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ABSTRACT. A cubic Chatelet surface X over a p-adic field K is a typical surface whose
Chow group Ao(X) of degree-zero zero-cycles varies depending on fine conditions of
the defining equation. Many researchers have computed Ay(X) by a number-theoric
method in many cases. We extend their computation and determine the structure of
Ao(X) in some new cases. It turns out that Ag(X) behaves rather unexpectedly when
X is defined by y?> —dz? = x(x> — e) for some d,ee K*\K*? and its splitting field is
wildly ramified.

1. Introduction

Let K be a perfect field. Let X be a smooth projective model of the
surface

yz—dzzzf(x) (L.1)

in A, where d e K* and f(x) € K[x] is a monic cubic separable polynomial.
This is called a cubic Chdtelet surface. Denote by A¢(X) the degree-zero part
of the Chow group of zero-cycles on X modulo rational equivalence.

Denote by K*?> the group of squares in K*. If deK*? then X is
birational to P7, and therefore Ag(X) = A¢(P%) = {0} since Ay(X) is a
birational invariant of a smooth projective and geometrically integral surface
over a perfect field ([2, Proposition 6.3]). In particular, if K is algebraically
closed, then Ayg(X) =~ {0}. In general, Ay(X) is a 2-torsion group ([2, Prop-
osition 6.6]).

Suppose that K is a local field of characteristic 0. Then A¢(X) is finite
([1, Corollary 3.5]). It depends on arithmetical and geometrical properties of
X whether A¢(X) vanishes or not. It is known that A¢(X) is equinumerous
to the set of R-equivalence classes of K-rational points on X (|2, Remarques
6.7 (iv)]).
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The subject of this article is determination of the group Ao(X) under the
assumptions that d ¢ K*?> and K is a finite extension of the field Q, of p-adic
numbers, where p is a prime number. The computation of Ay(X) is reduced
to a number-theoric problem by Colliot-Théléne and Sansuc in [3], [10]. All
of the following results rely on their method. We shall recall it in Section 2.

When f(x) is irreducible, it is shown by Pisolkar in [9, Theorem 1.4] that
Ao(X) is trivial.  When f(x) splits into three linear factors, the group A¢(X) is
completely determined by Colliot-Théléne and Dalawat in [5, Proposition 4.7],
[6, Section 4 and Proposition 2], [7, Proposition 3].

Henceforce, we consider the remaining case:

f(x) =x(x*—e) with e e K*\K*2.

Put L = K(v/d) and E = K(\/e). We call L the splitting field of X, since L is
a unique minimal extension of K such that X xx L is birational to P7. Let
vg : K* — Z be the normalized valuation of K. The following theorem is
proven by Pisolkar.

THEOREM 1 ([9, Theorems 1.1-1.3]). (1) If L~ E, then A¢(X) = {0}.
Henceforward, suppose L % E.

(2) If p#2, then Ay(X) =Z/2Z.

(3) If p=2 and L/K is unramified, then

{0} if vx(e)=0 (mod4),
727 if vk(e) =1,3 (mod 4).

(4) Suppose K =Q,. If L/K is unramified and vg(e) =2 (mod 4), or if
L/K is ramified, then Ay(X) = Z/2Z.

Ap(X) ;{

Theorem 1 (3) is stated for K = Q, in [9], but her proof works under the
assumption p =2. Our first result extends Theorem 1 (4) to K # Q,.

THEOREM 2. Suppose L % E.

(1) If L/K is unramified and vg(e) =2 (mod 4), then Ay(X) = Z/2Z.

(2) Assume p=2. If L/Q, is totally ramified and the conductor of L/K
( Definition 1) has the different parity from vk (e), then Ag(X) = Z/2Z.

Our second result touches on the case when the conductor of L/K has the
same parity as vg(e).

THEOREM 3. Suppose that K = Q,(v/2), L# E, L/K is ramified and
v (d) is even. Put m=vk(e) and take e €1+ 2Z, and ¢ € Z, such that
e= V2" (e1 +&V2). Then Ag(X) = {0} only in the cases in the following
table, and otherwise Ay(X) = Z/2Z.
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dmod K*2 mmod4 & mod8 & mod4
(i) —1 or 3 0 1 2
@ | =1or3 0 5 2
(i) 3 2 1 2
i) | -1 2 3 0
vy | =lor3 2 5 2

Each case in this table depends on the residues of d, m, & and & modulo K*,
47, 87, and 4Z, respectively. We can find d, e e K*\K** such that L % E
under each condition of (i)—(v). For instance, d =3, e =1+ 22 e K* satisfy
d, e¢ K2, L#E and (i). For such d and e, although L % E and L/K is
ramified, Ao(X) is trivial.

