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Abstract. The purpose of this paper is to investigate the geometric structure of

regular overdetermined systems of second order with two independent and one depen-

dent variables from the point of view of the rank two prolongation. Utilizing this

prolongation, we characterize the type of overdetermined systems and clarify the

specificity for each type. We also give systematic methods for constructing the

geometric singular solutions by analyzing a decomposition of this prolongation. As

an application, we determine the geometric singular solutions of Cartan’s overdeter-

mined system.

1. Introduction

The subject of this present paper is geometric study of partial di¤erential

equations which are called second-order regular overdetermined systems with

two independent and one dependent variables. For these overdetermined

systems, various pioneering works have been given by many researchers

(cf. [4], [11], [8], [24], [29]). In particular, the study of overdetermined involu-

tive systems has significant results. E. Cartan [4] characterized overdetermined

involutive systems by the condition that these admit a one dimensional Cauchy

characteristic system. He also found out a systematic method for construct-

ing regular solutions (see Definition 5) of involutive systems. Recently, these

considerations have been reformulated as the theory of PD-manifolds by

Yamaguchi (cf. [24], [29]). In addition, Kakie (cf. [6], [7]) studied the existence

of regular solutions in Cy-category and Cauchy problem for involutive systems

by using the theory of characteristics.

In this paper, we investigate the geometric theory of regular overdeter-

mined systems by analyzing the rank two prolongation. The aim is to provide
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the following two results. The first result is to clarify the di¤erence between

the prolongations with the transversality condition and the rank two prolon-

gations for our overdetermined systems. The second result is to give two

systematic methods for constructing geometric singular solutions (see Definition

5) utilizing the obtained di¤erence. In the field of geometry of di¤erential

systems, regular (i.e. nonsingular) solutions are examined usually, for example

Cartan-Kähler theory, Cauchy problem, etc. In contrast, we study singular

solutions mainly. The significance of this research is that the notion of our

singular solutions corresponds to wave front propagation appearing in math-

ematical physics, hence various applications are expected. In this context, we

give two systematic methods for constructing singular solutions by using the

characterization of the rank two prolongation. Here, we explain this rank two

prolongation. Roughly speaking, this concept expresses a certain fibration

obtained by collecting integral elements which are the candidates for the

tangent spaces of the graphs of solutions. For the general theory of the rank

two prolongation, see [3], [8], [13]. This rank two prolongation can be

regraded as a generalization of the prolongation with the transversality

condition. The prolongation with the transversality condition corresponds to

exterior derivation of given di¤erential equations for the independent variables,

and it has been used to construct regular solutions (cf. [2], [4], [9], [10], [24]).

However, in the present paper, we treat the rank two prolongation, because

geometric singular solutions cannot be constructed utilizing the ordinary

prolongation with the transversality condition. Hence, we must use the rank

two prolongation for the discussion of singular solutions. In this situation,

through a precise analysis of the rank two prolongation in our geometric

setting, we clarify the mechanism that makes singularity appear.

Let us now proceed to the description of the various sections and explain

the main results in this paper. In section 2, we prepare some terminology

and notation for the study of di¤erential systems. In section 3, we introduce

our setting and define the rank two prolongation. For regular overdetermined

systems, we can use the classification into contact invariant four types (sub-

categories) consisting of involutive type, two finite types, and torsion type

under the symbol algebra (see section 3). According to this classification, we

determine the topology of each fiber of the rank two prolongation for regular

overdetermined systems (Theorem 1). As a direct consequence of this char-

acterization, we obtain the specific di¤erence between the prolongation with the

transversality condition and the rank two prolongation (Corollary 1). By using

this characterization, we can obtain a deep understanding for regular over-

determined systems including the singularity. Actually, we can show that there

do not exist singular solutions for subcategories consisting of two finite types.

Moreover, in the involutive case, we note that a systematic method of the
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explicit construction of singular solutions can be given by analyzing this

characterization more carefully. In section 4, we study the algebraic structures

associated with canonical systems D̂D on the rank two prolongations SðRÞ of

(locally) involutive systems. More precisely, we clarify the bracket structure

of nilpotent graded Lie algebras (symbol algebras) defined for the rank two

prolongations by using a decomposition (Proposition 1). Here, it is known

that the symbol algebras are fundamental invariants of (weakly-regular) dif-

ferential systems or filtered manifolds (cf. [22], [24], [14]). Proposition 1 means

that the di¤erence of the brackets of these graded Lie algebras corresponds

to the singularity of the solutions from the algebraic viewpoint. We also have

the tower structure of these involutive systems by successive prolongations

(Theorem 2). In section 5, we provide two systematic methods to construct

the geometric singular solutions of involutive systems. Moreover, we apply

these methods to Cartan’s overdetermined system in order to demonstrate

the usefulness of our methods. Consequently, we can give an explicit integral

representation of geometric singular solutions of this system by using our

methods.

2. Di¤erential systems and symbol algebras

In this section, we prepare some terminology and notation for the study of

di¤erential systems. For more details, refer to [22] and [25].

2.1. Derived systems, weak derived systems and Cauchy characteristic systems.

Let D be a di¤erential system on a manifold R. In general, by a di¤erential

system ðR;DÞ, we mean a distribution D on R, that is, D is a subbundle of the

tangent bundle TR of R. The sheaf of sections to D is denoted by D ¼ GðDÞ.
The derived system qD of a di¤erential system D is defined, in terms of

sections, by qD :¼ Dþ ½D;D�: In general, qD is obtained as a subsheaf of

the tangent sheaf of R. Moreover, higher derived systems qkD are defined

successively by qkD :¼ qðqk�1DÞ, where we set q0D ¼ D by convention. On

the other hand, the k-th weak derived systems qðkÞD of D are defined

inductively by qðkÞD :¼ qðk�1ÞDþ ½D; qðk�1ÞD�:

Definition 1. A di¤erential system D is called regular (resp. weakly

regular), if qkD (resp. qðkÞDÞ is a subbundle for each k.

These derived systems are also interpreted by using annihilators as follows:

Let D ¼ f$1 ¼ � � � ¼ $s ¼ 0g be a di¤erential system on R. We denote by

D? the annihilator subbundle of D in T �R, that is,

D?ðxÞ :¼ fo A T �
x R joðX Þ ¼ 0 for any X A DðxÞg ¼ spanfð$1Þx; . . . ; ð$sÞxg:
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Then the annihilator ðqDÞ? of the first derived system of D is given by

ðqDÞ? ¼ f$ A D? j d$1 0 ðmod D?Þg. Moreover the annihilator ðqðkþ1ÞDÞ?
of the ðk þ 1Þ-st weak derived system of D is given by

ðqðkþ1ÞDÞ? ¼ f$ A ðqðkÞDÞ? j d$1 0 ðmodðqðkÞDÞ?;

ðqðpÞDÞ?5ðqðqÞDÞ?; 2a p; qa k � 1Þg:

We set D�1 :¼ D, D�k :¼ qðk�1ÞD ðkb 2Þ, for a weakly regular di¤erential

system D. Then we have ([22, Proposition 1.1]):

(T1) There exists a unique positive integer m such that

D�1 � D�2 � � � � � D�k � � � � � D�ðm�1Þ � D�m ¼ D�ðmþ1Þ ¼ � � � ;

(T2) ½Dp;Dq� � Dpþq for all p; q < 0.

