefficient f(k) to the weight function wi(k) for feL'([0,1)%).
Dyadic differences 0; ,f are similar to derivatives —f. Using the assump-
tion that f has continuous partial mixed derlvatlves we can coﬂrf;tinue to
Y

compute the right hand side in this formula to change J;,f into 3.

LEMMA 6. We write u= (uy,...,u;) € (NgU{c0})’. We assume that a
function f satisfies that its mixed partial derivatives up to order u; in each
variable x; are continuous on [0,1]°. Then for any vector k € N}, we have

(k) = <—1>‘mi“<“=Nk>‘ﬂz*”’n<k>j SN () - W (KL (x) - walie (X)dx.
0.1 <
Then we can get the following bound on |f(k)| which is a little more
general than Theorem 2:

LemMma 7. We assume the same assumptions as in Lemma 6. Then we
have

|f (k)| < 21/ . 2=k ||f(min(“-,Nkv))Hp < 0,
where 1 < p < oo and |- ||, is the norm defined in Theorem 1.

Proor. For k e N, the i-th component of k% equals 0 for i ¢ v. Since
W(0)(x) =1 and waly(x) =1 for any xe€0,1), we have for x = (x;);_, €
[0,1)°,

W(kY)(x) = H W (ki) () = [ Wk (xi) = w(ki)(x)
i=1

iev

and

walys (x Hwalk Xi) H Walk,f"’g (xi) = walg_(x,),
iev

where we write x, = (x;) Combining those facts with Lemma 6, we have

iev*
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(k)] < 277

J[o 1 vf(min<“"N">)(x) - W (kL)(x) - walie (x)dx

[ (] e maxg,
[0, D\ Jjo, 1)!5\

- W(ky o) (x,) - walge (X,)dX,|.

—

By the definition of the Walsh functions, it holds that [walxe (x,)| =1 for any
€[0,1)". Then we have

a2 | W) (3,

J e f(min(u‘Nk))(X)de\r
[0,1)5\

< 2_/1:,(]()||f'(min(ll.Nku)) ||P N oo

where we used Holder’s inequality in the second inequality. By Lemma 4, we
have

I &S oo = [T IR s < 2107,

iev
Thus we obtain the result. O]

As we mention in Definition 3, when u; = eNU{ow} for every i,
o (k) = pl (ky;0) = ! (k,). Then Theorem 2 follows from this lemma as a
corollary.

In the following section, we will prove Lemma 5 and 6. From now, we
denote by [];_, ¢; the composition of operators ¢, o---0g@,.

4. Formulas on the Walsh coefficients

Here we prove the formulas on the Walsh coefficients (k) in Lemmas
5 and 6. In order to proceed with the proof, we introduce the following
symbols:

DEFINITION 6. We use the same notation as in Definition 2. Let
P=0P)icor 4= 1(41);c, € NP with 1 < pi <qi <N;. For given ke Nj, we
use the following symbols in the proofs below

dg = H a,"aqu],

i€v,pi<j<q
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where the product means the composition of operators. Notice that, for
a function f, dy,f is written as dgf where p=(1,...,1) and q=
(min<Ni7ui))iev'

4.1. Formula relating the Walsh coefficients to the dyadic differences. We
prove the formula in Lemma 5, which represents the relationship between the
Walsh coefficients f(k) and the dyadic differences 0;,f.

ProoF. We prove only the case s = 1 here. In the case s > 1, we obtain
the result by applying the same method in a component-wise fashion.

We easily obtain the first statement as follows. Let k1 = Z}i‘l 24%.  Since
Oa+1f is the sum of f(-@®27%7")eL'([0,1)) and feL'([0,1)), we have
01,441/ € L'([0,1)). By repeating this argument, we have dy, ., / € L'([0,1)).

