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ABSTRACT. Let N>1, 1< p< o and p*=max(l,p—1). Let Q be a bounded
domain of RY. We establish the strong maximum principle for the p-Laplace operator
with a nonlinear potential term. More precisely, we show that every super-solution
ue WI(I)'CI’X(Q) vanishes identically in ©, if u is admissible and ¥ =0 a.e on a set of
positive p-capacity relative to Q.

1. Introduction

Let Q be a bounded domain of RY (N >1). By 4,u, we denote a
p-Laplace operator

Apu = div(|Vul|? V), (1.1)

where 1 < p < oo and Vu = (0u/0x),0u/dx,,...,0u/dxy).
In this article, we shall study the strong maximum principle on the
following quasilinear operator:

—4p +a(x)Q0(). (1.2)
Here a € L) () and Q(-) is a nonlinear term satisfying the following properties
[Qo] and [Q].
[Qol: ©Q(¢) is a continuous increasing function on [0, c0) with Q(0) = 0.
[Qi]:
o(1)

lifr_l,iléptﬂ—*l< 0. (1.3)

REMARK 1.1.  In view of [Qq], [Qq] can be replaced by the following: For
any T >0, there exists a positive number Cr such that

oy <Cr-t"'  tel0,T].
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Now let us recall some related known results on the strong maximum
principle assuming that Q(f) = #"~! for simplicity. The classical strong max-
imum principle for a Laplacian asserts that if u is smooth, ¥ > 0 and —4u >0
in a domain (a connected open set) 2 C RY, then either =0 or u >0 in
Q. The same conclusion holds when —Au is replaced by —Au + a(x)u with
ae L*(Q), s> N/2. Later these results were extended to quasilinear operators
—Apu + a(x)uP~! with 1 < p< o0, a e L*(Q), s> N/p. These are consequences
of weak Harnack’s inequalities; see e.g. Stampacchia [21], Trudinger [23];
Theorem 5.2 and its Corollaries, Moser [19, 20] for p =2, and see e.g.
Stredulinsky [22], Chapter 3 for p > 1 (see also Vazquez [24], Theorem 5).

Another formulation of the same fact says that if u(x) = 0 for some point
xeQ, then u=0 in Q2. However the next example shows that a similar
conclusion does not hold when a ¢ L* for any s > N/p.

EXAMPLE 1. Let By be a unit ball in RN with a center being 0 and

u=|x", a>(p-N)/(p—1),
a(x) = c(pr2) ] . (14)
c(p,2) = oo P(ap — o2 —p+ N).
Then we see a¢ LN/P(By) and —Ayu+ a(x)u?~' =0 in By. Clearly u(0) =0
for >0, but u#0 in B

On the other hand, if u vanishes on a larger set, then one may conclude
that u = 0 under some weaker condition on «. When p = 2, such a result was
obtained by Bénilan-Brezis [3] in the case where a € L'(Q), a > 0 a.e. in Q and
supp u is a compact subset of Q (see Theorem Cl in [3]). This maximum
principle has been further extended by Ancona [1], and later a more direct
proof was given by Brezis-Ponce [6] in the split of PDE’s. In the present
article we further study the strong maximum principle in the case where
pe(l,00) adopting a genaral nonlinearlity Q(¢) in stead of #”~!. To this end
we prepare more notations:

We recall that a real valued function u on Q is quasicontinuous if there
exists a sequence of open subsets {w,} of 2 such that u|,, is continuous for
any n > 1 and Cy(w,,2) — 0 as n — oo, where C,(w,, 2) denotes a p-capacity
of w, relative to £ (see Definition 2.2), and we say that x is a Radon measure
on Q if for every w CC Q, there exists C,, > 0 such that | [, ¢ du| < C,||pl|
for any ¢ € C;°(w). Note that if 4 is a Radon measure, then the total mea-
sure of # on w denoted by |u|(w) is finite. In order to establish the strong
maximum principle (SMP) involving a Radon measure A,u with p € (1, 0), we
introduce an admissible class of functions:

DeriNiTION 1.1 (Admissible class in Wllo’cp Q). Let 1<p<oo and
p*=max(l,p—1). A function ue Wkl)'cp (Q) is said to be admissible if A,u
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is a Radon measure on Q and there exists a sequence {u,},~, C Wli)’cp Q)N
L*™(Q) satisfying the following conditions.

(1)
(2)

. . 1, p*
U, — u ae. in Q, u, —u in WIO'C” (2) as n — oo.