Let D be a di¤erential system on R defined by local 1-forms $1; . . . ;$s

such that $15� � �5$s 0 0 at each point, where s is the corank of D:

D ¼ f$1 ¼ � � � ¼ $s ¼ 0g. Then the Cauchy characteristic system ChðDÞ is

defined at each point x A R by

ChðDÞðxÞ :¼ fX A DðxÞ jXcd$i 1 0 ðmod $1; . . . ;$sÞ for i ¼ 1; . . . ; sg;

where c denotes the interior product (i.e., Xcd$ðYÞ ¼ d$ðX ;Y Þ).

2.2. Symbol algebra of regular di¤erential system. Let ðR;DÞ be a weakly

regular di¤erential system such that TR ¼ D�m � D�ðm�1Þ � � � � � D�1 ¼: D:

For all x A R, we set g�1ðxÞ :¼ D�1ðxÞ ¼ DðxÞ, gpðxÞ :¼ DpðxÞ=Dpþ1ðxÞ ðp ¼
�2;�3; . . . ;�mÞ, and mðxÞ :¼ 0�m

p¼�1
gpðxÞ: Then, dim mðxÞ ¼ dim R holds.

We set gpðxÞ ¼ f0g when pa�m� 1. For X A gpðxÞ, Y A gqðxÞ, the Lie

bracket ½X ;Y � A gpþqðxÞ is defined as follows: Let $p be the projection of

DpðxÞ onto gpðxÞ and ~XX A Dp, ~YY A Dq be any extensions such that $pð ~XXxÞ ¼ X

and $qð ~YYxÞ ¼ Y . Then ½ ~XX ; ~YY � A Dpþq, and we define ½X ;Y � :¼ $pþqð½ ~XX ; ~YY �xÞ
A gpþqðxÞ. It does not depend on the choice of the extensions because of the

equation

½ f ~XX ; g ~YY � ¼ fg½ ~XX ; ~YY � þ f ð ~XXgÞ ~YY � gð ~YYf Þ ~XX ð f ; g A CyðRÞÞ:

The Lie algebra mðxÞ is a nilpotent graded Lie algebra. We call ðmðxÞ; ½ ; �Þ
the symbol algebra of ðR;DÞ at x. Note that the symbol algebra ðmðxÞ; ½ ; �Þ
satisfies the generating conditions ½gp; g�1� ¼ gp�1 ðp < 0Þ. For two di¤erential

systems ðR;DÞ and ðR 0;D 0Þ, we define (local) isomorphisms f (or (local)

contact transformations) from R to R 0 by (local) di¤eomorphisms f : R ! R 0

satisfying f�D ¼ D 0. It is well-known that the symbol algebra is a funda-

mental invariant of di¤erential systems under contact transformations.

Namely, if there exists a (local) contact transformation f : R ! R 0, then we
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obtain a graded Lie algebra isomorphism mðxÞGmðfðxÞÞ at each point x

(cf. [22], [24]).

2.3. Filtered manifolds and symbol algebras. Morimoto introduced the notion

of a filtered manifold as a generalization of weakly regular di¤erential systems

([14]). We define a filtered manifold ðR;FÞ by a pair of a manifold R and

a tangential filtration F . Here, a tangential filtration F on R is a sequence

fF pgp<0 of subbundles of the tangent bundle TR and the following conditions

are satisfied:

(M1) TR ¼ F k ¼ � � � ¼ F �m � � � � � F p � F pþ1 � � � � � F 0 ¼ f0g,
(M2) ½Fp;Fq� � Fpþq for all p; q < 0,

where Fp ¼ GðF pÞ is the space of sections of F p.

Let ðR;F Þ be a filtered manifold. For x A R, we set fpðxÞ :¼ F pðxÞ=
F pþ1ðxÞ and fðxÞ :¼ 0

p<0
fpðxÞ: For X A fpðxÞ, Y A fqðxÞ, the Lie bracket

½X ;Y � A fpþqðxÞ is defined as follows: Let $p be the projection of F pðxÞ onto

fpðxÞ and ~XX A Fp, ~YY A Fq be any extensions such that $pð ~XXxÞ ¼ X and

$qð ~YYxÞ ¼ Y . Then ½ ~XX ; ~YY � A Fpþq, and we define ½X ;Y � :¼ $pþqð½ ~XX ; ~YY �xÞ A
fpþqðxÞ. It does not depend on the choice of the extensions. The Lie algebra

fðxÞ is also a nilpotent graded Lie algebra. We call ðfðxÞ; ½ ; �Þ the symbol

algebra of ðR;FÞ at x. In general it does not satisfy the generating con-

ditions. Suppose ðR;FÞ and ðR 0;F 0Þ are filtered manifolds. Then, (local)

isomorphisms (or (local) contact transformations) between ðR;F Þ and ðR 0;F 0Þ
are defined by (local) di¤eomorphisms f : R ! R 0 such that f�F

p ¼ F p0. It is

known that this symbol algebra is also a fundamental invariant of filtered

manifolds under contact transformations. Namely, if there exists a (local)

contact transformation f : R ! R 0, then we obtain a graded Lie algebra iso-

morphism fðxÞG fðfðxÞÞ at each point x.

3. Rank two prolongations of regular overdetermined systems

In this section, we provide a fundamental characterization of the rank

two prolongations for regular overdetermined systems of second order of

codimension two with two independent and one dependent variables. First,

we introduce our setting to discuss contact geometry of regular overdetermined

systems of second order. Let J 2ðR2;RÞ be the 2-jet space:

J 2ðR2;RÞ :¼ fðx; y; z; p; q; r; s; tÞg: ð1Þ

This space has the canonical system C2 ¼ f$0 ¼ $1 ¼ $2 ¼ 0g given by the

annihilators:

$0 :¼ dz� p dx� q dy; $1 :¼ dp� r dx� s dy; $2 :¼ dq� s dx� t dy:
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This jet space is also constructed geometrically as the Lagrange-Grassmann

bundle over the standard contact five dimensional manifold. For more details,

see [29]. On the 2-jet space, we consider the following partial di¤erential

equations which are called overdetermined systems:

Fðx; y; z; p; q; r; s; tÞ ¼ Gðx; y; z; p; q; r; s; tÞ ¼ 0; ð2Þ

where F and G are smooth functions on J 2ðR2;RÞ. We set R ¼ fF ¼ G ¼ 0g
� J 2ðR2;RÞ and restrict the canonical di¤erential system C2 to R. We denote

by D this restricted system C2jR. In general, D is not constant rank. There-

fore, we assume the following condition which is called the regularity condi-

tion for overdetermined systems. Two vectors ðFr;Fs;FtÞ and ðGr;Gs;GtÞ are

linearly independent on R. Then, R is a submanifold of codimension two, and

the restriction p2
1 jR : R ! J 1ðR2;RÞ of the natural projection p2

1 : J 2ðR2;RÞ !
J 1ðR2;RÞ is a submersion. Due to the property, restricted 1-forms $ijR on

R are linearly independent. Hence D ¼ f$0jR ¼ $1jR ¼ $2jR ¼ 0g is a rank

three system on R. For brevity, we denote by $i each restricted generator

1-form $ijR of D in the following. These di¤erential systems ðR;DÞ are

not weakly regular, in general. Hence, we need to take an appropriate

filtration on R to discuss contact geometry of overdetermined systems in

terms of symbol algebras. So, we take the filtration F ¼ fF pgp<0 given by

F �3 ¼ TR, F �2 ¼ ðp2
1 jRÞ

�1
� C1, F �1 ¼ D, where C 1 is the canonical contact

system on 1-jet space J 1ðR2;RÞ. According to the discussion of the pre-

vious section, we define the contact transformations f between two over-

determined systems R and R 0 by local di¤eomorphisms f : R ! R 0 satisfying

f�F
p ¼ F p0.