 We show the second statement inductively. We omit the case k; =0 or
u; =0 since the proof is easy. We show the case u; = 1:

flk) = (=1)- 27972 0y g1 f (), (12)

where k| = Ej/i‘l 2¢%. By changing variables x| — x; @27%"! we have

1
J f(x1® 2_”f_]) - walg, (x1)dx;
0

M ‘

27971 (2¢41)
J S+ 2’“/"1) - walg, (x1)dx

-1
9T 2¢

27471 (2e42)
+ J f(x1 - 27(1"71) . walkl (xl)dxl

27457 (2¢+1)

—1 /2797 (2e42)
= J f(xl) -Walkl (x1 - Ziafil)dxl
0

27471 (2¢+1)

2747 (2e41)
+ J 1 S(xr1) - walg, (x; + 2_”f_])dx1>
2797 2¢

I
_.»

) - walg, (x; @279 )dx1

J ) - waly, (x1) - waly, (279 1 dx,

= _L Sf(x1) - walg, (x1)dx,
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where the last three identities follow from the definition of the Walsh functions.
Using this calculation, we obtain

1

Grgnif (k) = 22971 j £ (61) - waly, (v}t = (=1) - 2972 - f (k).

We write U = min(u;,N;). Using (12) inductively, we obtain
A f (k1) = A7F (k) = (=1) - 27 - 4f (k)

- (_1)2 Y at2) .@(kl) =...=(-1Y. 2 iy (k) - k),

which is the result. Notice that d for 1 < p < g is one dimensional version
introduced in Definition 6. O

4.2. Formula relating the Walsh coefficients to derivatives. In this subsection
we prove the formula in Lemma 6, which represents the relationship between
the Walsh coefficients f(k) and the derivatives % This is done by unveiling
the relationship between derivatives and dyadic differences.

To proceed with the following proofs, we define some symbols.

DEerFINITION 7. We use the same symbols as in Definition 2 and 6. We
define the following functions

Win(X1,. .., Xs) = waly (X;), (x1,...,x5) €[0,1)°,
wi(x1, . xg) = H Wi a +1(X1, ., Xy), (X1,...,x5) €[0,1)°,
iev,pi<j<q;

where the product means the multiplication of function values. Notice that,
using this notation, we can rewrite the k-th Walsh function as follows:
l — (Nf>iex:
walgy = w(l,m,l)'
Further we define the following operators

W0i n(9) == Win - 0in(g) for g:[0,1)" - R,

wdi ;= H W0i,a, 41,
ievpi<j<qi
where w; , - 0; ,(g) means the product as a function and the product symbol in
the second line means the composition of operators.

4.2.1. Important properties of dyadic differences. In order to prove Lemma 6,
we show some properties of dyadic differences 0;,. We first show that the
function w; , and the operator 0;, commute.
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LEmMMA 8. When (i,n) # (j,m) e N2, for a function g:[0,1)° — R, we
have the following identity as a function on [0,1)":

Wim ai,n(g) = ai,n(g : Wj,M)-
PrOOF. We omit the proof here since it is easy. O
Next we prove that wdj is an operator on L'([0,1)%).

LEMMA 9. We use the same symbols as in the above definition. For a
function g e L'([0,1)"), we have wdig e L'([0,1)").

ProOF. By the above lemma, we have that wdjg equals wj-djg as
a function on [0,1)°. By the definition of the Walsh functions, we see
wi(x)| =1 for xe0,1)°. Since djg is the sum of the functions in
L'([0,1)") as in the proof of Lemma 5, we have dige L'([0,1)%). Thus
the product wdlg(=wg-dlg) is in L'([0,1)"). m

The following Lemma is the key to proving Lemma 6, which replaces

wd; ,(g) with the derivative g—f

LemMA 10. Let n,s,ie N satisfy s >i. Let g:[0,1]° — R, as a function
of the ith component x;, satisfy
ge CY (27" e, 27" (c+ 1)), ¢=0,....2" 1. (13)
Then for any z = (z1,...,z,) €[0,1)°, we have
1 6g
(Wai,n(g))(z) = a_ (Zl7 ey Zicly Yy Zigly e e - aZA‘> . Xn(zh y)dy
0 OXi
Notice that, since g—i is defined on the support of x,(zi, ), this integrand is
defined for y e |0,1).

