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Abstract. In this article we classify the free involutions of every torus semi-bundle

Sol 3-manifold. Moreover, we classify all the triples ðM; t;RnÞ, where M is as above,

t is a free involution on M, and n is a positive integer, for which the Borsuk-Ulam

Property holds.

1. Introduction

The classical Borsuk-Ulam Theorem states that, for any continuous map

f : Sn ! Rn, there exists a point x A Sn such that f ðxÞ ¼ f ð�xÞ. This theo-

rem has motivated the following quite natural and general question. Given

a topological space M, a free involution t on M, and a positive integer n,

we say that the Borsuk-Ulam Property holds for the triple ðM; t;RnÞ (or the

triple ðM; t;RnÞ satisfies the Borsuk-Ulam Property), if for any continuous map

f : M ! Rn, there exists a point x A X such that f ðxÞ ¼ f ðtðxÞÞ. The ques-

tion consists in classifying the triples ðM; t;RnÞ for which the Borsuk-Ulam

Property holds.

The above question has been studied by several authors, see for example

[1, 3, 4, 5, 7] among others. The classification of free involutions of a space is

closely related to the above question and it is a problem in its own right. The

classification of free involutions together with the study of the Borsuk-Ulam

Property for many Seifert 3-manifolds can be found in [7], [1] and [2].

The family of torus semi-bundles (see [11]), also called sapphire manifolds

in [9], contains a subfamily consisting of those manifolds which admit Sol

geometry. We call the manifolds of this subfamily sapphire Sol manifolds.
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The purpose of this work is to classify all free involutions on each sapphire

Sol manifold M, up to an equivalence relation (see section 3), as well as the

triples ðM; t;RnÞ which satisfy the Borsuk-Ulam Property.

The main results are:

Theorem 1. For any sapphire Sol manifold M and free involution t on M,

the triple triple ðM; t;R2Þ has the Borsuk-Ulam Property.

Theorem 2. Given a sapphire Sol manifold SA with A ¼ a b

c d

� �
, we

have:

I) If c is odd, the manifold does not admit involutions.

II) If b and c are even, we have two cases:

II-a) If jaj0 jdj, then the manifold admits a unique class of free involutions

and the quotient is homeomorphic to the sapphire Sol manifold SB with B ¼
a 2b

c=2 d

� �
.

II-b) If jaj ¼ jdj, then the manifold admits three distinct classes of free

involutions and the quotients are the sapphire Sol manifolds SB where B runs

over
a 2b

c=2 d

� �
,

r s

t u

� �
and

s r

u t

� �
. Here ðr; s; t; uÞ is one of the solutions

given by Proposition 4.

III) If b is odd and c is even, then the manifold admits a unique class of

free involutions and the quotient is homeomorphic to the sapphire Sol manifold

SB with B ¼ a 2b

c=2 d

� �
.

By applying a result of J. Hillman [8], we obtain the following corollary.

Corollary 1. Given a sapphire Sol manifold SA with A ¼ a b

c d

� �
, the

Borsuk-Ulam Property holds for the triple ðSA; t;R
3Þ if and only if c is even and

b is odd. Furthermore, in this case the manifold admits only one class of free

involutions.

This paper contains three sections besides this introduction.

In Section 2, we recall the definition and a classification of the torus

semi-bundles (also called sapphires), in particular, those which are not torus

bundles. The former are classified in terms of certain integral matrices in

GLð2;ZÞ by a result of K. Morimoto in [9].

In Section 3, we determine all double coverings of a given sapphire Sol

manifold in terms of the classification given by Morimoto [9]. Then we obtain

the equivalence classes of the double coverings.
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In Section 4, we provide the classification of free involutions and we give

the classification of all triples ðM; t;R2Þ and ðM; t;R3Þ for which the Borsuk-

Ulam Property holds. The latter case uses a recent result by J. Hillman

[8].

A great amount of information about involutions (not necessarily free) on

torus bundles is given in the work of Sakuma [10]. His work might be useful

to study similar questions for torus bundles. This work is in progress.