Definition 2. We call R or ðR;FÞ (geometric) regular overdetermined

systems of second order.

In this situation, we investigate contact geometry of regular overdeter-

mined systems ðR;FÞ of second order.

Next, we define the rank two prolongations of di¤erential systems. This

notion is necessary to research singular solutions.

Definition 3. Let ðR;DÞ be a di¤erential system given by D ¼
f$1 ¼ � � � ¼ $s ¼ 0g. An n-dimensional integral element of D at x A R is

an n-dimensional subspace v of TxR such that $ijv ¼ d$ijv ¼ 0 ði ¼ 1; . . . ; sÞ.
Namely, n-dimensional integral elements are the candidates for the tangent

spaces at x to n-dimensional integral manifolds of D. Let ðR;F Þ be a regular

overdetermined system of second order. Then we define the rank two pro-
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longation SðRÞ of ðR;F Þ by

SðRÞ :¼
[
x AR

Sx; ð3Þ

where Sx ¼ fv � TxR j v is a two dimensional integral element of DðxÞg:
Let p : SðRÞ ! R be the projection. We define the canonical system D̂D

on SðRÞ by

D̂DðuÞ :¼ p�1
� ðuÞ ¼ fv A TuðSðRÞÞ j p�ðvÞ A ug;

where u A SðRÞ:

This space SðRÞ is a subset of the following Grassmann bundle over R

JðD; 2Þ :¼
[
x AR

Jx; ð4Þ

where Jx :¼ fv � TxR j v is a two dimensional subspace of DðxÞg: In gen-

eral, the rank two prolongations SðRÞ have singular points, that is, SðRÞ
is not smooth. For a di¤erential system ðR;DÞ, we define another prolonga-

tion which is called the prolongation with the transversality condition:

Rð1Þ ¼
[
x AR

Rð1Þ
x ; ð5Þ

where

Rð1Þ
x ¼ fv � TxR j v is a two dimensional integral element of DðxÞ

transversal to Kerðp2
1 jRÞ�g:

Let pð1Þ : Rð1Þ ! R be the projection. Then we also define the canonical

system Dð1Þ on Rð1Þ by

Dð1ÞðuÞ :¼ pð1Þ�
�1ðuÞ ¼ fv A TuR

ð1Þ j pð1Þ� ðvÞ A ug;

where u A Rð1Þ: For this notion, there exist many results related to the char-

acterization of higher-order jet spaces (see [2], [4], [24]). In this section, we

clarify the di¤erence between those two prolongations for our regular over-

determined systems.

Next, we explain a classification of the type of overdetermined systems

in terms of the structure equation or the corresponding symbol algebra. Let

ðR;FÞ be a regular overdetermined system. If R does not have torsion, that is,

the fibration pð1Þ : Rð1Þ ! R is onto, then the structure equation of this system

is one of the following three cases ([29, the case of codim f ¼ 2 of Case n ¼ 2 in

pages 346–347]):
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( I ) There exists a coframe f$0; $1; $2;o1;o2; pg around w A R such

that D ¼ f$0 ¼ $1 ¼ $2 ¼ 0g and the following structure equation

holds at w:

d$0 1o15$1 þ o25$2 mod $0;

d$1 1 0 mod $0; $1; $2;

d$2 1 o25p mod $0; $1; $2:

ð6Þ

( II ) There exists a coframe f$0; $1; $2;o1;o2; pg around w A R such

that D ¼ f$0 ¼ $1 ¼ $2 ¼ 0g and the following structure equation

holds at w:

d$0 1o15$1 þ o25$2 mod $0;

d$1 1 o25p mod $0; $1; $2;

d$2 1o15p mod $0; $1; $2:

ð7Þ

(III) There exists a coframe f$0; $1; $2;o1;o2; pg around w A R such

that D ¼ f$0 ¼ $1 ¼ $2 ¼ 0g and the following structure equation

holds at w:

d$0 1o15$1 þ o25$2 mod $0;

d$1 1o15p mod $0; $1; $2;

d$2 1 o25p mod $0; $1; $2:

ð8Þ

Now we consider the case where torsion exists, that is, pð1Þ : Rð1Þ ! R is not

onto. In fact, then the structure equation (or the symbol algebra) of torsion

type has the unique normal form by the obtained result in [18] (this fact follows

from the technique of the proof of [16, Theorem 3.3]). Namely, if R has

torsion at w A R, we have the following structure equation at w.

(IV) There exists a coframe f$0; $1; $2;o1;o2; pg around w A R such

that D ¼ f$0 ¼ $1 ¼ $2 ¼ 0g and the following structure equation holds at w:

d$0 1o15$1 þ o25$2 mod $0;

d$1 1o15o2 mod $0; $1; $2;

d$2 1 o25p mod $0; $1; $2:

ð9Þ

Here, the type (I), (II), (III) and (IV) correspond to second-order over-

determined systems of involutive type, finite type, finite type and torsion

type, respectively (cf. [28], [29]).
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Definition 4. We call overdetermined systems of the above four types,

overdetermined systems of type ðkÞ, where k ¼ I, II, III, IV.

Remark 1. The structures of prolongations Rð1Þ with the transversality

condition for R of type (I), (II), (III) and (IV) are well-known (cf. [24], [29]).

Indeed, Rð1Þ ! R is an R-bundle for the type (I). Moreover Rð1Þ is di¤eomor-

phic to R for the type (II) or (III), and Rð1Þ is empty for the type (IV).

As stated above, the main purpose of this section is to clarify the di¤er-

ence between Rð1Þ and SðRÞ. For this purpose, we first consider the case of

type (I).

Lemma 1. Let R be an overdetermined system of type (I). Then the rank

two prolongation SðRÞ is a smooth submanifold of JðD; 2Þ. Moreover, it is an

S1-bundle over R.

Proof. Let P : JðD; 2Þ ! R be the projection and U an open set in R.

