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ABSTRACT. We classify biharmonic geodesic spheres in the Cayley projective plane.
Our results completes the classification of all biharmonic homogeneous hypersurfaces
in simply connected compact Riemannian symmetric spaces of rank 1. In addition we
show that complex Grassmannian manifolds, and exceptional Lie groups F4 and G;
admit proper biharmonic real hypersurfaces.

1. Introduction

Let (M,g9) and (N,§) be Riemannian manifolds. A smooth map
¢ : M — N is said to be harmonic if it is a critical point of the energy functional

E@) = |5 1dPds,

under compactly supported variations. The Euler-Lagrange equation of this
variational problem is

(4) = try(Vdg) =0,

where Vd¢ is the second fundamental form of ¢. Here the vector field t(¢)
along ¢ is called the tension field of ¢ (see [11]).

In case ¢ is an isometric immersion, 7(¢) is a constant multiple of the
mean curvature vector field of ¢. Thus an isometric immersion ¢ is harmonic
if and only if it is minimal.

In some mapping spaces, harmonic maps do not exist. For instance, Eells
and Wood [12] showed that the space Map, (T2, S?) of smooth maps from a
2-torus T? into a 2-sphere S* with degree 1 does not contain harmonic maps.
To find a good representative of any homotopy class in such a mapping space,
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alternative geometric variational problem would be proposed. As one of the
candidate, bienergy functional has been studied extensively.
For a smooth map ¢, its bienergy functional is defined by

E) = [ 510 s,

Critical points of the bienergy functional are called biharmonic maps. Clearly,
every harmonic map is biharmonic. Non-harmonic biharmonic maps are
called proper biharmonic maps.

Many examples of biharmonic immersions into spheres have been obtained.
For more informations on biharmonic maps, we refer to the reader [23].

Since the sphere is a compact Riemannian symmetric space of rank 1,
biharmonic immersions into compact Riemannian symmetric spaces would be
of some interest.

The first example of proper biharmonic immersions into compact Rieman-
nian symmetric space of rank 1 other than sphere was discovered by the
second named author of the present paper. In [26], he classified biharmonic
Lagrangian surfaces of constant mean curvature in complex projective plane.
Next, Ichiyama, Urakawa and the first named author of the present paper gave
some explicit examples of proper biharmonic (real) hypersurfaces in complex
projective space as well as quaternion projective space [15]-[16].

In [13], Fetcu, Loubeau, Montaldo and Oniciuc studied biharmonic sub-
manifolds in complex projective spaces.

As far as the authors know, no examples of biharmonic immersions into
compact Riemannian symmetric spaces of rank greater than 1 are known.

The purpose of this paper is to provide new examples of proper biharmonic
hypersurfaces in Riemannian symmetric spaces.

Firstly, we shall show that the complex Grassmannian manifolds Gry(C")
with 2 < k < n admit proper biharmonic real hypersurfaces.

Secondly, we determine all the biharmonic homogeneous hypersurfaces in
the Cayley projective plane. Our result together with [15]-[16] gives a clas-
sification of all biharmonic homogeneous hypersurfaces in compact Riemannian
symmetric spaces of rank 1.

Furthermore, we study biharmonic hypersurfaces in the exceptional Lie
groups F4 and G;. We shall show that these compact Lie groups contain
proper biharmonic hypersurfaces.

The results of this article were partially reported at “International Work-
shop on Finite type Submanifolds 2014” held at Istanbul Technical University,
3-5, September, 2014.

Throughout the paper we denote by I'(E) the space of all smooth sections
of a vector bundle E.
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2. Preliminaries

2.1. Let (M™,g) and (N",g) be Riemannian manifolds and ¢ : M — N a
smooth map. Then the map ¢ induces a vector bundle ¢*TN over M by

$ TN = U TypN,
peM

where TN is the tangent bundle of N. A section of ¢*TN is called a vector
field along ¢.

The Levi-Civita connection V of N induces a unique connection V? on
¢*TN which satisfies the condition

ViV 0 ¢) = (Vag)V) 0 ¢,

for all X e I'(TM) and V e I'(TN), see [11, p. 4].
The second fundamental form Vd¢ of ¢ is defined by

(Vdg)(Y, X) =VIdg(Y) —dg(VxY), X,YeI(TM). (1)

Here V denotes the Levi-Civita connection of M. One can see that the second
fundamental form is symmetric.

DeriNiTION 1. Let ¢: (M, g9) — (N,g) be a smooth map. The tension
field ©(¢§) of ¢ is a section of ¢*TN defined by

1(§) = try(Vdg).

2.2. A smooth map ¢ : (M,g) — (N,g) is said to be harmonic if it is a critical
point of the energy functional.

E@) = |5 107

under compactly supported variations. The Euler-Lagrange equation of this
variational problem is

©(¢) = 0.