Ay, e Ll (Q) (n=1,2,...) and

sup |dpuy|(w) < 0 for every w CC L. (1.5)
n

ReMaRK 1.2. (1) If ue Wh? (Q), then Ay, A,(u™) and A,(u”) are

well-defined in D'(Q2). It follows from the condition 1 that A,u, =
Ay(w) — A,(u,) and Apu, — Apu (ie. A,(uf) — 4,(u*)) in D'(Q2) as
n— oo. Moreover, it follows from the condition 2 and the weak
compactness of measures that we have Ayu, — Ayu (ie. A,(uF) —
A,(uF)) in the sense of measures as n— oo. In particular if u is
admissible, then u™ and u~ are admissible as well.

In our main result (see Theorem 1, below), the admissibility is assumed
only when p #2. We note that when p=2, ue Wllo’cl (Q) is always
admissible if Au is a Radon measure on Q:

To see this, let pe Cy(By) be a radial, nonegative, decreasing,
mollifier. By extending ue L'(Q) to the whole space RY so that
u=0 outside Q, we define a mollification of u by

) = pa ) = | palr =)y vxeR. (16)

We define u,(x) = uy(x) = py, *u(x) (n=1,2,...). Then the condi-
tion 1 is clearly satisfied. Moreover if p=2 and Au is a Radon
measure, then (1.5) is also satisfied. For w CC Q, we see that Au, =
(Au), and |du,| = (4u)" + ()™ = (4u),)" + ((4w),)” = |(4u),
in w for n sufficiently large. Hence (1.5) follows from the definition
of the Radon measure.

Here we give an important class of admissible functions:

EXAMPLE 2. A function ue W,"(Q) is admissible if Ayu is a Radon
measure on £2.
In fact we can construct an approximating sequence {u,} C WO1 P(Q) in

the following way. Let u= Ay, F=|Vul’ *Vue (L'(Q))" and Fl=(F), €

P

(C*RY)N, n=1,2,.... Let wcC Q. Then, we have ) = (4pu), = div F)
in o for a sufficiently large n. Let w, € WO1 P(Q) be the unique weak solution
of the boundary value problem for the monotone operator A, (c.f. [16]):

(1.7)

Apw, = div FY in Q
w, =0 on 0Q.
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Then, it follows from the standard argument (in Appendix) that we have
wo—u in WyP(Q) as n — oo, (1.8)
[Awn|(w) = |div F!|(0) = |1, [(@) — |ul(w) as n— oo. (1.9)

Then, taking a subsequence if necessary, {w,} satisfies the conditions 1 and 2.
For the detail of proof, see Appendix.

Now we describe our main result:

THEOREM 1. Let N>1,1< p< o and p* =max(l,p—1). Let Q be a
bounded domain of RY. Assume that Q satisfies the conditions [Qq] and [Qy].
When p = 2, assume that ue Ll (Q), u>0 a.e. in Q, Q(u) e L. (Q) and Au is
a Radon measure on Q.

When p # 2, assume that u € WIL’C”*(Q), u>0ae inQ, Qu)e Ll (Q) and
u is admissible in the sense of Definition 1.1.

Then we have the following.

(1)  There exists a quasicontinuous function o : Q — R such that u =1 a.e.

in .
(2) Let aelLl (Q), a>0 ae. in Q. Assume that

—Apu+a(x)Q(u) >0 in Q in the sense of measures, (1.10)

iLe.,
J Au < J aQ(u)  for every Borel set ECC Q. (1.11)
E E

If =0 on a set of positive p-capacity in Q, then u=0 a.e. in Q.

REMARK 1.3. (1) The definition p-capacity denoted by C,(E,Q) is given in
§2 in comnection with quasi continuity of function.

(2) In Example 1, we see that u = |x|* satisfies —Ayu+a(x)u?~' =0 in
B\. If p> N, then C,({0},B1) > 0 and u(0) =0 hold. But we note
that a ¢ L\ (By) in this case.

(3) When p<2—1/N, as in Example 3 below, we cannot expect the
solution of an equation of the form A,u = f (a Radon measure or L')
to be in W,l’cl (Q) in general. Therefore we cannot take the gradient
of u appearing in the p-Laplacian A4, in the distribution sense. See
2, 4, 5]

(@) It follows from (1.11) that the positive part (A,u)" should be absolutely
continuous with respect to the Lebesque measure.

In connection with Remark 1.3 (2), we give an example, which also shows
the necessity of (1.11) for the validity of Theorem 1 when p > N.
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EXAMPLE 3. Let u=|x|* for a=(p—N)/(p—1).
(1) u satisfies

Ayt = oo’ end,

where 0 denotes a Dirac mass and cy denotes the surface area of
By. It is easy to see that |Vu|e L) (Q) if and only if p>2—1/N.

(2) When p>2—1/N, u is admissible in W17 (By). In fact, u = |x|* is
approximated by a sequence of admissible functions v,y = |x|°‘<"> €
LY(By) where a(n) = o+ 1/(n(p —1)). Then, in the sense of measures
we have

1
ApVo(n) = Z|“(”)|p72°‘(”)|x|l/n71v — dyu  as n— 0.

Therefore there exits a sequence {n,y} such that {n,,} — o as
n— oo and a sequence of mollification {(vyy)),™"} satisfies the con-
ditions in Definition 1.1.