Then P�1ðUÞ is covered by three open sets in JðD; 2Þ, that is,

P�1ðUÞ ¼ Uo1o2
[Uo1p [Uo2p; ð10Þ

where

Uo1o2
:¼ fv A P�1ðUÞ jo1jv5o2jv 0 0g;

Uo1p :¼ fv A P�1ðUÞ jo1jv5pjv 0 0g;

Uo2p :¼ fv A P�1ðUÞ jo2jv5pjv 0 0g:

We explicitly describe the defining equation of SðRÞ in terms of the inhomoge-

neous Grassmann coordinate of fibers in Uo1o2
, Uo1p, Uo2p. First we con-

sider it on Uo1o2
. For w A Uo1o2

, w is a two dimensional subspace of DðvÞ,
where pðwÞ ¼ v. Hence, by restricting p to w, we can introduce the inho-

mogeneous coordinate p1i ði ¼ 1; 2Þ of fibers of JðD; 2Þ around w with pjw ¼
p11ðwÞo1jw þ p12ðwÞo2jw. Moreover, w satisfies d$2jw 1 0 in (6). Hence, we

show that

d$2jw 1o2jw5pjw 1 p11ðwÞo2jw5o1jw:

Thus we obtain the defining equations p11 ¼ 0 of SðRÞ in Uo1o2
of JðD; 2Þ.

Then dp11 does not vanish on fp11 ¼ 0g. We next consider on Uo1p. By

restricting o2 to w A Uo1p, we can introduce the inhomogeneous coordinate p2i
ði ¼ 1; 2Þ of fibers of JðD; 2Þ around w with o2jw ¼ p21ðwÞo1jw þ p22ðwÞpjw.
Then we show that

d$2jw 1o2jw5pjw 1 p21ðwÞo1jw5pjw:
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We have the defining equation p21 ¼ 0 such that dp21 does not vanish on

fp21 ¼ 0g. Finally we consider on Uo2p. By restricting o1 to w A Uo2p,

we can introduce the inhomogeneous coordinate p3i ði ¼ 1; 2Þ of fibers of

JðD; 2Þ around w with o1jw ¼ p31ðwÞo2jw þ p32ðwÞpjw. Moreover, w satisfies

d$2jw 1 0. However we have

d$2jw 1o2jw5pjw 0 0:

Thus, there does not exist an integral element, that is, Uo2p \ p�1ðUÞ ¼ q.

Summarizing these discussions, we conclude that SðRÞ is a submanifold in

JðD; 2Þ, and it has the covering

p�1ðUÞ ¼ Po1o2
[ Po1p ¼ fp11 ¼ 0g [ fp21 ¼ 0g; ð11Þ

where Po1o2
:¼ p�1ðUÞ \Uo1o2

and Po1p :¼ p�1ðUÞ \Uo1p.

Next, we show that the topology of each fiber of SðRÞ is S1.

Let w be a point in Po1p � p�1ðUÞ. Here, if w B Po1o2
, then we have

p22 ¼ 0 because of the condition o15o2 ¼ 0. Thus we show that p22 0 0 on

Po1o2
\ Po1p and p22 ¼ 0 on Po1pnPo1o2

. Thus the topology of each fiber of

SðRÞ is S1.

Next, we consider the case of type (II).

Lemma 2. Let R be an overdetermined system of type (II). Then the rank

two prolongation SðRÞ is di¤eomorphic to R.

Remark 2. We emphasize that ðR;DÞ and ðSðRÞ; D̂DÞ are di¤erent as

di¤erential systems. Indeed D is a rank three di¤erential system on R, but D̂D

is a rank two di¤erential system on SðRÞ.

Proof. In this situation we also use the covering (10) of P�1ðUÞ for

the Grassmann bundle JðD; 2Þ and explicitly describe the defining equation of

SðRÞ in terms of the inhomogeneous Grassmann coordinate of fibers in Uo1o2
,

Uo1p and Uo2p. First we consider it on Uo1o2
. For w A Uo1o2

, w is a two

dimensional subspace of DðvÞ, where pðwÞ ¼ v. Hence, by restricting p to w,

we can introduce the inhomogeneous coordinate p1i of fibers of JðD; 2Þ around

w with pjw ¼ p11ðwÞo1jw þ p12ðwÞo2jw. Moreover w satisfies d$1jw 1 d$2jw 1
0 in (7). Thus we get

d$1jw 1o2jw5pjw 1 p11ðwÞo2jw5o1jw;

d$2jw 1o1jw5pjw 1 p12ðwÞo1jw5o2jw:

In this way, we obtain the defining equations p11 ¼ p12 ¼ 0 of SðRÞ in Uo1o2
of

JðD; 2Þ. Hence we have the only trivial integral element. Next we consider
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on Uo1p. In the same way, by restricting o2 to w, we can introduce the

inhomogeneous coordinate p2i of fibers of JðD; 2Þ around w with o2jw ¼
p21ðwÞo1jw þ p22ðwÞpjw. Moreover w satisfies d$1jw 1 d$2jw 1 0. However

we have d$2jw 1o1jw5pjw 0 0: Hence there does not exist any integral

element. Finally we consider on Uo2p. In this situation, by restricting o1 to

w, we can also introduce the inhomogeneous coordinate p3i of fibers of JðD; 2Þ
around w with o1jw ¼ p31ðwÞo2jw þ p32ðwÞpjw: Moreover w satisfies d$1jw 1
d$2jw 1 0. However, we have d$1jw 1o2jw5pjw 0 0: Hence there does not

exist any integral element. Therefore, SðRÞ is a section of the Grassmann

bundle JðD; 2Þ over R.

Next we consider the case of type (III). We have the following assertion

by the same argument as in the proof of Lemma 2.

Lemma 3. Let R be an overdetermined system of type (III). Then the

rank two prolongation SðRÞ is di¤eomorphic to R.

Remark 3. Two di¤erential systems ðR;DÞ and ðSðRÞ; D̂DÞ are di¤erent in

the sense explained in Remark 2.

Finally we consider the case of type (IV). We also have the following

claim by the same argument as in the proof of Lemma 2.

Lemma 4. Let R be an overdetermined system of type (IV). Then, the

rank two prolongation SðRÞ is di¤eomorphic to R.

Summarizing these lemmas in this section, we obtain the following

theorem.

Theorem 1. Let R be a second-order regular overdetermined system of

codimension two for two independent and one dependent variables. Then we

obtain the non-trivial rank two prolongation SðRÞ only when R is involutive

(i.e. type (I)). Moreover, in this case, the rank two prolongation SðRÞ is an

S1-bundle over R.

We obtain the following statement by combining Theorem 1 and

Remark 1.

Corollary 1. Let R be a second-order regular overdetermined system

of codimension two for two independent and one dependent variables. Then we

have

Rð1Þ ¼ SðRÞ , ðIIÞ; ðIIIÞ;

Rð1Þ 0SðRÞ , ðIÞ; ðIVÞ:
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From now on, by analyzing this specified di¤erences of both prolongations

more deeply, we obtain an understanding for overdetermined systems including

the construction of singular solutions.