2. Sapphire Sol manifolds

The Sol geometry is one of the eight geometries mentioned in Thurston’s

geometrization conjecture. Using [11] we have that these manifolds can be

divided into two disjoint subfamilies:

a) Torus bundles where the gluing map is an Anosov map;

b) The subfamily of the torus semi-bundle which admit Sol geometry

(see below, or [11] in more detail, the definition of torus semi-bundles,

which are also called sapphires in [9]).

A torus semi-bundle (sapphire) is obtained by gluing two orientable twisted

bundles over the Klein bottle. We will describe them following Morimoto [9].

For i ¼ 1; 2, let KiI be two copies of the same orientable twisted I -bundles

over the Klein bottle with p1ðqKiIÞG hai; bi j aibia�1
i b�1

i i. The generators ai, bi
of the fundamental group of the torus qKiI can be seen as the fibers of two

Seifert fibrations of KiI . Namely, ai is an oriented fiber of a Seifert fibration

with orbit manifold a disk with two exceptional points and bi is an oriented

fiber of a Seifert fibration with orbit manifold a Möbius band without excep-

tional points.

Let A ¼ r s

t u

� �
be an element of GL2ðZÞ and f : qK2I ! qK1I be a

homeomorphism that induces isomorphism A ¼ fa : p1ðqK2IÞ ! p1ðqK1IÞ such

that faða2Þ ¼ ra1 þ sb1 and faðb2Þ ¼ ta1 þ ub1. By identifying x A qK2I with

fðxÞ A qK1I , we obtain an orientable 3-manifold SA ¼ K1I [f K2I . By Prop-

osition 1.5 in [11] (or Remark 1.8 in [9]) SA is a Sol manifold if and only if all

entries of A are nonzero. We call such a sapphire manifold SA a sapphire Sol

manifold.

A presentation of the fundamental group of SA is given by [9]:

p1ðSAÞG ha; b; c j aba�1b; c2a�2rb�s; ca2tbuc�1a2tbui: ð1Þ

So, we can also compute the first homology group of SA.

In [9] we also find when two gluing matrices produce the same manifold

up to homeomorphisms. The topological types of sapphire manifolds are

given by:
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Theorem 3 (Morimoto). Let A, A 0 be two elements of GLð2;ZÞ. Then

SA is homeomorphic to SA 0 if and only if A 0 is equal to one of the following

matrices: GAG, GBAG GAGB, GBAGB, where B ¼ 1 0

0 �1

� �
.

Let SA be a sapphire manifold, using the classification given by the above

theorem, we may suppose that A ¼ r s

t u

� �
is such that all four numbers r, s, t

and u are positive, and moreover ra u.

The first homology group with integral coe‰cients of a sapphire

may be obtained from the above presentation, and it is explicitly given in

[9, Proposition 1.6].

The family of closed sapphire Sol manifolds can be divided into two

subfamilies. In the first subfamily, we consider those with first integral

homology isomorphic to Z4t þ Z4. This corresponds to the case where s is

odd in the gluing map. In the second subfamily, we consider those with first

integral homology isomorphic to Z4t þ Z2 þ Z2. This corresponds to the case

where s is even in the gluing map.

3. Classification of the double coverings of sapphire Sol manifolds

In this section, we will study double coverings of a sapphire Sol manifold

SA, with A ¼ r s

t u

� �
. We will describe double coverings of those manifolds

using the kernels of epimorphisms from p1ðSAÞ to Z2. In terms of the pre-

sentation given in Section 1, we have to describe the images of a, b and c, so

we will have at most seven cases.

We will see in Proposition 1 that for the purpose of classification of free

involutions on sapphire Sol manifolds it will su‰ce to know the double

coverings associated to three epimorphisms j1, j2 and j3 introduced below.

We will present some of the details on the calculations of these three cases and

some comments about one of the others.

Case I: j1ðaÞ ¼ 1, j1ðbÞ ¼ 0, j1ðcÞ ¼ 0. Making use of the Reidemeister-

Schreier method, taking f1; ag as a Schreier system for right cosets of the kernel

(H) of j1, we obtain fb; c; a2; aba�1; aca�1g as a system of generators and the

following relations:
� aba�1b;
� c2a�2rb�s;
� ca2tbu;
� ba�1ba;
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� a�1c2a�2rb�sa;
� a�1ca2tbuc�1a2tbua.