More generally, a smooth map ¢ is said to be biharmonic if it is a critical point
of the bienergy functional

£(9) = |5l P

under compact supported variations. The Euler-Lagrange equation of this
variational problem is

A47(¢) + try, R(dg, 7(¢))dg = 0. 2)
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Here R is the Riemannian curvature of N. The operator 44 is the rough
Laplacian acting on the space I'(¢*TN) defined by

m

dgi== AVIVE-V] ).

i=1
where {ej,es,...,e,} is a local orthonormal frame field on M.

2.3. Now let us consider an isometric immersion ¢ : (M™, g) — (N"™*1 G) of
codimension 1, ie., hypersurface immersion. We choose a local unit normal
vector field £. Then the second fundamental form Vd¢ can be written as
(Vdo)(X,Y) =h(X,Y)E, where he I'(T*M O T*M) is the function-valued
second fundamental form. The Gauss formula becomes
Vip.Y = 4. (VxY) +h(X,Y)E, X, Y el(TM) (3)
and the Weingarten formula reads:
Vixé=—4.(4X), X eI (TM). (4)

The endomorphism field A4 is called the shape operator derived from & The
mean curvature function H of the hypersurface ¢: M — N is defined by
H =1L 1trh A hypersurface M is said to be minimal if H=0. The mean

m
curvature function and the tension filed 7(¢) are related by

7(¢) = mHE.

This formula implies that a hypersurface immersion ¢ : M — N is minimal if
and only if it is a harmonic map.

2.4. From Gauss formula and Weingarten formula, we have the Gauss equa-
tion which describes the relation between the Riemannian curvatures R of M
and R of N:

RIX,Y,ZW)=R(X,Y,Z, W)+ h(X,W)h(Y,Z) — h(X,Z)h(Y,W). (5)

From (5) we can have the relationship between the Ricci tensor fields Ric of the
hypersurface M and the Ric of the ambient space N:

Ric(X,Y) = Ric(X, Y) + g(AX,AY) — mHh(X,Y) + R(X,&, Y, &),  (6)
and the relationship between the scalar curvatures p and p is
p=p+|A]* —m*H* + 2 Ric(¢,¢). (7)
In particular if the ambient space N is of constant curvature ¢, we have

p=cm(m—1)+m>H> — |A]*. (8)
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3. Biharmonic hypersurfaces in Einstein manifolds

3.1. As we have seen before, harmonicity of isometric immersions is equiv-
alent to minimality of isometric immersions. Thus biharmonic isometric
immersions are generalizations of minimal immersions.

n [25], Ou obtained the following criterion for biharmonicity of hyper-
surfaces in Einstein manifolds.

THEOREM 1 ([25]). A hypersurface (M,g) in an Einstein manifold (N, §)
is biharmonic if and only if its mean curvature function H is a solution to the
following PDEs

o

AH — H|A)? +
m+1

5=0, 2A@dey+%gde%:0 )

From this criterion we have the following useful result:

THEOREM 2 ([25]). Let ¢: (M™,g) — (N™*',g) (m >2) be a hypersurface
with shape operator A in an Einstein manifold N with Ric = 1§. Assume that
the mean curvature H of the hypersurface is constant. Then ¢ is biharmonic if
and only if either ¢ is minimal or non-minimal with

|4]* = 4. (10)

Furthermore, in the latter case, both the ambient space and the hypersurface must
have positive scalar curvatures:

p=m+1)A>0, p=(m-2)A+m*H*>0.

4. Riemannian symmetric spaces

4.1. Hereafter we assume that the ambient space N is an irreducible compact
Riemannian symmetric space G/K with compact semi-simple G. Let us denote
by B the Killing form of G. Then since G is semi-simple, B is negative definite
on the Lie algebra g of G. Thus —B is a Ad(G)-invariant inner product on
g. Moreover the tangent space 7, N of N at the origin o = K is identified with
the orthogonal complement p of the Lie algebra f of K in g. The orthogonal
decomposition

g=I®p

is a reductive decomposition of g, that is, p satisfies ad(f)p = p. Moreover,
since N is a symmetric space, we have

[p,p] = L.
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The restriction —BJ, of —B to p induces a G-invariant Riemannian metric g
on N. This Riemannian metric is called the Killing metric of N. The rank of
a Riemannian symmetric space N = G/K is the maximum dimension of flat
totally geodesic submanifold of N.

4.2. The Ricci tensor Ric of N with respect to the Killing metric g computed
at the origin as follows (see Besse [4, Theorem 7.73], Kobayashi-Nomizu [21]):

. 1
Ric, = —§B|p.

This formula shows that N is an Einstein manifold. This together with the
formula (10) implies the following criterion.