4. Rank two prolongations for overdetermined systems of type (I)

In this section, because of further detailed analysis of the rank two

prolongations SðRÞ for overdetermined systems R of type (I) (i.e. involutive

systems), we investigate an algebraic structure of these rank two prolonga-

tions. More precisely, we define a certain filtration structure fF pg�4
p¼�1 on

SðRÞ and calculate explicitly the bracket structures of the symbol algebras.

The motivation of this research is to clarify the di¤erence between the rank two

prolongation and the prolongation with the transversality condition from the

algebraic viewpoint by using nilpotent graded Lie algebras. Hence, from the

obtained results in the previous section, we treat only overdetermined systems

of type (I). Namely, we do not treat equations of two finite types and torsion

type as research objects for the above motivation. For this purpose, we

consider the decomposition

SðRÞ ¼ S0 [ S1; ð12Þ

where Si ¼ fw A SðRÞ j dimðw \ fiberÞ ¼ ig ði ¼ 0; 1Þ. Here ‘‘fiber’’ means

that the fiber of TR � D ! TJ 1. Namely, it is the one dimensional fiber

of TR ! TJ 1 which is included in D. For the covering of the fibration

p : SðRÞ ! R, we have

S0jp�1ðUÞ ¼ Po1o2
; S1jp�1ðUÞ ¼ Po1pnPo1o2

:

We emphasize that the set S0 is an open subset in SðRÞ which is isomorphic to

Rð1Þ and S1 is a codimension one submanifold in SðRÞ. Now we describe the

canonical system D̂D of rank three on each open set in the following. On Po1o2
,

we have the expression D̂D ¼ f$0 ¼ $1 ¼ $2 ¼ $p ¼ 0g, where $p ¼ p� p12o2

and p12 is a fiber coordinate. On Po1p, we have the expression D̂D ¼ f$0 ¼
$1 ¼ $2 ¼ $o2

¼ 0g, where $o2
¼ o2 � p22p and p22 is a fiber coordinate.

Utilizing this decomposition, we investigate the symbol algebra of SðRÞ.
We introduce the sequence TSðRÞ � ððp2

1ÞjR � pÞ�1
� ðC 1Þ � p�1

� ðDÞ � D̂D, where

p2
1 : J 2 ! J 1 and C1 is the canonical system on J 1. In the discussion of the

proof of Proposition 1, we will show that this sequence becomes a filtration on

TSðRÞ. Hence we can define the symbol algebra of SðRÞ. We obtain the

following statement for this symbol algebra.

Proposition 1. For any point w A S0, the symbol algebra f0ðwÞ is iso-

morphic to

f0 :¼ f�4 l f�3 l f�2 l f�1;
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whose bracket relations are given by

½Xp1
2
;Xo2

� ¼ Xp; ½Xp;Xo2
� ¼ X2; ½X1;Xo1

� ¼ ½X2;Xo2
� ¼ X0;

and the other brackets are trivial. Here fX0;X1;X2;Xo1
;Xo2

;Xp;Xp1
2
g is a basis

of f0 and

f�1 ¼ fXo1
;Xo2

;Xp1
2
g; f�2 ¼ fXpg; f�3 ¼ fX1;X2g; f�4 ¼ fX0g:

For any point w A S1, the symbol algebra f1ðwÞ is isomorphic to

f1 :¼ f�4 l f�3 l f�2 l f�1;

whose bracket relations are given by

½Xp2
2
;Xp� ¼ Xo2

; ½Xp;Xo2
� ¼ X2; ½X1;Xo1

� ¼ X0;

and the other brackets are trivial. Here fX0;X1;X2;Xo1
;Xo2

;Xp;Xp2
2
g is a basis

of f1 and

f�1 ¼ fXo1
;Xp;Xp2

2
g; f�2 ¼ fXo2

g; f�3 ¼ fX1;X2g; f�4 ¼ fX0g:

Remark 4. Thanks to the property S0 GRð1Þ, the symbol algebra f0 is

isomorphic to the symbol algebra of Rð1Þ associated with the similar filtration on

TRð1Þ based on the canonical system Dð1Þ.

Proof. We first prove the assertion for the symbol algebra on S0. We

recall that the canonical system D̂D on Po1o2
is given by the expression D̂D ¼

f$0 ¼ $1 ¼ $2 ¼ $p ¼ 0g, where $p ¼ p� p12o2: Then the structure equa-

tion of D̂D on Po1o2
can be written as

d$i 1 0 mod $0; $1; $2; $p;

d$p 1o25ðdp12 þ fo1Þ mod $0;$1; $2; $p;
ð13Þ

where f is an appropriate function. Hence we have qD̂D ¼ f$0 ¼ $1 ¼
$2 ¼ 0g ¼ p�1

� ðDÞ. The structure equation of qD̂D is equal to the structure

equation (6) of ðR;DÞ. Here we set F �4 :¼ TSðRÞ, F �3 :¼ ððp2
1ÞjR � pÞ�1

� ðC1Þ
¼ f$0 ¼ 0g, F �2 :¼ qD̂D ¼ f$0 ¼ $1 ¼ $2 ¼ 0g, F �1 :¼ D̂D. Moreover, for

w A S0, we set f�1ðwÞ :¼ F �1ðwÞ ¼ D̂DðwÞ, f�2ðwÞ :¼ F �2ðwÞ=F �1ðwÞ, f�3ðwÞ :¼
F �3ðwÞ=F �2ðwÞ, f�4ðwÞ :¼ F �4ðwÞ=F �3ðwÞ, and

f0ðwÞ ¼ f�4ðwÞl f�3ðwÞl f�2ðwÞl f�1ðwÞ:

Then we have a filtration structure fF pg�4
p¼�1 on SðRÞ around w A S0. By the

definition of symbol algebras associated with filtration structures in Section 2,
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f0ðwÞ has the structure of a nilpotent graded Lie algebra. We consider the

bracket relation of f0ðwÞ. We take a coframe around w A S0 given by

f$0; $1; $2; $p;o1;o2; $p1
2
:¼ dp12 þ fo1g; ð14Þ

and the dual frame

fX0;X1;X2;Xp;Xo1
;Xo2

;Xp1
2
g: ð15Þ

Then, the structure equations of each subbundle in the filtration fF pg�4
p¼�1 can

be written by the coframe (14).

d$i 1 0 mod $0; $1; $2; $p;

d$p 1o25$p1
2

mod $0; $1; $2; $p;

d$0 1o15$1 þ o25$2 mod $0;

d$1 1 0 mod $0; $1; $2;

d$2 1 o25$p mod $0; $1; $2:

d$0 1o15$1 þ o25$2 mod $0; $15$2; $15$p; $25$p:

We set

½Xo2
;Xp1

2
� ¼ AXp; ðA A RÞ:

Then

d$pðXo2
;Xp1

2
Þ ¼ Xo2

$pðXp1
2
Þ � Xp1

2
$pðXo2

Þ �$pð½Xo2
;Xp1

2
�Þ;

¼ �$pð½Xo2
;Xp1

2
�Þ ¼ �A:

On the other hand

d$pðXo2
;Xp1

2
Þ ¼ o2ðXo2

Þ$p1
2
ðXp1

2
Þ �$p1

2
ðXo2

Þo2ðXp1
2
Þ;

¼ 1:

Therefore, A ¼ �1. The other brackets are also obtained by the same argu-

ment and the definition of the symbol algebra associated with the filtration

structure. Thus we have the bracket relation of f0.

