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A fixed contact angle condition for varifolds
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Abstract. We define a generalized fixed contact angle condition for n-varifold and

establish a boundary monotonicity formula. The results are natural generalizations of

those for the Neumann boundary condition considered by Grüter-Jost [7].

1. Introduction

Almgren proposed varifold as a generalized manifold in [3] and Allard

established a number of fundamental properties of varifold such as rectifiability,

compactness and regularity theorems in [1]. One of the key tools to analyze

the local properties of varifold is the monotonicity formula [1, Section 5], which

gives a good control of measure whenever the first variation is well-behaved.

When a varifold has a ‘‘boundary’’ in a suitable sense, one expects to have

a modified monotonicity formula under a suitable set of assumptions. Loosely

speaking, with prescribed C 1;1 boundary (which one may regard as ‘‘Dirichlet

boundary condition’’), Allard obtained a monotonicity formula at the boundary

[2] as well as the regularity theorem up to the boundary. The result is

improved recently by Bourni to C1;a boundary [4]. For Neumann boundary

condition, which corresponds roughly to the prescribed right angle condition,

Grüter and Jost [7] derived a monotonicity formula by using a reflection

technique and obtained the regularity theorem up to the boundary.

As a further inquiry, it is natural to extend the Neumann boundary

condition to more general fixed contact angle condition. The condition arises

naturally in various capillarity and free boundary problems, where the bound-

ary of domain under consideration has non-trivial amount of surface energy.

For such problem, Taylor [11] established the boundary regularity for area

minimizing surfaces. More recently, De Philippis and Maggi [5] proved the

boundary regularity for minimizers of anisotropic surface energy. For min-
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imizing problems, one does not necessarily need a monotonicity type formula

since one can obtain upper and lower energy density ratio bounds by some

energy comparison argument. Here, motivated by the dynamical problem

such as the mean curvature flow, we would like to investigate the notion of

fixed contact angle condition for general varifolds which do not necessarily

correspond to energy minimizing case. As far as we know, this aspect has not

been studied in a general setting of varifold so far.

In this paper, we introduce a notion of contact angle condition for general

varifolds. Our condition is satisfied for smooth hypersurface having a fixed

contact angle with the boundary of domain under consideration. It is stated in

terms of the first variation of varifolds and generalized mean curvature vectors,

and such condition is satisfied for a limit of di¤used interface problem ([8]).

With a natural integrability condition on the generalized mean curvature

vector, we prove that a modified monotonicity formula holds. The results

are natural generalizations of those for the Neumann boundary condition

considered by Grüter-Jost [7].

The paper is organized as follows. Section 2 lists notation and recalls

some well-known results from geometric measure theory. In Section 3, we

state the definition of fixed contact angle condition and discuss the implications

such as the monotonicity formula. In Section 4, we prove the monotonicity

formula and we give a few final remarks in Section 5.

2. Notation and basic definitions

2.1. Basic notation. In this paper, n will be a positive integer. For 0 < r < y
and a A Rnþ1 let

BrðaÞ :¼ fx A Rnþ1 : jx� aj < rg:

We denote by Lk the Lebesgue measure on Rk and by Hk the k-dimensional

Hausdor¤ measure on Rnþ1 for each positive integer k. The restriction of Hk

to a set A is denoted by HkbA. We let

ok :¼ Lkðfx A Rk : jxj < 1gÞ:

For any Radon measure m on Rnþ1, f A CcðRnþ1Þ and m measurable set A,

we often write

mðfÞ :¼
ð
R nþ1

f dm; mðAÞ :¼
ð
A

dm:

Let the support of m be

sptðmÞ :¼ fx A Rnþ1 : mðBrðxÞÞ > 0 for all r > 0g:
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Let Ykðm; xÞ be the k-dimensional density of m at x, i.e.,

Ykðm; xÞ :¼ lim
r!0þ

mðBrðxÞÞ
okrk

;

if the limit exists.

2.2. Homogeneous maps and varifolds. Let Gðnþ 1; nÞ be the space of

n-dimensional subspaces of Rnþ1. For S A Gðnþ 1; nÞ, we identify S with

the corresponding orthogonal projection of Rnþ1 onto S. Let S? be the

orthogonal complement of S and we sometimes treat S? as the orthogonal

projection Rnþ1 onto S?. For two elements A and B of HomðRnþ1;Rnþ1Þ,
we define a scalar product as

A � B :¼
X
i; j

AijBij :

The identity of HomðRnþ1;Rnþ1Þ is denoted by I . For these elements A and

B, we define the product, the operator norm and the spectrum norm as

ðA � BÞij :¼
X
k

AikBkj; kAk :¼ sup
jxj¼1

jAxj; jAj :¼
ffiffiffiffiffiffiffiffiffiffiffi
A � A

p
;

respectively.