(3) If p>N, then u(0)=0 and C,({0},Bi)>0. But (1.11) is not
satisfied since o > 0.

(4) When 1 < p<2—1/N holds, one can consider u as a renormalized
solution.  For the detail, see e.g. [2, 4, 5, 17, 18].

When Q(t) = t97! for ¢ > 1, Q(¢) clearly satisfies [Qq]. Then the condi-
tion [Q] is satisfied if and only if ¢ > p. In this case we can show the
necessity of the condition [Qq] for the validity of Theorem 1, namely we have
the following.

PropPOSITION 1.1.  Let us set Q(t) =t9" and q > 1. Then, the condition
[Q1] is mecessary for the validity of Theorem 1.

The proof of this proposition is given in §3 by constructing a counter-example.
We collect corollaries which follow immediately from the theorem above:

CoROLLARY 1.1. Let u and a be as in Theorem 1, and assume (1.10) is
satisfied.
(1) If u=0 on a subset of Q with positive measure, then u =0 a.e. in Q.
(2) If u is continuous in Q and u=0 on a subset of Q with positive p-
capacity, then u=0 in Q.

COROLLARY 1.2. Let u and a be as in Theorem 1. Assume that

Ayu,aQu) e LL (). If
—Ayu+aQ(u) =0 ae. in Q,

and u=0 on a subset of Q with positive measure, then u =0 a.e. in Q.
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Combing Theorem 1 and Remark 2.1 in §2, we have the following.

COROLLARY 1.3. Let u and a be as in Theorem 1. Assume that aQ(u) €
Llloc(g)' If
—Apu+aQ(u) >0 in the distribution sense,

that is
JQ Vul”2Vu-Vo < JQ aQ(u)p  for any 9 e C°(2), 9 >0, (1.12)

and u=0 on a subset of Q with positive measure, then u=10 a.e. in Q.

RemaRK 1.4. In view of Corollary 1.3, it would seem natural to replace
condition (1.11) by (1.12) in Theorem 1. We note that condition (1.12) makes
sense even if aQ(u) ¢ Ll (Q) (since aQ(u)p >0 a.e., the right-hand side of
(1.12) is always well-defined, possibly taking the value +oo). However, the
strong maximum principle is not true in general (see [6]). See also Remark 2.1.

This article is organized in the following way. In §2 we collect basic
notations with some remarks. In §3 we prove Proposition 1.1 by constructing
a counter-example, and in §4 we prove the quasicontinuity statement of
Theorem 1. In §5 we prepare two lemmas including Kato’s inequalities
when 4,u is a Radon measure. Theorem 1 is finally established in §6. In
Appendix we prove that u € WO1 (@) is admissible if 4,u is a Radon measure
on Q.

2. Preliminaries

In this subsection we collect fundamental definitions in the present article
together with some remarks. Let L?(Q), 1 < p < oo, denote the space of
Lebesugue measurable functions, defined on 2, for which

1/p
o =([ o) <o

By L (£2) we mean the space of functions locally integrable with power p
in Q, and by L*(Q) we mean the space of essentially bounded Lebesgue
measurable functions. As a norm of f in L*(Q) we take its essential

supremum. Then we define the following Sobolev spaces:

11

DerINITION 2.1 (WP(Q) and W,i’cp(Q)). For each 1 < p < o0, we set
Whr(@)={f:Q—R:feL’(Q),df/ox;e LF(Q) for i=1,....,N}, (2.1)
WP (@) ={f:Q—R:felLl (Q),f/ox;e Ll

loc loc loc

(Q) for i=1,....N}. (2.2)
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Here 0f /0x; is taken as a distributional derivative of f for i=1,...,N. The
space W'P(Q) is equipped with the norm

ullwoio) = IIVulll Loy + lull o) (2.3)
By W, (Q) we denote the completion of C3(Q) in the norm [l 1)

DERINITION 2.2 (A p-capacity relative to Q). Let 1 < p < oo. For each
compact set K C Q we define a p-capacity of K relative to Q by

Cy(K,Q) = inf{J Vol|” : pe C(R2),9 > 1 in some neighborhood of K}.
Q

We prepare a fundamental lemma (for the proof, see e.g. [22]; Chapter 2).

Lemma 1. (1) Ifue W,});?’(Q), then u can be redefined almost everywhere
s0 as to be quasicontinuous.

(2) Ifue W,{l)’cp (Q), then u is continuous off open sets of arbitrarily small
p-capacity, and if ¢, € C*(Q) and ¢, — u in I/V,(I,"f(Q) as n — oo, then

¢, — u point wise quasi-everywhere for some subsequence {n;}.