We next prove the assertion for the symbol algebra on S1. We recall

that S1 is locally given by Po1pnPo1o2
. Thus we calculate on Po1pnPo1o2

¼
fp22 ¼ 0g � Po1p. Then the canonical system D̂D is given by D̂D ¼ f$0 ¼ $1 ¼
$2 ¼ $o2

¼ 0g, where $o2
¼ o2 � p22p. Note that $o2

¼ o2 on S1. The

structure equation of D̂D at a point w A S1 ¼ fp22 ¼ 0g is
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d$i 1 0 mod $0; $1; $2; $o2
;

d$o2
1 p5ðdp22 þ fo1Þ mod $0; $1; $2; $o2

;
ð16Þ

where f is an appropriate function. Hence we have qD̂D ¼ f$0 ¼ $1 ¼
$2 ¼ 0g ¼ p�1

� ðDÞ. The structure equation of qD̂D is equal to the structure

equation (6) of ðR;DÞ. Here, we take the filtration which is the same as in

the case of f0. Then we have the symbol algebra f1ðwÞ at a point w A S1 given

by

f1ðwÞ ¼ f�4ðwÞl f�3ðwÞl f�2ðwÞl f�1ðwÞ:

We consider the bracket relation of f1ðwÞ. We take a coframe around w A S1

given by

f$0; $1; $2; $o2
;o1; p; $p2

2
:¼ dp22 þ fo1g; ð17Þ

and the dual frame

fX0;X1;X2;Xo2
;Xo1

;Xp;Xp2
2
g: ð18Þ

Then the structure equations of each subbundle in the filtration fF pg�4
p¼�1 can

be written by the coframe (17).

d$i 1 0 mod $0; $1; $2; $o2
;

d$o2
1 p5$p2

2
mod $0; $1; $2; $o2

;

d$0 1o15$1 þ o25$2 mod $0;

d$1 1 0 mod $0; $1; $2;

d$2 1 o25p mod $0; $1; $2:

d$0 1o15$1 mod $0; $15$2; $15$o2
; $25$o2

:

By the definition of the symbol algebra associated with the filtration structure

and the same argument as in the case of f0, we obtain the bracket relation

of f1.

Here, we mention the bracket relations of the two symbol algebras f0

and f1. First we first show that these two symbol algebras do not satisfy

the generating condition. We next emphasize a di¤erence between f0 and f1 in

the following. On one hand, the symbol algebra f0 has a one dimensional

direction spanned by Xo2
which generates the highest degree component f�4.

Precisely speaking, the direction Xp generates one dimensional subspaces of

f�2, f�3 and f�4. On the other hand, the symbol algebra f1 does not have a

direction which generates the highest degree component.

77Second-order overdetermined systems



Now, we mention a tower structure constructed by successive rank two

prolongations of overdetermined systems of type (I). We define the k-th rank

two prolongation ðSkðRÞ; D̂DkÞ of ðR;DÞ as follows.

ðSkðRÞ; D̂DkÞ :¼ ðSðSk�1ðRÞÞ; ^̂DD̂DDk�1Þ ðk ¼ 1; 2; . . .Þ;

where ðS0ðRÞ; D̂D0Þ :¼ ðR;DÞ.

Theorem 2. Let R be a regular overdetermined system of type (I). Then

the k-th rank two prolongation SkðRÞ of R is also an S1-bundle over Sk�1ðRÞ.

Proof. From the expressions (13) or (16) of the structure equations

of SðRÞ, we easily show that the k-th rank two prolongation SkðRÞ can be

defined successively. Then we have the assertion by using the same argument

as in the proof of Lemma 1 successively.

5. Geometric singular solutions of overdetermined systems of type (I)

In this section, we provide the methods for constructing geometric singular

solutions of overdetermined systems of type (I). We first define the notion of

geometric singular solutions for regular PDEs ([16], [17]).

Definition 5. Let R be a second-order regular PDE in J 2ðR2;RÞ. For

a two dimensional integral manifold S of the canonical system D :¼ C2jR on R,

if the restriction p2
1 jR : R ! J 1ðR2;RÞ of the natural projection p2

1 : J 2 ! J 1 is

an immersion on an open dense subset in S, then we call S a geometric solution

of R. If all points of a geometric solution S are immersion points, then we

call S a regular solution. On the other hand, if a geometric solution S has

a nonimmersion point, then we call S a singular solution.

From the definition, the image p2
1ðSÞ of a geometric solution S by the

projection p2
1 is a Legendrian surface in J 1ðR2;RÞ (i.e. $0jp2

1
ðSÞ ¼ d$0jp2

1
ðSÞ ¼

0). From the proof of Lemmas 2 and 3, we can show that there does not exist

any singular solution for equations of type (II) nor of type (III). On the other

hand, Lemma 4 says the possibility of the existence of a singular solution for

equations of torsion type (IV). Of course, there does not exist any regular

solution for equations of torsion type. In this context, from now on, we

discuss the method of the construction of singular solutions only when equa-

tions are of type (I) (i.e. involutive).

Let R be an overdetermined system of type (I) and p : SðRÞ ! R be the

rank two prolongation. For this system R, we can give two methods of the

construction of geometric singular solutions which are given by the following.

( i ) We construct a singular solution of R by the projection of a special

solution of ðSðRÞ; D̂DÞ.
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(ii) We construct a singular solution of R as a lifted solution by using

the reduced fibration pR
B : R ! B. Here, the reduced space B is a

quotient space (leaf space) by the Cauchy characteristic systems

ChðDÞ of D.

In the approach (i), a special solution which gives a singular solution of R is

constructed in the higher dimensional space SðRÞ. On the other hand, in the

approach (ii), a special solution which gives a singular solution of R is con-

structed in the lower dimensional space B. More precisely, we illustrate the

character of these two methods and those di¤erences in the following.

We first explain the principle of the approach (i). We recall the decom-

position (12) of the rank two prolongation SðRÞ of R. Here ðPo1o2
; D̂DÞ is

the rank two prolongation with the independence condition o15o2 0 0. In

general, for a given second-order regular overdetermined system R ¼ fF ¼
G ¼ 0g with two independent variables x, y, this prolongation corresponds to

a third-order PDE system which is obtained by partial di¤erentiations of F ¼
G ¼ 0 with respect to x and y. If we construct a solution S of the system

ðPo1o2
; D̂DÞ, S is a regular solution by the definition of S0. On the other hand,

if we construct a solution S of SðRÞ passing through S1 ¼ fp22 ¼ 0g � Po1p,

S is a singular solution of R from the decomposition (12). The approach (i) is

a method to construct singular solutions utilizing this principle.