Proor. Let ¢’ € Ny satisfy z; € 27"¢',27"(¢’ + 1)). We consider the two
cases: ¢ =2c and ¢’ =2c¢ + 1 for some integer c. We only calculate the case
¢’ = 2c since the other case can be calculated in the same way. In this case, by
the fact w; ,(z) =1 for z; € [27"¢',27"(¢’ + 1)) and Assumption (13), we have

(w0in(9))(2) = win(z) - (0i,n(9))(2)
=1-2"(g(z1y...,z; + 27" ... z5) — g(z1,. .., Zy))

Zi427 a
= L d
- .—\7(217'"7Zi—17yvzi+1>"~»zs)y
z: OXi

1
dg
= JOE(zla'--7zi717y7zi+l7"'725) 'Xn(zhy)dy'



174 Takehito YOSHIKI

The last equality follows from [z;,z; +27"] = [min(z;,z; @ 27"), max(z;,z; @
27™")] and the definition of y,,. O

4.2.2. Proof of Lemma 6. Now we prove Lemma 6 using the lemmas above
and Lemma 5.

ProOF. We prove the case s=1. We omit the case k<; =0 or u; =0
since the proof is easy. We write ky =3 ;2% and U =min(u;,N) here.
We assume that u; > 1, then we calculate d, ,, f (ki) as follows:

. _ 1
Ao f (k) = 497 (ki) = L @CF) (1) - Wi (o )y

1
- jﬁ wdl(f - wll, ) (n)dx,

where we used Lemma 8 in the third equality. Notice that d is one dimen-
sional version defined in Definition 6 and w/, wd/ are one dimensional versions
introduced in Definition 7, where 1 < p <¢. Using the assumption on f and
the definition of the Walsh functions, we have that

fowd e (e 2w e 1)),

and we have

d & B
ae o= (G wta) e ez e,

with 0 < ¢ < 2¢vatl 1,

Let n>1 and 0 < ¢’ < 2" be integers. By the definition of wd; ,, we
have that, if ge C!([¢’27", (¢’ +1)27")), it holds that wd; ,ge C'([c'27",
(¢"+1)27")) and ﬁl(wél_ng) = w&lﬁn(%”l) on [¢27", (' +1)27").

Since 279v+1 > 27 if we take g = f - w{),, and n = ay + | here, we have

d d
d_xl (Wot,ap1(f - Wgﬂ)) = W01 ay+1 (d_){l : Wgﬂ)

on [c27 ! (¢4 1)27%),
where 0 < ¢ <2%*! — 1. Applying this argument inductively, we have

d ar —a— —ay—
d—x](wdzu(f-wgﬂ)):wdf(d—)ﬁ-wngl) on [e277 ! (c+1)27%7 ),

where 0 <c<2%*t! — 1. Since 27»"! >27% we can take n=a; + 1 and
g=wdy(f w 41) in Lemma 10. Then we continue the computation of
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d;;;lf(kl) as follows:

_ 1
A f (k1) = L W1 (WY (f - W 1)) ()b,

1 1 d d
-] (L Za(x1, ) - Wil (d—f; - wN) (y)dy) .

By the definition of the Walsh functions, we have that wy,, eLl([O,l)).
Using this fact and the assumption on f, we have % wy., e L'([0,1)).

Therefore if we take g =

df -w(,; in Lemma 9 and consider the fact that

a1 (x1, ¥)| < 2971 for any x1,y€[0,1), we see that the integrand y, . -

Uldf N
wdy (g Vo

) in the last line is in L'([0,1)?). Thus we can use Fubini’s

Theorem as follows:

df

1 1
i 00) = [ ([ 2 ) wa (5w Y s
Jo \Jo Y

1
= | waf (EJZJ; WU+1>(y)- wQ2)(y)dy

Jo

1
= | wdy (;Zl WU+1>( 1) - W(29)(x1)dx.

Jo

By repeating the argument we have

iy f (K1) =

0

0

0

0

! U df N a
W611a2+1 (Wd3 (dx1 . WU+1)> (xl) . W(Z 1)()61)0’)61

I(J; a1 (X1, ) - wdy <dzf WU+1>(y)dJ’> - W2 (x1)dxy

1 1 dzf
(j Saer (¥1,3) - W<2“1><x1>dx1) wa? (dy - wN) (3)dy

! U de N ap a
wa (53wl ) () W+ 2) (0)dy

! dzf N ap a
W (5wl ) () W20 2 (n)dy
1

[ (Gef o wi o
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Combining Lemma 5 we have the result for s=1. By calculating in a
component-wise manner, we have the result for the case s> 1. We omit
that case here. ]

In fact, we can determine the sign of f(k) for a special case.