REMARK 2.1. Let u be a Radon measure on 2 and f a measurable function,
f =0 ae in Q Here are two possible definitions A and B for the inequality
u<fin Q:
A: We shall write u <, f in Q, if [, du< [, [ for every Borel set E CC €.
B: We shall write u<, f in Q, if [odu<|fo Vpe Cy(2), =0 in Q.
() Ifu<ifinQ, then u<, f in Q. However, the converse is not true
in general. Note that fo >0 a.e., in B so that the right-hand side is
always well-defined, possibly taking the value + 0.
(2)  If we assume in addition that f € L}, .(Q), then u <; f in Q, if and only
if, u <o f in L.

3. Proof of Proposition 1.1

We prove Proposition 1.1 by contradiction. If 1 < ¢ < p and Q(f) = 197!,
then there exists an admissible sub-solution of (1.10) such that # =0 on a set of
positive p-capacity in 22 but not equal to 0 a.e. in B;. In order to see this, we
prepare the following.

EXAMPLE 4. Let Q = B). Let m be a nonnegative integer such as m <
N —1. Let My={0} and let M,, C RY for m > 0 be an m dimensional linear
subspace defined by

My ={y= 1,92, y8) eERY 1y = ya =y =0}, (3.1)
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and we put K, = Ay, N\ By. Let us define
N 12
dm(x) = dist(x, My,) = < Z x,%) . (3.2)
k=m-+1

Then clearly d,, € C* (RN\%m), Lipschitz continuous in By and |Vd,(x)| =1 in
RY\.#,. Now we construct a null solution U, for (1.2) in By of the form

Up(x) = dy(x)" (3.3)

as before. By a direct calculation we see that U, is admissible for a large o > 0
and 4,U,, satisfies

—A,Upy + a(x)0(Uy,) =0 in D'(By), (3.4)
where

A, Uy, U}371 - a(p—q)—
— S = s 4 (1= 1)(p = D)

Here we note that

a(x)

du(x)4dy,(x) =N —m—1 and o(r) = 1771, (3.5)
Then we have for a sufficiently large o > 0
0 < a(x) < Cdp(x)"P~ 07 e LY(B)),  for some positive constant C.

Clearly U, is an admissible sub-solution of (1.10) such that U, =0 on K,, but
not equal to 0 a.e. in Bj.

Proor of ProrosiTioN 1.1. In Example 4, let us choose a nonnegative
integer m such that N —p <m < N — 1. Then, it follows from a fundamen-
tal property of relative p-capacity that C,(K,,B;) > 0. Clearly U, =0 on
K, C M, and U, #0. Therefore U, becomes a counter-example. For
precise properties of relative p-capacity, see e.g. Lemma 1 in Dupaigne-Ponce
[8], Proposition 3.1 in Horiuchi [10]. O

4. Proof of the quasicontinuity statement of Theorem 1

In this section we prove the quasicontinuity statement of Theorem 1.
Given k > 0, we denote by 7} : R — R a truncation function

k ifs>k,

Ti(s) ==X s if —k<s<k, (4.1)
—k if s < —k.
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Recall the following satndard inequality (see, e.g., Lemma 1 in [6]):
LEMMA 2. Assume that ue L} (Q) and Au is a Radon measure. Then

Ti(u) e WhA(Q), Yk >0, (4.2)

loc

Moreover, given w CC w' CC Q, there exists positive constant C such that

Jw VTe(w)) < k(J \Au| + CL/ |u|), (4.3)

where positive constant C are independent on each u. Moreover, there exists a
quasicontinuous function #: Q2 +— R such that u=u a.e. in Q.

When p =2, the existence of a quasicontinuous function # (the statement
1 of Theorem 1) follows from Lemma 2. When p # 2, this fact is a con-
sequence of Lemma 3 below:

Lemma 3. Let Q CRN be an open set. Assume that ue WL (Q) is
admissible.  Then

Ti(u) e WHP(Q),  Vk >0, (4.4)

loc

Moreover, given o CC w' CC Q, there exists positive constant C such that

L VT () < Ck(L Ayl + L |\7u|1’1>, (4.5)

where positive constant C are independent on each u. Moreover, there exists a
quasicontinuous function #: Q2 — R such that u=u a.e. in Q.

Proor oF LEmma 3. We shall split the proof into two steps.

Step 1. Proof of (4.4) and (4.5).

By the hypotheses on « and Vu, we can take the gradient of u appearing in
the p-Laplacian 4, in the distribution sense. Then, it follows from a standard
argument that A,u = 4,(u*) — 4,(u”) in 2'(Q). In fact, we see that for any
pe Gy (Q)

Apu, 0y = div | (Vul’ V(' —u")), p)

- —J (Vul? 2Vt — V) -V
Q

= —J Vut P2 Vut Ve —&-J Vu |P2Vu~ Ve
Q Q

= <Ap(”+) —A,(u”), 0.