Theorems 2 and 3 are proven in Sections 3 through 6. Theorems 1 (4)
and 3 show that the structure of Ay(X) depends on the base field K of X when
L/K is wildly ramified, in contrast to the case where f(x) is irreducible or splits
into three linear factors.

From now on, we use the following notation: for a local field k, denote
by vy its normalized valuation, by p, its maximal ideal, by Uy its unit group,
by U,fi> its i-th unit group for each integer i >0, by k; its residue field,
and define the quadratic Hilbert symbol (a,b), € {£1} by (a,b), =1&ac
Nk(\/Z)/kk(\/[;)* for each a,bek*.

2. Computational method

Let X be a Chatelet surface defined as above. Theorems 1 through 3 are
proven based on the following method.

THEOREM 4 ([3], [10]). The group A¢(X) is isomorphic to the image of the
map

M= {xeK|x(x* —e¢) e Ny gL} — (K*/NxL*)*
2 .
e (02 d) 1 x20
(e, [=el) & x=0,
where [a] is the class of a in K*/NxL* for any ae K*.

This is proven by Colliot-Thélene and Sansuc in [3], [10]. Because of its
importance, we shall briefly recall the outline of the proof.

ProoF (outline). Let X(K) be the set of K-rational points on X. Define
the map y: X(K) — (K*/NL/KL*)2 by compositing the following maps.
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* The natural surjective map ([2, Théoréme C, Remarques 6.7 (iv)])
X(K) = Ag(X); P—P-0,

where O is a singular point on the fiber above co with respect to the
morphism ¢ : X — P} associated with the function (x, y,z) — x on the
surface (1.1).

e The canonical injective homomorphism ([1], [4, Theorem 2])

A¢(X) — H'(K,Hom(Pic X,K*)),

where K is an algebraic closure of K and Pic X is the Picard group of
X x K I? .
* The canonical isomorphism ([3, Théoréme 5])

H'(K,Hom(Pic X,K*)) — (K*/Ny/xkL*) x (E*/Nyg/sLE").

e The isomorphism E*/Npg/pLE* — K*/Np/xL* induced by Ng/k.
The map y factors through M, since Ny x(y + v/dz) = y? — dz? holds for any
»,z € K and all the points on each fiber of ¢ are mutually rationally equivalent.
Computing the explicit description of the induced map M — (K* /NL/KL*)2,
we obtain the desired result. O

The following conditions (A) and (B) are used repeatedly later as criterions
for determining the structure of Ag(X).

CoroLLARY 1 ([9, Lemma 2.1, Corollary 2.2]). We have

{0}, if both (A) and (B) hold,
Ag(X) =
o(X) {Z/2Z7 otherwise,
where the conditions (A) and (B) are given as follows.
(A) xeNpL* or xt—ce NpkL* for any xe K"
(B) —e e NL/KL*-

PROOF ([9]). Supposing x € K* and x(x* —e) € Ny jxL*, then x € Ny xL*
if and only if x*> —e € Np/gL*. This implies the desired result. O

REMARK 1. Let 7 be a uniformizer of K. The group Ay(X) is invariant
up to isomophism under replacing d and e with d' = dA* and ¢’ = n*"e for any
)€ K* and m € Z, since the affine surface y* — dz> = x(x* — e) is isomorphic to
y'? —d'z”? = x'(x"? —e') by the change of variables x' = n*"x, y' = n*"y and
Z = ) gdm,
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3. Unramified case

In this section, we prove Theorem 2 (1). Assume vg(e) =2 (mod 4) and
Ao(X) = {0}. We will show L=~E. We can write ¢=7n*""2¢ for some
uniformizer 7 of K, meZ and ee Ux. It suffices to show dee K*>. By
the perfectness of the Hilbert symbol, it is reduced to showing (de, 7)), =
(de, &) =1 for any ¢ e Ukg.