We next explain the principle of the approach (ii). In fact, E. Cartan [4]

characterized the overdetermined system R of type (I) by the condition that R

admits a one dimensional Cauchy characteristic system. From the description

(6) of the structure equation of R, we obtain the expression ChðDÞ ¼ f$0 ¼
$1 ¼ $2 ¼ o2 ¼ p ¼ 0g: This system ChðDÞ gives a one dimensional folia-

tion. Hence, a leaf space B :¼ R=ChðDÞ is locally a five dimensional manifold.

For this fibration pR
B : R ! B, it is well-known that there exists a rank two

di¤erential system DB on the quotient space B (cf. [4], [19], [29]). Hence, if

we construct an integral curve of the rank two di¤erential system ðB;DBÞ,
we obtain a lifted integral surface S of R by using the fibration pR

B : R ! B.

In this situation, our strategy is to find a special integral curve of ðB;DBÞ which
gives a lifted singular solution. This principle corresponds to the method

of characteristics. Namely, the approach (ii) is a theory of reduction into

ordinary di¤erential equations. As a matter of course, the approach (ii) can be

applicable to an equation only when it has a nontrivial Cauchy characteristic

system. On the other hand, the approach (i) can be applicable to a wider class

of equations. For example, second-order single equations with two indepen-

dent and one dependent variables have trivial Cauchy characteristic systems.

In particular, for the elliptic case, there does not exist even a Monge char-

acteristic system. Hence, the approach (ii) cannot be applicable to such a

class of single equations. However, the approach (i) can be applicable to the
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class of single equations. Indeed, in [17], integral representations of singular

solutions of typical equations have been constructed. In this sense, the

approach (ii) can be regarded as a method to treat a special case.

To demonstrate the usefulness of these methods, we construct singular

solutions of an important equation in the following subsection.

5.1. Singular solutions of Cartan’s overdetermined system. We consider

Cartan’s overdetermined system

R ¼ r ¼ t3

3
; s ¼ t2

2

� �
:

The canonical system D on R is given by

$0 ¼ dz� p dx� q dy; $1 ¼ dp� t3

3
dx� t2

2
dy; $2 ¼ dq� t2

2
dx� t dy;

and the structure equation of D is given by

d$0 1 dx5dpþ dy5dq; mod $0;

d$1 1�t2 dt5dx� t dt5dy; mod $0; $1; $2;

d$2 1�t dt5dx� dt5dy; mod $0; $1; $2:

ð19Þ

We take a new coframe

f$0; $̂$1 :¼ $1 � t$2; $2; p :¼ dt; o1 :¼ dx; o2 :¼ t dxþ dyg:

For this coframe, the above structure equation is rewritten as

d$0 1o15$̂$1 þ o25$2; mod $0;

d$̂$1 1 0 mod $0; $̂$1; $2;

d$2 1 o25p; mod $0; $̂$1; $2:

ð20Þ

Hence this equation R is an overdetermined system of type (I).

We first construct singular solutions of R by using the approach (i). For

this purpose, we need to prepare the rank two prolongation SðRÞ of R in terms

of the Grassmann bundle P : JðD; 2Þ ! R. For any open set U � R, P�1ðUÞ
is covered by three open sets in JðD; 2Þ such that P�1ðUÞ ¼ Uxy [Uxt [Uyt,

where

Uxy :¼ fw A P�1ðUÞ j dxjw5dyjw 0 0g;

Uxt :¼ fw A P�1ðUÞ j dxjw5dtjw 0 0g;

Uyt :¼ fw A P�1ðUÞ j dyjw5dtjw 0 0g:
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We next explicitly describe the defining equation of SðRÞ in terms of the

inhomogeneous Grassmann coordinate of fibers in Uxy, Uxt, Uyt. First, we

consider it in Uxy. For w A Uxy, w is a two dimensional subspace of DðvÞ,
where pðwÞ ¼ v. Hence, by restricting dt to w, we can introduce the inho-

mogeneous coordinate p1i of fibers of JðD; 2Þ around w with dtjw ¼ p11ðwÞdxjw þ
p12ðwÞdyjw. Moreover w satisfies d$1jw 1 d$2jw 1 0. Hence we have

d$1jw 1 ðt2p12ðwÞ � tp11ðwÞÞdxjw5dyjw;

d$2jw 1 ðtp12ðwÞ � p11ðwÞÞdxjw5dyjw:

In this way, we obtain the defining equations f ¼ 0 of SðRÞ in Uxy of JðD; 2Þ,
where f ¼ p11 � tp12 . Then df does not vanish on f f ¼ 0g. Next we consider

in Uxt. For w A Uxt, w is a two dimensional subspace of DðvÞ, where

pðwÞ ¼ v. Hence, by restricting dy to w, we can introduce the inhomogeneous

coordinate p2i of fibers of JðD; 2Þ around w with dyjw ¼ p21ðwÞdxjw þ p22ðwÞdtjw.
Moreover w satisfies d$1jw 1 d$2jw 1 0. In this situation, it is su‰cient to

consider the condition d$2jw 1 ðtþ p21ðwÞÞdxjw5dtjw 1 0. Then, for the defin-

ing function g ¼ tþ p21 of SðRÞ in Uxt, dg does not vanish on fg ¼ 0g.
Finally, we consider in Uyt. For w A Uyt, w is a two dimensional subspace

of DðvÞ, where pðwÞ ¼ v. Hence, by restricting dx to w, we can introduce

the inhomogeneous coordinate p3i of fibers of JðD; 2Þ around w with dxjw ¼
p31ðwÞdyjw þ p32ðwÞdtjw. Moreover w satisfies d$1jw 1 d$2jw 1 0. Here,

d$2jw 1 ð1þ tp31ðwÞÞdyjw5dtjw. Then, for the defining function h ¼ 1þ tp31
of SðRÞ in Uyt, dh does not vanish on fh ¼ 0g. Therefore, we have the

covering for the fibration p : SðRÞ ! R such that p�1ðUÞ ¼ Pxy [ Pxt [ Pyt,

where Pxy :¼ p�1ðUÞ \Uxy, Pxt :¼ p�1ðUÞ \Uxt and Pyt :¼ p�1ðUÞ \Uyt.

However this covering is not essential.

Proposition 2. Let R be Cartan’s overdetermined system and U be an

open set on R. Then we have

p�1ðUÞ ¼ Pxy [ Pxt: ð21Þ

Proof. We show that Pyt � Pxt. Let w be any point in Pyt. Then we

have

dxjw5dtjw ¼ � 1

t
ðwÞdyjw5dtjw:

Here, if w B Pxt, then we have the condition 1=tðwÞ ¼ 0. However there does

not exist such a point w.

We have the following description of the canonical system D̂D of rank

three: For Pxy, D̂D ¼ f$0 ¼ $1 ¼ $2 ¼ $t ¼ 0g, where $t ¼ dt� ta dx� a dy

81Second-order overdetermined systems



and a is a fiber coordinate. For Pxt, D̂D ¼ f$0 ¼ $1 ¼ $2 ¼ $y ¼ 0g, where
$y ¼ dyþ t dx� b dt and b is a fiber coordinate. The decomposition SðRÞ ¼
S0 [ S1 is given by S0jp�1ðUÞ ¼ Pxy, S1jp�1ðUÞ ¼ PxtnPxy, respectively.