Now we make a ¼ b, b ¼ c, g ¼ a2, d ¼ aba�1, l ¼ aca�1 and we obtain

H ¼ a; b; g; d; l j da; b2g�ra�s; bg taub�1g tau; ag�1dg;

l2g�rd�s; lg tdul�1g tdu

� �
:

Setting a1 ¼ b, b1 ¼ aug t and c1 ¼ l we have:

H ¼ ha1; b1; c1 j a1b1a�1
1 b1; c

2
1a

�2R
1 bS

1 ; c1a
2T
1 bU

1 c�1
1 a2T1 bU

1 i;

where
� R ¼ ruþ st, S ¼ �2rs, T ¼ 2tu, U ¼ �ðruþ stÞ if ru� st ¼ 1;
� R ¼ �ðruþ stÞ, S ¼ 2rs, T ¼ �2tu, U ¼ ruþ st if ru� st ¼ �1.

So the double covering defined by j1 is the sapphire Sol manifold SB

where B is given as follows:

ruþ st �2rs

2tu �ðruþ stÞ

� �
if ru� st ¼ 1;

�ðruþ stÞ 2rs

�2tu ruþ st

� �
if ru� st ¼ �1:

Case II: j2ðaÞ ¼ 0, j2ðbÞ ¼ 0, j2ðcÞ ¼ 1. Taking f1; cg as a Schreier

system for right cosets of the kernel (H) of j2, we obtain fa; b; cac�1; cbc�1; c2g
as a system of generators, and the following relations:

� aba�1b;
� c2a�2rb�s;
� ca2tbuc�1a2tbu;
� c�1aba�1bc;
� ca�2rb�sc;
� a2tbuc�1a2tbuc.

Taking a ¼ a, b ¼ b, g ¼ cac�1, d ¼ cbc�1, l ¼ c2, we obtain

H ¼ a; b; g; d; l j aba�1b; la�2rb�s; g2tdua2tb u; gdg�1d

g�2rd�sl; a2tb ul�1g2tdul

� �
:

Setting a1 ¼ a, b1 ¼ b and c1 ¼ g, we have:

H ¼ ha1; b1; c1 j a1b1a�1
1 b1; c

2
1a

�2R
1 bS

1 ; c1a
2T
1 bU

1 c�1
1 a2T1 bU

1 i;

where
� R ¼ ruþ st, S ¼ 2su, T ¼ �2rt, U ¼ �ðruþ stÞ if ru� st ¼ 1;
� R ¼ �ðruþ stÞ, S ¼ �2su, T ¼ 2rt, U ¼ ruþ st if ru� st ¼ �1.
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Thus, the double covering defined by j2 is the sapphire Sol manifold SB

where B is given as follows:

ruþ st 2su

�2rt �ðruþ stÞ

� �
if ru� st ¼ 1;

�ðruþ stÞ �2su

2rt ruþ st

� �
if ru� st ¼ �1:

Case III: j3ðaÞ ¼ 0, j3ðbÞ ¼ 1, j3ðcÞ ¼ 0. First of all, we note that s

must be even and u odd. This happens not only in this case but in all other

cases with nontrivial image of b. Therefore, we denote s ¼ 2k and u ¼ 2l � 1.

Taking f1; bg as a Schreier system for right cosets of the kernel (H) of j3,

we obtain fa; c; bab�1; b2; bcb�1g as a system of generators and the following

relations:
� aba�1b;
� c2a�2rb�s;
� ca2tbuc�1a2tbu;
� b�1aba�1b2;
� b�1c2a�2rb�sþ1;
� b�1ca2tbuc�1a2tbuþ1.

Taking a ¼ a, b ¼ c, g ¼ bab�1, d ¼ b2, l ¼ bcb�1, we obtain

H ¼ a; b; g; d; l j ag�1d; b2a�2rd�k; ba2td l�1l�1g2td l ; gda�1

l2g�2rd�k; lg2td lb�1a2td l�1

� �
:

Setting a1 ¼ a, b1 ¼ d and c1 ¼ l we will have:

H ¼ ha1; b1; c1 j a1b1a�1
1 b1; c

2
1a

�2R
1 bS

1 ; c1a
2T
1 bU

1 c�1
1 a2T1 bU

1 i;

where R ¼ r, S ¼ k ¼ s

2
, T ¼ 2t and U ¼ u.