By the assumption that L/K is unramified and the local class field theory,
we have Ny xUp = Ug. This means

(d, &) =1 (2.1)
for any ¢ e Ux. By the assumption d ¢ K*2, this implies
(d,m)g = —1. (2.2)

By the assumption Ay(X) = {0}, the condition (A) in Corollary 1 holds.
This means that

vg(x) €2Z or wvg(x? —e)e2Z for any xe K*, (2.3)

since vk : K* — Z induces the isomorphism K*/N;xL* — Z/2Z by the
assumption. We find

v (u* — &) € 2Z for any ue Uy (2.4)

by applying (23) to x = g2mtly,

We claim that
a* —eb?® # ¢ for any a,b,c e K* such that vg(c) is odd. (2.5)

To prove (2.5), assume the existence of a,b,c € K* such that vg(c) is odd
and a®> —eb?> =c. Then u:=ab~! satisfies

vx(u? — &) = vg (i) = vk(c) — 2v0k(b) ¢ 2Z,

vk (u) = vk (u?) = vg (b—cz + 8) = min{vk (b—C;)O} =0,

and therefore u e Ug. This contradicts to (2.4).
For any & e Uk, we have

(e,m)p = (&, 1) = —1, (2.6)

by applying (2.5) to ¢ =x, n~'¢, and therefore
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(de,m)g = (d,m)g(e,m)g = (_1)2 =1,
(d87 é)K = (d’ é)K(‘?v n)K(Evn_lé)K =1 (_1)2 =1
by (2.1), (2.2) and (2.6). This concludes the proof of Theorem 2 (1).

4. Lemmas

4.1. In this subsection, let L/K be a cyclic totally ramified extension of local
fields such that the characteristic of the residue field x:=x; = kg is p:=
[L:K]. Let o be a generator of the Galois group of L/K. Let n; be a
uniformizer of L.

DEFINITION 1. The conductor of L/K is the integer vy (zf~' —1) + 1.

REMARK 2. [t does not depend on the choices of ¢ and ny. Furthermore,
it coincides with the minimal integer i > 0 such that U1<(’> < NpgL™

We quote the following proposition from the discrete valuation field theory.

ProrosiTiON 1 ([8, (1.5), Chapter 3]). Under the assumption as above, let t
be the conductor of L/K. Take ne Uy such that nf~' =1+ni"'y. Put ng =
Nyjk(np) and i =n mod p,. For any integer i > 1, consider the map Nk :
Uf)/Uf+1> — UI(;)/U,((HI) induced by Ny : Ug) — U,({i) and isomorphisms

Up/U,(jH)—>K;1+om£|—>o¢modpL, Frob, : k — x;0 — 67,

U,((">/U,(<i+l>—>K;1—|—a7z}<n—>amodp,<7 Yok — 00 07 — P70,

Suppose 1 <i<t—1. Then the following diagrams commute.

U£i>/U£i+1> = K Ul(ltfl)/Uét) = K
NL/Kl lFTObp NL/Kl Jﬁ (31)
U /U — U Uy —— x

The following lemma plays an important role in Sections 5 and 6.

LemmA 1. Suppose that K is a totally ramified extension of Q,. If L/K is
a quadratic ramified extension of the conductor t, then Ny ;g L* N U 1(<r_1> c U,(g).

Proor. Since L/K and K/Q, are totally ramified, we have

KL = Kg = KkqQ, = F». (3.2)
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This implies Uy = U}, Ux = Uy and NpxL N U = NyeU nog™,
Thus, it suffices to show for any integer 1 <i <¢—1 that

Ny U N U e N oY, (3.3)

(1) Case: i<t—1. The left diagram of (3.1) yields (3.3).

(2) Case: i=t—1. The map  in (3.1) is the zero map by (3.2), since
=1 by (3.2). Therefore, Ny : Ug*l)/UL(t) — U,(;*l)/U,((t) is also
the zero map, since the horizontal maps in the right diagram of (3.1)
are isomorphisms. This implies (3.3). O

4.2. To prove Theorem 3, we also use the following lemma due to Pisolkar.
Her proof works without assuming that K = Q,.

Lemma 2 ([9, Lemma 6.2]). Suppose L% E. If —1¢ Ny xL*, or if e¢
NpjxL*, then Ao(X) = Z/2Z.