By using the approach (i), we construct geometric singular solutions of

ðSðRÞ; D̂DÞ passing through S1. Let i : S ,! Pxt be a graph defined by

ðx; yðx; tÞ; zðx; tÞ; pðx; tÞ; qðx; tÞ; t; bðx; tÞÞ:

If S is an integral submanifold of ðPxt; D̂DÞ, then the following conditions are

satisfied:

i�$0 ¼ ðzx � p� qyxÞdxþ ðzt � qytÞdt ¼ 0; ð22Þ

i�$1 ¼ px �
t3

3
� t2

2
yx

� �
dxþ pt �

t2

2
yt

� �
dt ¼ 0; ð23Þ

i�$2 ¼ qx �
t2

2
� tyx

� �
dxþ ðqt � tytÞdt ¼ 0; ð24Þ

i�$y ¼ ðyx þ tÞdxþ ðyt � bÞdt ¼ 0: ð25Þ

From these conditions, we have

zx � pþ qt ¼ 0; zt � bq ¼ 0; ð26Þ

px þ
t3

6
¼ 0; pt �

bt2

2
¼ 0; ð27Þ

qx þ
t2

2
¼ 0; qt � bt ¼ 0; ð28Þ

yx þ t ¼ 0; yt � b ¼ 0: ð29Þ

We have y ¼ �txþ y0ðtÞ from (29). Note that the condition passing through

S1 is ytð0; 0Þ ¼ y 0
0ð0Þ ¼ 0. From (28), we have q ¼ �t2x=2þ ty0ðtÞ �Ð

y0ðtÞdt. From (27), we have p ¼ �t3x=6þ t2y0ðtÞ=2�
Ð
ty0ðtÞdt. From

(26), we have

z ¼ x2t3

6
� x

t2y0ðtÞ
2

þ
ð
ty0ðtÞdt� t

ð
y0ðtÞdt

� �
þ ty20ðtÞ

2

þ 1

2

ð
y20ðtÞdt� y0ðtÞ

ð
y0ðtÞdt:

Consequently, we obtain the explicit integral representation of a singular

solution in the coordinate space R3 ¼ fðx; y; zÞg.
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�
x;�xtþ y0ðtÞ;

x2t3

6
� x

t2y0ðtÞ
2

þ
ð
ty0ðtÞdt� t

ð
y0ðtÞdt

� �

þ ty20ðtÞ
2

þ 1

2

ð
y20ðtÞdt� y0ðtÞ

ð
y0ðtÞdt

�
; ð30Þ

where y0ðtÞ is a function on S depending only t and which satisfies y 0
0ð0Þ ¼ 0.

From this condition y 0
0ð0Þ ¼ 0, this solution has a singularity at the origin in

J 1ðR2;RÞ.
We next construct geometric singular solutions by using the approach (ii).

For Cartan’s overdetermined system, there exists a famous reduction to a rank

two distribution DB on a five dimensional manifold B. Here, the reduced

space ðB;DBÞ is the flat G2-model space of ð2; 3; 5Þ-distributions ([4], [27],

[28]). Cartan obtained an explicit integral representation of a general solu-

tion of Cartan’s overdetermined system based on this reduction R ! B. For

modern interpretations of this reduction and related topics, (e.g. symmetry,

quadrature, duality, etc.), various references exist (e.g. [1], [4], [19], [26]). In

this paper, we refer to [19] which is an exposition about the theory of char-

acteristics based on this reduction. From the structure equation (20), we have

ChðDÞ ¼ f$0 ¼ $̂$1 ¼ $2 ¼ o2 ¼ p ¼ 0g

¼ span
q

qx
� t

q

qy
þ ðp� tqÞ q

qz
� t3

6

q

qp
� t2

2

q

qq

� �
:

Hence we have a local coordinate ðx1; x2; x3; x4; x5Þ on the leaf space B :¼
R=ChðDÞ given by

x1 :¼ z� xpþ xqtþ 1

6
x2t3; x2 :¼ p� qtþ 1

2
yt2 þ 1

6
t3x;

x3 :¼ �qþ 1

2
yt; x4 :¼ yþ xt; x5 :¼ �t:

Conversely, R is locally an R-bundle on B. If we take a coordinate function l

of the fiber R, then the coordinate ðx; y; z; p; q; tÞ is expressed in terms of the

coordinate ðx1; x2; x3; x4; x5; lÞ defined by

x ¼ l; y ¼ x4 þ lx5; z ¼ x1 þ lx2 �
1

2
lx4ðx5Þ2 �

1

6
l2ðx5Þ3;

p ¼ x2 þ x3x5 þ
1

6
lðx5Þ3; q ¼ �x3 �

1

2
x4x5 �

1

2
lðx5Þ2; t ¼ �x5:

ð31Þ

On the base space B, we consider a di¤erential system DB ¼ fa1 ¼ a2 ¼ a3 ¼ 0g
of rank two given by
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a1 ¼ dx1 þ x3 þ
1

2
x4x5

� �
dx4; a2 ¼ dx2 þ x3 �

1

2
x4x5

� �
dx5;

a3 ¼ dx3 þ
1

2
ðx4 dx5 � x5 dx4Þ:

For the projection p : R ! B, generator 1-forms of D and DB are related as

follows:

$0 :¼ p�a1 þ xp�a2; $1 :¼ p�a2 � xp�a3; $2 :¼ �p�a3:

Thus, ðB;DBÞ is the reduced space of ðR;DÞ, that is, ðB;DBÞ ¼ ðpðRÞ; p�DÞ.
Utilizing this fibration, we will give the explicit representation of singular

solutions in the following. From the description t ¼ �x5 in (31), we take a

parameter t as x5 ¼ t. By solving ordinary di¤erential equations given by

a1 ¼ a2 ¼ a3 ¼ 0, we obtain the following integral curve cðtÞ of DB:

x1 ¼
ð

j 0
ð
j dt� jj 0t

� �
dt; x2 ¼

ð ð
j dt

� �
dt;

x3 ¼ � 1

2

ð
ðj� tj 0Þdt; x4 ¼ jðtÞ; x5 ¼ t:

ð32Þ

where jðtÞ is an arbitrary smooth function of t. Here, we assume the con-

dition j 0ð0Þ ¼ 0 to construct a singular solution which has a singularity at the

origin in J 1ðR2;RÞ. Then, from the relations (31) and (32), we obtain the

following integral representation of a singular solution in the coordinate space

R3 ¼ fðx; y; zÞg.�
x;�xtþ jð�tÞ; x

2t3

6
� x

t2jð�tÞ
2

þ
ð
tjð�tÞdt� t

ð
jð�tÞdt

� �

þ tj2ð�tÞ
2

þ 1

2

ð
j2ð�tÞdt� jð�tÞ

ð
jð�tÞdt

�
: ð33Þ

This integral representation is equal to (30) obtained by the approach (i).

Remark 5. In the integral (32), if we take a parameter t as x4 ¼ t, then

we have the regular solution in (33) (cf. [4], [19]).
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