Hence we may assume that ¥ >0 a.e. in 2 from now on.
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. . .. . 1, p* . o0
Since u is admissible in W (), there exists a sequence {u,}, ; C

Wb (@) N L™ (Q) satisfying the conditions 1 and 2 in Definition 1.1. Since u*

loc
is also admissible, we may assume u, > 0 by taking u for u,, namely:

1) 0<u,—wuae. in Q, u,— uin WLr(Q) as n — oo.
loc
(2) ApupelLl (Q) (n=1,2,...) and

loc

sup | dpup| (@) < 00 for every w CC Q. (4.6)
n

For k > 0 fixed, we have Ty(u,) € W,"7(Q) and

loc
VTk(u,,) = XHWKHVM,,, (47)

where y(,,1<; denotes the characteristic function of the set [|u,| < kJ.
Given w CC o' CC 2, let pe C°(w’) be such that 0 < ¢ <1 in »’ and
=1 on w. First, using (4.7) and integrating by parts, we have

1= len(unwp - j\vunv—zm VTe(un)o”

_ J Telwn) div(@? Vi " 2Vi))  (dyiy € L (Q), Vi € LLS(2)
- J T () At 0 — J T (1) VitV ity - Vip?
=Ji+ /5

Since Ty (u,) <k, we have

1| = U Ty (un) Apting”

< kJ | Apun|p?, (4.8)

and
12| < PJIVTk(un)I”*lTk(un)IVcﬂlsﬂ”’l < ka Vi " V. (4.9)
From (4.8) and (4.9) we have

I< k(j Ayl + | |Vun|P‘|V¢|).

In particular,

[ W < o([ 1aml+1woll | W) o)
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It follows from the condition 1 on u, and the statement 2 of Lemma 8 that we
have

J | [Vian|” Vi, — [VulP V| - 0 as n— oo, (4.11)
Therefore we see as n —
JA,,un(p =— J V[PV, - Vo — — J \Vul”2Vu-Vo = JA,,W), (4.12)

that is,
Apuy — Apu in 9'(Q) as n — 0. (4.13)
Together with sup,|4,u,|(w’) < oo and |4,u|(w’) < co for any o' CC 2, we see
Apuy, — Apu in the sense of measures. (4.14)

By the weak compactness of Radon measures and the uniqueness of weak limit,
we also have

lim |4,u,| = |4,u in the sense of measures.
n—oo

Letting n — oo, we conclude that Ty(u) € Wllo’(,p (w) and the inequality (4.5)
holds.

Step 2. Under the assumptions of the Lemma 1, there exists a function
u : Q — R quasicontinuous such that u =u a.e. in Q.

PROOF OF STEP 2. By (4.4), for each k >0 there exists Ti(u): Q2 — R
quasicontinuous such that Ty (u) = Ty(u) a.e. in Q. Let vy :=+Ti(u), so that
vx — 0 as k — oo in LY(Q), Vge[l,0). In fact, we see that

when ¢ =1, [l =1 Jo |Te(@)| < § [olul = 0 (k— o0),
when ¢ > 1, [, |ok|? =4 o | Te(@)| " | Te(u)| < Lfolul =0 (k— o).

By (4.5), we see that
J Voe]? — 0 (k — ) Yo CC Q.

In particular, vz — 0 in le)’f (), which implies that there exists a subset
P C Q with 0 p-capacity such that

Tr(u)(x) — 0, Vx e Q\P.
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We conclude that
Cp({|fﬁ,)| > §}9> = cp({ﬂ;ﬂ > %}Q) —0 (k- ). (415)

M(x):::{supkeN{JiZ&xxa} if supen e @) < 0, (416
0 otherwise,

Set

so that w=u a.e. in Q. By (4.15) and the quasicontinuity of the functions
Ti(u), it is easy to see that w is quasicontinuous in €. This concludes the
proof of the Lemma 3. ]

5. Kato’s inequalities when 4,u is a Radon measure

We retain the same notations as in the previous section. Since Ti|g, is
concave, by the standard L'-version of Kato’s inequality (see [6, 11, 13]) we
have the following lemma.