5. Certain ramified case

In this section, we give a proof of Theorem 2 (2) based on the idea due
to Pisolkar [9]. Let ¢ be the conductor of L/K and put m = vg(e). To prove
Ao(X) = Z/2Z, it is sufficient to show the existence of x € K* such that x,
x> —e¢ Np/kL* by Corollary 1. Take a unit u € Ul(gfl)\UI({') and a uniformizer
n of K such that we Ny/xL*. By the assumption, n:=m—t+1 is even.
Put x =n"u. Since n"/> € Ny/xL* and u¢ NyxL* by Lemma 1, we have
x¢ NpjxL*. Writing u=147""'u’ for some u’' e Uk, we have

e e
vk <1/l2 -—- l) =g <2nt1ul + 7_l:Z(tfl)MIZ o _n>
T T

=min{[K:Q,)+¢—1,2(t—1),t— 1} =1-1,

and therefore u> —en " e Ulg_l)\UI(g). By using Lemma 1 again, we have
u> —en " ¢ NyxL* and therefore x> —e=n"(u>—en™)¢ Ny xkL*. This
proves Theorem 2 (2).

6. Another example

In this section, we prove Theorem 3. The base field K = Q,(v/2) of X is
a quadratic ramified extension of Q, with a uniformizer v/2 and unit group

Uy =UY ={a+bV2|ael +2Z,,bel,)}. (6.1)

Nontrivial elements of K*/K*? are in one-to-one correspondence with qua-
dratic extensions of K by the map xK*?+~— K(y/x). Elementary arguments
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yield that K/K*? is isomorphic to (Z/ 2Z)4, and generated by residue classes of
V2, =1, 3 and 1 —+/2. By the assumption that vg(d) is even and L/K is
ramified, we have

d=—1,3, +(1 —V2), £3(1 —v2) (mod K*?),

since K(v/—3)/K is unramified. By Remark 1, it suffices to consider these six
values for d.

Case 1: d = +(1 — v/2) or +3(1 —v/2). In this case, by the projection formula
and the explicit formula over Q, for the Hilbert symbols, we have

(=L d)g = (=1, Ngq,(d))g, = (=1,-1)g, = —1. (6.2)
This implies A¢(X) = Z/2Z by Lemma 2.

Case 2: d = —1 or 3. In this case, since (142 + \/3)\/571 is a uniformizer
of L, we can directly show that the conductor of L/K is 2. Therefore we have

NyxkL*NUg = U = {a+bV2|ael +2Zs,be2Z,) (6.3)
by (6.1) and Lemma 1. By a similar calculation as (6.2), we have
V2¢NyxL* if d=-1 and V2eNyxL" if d=3. (6.4)

Note that the following cases are excluded.

(vi) =1 (mod8), & =0 (mod 4).

(vii) & =3 (mod8), & =0 (mod4) and d = 3.

(viii) & =7 (mod8), & =0 (mod4) and d = —1.
Indeed, by the assumptions that e ¢ K*2, L % E, m is even and d € {1, 3}, the
units &, —¢ and 3¢ do not belong to K*? and therefore to

UI((S) ={a+bV2|ael +8Zy,bedZy} = exp(py) = exp(2py) = U1(<3) NK*2.
Case 2.1: m is odd. In this case, we have A¢(X) = Z/2Z by Theorem 2 (2).

Case 2.2: m is even. Putr = \/Em/2 and ¢ = & + &+v/2. Then we have e = r2,
grel +27Z, and & e Z».

Case 2.2.1: & =1 (mod 2). In this case, we have ¢ € UK\U,(<2). This implies
¢¢ NpjxL* by (6.3) and therefore e = r’¢ ¢ Ny jxL*. Thus, Ao(X) = Z/2Z by
Lemma 2.

Case 2.2.2: & =0 (mod 2). In this case, we have —¢ € Ul(f). Therefore, the
condition (B) in Corollary 1 holds by (6.3). We consider whether (A) holds
or not. Take xe K* and write x = r\/inu, u=a+by2 for some nelZ,
ue Uk, ael +2Z, and be Z,.
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* Supposing n # 0, then
r2(xr—e) = (2"a> + 2" —g)) + (2" ab — e)V2e UP if n>0,
2Mp=2(x2 — ) = (a® + 2b* — 2"e)) + (2ab — 21 ey)V2 € U,(<2) if n<0,

and therefore x? —e e Ny /xL* by (6.3) since 2 € K*2.