We recall some notions related to varifold and refer to [1, 10] for more

details. In what follows, let X � Rnþ1 be open and GnðXÞ :¼ X �Gðnþ 1; nÞ.
A general n-varifold in X is a Radon measure on GnðXÞ and VnðX Þ denotes

the set of all general n-varifolds in X . For V A VnðXÞ, let kVk be the weight

measure of V , namely,

kVkðfÞ :¼
ð
GnðXÞ

fðxÞdVðx;SÞ for f A CcðX Þ:

For any Hn measurable countably n-rectifiable set M � X with locally finite

Hn measure, there is a natural n-varifold jMj A VnðX Þ defined by

jMjðfÞ :¼
ð
M

fðx;Tanx MÞdHnðxÞ for f A CcðGnðX ÞÞ;

where Tanx M A Gðnþ 1; nÞ is the approximate tangent space which exists Hn

a.e. on M. In this case, the weight measure of jMj equals to HnbM . We

note that n-dimensional density of this varifold is equal to 1 Hn a.e. on M.

For V A VnðXÞ, let dV be the first variation of V , namely,

dVðgÞ :¼
ð
GnðXÞ

‘gðxÞ � S dVðx;SÞ for g A C1
c ðX ;Rnþ1Þ:
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Let kdVk be the total variation when it exists, and if dV is absolutely con-

tinuous with respect to kVk, we have kVk measurable h with

dVðgÞ ¼ �
ð
X

h � gdkVk for g A C1
c ðX ;Rnþ1Þ:

The vector field h is called the generalized mean curvature vector of V .

3. Main results

We first give a definition and then explain why it may be regarded as a

generalized fixed contact angle condition for a varifold.

3.1. Fixed angle condition. We assume that W � Rnþ1 is a bounded open set

with C2 boundary qW.

Definition 3.1. Given V A VnðWÞ with kVkðWÞ < y, Hn measurable set

Bþ � qW and y A ½0; p�, we say that ‘‘V has a fixed contact angle y with qW at

the boundary of Bþ’’ if the following conditions hold.

(A1) The generalized mean curvature vector h exists, i.e.,ð
GnðWÞ

‘gðxÞ � S dVðx;SÞ

¼ �
ð
W

gðxÞ � hðxÞdkVkðxÞ for g A C1
c ðW;Rnþ1Þ:

(A2) By setting s :¼ cos y, we haveð
GnðWÞ

‘gðxÞ � S dVðx;SÞ þ s

ð
Bþ

divqW gðxÞdHnðxÞ

¼ �
ð
W

gðxÞ � hðxÞdkVkðxÞ ð3:1Þ

for all g A C1ðW;Rnþ1Þ with g � nqW ¼ 0 on qW, where divqW is the

divergence on qW and nqW is the outward unit normal vector on the

boundary qW.

Let us give a justification for the definition. Due to kVkðWÞ < y, by

setting V ¼ 0 outside of W, we may extend V to the entire Rnþ1 as an element

in VnðRnþ1Þ and we will regard V in this way in the following. The condition

(A1) means equivalently that the first variation dV is absolutely continuous

with respect to kVk. Geometrically speaking, if V ¼ jMj with some smooth

surface M, this means that there is no boundary of M in W since any presence
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of boundary in W gives a singular dV . To better explain a motivation for the

notion, let us assume the following boundedness of the first variation in W,

namely,

sup
g AC 1ðW;R nþ1Þ; jgja1

dVðgÞ < y: ð3:2Þ

We may include (3.2) as ‘‘(A3)’’ in Definition 3.1, but as we will see, (3.2) is

not needed to prove the subsequent monotonicity formula. With the zero

extension of V , (3.2) means that V has a bounded first variation dV on

Rnþ1. We should emphasize that this is typically di¤erent from the first

variation as an element of VnðWÞ. The condition (A1) implies that dVbW ¼
�hkVkbW. On the other hand, dVbqW is singular with respect to kVk when-

ever it is nonzero, since kVkbqW ¼ 0. By the definition of the first variation,

we haveð
GnðWÞ

‘gðxÞ � S dVðx;SÞ ¼
ð
GnðR nþ1Þ

‘gðxÞ � S dVðx;SÞ ¼
ð
W

gðxÞ � dðdVÞðxÞ:

Since dVbW ¼ �hkVkbW, the condtion (A2) implies thatð
qW

g � dðdVÞ þ s

ð
Bþ

divqW g dHn ¼ 0 ð3:3Þ

for all g A C1ðW;Rnþ1Þ with g � nqW ¼ 0. If s ¼ cos y0 0 (or y0 p=2), (3.3)

implies that Bþ has a finite perimeter in qW. By De Giorgi’s theorem (see

[6, Theorem 5.16]), the second term may be expressed as

s

ð
q �Bþ

g � nBþ dHn�1 ð3:4Þ

where q�Bþ is the reduced boundary of Bþ which is countably ðn� 1Þ-
rectifiable and nBþ is the outer pointing unit normal to q�Bþ which exists

Hn�1 a.e. on q�Bþ. Now, define nV ¼ dV
kdVk on qW so that nVkdVk ¼ dV .

Then (3.3) and (3.4) mean that we haveð
qW

g � nVdkdVk þ s

ð
q �Bþ

g � nBþ dHn�1 ¼ 0: ð3:5Þ

Since nBþ is tangent to qW, (3.5) shows that

ðnV � ðnV � nqWÞnqWÞkdVk ¼ �snBþHn�1bq �Bþ ð3:6Þ

on qW.

Let us see what the above means in the case of smooth surfaces. Suppose

that V ¼ jMj with a C2 n-dimensional surface M � W without boundary inside
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W but with a nontrivial boundary qM in qW. Suppose also that Bþ has

a smooth boundary qBþ. Then nV corresponds to the unit co-normal of

qM pointing outwards. We also have kdVkbqW ¼ Hn�1bqM in this case. The

reduced boundary q�Bþ is the usual boundary qBþ. Then (3.6) means that

we need to have qBþ � qM, and

nV ¼ nqW on qMnqBþ;

nV � ðnV � nqWÞnqW ¼ �snBþ on qBþ:
ð3:7Þ

The first case means that qM intersects qW with 90 degree if it is not part

of qBþ. The second case is precisely the fixed angle condition in the sense

that the angle formed by nV and �nBþ is y (see figure 1). This is the reason

for the definition of the fixed angle condition. Above discussion does not

make sense unless (3.2) is satisfied, so we understand the definition in a weak

sense in this case. Interestingly, for varifolds arising from singular pertur-

bation limit problems, finiteness of the first variation (3.2) is automatically

satisfied, see [8, 9]. On the other hand, the subsequent monotonicity formula

holds even without (3.2), and we think it better if (3.2) is not included as a

part of the definition for a broader applicability of the notion.

If we assume that there exists an open set U � Rnþ1 such that M ¼
W \ qU and Bþ ¼ qW \U , then, qM ¼ qBþ and the first case of (3.7) does not

happen. In the application to the di¤used interface limit problem with a fixed

angle condition [8], the varifold V arises as a ‘‘phase boundary’’ in a sense and

the presence of Bþ follows naturally.

3.2. The monotonicity formula. The following Theorem 3.2 is a natural

generalization of monotonicity formula of Grüter-Jost [7] to the fixed angle

condition defined in the previous subsection. To present the statement, we

Fig. 1. The figure for the smooth surface M
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need some more notation. Suppose W � Rnþ1 is a bounded open set with C2

boundary qW. Define K as

K :¼ kprincipal curvature of qWkLyðqWÞ:

For s > 0, define a subset Ns of Rnþ1 by

Ns :¼ fx A Rnþ1 : distðx; qWÞ < sg:

For any boundary point b A qW let

tðbÞ :¼ Tanb qW and nðbÞ :¼ tðbÞ?:

There exists a su‰ciently small

s0 A ð0; K�1�

depending only on qW such that all points x A Ns0 have a unique point

xðxÞ A qW such that distðx; qWÞ ¼ jx� xðxÞj. By using this xðxÞ, we define

the reflection point ~xx of x with respect to qW as ~xx :¼ 2xðxÞ � x and the

reflection ball ~BBrðaÞ of BrðaÞ with respect to qW as

~BBrðaÞ :¼ fx A Rnþ1 : j~xx� aj < rg:

In the case for x A qW, we note that xðxÞ ¼ ~xx ¼ x. If y A Rnþ1, we set

ixðyÞ :¼ tðxðxÞÞy� nðxðxÞÞy:

Theorem 3.2. Given V A VnðWÞ with kVkðWÞ < y, Hn measurable set

Bþ � qW and y A ½0; p=2�, suppose that V has a fixed contact angle y with qW

at the boundary of Bþ, as in Definition 3.1. Assume that for some p > n and

G b 0, we have

1

on

ð
Ns0

\W
2jhðxÞjpdkVkðxÞ

 !1=p
aG: ð3:8Þ

Then there exists a constant Cb 0 depending only on n such that for any

x A Ns0=6 \W,

kVkðBrðxÞÞ þ kVkð ~BBrðxÞÞ þ 2sHnbBþðBrðxÞÞ
onrn

� �1=p
1þ CKr 1þ 1

p� n

� �� �

þ Gr1�n=p

p� n
ð3:9Þ

is a non-decreasing function of r in ð0; s0=6Þ. Here s ¼ cos y. In the case that

y A ðp=2; p�, the same claim holds with s and Bþ replaced by �s and qWnBþ in

(3.9), respectively.

See Section 5 for more discussion.
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4. Proof of Theorem 3.2

The proof of the monotonicity formula (3.9) is similar to that of Grüter-

Jost [7] except that we use (3.1) with s0 0. For completeness, we present the

proof in this section.

First, we need to estimate the derivatives of xðxÞ and ix, and we cite the

following lemma ([2, Lemma 2.2]).

Lemma 4.1. The following statements hold.

( i ) x is continuously di¤erentiable in Ns0 .

( ii ) For x A Ns0 , QðxÞ :¼ ‘xðxÞ � tðxðxÞÞ is symmetric,

QðxÞ � nðxðxÞÞ ¼ 0 ð4:1Þ

and

kQðxÞka K distðx; qWÞð1� K distðx; qWÞÞ�1: ð4:2Þ

(iii) For b A qW,

k‘qWnðbÞk ¼ k‘qWtðbÞka K ð4:3Þ

holds.

In addition, we need the following.

Lemma 4.2. Assume a A Ns0 and r > 0 satisfy distða; qWÞa r and BrðaÞ �
Ns0 . Then for any point x A ~BBrðaÞ

distðx; qWÞa 2r ð4:4Þ

and

~BBrðaÞ � B5rðaÞ: ð4:5Þ

Proof. For any x A ~BBrðaÞ, we have by the assumption distða; qWÞa r

distðx; qWÞ ¼ distð~xx; qWÞa j~xx� aj þ distða; qWÞ < 2r;

which shows (4.4). Using (4.4) we have

jx� aja j2xðxÞ � x� aj þ 2jxðxÞ � xj ¼ j~xx� aj þ 2 distðx; qWÞ < 5r

and hence (4.5) holds.

Proof (Proof of Theorem 3.2). First, for y A ðp=2; p�, usingð
qW

divqW gðxÞ dHnðxÞ ¼ 0
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for g tangent to qW, we may replace s by �s and Bþ by qWnBþ in (3.1).

Thus in the following, we may assume without loss of generality that sb 0.

For any point a A Ns0=6 \W, we choose for (3.1) the test function to prove

the monotonicity formula around a. Let g A C1ðRÞ satisfy

gðtÞ ¼
1; ta

r

2
;

0; tb r

8<
:

and g 0ðtÞa 0 for any t, where a constant r > 0 satisfies 0 < ra s0=6. Thus

the boundary point xðxÞ is defined for x A BrðaÞ from distðx; qWÞa s0=3. Let

the vector field g be

gðxÞ ¼ gðrÞðx� aÞ þ gð~rrÞðixð~xx� aÞÞ;

where r ¼ jx� aj and ~rr ¼ j~xx� aj. This vector field g may satisfy the property

g � nqW ¼ 0 on qW by the following argument. For x A qW, x ¼ ~xx ¼ xðxÞ yields

r ¼ ~rr and

ixð~xx� aÞ ¼ tðxÞðx� aÞ � nðxÞðx� aÞ:

Thus, we have

gðxÞ ¼ gðrÞftðxÞðx� aÞ þ nðxÞðx� aÞg þ gðrÞftðxÞðx� aÞ � nðxÞðx� aÞg

¼ 2gðrÞtðxÞðx� aÞ

and hence g � nqW ¼ 0 holds on qW. To substitute g in (3.1), we calculate the

gradient of g

‘gðxÞ ¼ ‘ðgðrÞðx� aÞÞ þ ‘ðgð~rrÞðixð~xx� aÞÞÞ: ð4:6Þ

For the first term of right hand side of (4.6), we have by a simple calculation

‘ðgðrÞðx� aÞÞ ¼ rg 0ðrÞ x� a

r
n

x� a

r

� �
þ gðrÞI :

For the second term of right hand side of (4.6), we calculate the following

matrices M and N:

‘ðgð~rrÞðixð~xx� aÞÞÞ ¼ q

qxi
ðgð~rrÞÞðixð~xx� aÞÞj

� �
þ gð~rrÞ

qðixð~xx� aÞÞj
qxi

� �

¼: ðMijÞ þ ðNijÞ: ð4:7Þ

Calculation of M: By the definitions ~xx ¼ 2xðxÞ � x and ~rr ¼ j~xx� aj, we

have
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q

qxi
ðgð~rrÞÞ ¼ g 0ð~rrÞ q

qxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x1ðxÞ � x1 � a1Þ2 þ � � � þ ð2xnþ1ðxÞ � xnþ1 � anþ1Þ2

q

¼ g 0ð~rrÞ
~rr

X
k

2
qxkðxÞ
qxi

ð~xx� aÞk

 !
� ð~xx� aÞi

( )
:

Thus, the matrix element of M is represented by

Mij ¼
g 0ð~rrÞ
~rr

X
k

2
qxkðxÞ
qxi

ð~xx� aÞkðixð~xx� aÞÞj

 !
� ð~xx� aÞiðixð~xx� aÞÞj

( )

and hence, by QðxÞ ¼ ‘xðxÞ � tðxðxÞÞ and ix ¼ tðxðxÞÞ � nðxðxÞÞ, we have

M ¼ g 0ð~rrÞ
~rr

f2‘xðxÞ � ðð~xx� aÞn ixð~xx� aÞÞ � ð~xx� aÞn ixð~xx� aÞg

¼ g 0ð~rrÞ
~rr

f2QðxÞ � ðð~xx� aÞn ixð~xx� aÞÞ þ ix � ðð~xx� aÞn ixð~xx� aÞÞg

¼ ~rrg 0ð~rrÞ 2QðxÞ � ~xx� a

~rr
n ix

~xx� a

~rr

� �� �
þ ix

~xx� a

~rr

� �
n ix

~xx� a

~rr

� �� �
: ð4:8Þ

Calculation of N: We define the matrix LðxðxÞÞ by LðxðxÞÞ ¼ tðxðxÞÞ�
nðxðxÞÞ ¼ ix and calculate as

q

qxi
ðixð~xx� aÞÞj ¼

q

qxi

X
k

LjkðxðxÞÞð~xx� aÞk

 !

¼
X
k

X
l

qLjk

qxl
ðxðxÞÞ qxl

qxi
ðxÞ

 !
ð~xx� aÞk

þ
X
k

LjkðxðxÞÞ 2
qxk
qxi

ðxÞ � dik

� �
;

where dik is the Kronecker delta. By using this calculation, QðxÞ ¼ ‘xðxÞ�
tðxðxÞÞ and (4.1), we obtain

N ¼ gð~rrÞf‘xðxÞ � ‘qWLðxðxÞÞ � ð~xx� aÞ þ 2‘xðxÞ � TðxðxÞÞ � TðxðxÞÞg

¼ gð~rrÞfðQðxÞ þ tðxðxÞÞÞ � ‘qWðt� nÞðxðxÞÞ � ð~xx� aÞ

þ 2ðQðxÞ þ tðxðxÞÞÞ � ðtðxðxÞÞ � nðxðxÞÞÞ � tðxðxÞÞ þ nðxðxÞÞg

¼ gð~rrÞfðQðxÞ þ tðxðxÞÞÞ � ‘qWðt� nÞðxðxÞÞ � ð~xx� aÞ þ 2QðxÞ þ Ig; ð4:9Þ

where � � � � � has to be interpreted appropriately.
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Substituting (4.8) and (4.9) in (4.7), we have