LEMMA 4. Assume that v e Wkl)'cp(_Q), dyell (Q) and v>0 ae in Q.
Then, we have

A,(Ti(v)) < tx(v)4pv in D'(Q), (5.1)
where the function t; : Ry — R is given by

s) ::{1 if0<s<k, (52)

0 if s>k

Proor. Let {@,} be a sequence of smooth concave functions in R such
that @,(r) =t if t <k and |®,(r) — k| <1/nif t > k. 1In particular, 0 < @, <1
in R. Then we define

D, () = D@,(t) +nt  for n>0. (5.3)

We may assume that v is smooth by the approximation argument. By a direct
calculation

Ap( By (0)) = B, ()" A0+ (p = )], (0) 2L, (0) V"
< @;ﬂ”(v)pfldpv (@, ,=®, <0 by concavity of &,)
Letting # — 0, we clearly have
A,(@,(v)) < DL (0)" ' A0 in Q. (5.4)

As n — oo, we finnally get the inequality (5.1). ]
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Then we prove the following lemma which is due to Ancona [1] and
Brezis-Ponce [6], if p =2.

LemMa 5. Let Q C RY be an open set. Assume that Q satisfies [Q,)] and
Q. Let ueLl (Q) if p=2 and let ue Whl)"cp*(.Q) if p#2. Assume that
u>0ae in Q, QMu)elLl (2) and Ayu is a Radon measure on Q. Moreover
if p+#2, assume that u is admissible in the sense of Definition 1.1. Then,

A, (T (u)) is a Radon measure Vk > 0.

Moreover, for any ae L*(Q), a >0 ae. in Q, we have

Ap(Ti(u)) — aQ(Ti () < (4pu — aQ(u)) " (5:5)

ProoF OoF LEMMA 5. We shall establish this lemma in the case where
p # 2, using the same notation as in the proof of Lemma 3. Since u=u"
is admissible in WIL’CP (.Q), there exists a nonnegative sequence {u,},.; C
WEP(Q)N L™ (Q) satisfying the conditions 1 and 2 in Definition 1.1.

loc
When p =2 holds, the same argument with Lemma 2 works by replacing u,

by u"; a sequence of mollifications of u defined by (1.6) in Remark 1.2. By
Lemma 4, we have

Ay(Ti(uy)) < ty(un)dpu,  in D'(2), Vn, (5.6)

where the function #; : R, — R is given by (5.2). Since Ti(s) = #(s)s, Vs > 0,
u, >0 and a >0 a.e. in Q, it follows from (5.6) that

ApTic(un) — aQ(Tic(un)) < tr(un) Aptty — aQ(Ti (1))
< tic(un) (Apttn — aQ(uy))
< (dpuy —aQ(u,))"  in 2'(Q). (5.7)
In other worlds, we have for Vpe C°(2), ¢ >0 in Q

| w10~ a0mim)o <[40, — () o, (5:8)
and we have
| 47itm))0 — aQ(T 0 = = [IVTt) 2 Til) Vi -+ aQ(Te )
Note that a € L* and Ty(u) € W,'7(Q) by Lemma 3. Letting n — 0 we get

the left side of (5.8) — —J|VTk(u)|P*2\7Tk(u) Vo +a0(Tx(W)g. (5.9)
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In the proof of Lemma 3 we showed that A,u, — 4,u in 2'(Q) and |4,u,| —
|4,u| on any open set w’ CC R in the sense of measures as n — oo, where |4,u|
denotes the total measure of A,u. Therefore, by letting n — oo we have

| 7030~ a(r )0 < [~ aw) . (5.10)

So that, 4,(Ti(u)) is a Radon measure. O

LEMMA 6. Assume the same hypotheses of Lemma 5. Let ae Ll (Q),
a>0 ae in Q Assume that

—Apu+aQ(u) >0 in Q in the sense of measures,

Le.,
J Au < J aQ(u) for every Borel set E CC Q.
E E

Then
—A,(Ty(u)) + aQ(Ty(u)) >0 in 2'(Q), Vk > 0. (5.11)

PrOOF OF LEMMA 6. By the preceding Lemma applied with a; := T;(a),
where i is a positive integer, we know that

A(Te() — Q(Te(w)) < (du— @, Q)" in 9'(2).  (5.12)

On the other hand, from (5.10), for every Borel set E C 2, we get

JE Apu — a;Q(u) < J (a —a;)Q(u). (5.13)

E
Since (¢ —a;)Q(u) >0 a.e. in Q, for every Borel set E C Q, (5.12) implies
that

0< JE (Uptt — a:0(u))* < J (a— a)Ou). (5.14)

E

Hence, (4,u—a;Q(u))" is a nonnegative measure, which is absolutely contin-
uous with respect to Lebesgue measure. Therefore, we have

(dou—a;Qu) e LY(Q)  Vi=1,2,.... (5.15)
We now return to (5.13) to conclude that

0 < (dpu—aiQu)" < (a—a;)0u) a.e. in Q.
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In particular,

(dpu—a;Qu))" 10 ae. in Q as i — oo. (5.16)
It follows from (5.15) and (5.16) that

(Apu — a;0w))" =0 in LY(Q) as i — 0. (5.17)

Finally, for any ¢ € C;°(2), ¢ >0 in Q by (5.12) and (5.17) we have

jAp<Tk<u>>¢—aQ<Tk<u>>¢sJ(Apu—aiQw»*wo (i— ). (518)

Then we conclude

—A,(Ti(u)) + aQ(Ti(u)) =0 in 2'(2) Yk > 0. O

6. End of Proof of Theorem 1

It follows from Lemma 1 that, under the hypotheses of theorem, there
exists u: 2 — R quasicontinuous such that u =u a.e. in Q. Let us assume
that # =0 on a set of positive capacity £ C 2. We shall prove that u =10
a.e. in 2. We split the proof into two steps:

StEP 1.