So the double covering defined by j3 is the sapphire Sol manifold SB with

B ¼ r
s

2
2t u

 !
.

Case IV: j4ðaÞ ¼ 1, j4ðbÞ ¼ 0, j4ðcÞ ¼ 1. This case was solved in [6].

The double covering is a torus bundle with Anosov gluing map given by the

matrix:

ruþ ts �2rt

�2su ruþ ts

� �
;

if det A ¼ 1. It is not hard to see, using similar arguments that in case

det A ¼ �1 the gluing map is given by minus the matrix above. Recall from
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[6] that the fundamental group of this double covering corresponds to the

subgroup generated by fa2; b; a�1cg.
We will not present the calculation of the remaining three cases.

Nevertheless we observe that the calculations are similar to the case III, and

for the sake of completeness we provide the result for all cases in the Table 1

below.

If SA is the sapphire Sol manifold with A ¼ r s

t u

� �
, it follows from the

calculations that one double covering of SA is a torus bundle and the others

are sapphire Sol manifolds. In both cases, the manifold is determined by a

matrix (in general not unique) which will appear in the table. For simplicity,

in the case that the double covering is a sapphire Sol manifold, we used the

classification given by Morimoto [9, Theorem 1] to choose the matrices. We

recall that we are assuming r, s, t and u are positive integers and ra u.

Table 1. Double coverings of a sapphire Sol manifold

Case Hom. Sapphire Sol torus bundle

I j1

a 7! 1

b 7! 0

c 7! 0

8><
>:

ruþ st 2rs

2tu ruþ st

� �
—

II j2

a 7! 0

b 7! 0

c 7! 1

8><
>:

ruþ st 2su

2rt ruþ st

� �
—

III j3

a 7! 0

b 7! 1

c 7! 0

8><
>: ðs evenÞ r

s

2
2t u

0
@

1
A —

IV j4

a 7! 1

b 7! 0

c 7! 1

8><
>: —

ruþ ts �2rt

�2su ruþ ts

� �

V j5

a 7! 1

b 7! 1

c 7! 0

8><
>: ðs evenÞ r

s

2
2t u

0
@

1
A —

VI j6

a 7! 0

b 7! 1

c 7! 1

8><
>: ðs evenÞ r

s

2
2t u

0
@

1
A —

VII j7

a 7! 1

b 7! 1

c 7! 1

8><
>: ðs evenÞ r

s

2
2t u

0
@

1
A —
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Definition 1 [7, Corollary 2.3]. Two classes x1 A H 1ðW1;Z=2ZÞ, x2 A
H 1ðW2;Z=2ZÞ are equivalent if there is a homotopy equivalence h : W1 ! W2

such that the induced homomorphism by h on H 1 maps x2 to x1.

For the sapphire Sol manifold SA, the mapping class group is isomorphic

to the outer-automorphism group of the fundamental group. Therefore, two

cohomology classes j and j 0 in H 1ðSA;Z=2ZÞ are equivalent if and only if

there is an automorphism, y, of p1ðSAÞ such that j 0 ¼ j � y.
The above equivalence relation is closely related to an equivalence relation

of involutions which is given at the beginning of the next section.

Now we classify the cohomololgy classes corresponding to the epimor-

phisms in the table by the equivalence relation.

By considering the isomorphism which sends a ! ab, b ! b and c ! c,

we obtain that case III is equivalent to case V, and case VI is equivalent to

case VII. The following proposition shows that all of these cases are in fact

equivalent.

Proposition 1. The cases III, V, VI and VII are equivalent.

Proof. We know by the above considerations that case III is equivalent

to case V and case VI is equivalent to case VII. So, to prove the proposition,

it su‰ces to show that cases III and VI are also equivalent. To do this, we

need to construct an automorphism y : p1ðSAÞ ! p1ðSAÞ, where s is even, such

that yðj3Þ ¼ j6.