CoROLLARY 1. Let f e C*([0,1]") and ke N;. We use the symbol N;
appearing in Definition 2. Then if fN-=N)(x) >0 for every xe0,1)°, we
have f(k)-(—1)Z~" > 0.

Proor. By Lemma 4 and the fact W(0)(x) = 1 for any x € [0, 1), we have
that W (k)(x) =[], W(k:)(x;) =0 for any x = (x;);_, €[0,1)*. By combin-
ing this fact and the assumption on f™i--MJ) we have that the product
SN U (K) s positive over [0,1)°. Thus, by Lemma 6 with u; = oo we
have

~ /

f(k) - (_1)2?:1 Ni o=l (k) J[O l)vf(Nl,...,N\,)(X) W) (x)dx > 0,

which is the result. O

5. Koksma-Hlawka inequality for smooth functions

In this section, we prove the Koksma-Hlawka type inequalities for smooth
functions in Theorem 1, which show the bounds on the QMC integration error.
We first show that under the assumptions in Theorem 1 we have f(x)=
Zkemg £ (k) waly(x) for every xe[0,1)*. To do so, we use [14, Lemma 18].
This lemma states that if f is continuous on [0,1]" and EkeNg |f(k)| < o0
then

Jx) =) f(k) wal(x) (14)

keNj

for every xe[0,1)’. We now show that f is continuous on [0,1]° and

2ken; [f(K)| < 0.

The condition that f is continuous on [0, 1]* follows from the assumption
on f. We confirm that Zke]Ng |f(k)| < o0 in the following way. If we apply
Theorem 2 for oo =2, we have

Yo Fm®I= Y Y 1/ (k;0)]
ke N;\{0} P#vCSk, e NI

< Z Z 2‘”‘/[72_/42,(](1')||f'(min(2~Nku))H
P#vCSk, e N

p
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< Z Z plel/pp k) max || f® ||

G ne{1,2}/
<2 max | ||f(n/) I Z Z 2~y (ko)
n’e{0,1,2}" B#vCS K, e NI

Note that the LP-norm || /|, == (o s |/(x)|Pdx)""” is different from the norm
[/, defined in Section 1. Thus we have

YW=+ Y 1K)

keNj keNg\{0}

<27 max | f™
n'ef{0,1,2)°

F#vCSk, eNl

(” >y o

Since maxy, , ™)., < o holds by the assumption on f, we have
only to show the last summation is finite. We prove this in the following
way:

1+ Z Z 2-#(k) — (1 + Z 2/12'(1())

P #vCSk, e NV keN

= (1 +y 2774 > > 2’1’24)S

leNy I, b eNo, h<h keNy, k<2l
3 32
hL— = -4 -
lzzzz <(3+2 2(4) <o
L €Ny heNy

Thus we apply Formula (14) to f to get
[Err(f: ) =“ ax— 3 fx ‘ o 3 k) wa(x
(0.1’ ‘ |xe/’ xe’/kelN‘

Now we introduce the character property of the Walsh functions. Let £ be
a digital net in [0,1)" where |2| =2". Then we have (see [10, Lemma 4.75])

T {zm if ke 2+,
walg (x i
= 0  otherwise.

Using this fact, we have

< > W= > 1 (ks0).

xe2+\{0} D#vCSk, e P+

|[Err(f;2)| = ‘f(O) - > K

xep+
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Let e NU{o0} with « >2 and | < p,q,¢' < oo such that 1/¢+1/¢' = 1.
Applying Theorem 2 to f, we have

|Err(f; 2)| < Z Z 2|U‘/p2*/“;(kz‘)||f(min(05:Nky))||p

v keP*

< Z yol2le sup ||f'(°’-v)||p N Z 2 —#; (ki)
v ape{l,...,a}" k,e 2+

< Hf”,%‘,,y,p,q’ X %:V-Q(WL

where we used Holder’s inequality in the last inequality.
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