CramM. Under the hypotheses of the theorem, if we assume in addition
that u e L*(Q), then u =0 a.e. in Q.

PrOOF. Since ue L*(Q), we have aQ(u)e L. (Q). It follows from
(1.10) and Remark 2.1(2) that

—Apu+aQu) =0  in 2'(Q). (6.1)

By Lemma 2 and Lemma 3, we know that Ty (u) € W,(I)‘f (2), Vk > 0. Since
supi{7x(u)} =u holds, we have ue Wli’(,” () as well. Therefore it follows
from Remark 1.2(2) that u is automatically admissible when p = 2. Then, for
any pe(l,00) we can choose a nonnegative sequence {u,},—; C WIL’CP (£)n

L*(Q) satistfying the conditions 1 and 2 in Definition 1.1. We set
—Apit + aQ(u) = —Apity + aQ(tn) + fo + G, (6.2)

where  f, = Ayu, — A,u and g, = a(Q(u) — O(u,)). Since aQ(u) € L}

loc(Q)
and ue L*(Q), we see that g, — 0, (as n — o0) in L] (Q), and it follows
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from (4.13) that f, -0 (as n— o0) in 2'(Q). Then we have the next
lemma.

LemMma 7. Under the hypotheses of the theorem, if we assume in addition
that ue L™ (Q), then for any 6 >0 we have

(1) lim J(f”pl(p_o for any ¢ in C’(Q).

n=% ) (5 + uy)
(2) n]j:gj(é_ﬁ_i#gp =0 for any ¢ in Cy’(Q).

PrROOF. Since g, — 0 in L'(Q), the assertion 2 is clear. By a direct
calculation, we have for any n

fn B —Apun + Apu
19 -1 7
(0 +uy) (0 + uy)

1
o e e R
(0 + u,)”

+ J(_|Vun|p_2Vun — |Vu|"2Vu) - Vuy, (I-p). (6.3

_ P
0+ uy)”?

Here we recall that u = Ty(u) € Wli’c"(Q), if k> |ul|,.. Hence by Young’s
nequality we have

Jn J -1 1 1
—| < Vu,|””" + |Vul? Vo| ———
Um%)pl(p (Va9 Vo
P p—1 P — 1
+J(|Vun| + |Vu |\7un|)lw|7(5+un),,
< (. mj (Vul” + Vi) < oo, (6.4)
supp ¢

where C(d,¢p) denotes a positive number independent of n. Then the assertion
1 follows from the dominated convergence theorem (see e.g. [9]; Section 4 in
Chapter II). [

Let o CC o' CCQ and let 0 <¢pe CP(w') with ¢ >1 on w. Multiplying
(6.2) by ¢?/(u, +0)""" with 0 <ge C(w'), we get

P Apun - aQ(un)p” +(fwrgn)f/)”

— < — — in o', V. (6.5)
(0 + uy)”? (0 + up)” (0 + uy)”
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Then we have

|

|Vun|p72Vun Vu,p?
(0 + up)”

Vu,|”

©+u)’? _J
1 -2
pJ¢p|Vun|p Vu,

1 —

327

|
(tp + )"

.\7< )

= 1 J APun V4 14 JQPIVqJ' ‘Vun|p_2vun
p—1 (un+5)p71 p—1 (un—i—é)p*1
L[ aQun)e? . p (IVol[Vu,|" 2!
= 1 + -1
p=1)@+u) p-1 (uy + )"
1 J(f,; + gn)p?
P=1) @ +u,)!

By Young’s inequality and Lemma 7, for any # > 0, there is some C, > 0 such

| =1

Hence there exists a positive number C independent of n such that we have

Vol |V”n|p_l(0p_1
(tn +5)p_l

\Vu,|” p?
(6 +u,)”

+C, J \Vo|” (Vn > 0,Vn).