Recall the presentation

p1ðSAÞG ha; b; c j aba�1b; c2a�2rb�s; ca2tbuc�1a2tbui:

We first assume that det A ¼ 1. We will find an element w A ha2; biGZlZ

such that (i) the exponent of b in w is odd and (ii) there is an automorphism y

of p1ðSAÞ such that ðyðaÞ; yðbÞ; yðcÞÞ ¼ ða; b;wcÞ. It is easy to see that yðj3Þ ¼
j6 so this automorphism has the desired property.

Let us find w such that y preserves the relations. The first relation

aba�1b ¼ 1 is clearly preserved by y. The third relation ca2tbuc�1a2tbu ¼ 1

is also preserved since the image of the relation is wca2tbuc�1w�1a2tbu ¼
wða2tbuÞ�1

w�1a2tbu. But the subgroup ha2; bi is isomorphic to ZlZ and

it follows that wða2tbuÞ�1
w�1a2tbu ¼ 1. Thus, it su‰ces to find w with the

above properties and the relation c2 ¼ bsa2r preserved by y. Note that this

condition is equivalent to the condition ðwcÞ2 ¼ wcwc�1c2 ¼ bsa2r, which in turn

is equivalent to the condition cwc�1 ¼ w�1bsa2rc�2 ¼ w�1bsa2ra�2rb�s ¼ w�1.

Hence it su‰ces to find w an eigenvector for the eigenvalue �1 (for the action

of c by conjugation on the subgroup ha2; bi) such that the exponent of b is
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odd. From [6], we know that the matrix of the automorphism of the subgroup

ha2; bi given by conjugation by a�1c is the matrix

ruþ ts �2rt

�2su ruþ ts

� �
:

So the matrix of the automorphism given by conjugation by c is

ruþ ts �2rt

2su �ru� ts

� �
:

Now we will show that this integral matrix has eigenvalue �1 and a

corresponding eigenvector where the exponent of b is odd. The first part

follows because the determinant of the matrix

ruþ tsþ 1 �2rt

2su �ru� tsþ 1

� �

is zero, so we have an eigenvector for the eigenvalue �1. It remains to show

that there is one such eigenvector with the exponent of b odd. Let ðx; yÞ be

an eigenvector. We have

ðruþ tsþ 1Þx� ð2rtÞy ¼ 0:

But ruþ tsþ 1 ¼ ðru� tsþ 1Þ þ 2ts ¼ 2þ 2ts, where the last equality follows

from det A ¼ 1.

So we obtain ð1þ stÞx ¼ rty, where 1þ st is odd since s is even. There-

fore there is a solution with y odd and the result follows.

If det A ¼ �1, A ¼ r s

t u

� �
, we can chose A 0 ¼ �r s

�t u

� �
that determines

the same sapphire manifold (by Morimoto’s classification) with det A 0 ¼ 1.

Using variables a, b and c to describe the presentation of p1ðSAÞ and x, y and

z for p1ðSA 0 Þ, we see that the isomorphism g that sends a ! x�1, b ! y and

c ! z is such that the composition g�1jg sends j3 to j6 for the presentation of

p1ðSAÞ and the result follows. r

Now we will see a situation where cases I and II are equivalent.

Proposition 2. In the case that A is of the form
r s

t r

� �
, there is an

automorphism y of p1ðSAÞ such that yðj1Þ ¼ j2, i.e. case I and case II are

equivalent.

Proof. Let us assume that det A ¼ 1. We write a new presentation for

p1ðSAÞ, namely

p1ðSAÞ ¼ hd; b; v; a j a2d�1; aba�1b; avavb�sd�r; avd tbrv�1a�1brd ti:
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The above presentation is obtained from the presentation given in Section 2 by

introducing the variable d ¼ a2 and setting v ¼ a�1c. Now we try to find an

automorphism y of the fundamental group such that yðaÞ ¼ va, yðvÞ ¼ d xbyv,

yðdÞ ¼ d kbm, yðdÞ ¼ d lbn. If such an automorphism y exists, then we will

have yðj1Þ ¼ j2. We must find integers x, y, k, l, m, n such that the map

above extends to an automorphism of the group.