» Supposing n =0, then x> —e e Np/kL* if and only if u>—ce Nyl
since x> —e = r*(u® —¢).

Therefore, Ag(X) = {0} if and only if either ru or u> — & belongs to Ny xL* for

any u e Ug. Set

— U\U? if d=—1 and m=0 (mod4), or if d=3, 65)
Ul if d=—1 and m=2 (mod 4). '
Then A¢(X) = {0} if and only if
u*—ce NpjkL” for any ue U". (6.6)

Indeed, rue Ny xL* for any ue Ux\U", since re Ny xL* if and only if d =
—1 and m =0 (mod4), or if d=3 by (6.4). For each u=a+hbhV/2e U*
(ael+2Zy,beZ,), put

i(u) = ordy(a® + 2b* — &), J(u) = ordy(2ab — &).
Then a unit part of u> —¢ is written by

2_ 24 0p2 — 2ab —
u e:a+‘81+a 82\/5

i i i ift i=i(u) < j(u),

u2—8_2ab—82 a2—|—2b2—£1\/§

2i\2 Y + 2j+1

Therefore, by (6.3) and (6.4), we obtain the following criterions:

if i(u) > j(u) =j.

= M2 - 8€NL/KL*,
=Sut—c¢ NpxL™,

+1and d=3 =u’—e¢ NygL",
i(u) + 1 and d:—1:>u2—8¢NL/KL*,

() < j(u)
() = j(u)
i(u)=j(u)+1 and d = =1 = u* —e e Ny xL",
() = j(u)
() > j(u)
(u) > j(u)+1 and d =3 =u*>—ece NyxL"

The relation among functions i, j and j+ 1 is compiled in the following table.
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U g mod 8 & =0 (4) & =2 (4)
U\ UY 1 (excluded) i< i), (iii)

3 i>j+1 i(u) = j(u) for some u
5 i=] i< (i), (v)
7 i=j+1 i(u) = j(u) for some u

U ,((2) 1 (excluded) i>j+1
3 1<j (iv) i=j
5 i(u) = j(u) for some u i=j+1 (v)
7 (excluded) i=j

Indeed, the relation in each case can be shown by a similar way as follows.
e If Ur= UK\U,((Z), g1 =1,5 (mod 8) and & =2 (mod 4), then
a>+2b* —¢ =2 (mod4),  2ab—e =0 (mod 4)

for any u=a+bv2e U* (a,be1+2Z,), and therefore i(u) < j(u).
e Suppose U* = UK\U,(f), g1 =3 (mod 8) and & =2 (mod4). Then

the equations

a® +2b* — ¢ =2ab — & =8 (mod 16)
have a common solution (a,b) € (1 +2Z,)*. Indeed, one of the solu-

tions is given by the following table which depends on the residues of
g1 and & modulo 16.

&g & |a b &g & |a b
3 213 7 11 211 5
3 6|3 5 11 6|1 7
3 1013 3 11 101 1
3 1413 1 11 141 3

For such a and b, the unit u :=a+ b2 e U* satisfies i(u) = j(u).
e If Ur= ,<<2>, g1 =1 (mod 8) and & =2 (mod 4), then

a*+2b% —& =0 (mod8),  2ab—e =2 (mod 4),
for any u=a+bv2e U* (ael+2Zy, be2Z,), and therefore i(u) >
Ju) + 1.
2

* Suppose U*=Uy’, ¢g =5 (mod8) and & =0 (mod4). Then the
equations

a* +2b* — ¢ =2ab — &, =4 (mod 8)

have a common solution (a,b) € (1 +2Z,) x 2Z,, for example,
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~[(1,2) if &,=0 (mod 8),
(a,b) = { (1,4) if & =4 (mod 8).

For such a and b, the unit u:=a+ bhv2 e U* satisfies i(u) = j(u).

Thus, only in the cases (i)—(v) in the statement, the condition (6.6) holds by
(6.5) and (6.7), and therefore A¢(X) =~ {0}. Recall that the cases (vi)—(viii) are
excluded by the assumption L % E.

Under each condition of (i)—(v), we can find d, e e K*\K*?> such that

L # E by elementary arguments. This completes the proof of Theorem 3.
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