‘gðxÞ ¼ ðgðrÞ þ gð~rrÞÞI þ rg 0ðrÞ x� a

r
n

x� a

r

� �

þ ~rrg 0ð~rrÞ ix
~xx� a

~rr

� �
n ix

~xx� a

~rr

� �� �
þ gð~rrÞ~ee1ðxÞ � ~rrg 0ð~rrÞ~ee2ðxÞ;

where

~ee1ðxÞ ¼ 2QðxÞ þ ftðxðxÞÞ þQðxÞg � ‘qWðt� nÞðxðxÞÞ � ð~xx� aÞ;

~ee2ðxÞ ¼ �2QðxÞ � ~xx� a

~rr
n ix

~xx� a

~rr

� �� �
:

Thus, for any S A Gðnþ 1; nÞ

‘gðxÞ � S ¼ nðgðrÞ þ gð~rrÞÞ þ rg 0ðrÞð1� jS?ð‘rÞj2Þ

þ ~rrg 0ð~rrÞ 1� S? ix
~xx� a

~rr

� �� �����
����
2

 !

þ gð~rrÞe1ðx;SÞ � ~rrg 0ð~rrÞe2ðx;SÞ;

where

e1ðx;SÞ ¼ 2ðS �QðxÞÞ þ hS � ftðxðxÞÞ þQðxÞg;‘qWðt� nÞðxðxÞÞ; ~xx� ai;

e2ðx;SÞ ¼ �2 QðxÞ ~xx� a

~rr

� �� �
� S � ix

~xx� a

~rr

� �� �

and h� ; � ; �i has to be interpreted appropriately. For x A qW, the properties

r ¼ ~rr, x ¼ ~xx, distðx; qWÞ ¼ 0 and (4.2) yield

divqW gðxÞ ¼ 2ngðrÞ þ rg 0ðrÞfð1� jnðxÞð‘rÞj2Þ þ ð1� jnðxÞðixð‘rÞÞj2Þg

þ gðrÞe3ðxÞ;

where

e3ðxÞ ¼ htðxÞ;‘qWðt� nÞðxÞ; x� ai:

Thus (3.1), sb 0 and g 0 a 0 imply

n

ð
W

gðrÞ þ gð~rrÞdkVk þ 2s

ð
Bþ

gðrÞdHn

� �

þ
ð
W

rg 0ðrÞ þ ~rrg 0ð~rrÞdkVk þ 2s

ð
Bþ

rg 0ðrÞdHn
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a�
ð
W

fgðrÞðx� aÞ þ gð~rrÞixð~xx� aÞg � hdkVk

�
ð
GnðWÞ

gð~rrÞe1ðx;SÞ � ~rrg 0ð~rrÞe2ðx;SÞdVðx;SÞ
 !

� s

ð
Bþ

gðrÞe3ðxÞdHn: ð4:10Þ

Now take f A C1ðRÞ such that

fðtÞ ¼ 1 for ta 1=2; fðtÞ ¼ 0 for tb 1

and f 0ðtÞa 0 for all t and use (4.10) with gðrÞ ¼ fðr=rÞ. For this g,

rg 0ðrÞ ¼ �r
q

qr
f

r

r

� �� �

holds and implies

nIðrÞ � rI 0ðrÞa�fHðrÞ þ E1ðrÞ þ rE 0
2ðrÞ þ E3ðrÞg;

where

IðrÞ ¼
ð
W

f
r

r

� �
þ f

~rr

r

� �
dkVk þ 2s

ð
Bþ

f
r

r

� �
dHn;

HðrÞ ¼
ð
W

f
r

r

� �
ðx� aÞ þ f

~rr

r

� �
ixð~xx� aÞ

� �
� hdkVk;

EiðrÞ ¼
ð
GnðWÞ

f
~rr

r

� �
eiðx;SÞdVðx;SÞ; i ¼ 1; 2;

E3ðrÞ ¼ s

ð
Bþ

f
r

r

� �
e3ðxÞdHn:

Multiplying by r�n�1 we have

d

dr
fr�nIðrÞgb r�nE 0

2ðrÞ þ r�n�1fHðrÞ þ E1ðrÞ þ E3ðrÞg: ð4:11Þ

To estimate the right hand side of this inequality, we apply (4.2) and (4.4).