By straightforward calculation, using the relations a2 ¼ d, aba�1 ¼ b�1,

we conclude that k ¼ r, m ¼ �s, l ¼ �et, n ¼ er, where e is either 1 or �1.

Because y restricted to the index two subgroup given by the kernel of j4 is also

an automorphism, the solution must be k ¼ r, m ¼ �s, l ¼ �t, n ¼ r.

We need to verify two more relations. It is staightforward to verify that

independently of x and y the relation avd tbrv�1a�1 ¼ d�tb�r holds after

applying y using the values of k, l, m, n already found. Thus, it remains

to find x, y so that yðaÞyðvÞyðaÞyðvÞ ¼ yðd rbsÞ or vad xbyvvad xbyv ¼ d. The

latter equation can be rewritten as ðvavaÞa�1ðv�1d xbyvÞaa�1ðvavaÞaa�2v�1d xbyv

¼ d. Using the action of v on the subgroup hd; bi (see the proof of the

Proposition 1) we obtain the following equation

ðr2 þ stÞxþ ð2rtÞy ¼ 1� r:

Since r2 þ st, 2rt are relatively prime integers it follows that there is a linear

combination with integral coe‰cients of these two numbers equal 1. Therefore

the equation above has solution over the integers and the result follows.

The case when det A ¼ �1 is similar where the matrix which gives the

action of v on hd; bi is given by minus the matrix used for the case above.

We leave the details to the reader. This concludes the proof. r

So we obtain the following result.

Proposition 3. For the epimorphisms ji given by the Table 1, we have:

(1) The subset fj3; j5; j6; j7g (when it exists) forms a single equivalence

class.

(2) The subset fj4g forms a single equivalence class.

(3) if r ¼ u, then j1 and j2 are equivalent, namely fj1; j2g forms a single

equivalent class. If r0 u, then j1 is not equivalent to j2, namely fj1g
and fj2g are two distinct equivalence classes.

Proof. Part 1) follows from Proposition 1.

Observe that if two pairs ðSA; aÞ, ðSA; bÞ are equivalent, then the corre-

sponding double coverings are homeomorphic. Part 2) follows from the fact

that the double covering which corresponds to the case fðSA; j4Þg is a torus

bundle, so it cannot be equivalent to any other case.
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Part 3) If r0 u the double coverings corresponding to the two cases are

not homeomorphic. In the case r ¼ u we use Proposition 2. Thus, the result

follows. r

4. Classification of free involutions and the Borsuk-Ulam Theorem

In this section we classify the involutions of the sapphire Sol manifolds

and, for every free involution t of SA, we compute the values of n for which

the triple ðSA; t;R
nÞ satisfies the Borsuk-Ulam Property.

Given a free involution t on a manifold M, the projection M ! M=t is

a double covering of the orbit space M=t, which in turn defines an element

of Homðp1ðM=tÞ;Z=2ZÞ A H 1ðM=t;Z=2ZÞ called characteristic class of the

involution t.

We say that free involutions t1 on M1 and t2 on M2 are equivalent if there

is a homeomorphism f : M1 ! M2 satisfying t2 ¼ f t1 f
�1. Note that this

condition is satisfied if and only if the correspondent characteristic classes are

equivalent (see Definition 1). For more about the relation between involutions

and characteristic classes, see [7].

We first prove Theorem 1 by using a general fact about the Borsuk-Ulam

Property which is independent of the free involution.

Proof of Theorem 1. By the comments at the end of Section 2, H1ðSA;ZÞ
is finite. The result follows immediately from [1, Corollary 3.3]. r

We also observe that for any 3-dimensional manifold M it follows from

[7, Lemma 2.4] that for any free involution t on M, the triple ðM; t;RnÞ with

n > 3 does note have the Borsuk-Ulam Property. Thus, it remains to study

the case n ¼ 3.

Let SA be a sapphire Sol manifold. Using Table 1, we may detect

whether such a manifold is a double covering of another sapphire Sol manifold.