Vi|"p? _aQ(un)p’ Un+gn)g”
J((H-u,,)" - C(J (0 + )" +J|V¢|p +J(5+un)p_]>
»
< C(Ja¢”+J|V¢|p+J%> ([Qo); [Qi],ue L™).  (6.6)

Since Vu,/(u, +0) =V log(d + u,) =V log(u,/0 + 1), the estimate above may

be rewritten as
Y2

(6 + )"

U
V10<1+—">
JQ AP

log <% +1

P
9’ < CJ (ago" + |Vol” +
Q
> e W P(Q) Y5> 0,V

Letting n — oo we have

s

p

(6.8)

o < cjwﬂ Vel VpeCR(e).
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Let E C Q be a set of positive capacity such that # =0 on E. Without any
loss of generality, we may assume that £ C v CC ' CC 2 and w is an open

connected. We have
u
Vi —+1
og( 5+ )

l

Since the quasicontinuous representative log(ﬁé/ +1)=log(@/o+1) of
log(u/0 + 1) equals 0 on E C Q with C,(E,Q) > 0, it follows from a variant
of Poincare’s inequality that there exists positive number C (depending only on
E and Q) such that

J log<g+ 1)

In particular, the integral in the left-hand side remains bounded as ¢ | 0. On
the other hand,

V4
<c J (ap” + [Vo]?). (6.9)
Q

p
< CJa(p” +|Vol?  ¥Yo>0. (6.10)

p
log(g+ 1> — +0 ae. in o\{u=0} as 0 |0. (6.11)

By (6.10) and (6.11), we conclude that u = 0 a.e. in w. Since w is an arbitrary
connected neighborhood of E in w’, we conclude that u =0 a.e. in Q. [J

Step 2. From Lemma 5, we know that 4,(7(u)) is a Radon measure
and

—A,(Ti () +aQ(T1(w)) >0 in F'(Q).

We note that 4,(T(u,) — 4,(T1(u)) in D'(Q) and aQ(T;(u,)) — aQ(T1(u)) in
Ll .(Q) as n — oo. In addition, T1(u) = Ti(u) =0 on E C Q with C,(E,Q) >
0. By Setp 1, we have T1(u) =0 a.e. in 2 and so u =0 a.e. in Q. After all

we have the desired result. O

7. Appendix

PROOF OF THE PROPERTIES (1.8) AND (1.9). We prove that u e W017p (Q) is
admissible if 4,u is a Radon measure on Q. Let w, € Wol’p () be the unique
weak solution of the boundary value problem for the monotone operator 4,
(see e.g. [16]): For n=1,2,...,

{prn =divF) in Q, (7.1)

w,=0 on 09,

where F = |Vul’ *Vue (L'(Q))" and F!=(Vu|"*Vu)" e (C*RY))" is a
mollification of F defined by (1.6). Let us set 0 CC Q and A,u =div F = p.
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Since |u|(w) < o0, we see div F)' = (div F), = (4,u), = w in o provided that
n is sufficiently large. Hence we clearly have for every w CC Q
() = |div EJl(0) = [1](@) — (@) as n— o,
This proves (1.9). Next we show (1.8), that is:
we—u in WyP(Q) as n— 0. (7.2)
We need the next elementary lemma, see e.g. [5, 12].

LemMmA 8. Let 1 < p < o0.
(1) There exist positive constants c1(p) and cy(p) depending on p such that
for every & neRY we have

€= nlP(El+ )" < a(p)(E 2=l Pn) - (E=n). (73)
In particular if p > 2 we have
€ —nl” < e(p)(EP 2= " 2n) - (& =), (7.4)
and if 1 < p <2 we have for any e¢€ (0,1)
(&= nl" < ea(p)e? PP e 0" 2n) - (E = m) (1€ + )" (7.5)

(2) There exist positive constants d\(p), d2(p) and dsz(p) depending on p
such that for every &,neRY we have

1672 =l 2l < (o) = nl(El + )" i p=2 oo
€772 = "l < dap)E—nl”™" i 1< p<2.
In particular if p > 2, then we have for any ¢e (0,1),

€772 = Inl" ) < ds(p)e /DN =" e+ Inl)" L (7.7)

First we treat the case where p > 2: By using w, —ue Wol’p (Q) as a test
function, we have

—Aywy — Ay, wy — uy = J(|an|”_2an — Vul"2Vu) -V (w, — u)

> cl(p)*ljw(wn —WP (by (14)). (7.8)

In the left-hand side, using Young’s inequality for 6 > 0 we have

—{dywy, — Apu, Wy, — uy
= J(Fp” —F)-V(w, —u)

< C(é)J|Flj’ s +5J|V(w,, “WlP for some C(3)>0.  (7.9)
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Noting |Fp”|p/ and |F|”" with p' = p/(p — 1) are bounded in L!(Q), it follows
from (7.6) and the dominated convergence theorem we see that w, — u in
WO1 ’(Q). Then, taking a subsequence if necessary, {w,} satisfies the property
w, —u, Vw, - Vu ae. as n — oo.

Lastly we treat the case where 1 < p < 2. In this case the proof can be
done using (7.5) instead of (7.4) in a quite similar way. Hence we omit the
detail.
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