From a A Ns0=6 \W and ra s0=6, the distance distðx; qWÞa s0=3a 1=ð3KÞ for

x A ~BBrðaÞ with rb distða; qWÞ. Hence K distðx; qWÞa 1=3 and

jeiðxÞjaCKr; for x A ~BBrðaÞ; i ¼ 1; 2;

je3ðxÞjaCKr for x A Bþ \ BrðaÞ
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with some constant C depending only on n whenever rb distða; qWÞ. These

inequalities, sb 0 and q=ðqrÞffð~rr=rÞgb 0 imply

jE1ðrÞjaCKr
ð
W

f
~rr

r

� �
dkVkaCKrIðrÞ;

jE 0
2ðrÞjaCKr

q

qr

ð
W

f
~rr

r

� �
dkVkaCKrI 0ðrÞ;

jE3ðrÞjaCKrs
ð
Bþ

f
r

r

� �
dHn

aCKrIðrÞ

for any r > 0 because of ~BBrðaÞ \ sptkVk ¼ q and BrðaÞ \ Bþ ¼ q whenever

r < distða; qWÞ. By applying the Hölder inequality and (4.5), we have

HðrÞa r

ð
W

f
r

r

� �
þ f

~rr

r

� �
dkVk

� �1�1=p ð
W

f
r

r

� �
þ f

~rr

r

� �� �
jhjpdkVk

� �1=p

a rI 1�1=pðrÞ
ð
Ns0

\W
2jhjpdkVk

 !1=p
a ro1=p

n GI 1�1=pðrÞ:

Combining these inequalities and (4.11), we have

d

dr
fr�nIðrÞgb�CKr�nIðrÞ � CKr�nþ1I 0ðrÞ � o1=p

n Gr�nI 1�1=pðrÞ

and p > n implies

d

dr
fr�nIðrÞg1=p

b� 1

p
fCKr�n=pI 1=pðrÞ þ CKr1�n=pI 1=p�1ðrÞI 0ðrÞ þ o1=p

n Gr�n=pg

b�CK
p

ð1þ p� nÞr�n=pI 1=pðrÞ þ 1þ 1

p� n

� �
r1�n=pI 1=p�1ðrÞI 0ðrÞ

� �

� o
1=p
n G

p
r�n=p:

Integrating from s to s and integrating by parts, we may estimate

fr�nIðrÞg1=p � fs�nIðsÞg1=p b�CK 1þ 1

p� n

� �
ðr1�n=pI 1=pðrÞ � s1�n=pI 1=pðsÞÞ

� o1=p
n

G

p� n
ðr1�n=p � s1�n=pÞ:
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Rearranging terms and letting f increase to wð�y;1Þ we have the monotonicity

formula.

5. Additional remarks

As a consequence of the monotonicity formula, we may conclude the

following.

Corollary 5.1. Under the same assumption of Theorem 3.2, for any

x A Ns0=6 \W,

lim
r!0þ

kVkðBrðxÞÞ þ kVkð ~BBrðxÞÞ þ 2sHnbBþðBrðxÞÞ
onrn

ð5:1Þ

exists and it is upper-semicontinuous function of x.

For x A qW, BrðxÞ and ~BBrðxÞ approach to each other as r ! 0þ, thus if

s ¼ 0, this implies the existence of YnðkVk; xÞ for x A qW. For s0 0, since

the existence of the third term of (5.1) is not guaranteed (only up to Hn a.e.),

we cannot conclude such existence in general on qW. If we assume, in addition

to (A1) and (A2), that (3.2) is satisfied, then Bþ has a finite perimeter as

discussed in the definition. Then by De Giorgi’s theorem (cf. [6, Theorem

5.19] used for characteristic function) again, for Hn�1 a.e. x A qW, the limit

of the third term exists and is equal to either 2s, s or 0. In particular, on

q�Bþ, it is s for Hn�1 a.e. Thus, in this case, we have YnðkVk; xÞ for Hn�1

a.e. on qW instead.

It is also interesting to pursue a boundary regularity theorem under a

natural ‘‘closeness to a single sheet’’ assumption. Extrapolating from [2, 7],

one may assume that kVkðBrðxÞÞ is close to onr
n=2. On the other hand, one

needs to di¤erentiate two cases, the case away from ‘‘qBþ’’ where the right

angle condition should be satisfied, and the other case of near ‘‘qBþ’’ where

the fixed angle condition of y should be satisfied. Compared to [7], it is less

clear what should be the right assumption for the further regularity theorem.
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