In case I, we must have a ¼ d, a is odd, b and c are even. The following

proposition shows that these conditions are su‰cient to guarantee that SA is

the double covering of some sapphire Sol manifold which corresponds to the

kernel of the epimorphism j1. Here we have A ¼ a b

c d

� �
.

To simplify our exposition, let us fix the following notation. Given an

integer x and a prime p, denote by jxjp the largest integer n such that pn

divides x. If p does not divide x then we define jxjp to be zero.

Proposition 4. If a ¼ d, a is odd, b and c are even, then SA is the double

covering of two sapphire Sol manifolds SB, with B ¼ r s

t u

� �
associated to j1,
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i.e. (see Table 1) the system

a ¼ ruþ ts; b ¼ 2rs; c ¼ 2tu and d ¼ ruþ st ð2Þ

admits 2 solutions with r, s, t and u positive. More precisely, B is one of the

following matrices:

Qn
j¼1

q
jb=2jqj
j

Qm
i¼1

p
jb=2jpi
i

Qm
i¼1

p
jc=2jpi
i

Qn
j¼1

q
jc=2jqj
j

0
BBBB@

1
CCCCA

Qm
i¼1

p
jb=2jpi
i

Qn
j¼1

q
jb=2jqj
j

Qn
j¼1

q
jc=2jqj
j

Qm
i¼1

p
jc=2jpi
i

0
BBBB@

1
CCCCA

where pi runs over the set of all divisors of ðaþ 1Þ=2, and qi runs over the set

of all divisors of ða� 1Þ=2.

Proof. We can write A as

A ¼ a 2b

2g a

� �
A M2�2ðZ� f0gÞ; ð3Þ

where a; b; g A N� f0g, a are odd, and det A ¼G1.

We will show that there are exactly two di¤erent homeomorphism classes

of sapphire Sol manifolds that admit SA as a double covering.

Suppose that A satisfies (3). Observe that

1 ¼ det A ¼ a2 � 4bg ) bg ¼ aþ 1

2
� a� 1

2
:

So det A ¼ a2 � 4bg ¼ 1 (the case det A ¼ �1 is not possible because a ¼
2k þ 1 ) a2 � 4bg ¼ 4ðn2 þ n� bgÞ þ 1).

If there exists a matrix B satisfying (2), we must have

rstu ¼ bg ¼ aþ 1

2
� a� 1

2
: ð4Þ

Now we define R ¼ aþ1
2
, S ¼ a�1

2
A Z. So R;S0 0 since

RS ¼ rstu0 0

and

R ¼
Ym
i¼1

p
jRjpi
i ; S ¼

Yn
j¼1

q
jSjqj
j ;

where pi and qj are positive primes and pi 0 qj, for all i and j (R and S are

consecutive integers).
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Let x ¼ st A Z� f0g. It follows from (2) and (4) that

a� xð Þx ¼ rux ¼ RS

and so

x2 � axþ RS ¼ 0:

An easy calculation shows that x ¼ R or x ¼ S.

Suppose that ts ¼ x ¼ R () ru ¼ S). In such a situation, we may write

t ¼
Ym
i¼1

p
jtjpi
i ; s ¼

Ym
i¼1

p
jsjpi
i ; r ¼

Yn
j¼1

q
jrjqj
j and u ¼

Yn
j¼1

q
jujqj
j ;

where

jtjpi þ jsjpi ¼ jRjpi and jrjqj þ jujqj ¼ jSjqj :

Using (2), we obtain

jrjqj ¼ bj jqj ; jsjpi ¼ bj jpi ; jtjpi ¼ gj jpi and jujqj ¼ gj jqj :

Then we have

B ¼

Qn
j¼1

q
bj jqj
j

Qm
i¼1

p
bj jpi
i

Qm
i¼1

p
gj jpi
i

Qn
j¼1

q
gj jqj
j

0
BBBB@

1
CCCCA

Now, if ts ¼ x ¼ S () ru ¼ R) we will have

t ¼
Yn
j¼1

q
jtjqj
j ; s ¼

Yn
j¼1

q
jsjqj
j ; r ¼

Ym
i¼1

p
jrjpi
i and u ¼

Ym
i¼1

p
jujpi
i ;

where

jtjqj þ jsjqj ¼ jSjqj and jrjpi þ jujpi ¼ jRjpi :

Again, using (2), we obtain

jrjpi ¼ bj jpi ; jsjqj ¼ bj jqj ; jtjqj ¼ gj jqj and jujpi ¼ gj jpi :

Then

B ¼

Qm
i¼1

p
bj jpi
i

Qn
j¼1

q
bj jqj
j

Qn
j¼1

q
gj jqj
j

Qm
i¼1

p
gj jpi
i

0
BBBB@

1
CCCCA
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and we get one possible solution:

B ¼

Qm
i¼1

p
bj jpi
i

Qn
j¼1

q
bj jqj
j

Qn
j¼1

q
gj jqj
j

Qm
i¼1

p
gj jpi
i

0
BBBB@

1
CCCCA:

Now observe that the matrix in the second case is not equivalent to the

matrix obtained in the first case. r

We also have a similar proposition for the solution of double coverings

of case II of the table. The system of equations is that given above where we

simply replace r by u and u by r. Therefore the solution is as above where the

rôles of r and u are interchanged. More precisely:

Proposition 5. If a ¼ d, a is odd, b and c are even, then SA is the double

covering of two sapphire Sol manifolds SB, with B ¼ r s

t u

� �
associated to j2,

i.e. (see table 1) the system

a ¼ ruþ ts; b ¼ 2su; c ¼ 2rt and d ¼ ruþ st ð5Þ

admits 2 solutions with r, s, t and u positive. More precisely, B is one of the

following matrices:

Qn
j¼1

q
jc=2jqj
j

Qm
i¼1

p
jb=2jpi
i

Qm
i¼1

p
jc=2jpi
i

Qn
j¼1

q
jb=2jqj
j

0
BBBB@

1
CCCCA

Qm
i¼1

p
jc=2jpi
i

Qn
j¼1

q
jb=2jqj
j

Qn
j¼1

q
jc=2jqj
j

Qm
i¼1

p
jb=2jpi
i

0
BBB@

1
CCCA

where pi runs over the set of all divisors of ðaþ 1Þ=2 and qi runs over the set of

all divisors of ða� 1Þ=2.

We note that in Proposition 4 if
x y

z w

� �
is one of the solutions then the

other is
y x

w z

� �
and the two solutions given in Proposition 5 are

w y

z x

� �

and
z x

w y

� �
. Thus, when x0w and y0 z, only two of them appear in the

table above, in two di¤erent positions. In the case that x ¼ w or y ¼ z two

of them appear in the table but one of them appears twice, in two di¤erent

positions, namely in first and second lines. Observe that at most one of the

equalities x ¼ w, y ¼ z can occur.

We are now in a position to prove our main results, Theorem 2 and

Corollary 1.
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Proof of Theorem 2. Table 1 describes matrices of all double coverings

of SA. In fact, Table 1 can be constructed without the condition that all

entries of the matrix are positive. In this case, if we apply the (new) Table 1

to another matrix B such that SB is homeomorphic to SA, the matrices

obtained in this way will be representatives of the same manifolds (this

correspondence may change its position in the table).

Part I) and III) follows easily from the table.

Part II) We start applying the table. Item II-a follows directly from

Proposition 1, and item II-b is a consequence of Propositions 1, 4 and 5.

r

Proof of Corollary 1. When c is odd, there is no free involution. For

the other parts, it will be important to describe, among all epimorphisms, those

which factor through p1ðSAÞ=
ffiffiffi
p

p
(here

ffiffiffi
p

p
is the unique maximal abelian

normal subgroup of p1ðSAÞ, see [8] for details). They are precisely those where

the generator b is sent to zero. We can conclude that j3, j5, j6 and j7 do

not factor through p1ðSAÞ=
ffiffiffi
p

p
and so the cube of the associated cohomology

class is nontrivial precisely when the ð1; 2Þ-entry of the matrix A is divisible by

2 but not by 4.

Applying the result item 11 in Section 5 of [8], we can see that the cube

of the cohomology class associated to ji is nontrivial only in part III of

Theorem 2. r
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