THEOREM 3. Let N = G/K be an irreducible compact semi-simple Rieman-
nian symmetric space equipped with the Killing metric. Then a hypersurface
¢: M — G/K with constant mean curvature is proper biharmonic if and only if
its shape operator A has constant square norm

In [15]-[16], biharmonic homogeneous hypersurfaces in the sphere S”,
the complex projective space CP" and the quaternion projective space HP”"
have been classified. From the next section we start our study on biharmonic
homogeneous hypersurfaces in other compact Riemannian symmetric spaces.

5. Complex Grassmannian manifolds

5.1. Let us denote by Gri(C™) the Grassmannian manifold of all complex
linear k-subspaces in complex Euclidean m-space C". The Grassmannian
manifold Gr(C™) is represented by Gri(C™) = SU(m)/S(U(k) x U(m — k))
as a homogeneous space. We equip the Grassmannian manifold with the
Killing metric g. Then the resulting homogeneous Riemannian space is a
real 2k(m — k)-dimensional compact Riemannian symmetric space of rank
min(k,m — k). Moreover Gri(C™) admits a SU(m)-invariant complex struc-
ture J which is compatible to the Killing metric. Hence (Gri(C™),g,J) is a
Hermitian symmetric space of type AIIL

In this section we consider real hypersurfaces in Gry(C™) with m > k > 2.
The case k =2 will be studied in the next section.

5.2. The inclusion C"!' = C” induces a totally geodesic imbedding of
Gri(C™ 1) into Gry(C™). Tubes of radius r < v/mn around Gr,(C™!) are
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real hypersurfaces. In particular these hypersurfaces are homogeneous and
of the form:

SU(m — 1)/S(SO(1) x U(k — 1) x U(m — k — 1)).

The principal curvatures {4;} and their multiplicities {m;} of the tube are given
by Garcia, Hullet and Sanchez [14] as follows:

i——LcotL =1
1 = \/’% \/’%3 m1_7
PP S my = 2(k — 1)
2 — 2m 2@7 2 = )

1 r
13:7’%&111(%), m3:2(m—k—1),
/1420, nu:Z(k—l)(m—k—l)
for r e (0, /mn).

Biharmonic tubes around Gr;(C™ ') are classified as follows:

THEOREM 4. Let M, be a tube around Gr,(C™ ") of radius r in Gr;(C™),
2<k<m. Then M, is minimal if and only if the radius is

[ 2k—1
-1
r = 2y/m tan —2 =1

The only proper biharmonic tubes M, around Gry(C™™") in Gr(C™) are the
tube of radius

m+ 1+ y/(m—2k)* +4m
2m —2k —1

r=2vm tanld < /mn. O

Proor. First we look for minimal tubes. The mean curvature H of the
tube M, of radius r around Grk(C’”*l) is computed as
{2k(m—k) —1}H =41 +2(k — D)y +2(m —k — 1)23

11— k=11 m—k-1

S Jm 2t Jm ot Jm

1 2
~ 5 (- @m = 2k D 2k -1y,

where we put ¢ = tan{r/(2y/m)}. Thus M, is minimal if and only if

r=2vimtany s X<
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Next we look for proper biharmonic tubes. The square norm |A|* is
computed as

AP =27 + 20k — 1)23 +2(m — k — 1)A}

1
2
- - =
2m t2+ 2m 2

1/1=2Y k=11 m—Fk-1
m 2t
From this we have

2_m+1+VD
T 2m -2k -1

where
D = (m—2k)* +4m > 0.

Since (m+1)* —D = (2k — 1){2(m — k) —1} >0, we have m+1—+/D > 0.
Thus we obtain

m+1+ m—2k)? + 4m
r=2+y/mtan”! ( ) < v/mm. O
2m — 2k — 1

6. Grassmannian manifolds of two-planes

6.1. In this section we study biharmonic real hypersurfaces in the Grass-
mannian manifold Gr,(C""?) of all 2-planes in the complex Euclidean (m + 2)-
space. The Grassmannian Gry(C™*?) is a real 4m-dimensional Hermitian
symmetric space of rank 2. Note that Grz(Cm”) is a quaternionic symmetric
space.

Berndt [1] initiated the study of real hypersurfaces in Gry(C™?). To
adapt our computation to [1], in this section, we normalize the metric so that
the maximal sectional curvature of Grz(C’””) is 8. After this normalization
the resulting Riemannian symmetric space (Grp(C™?),§) is a Kihler-Einsten
manifold with Ricci tensor field Ric = 4(m + 2)g.

It should be remarked that Gr,(C?) is the projective space CP? equipped
with the Fubini-Study metric of constant holomorphic sectional curvature 8.
Next, in case m = 2, Gr,(C*) is identified with the real Grassmannian mani-
fold Gry(R®) of all oriented 2-planes in Euclidean 6-space RS because of the
isomorphism Spin(6) =~ SU(4). Moreover Gr,(R®) is identified with the com-
plex quadric 24 in the complex projective 5-space. The case Gry(C*) = Gr,(R®)
will be investigated separately in the next section, thus hereafter we assume that
m> 2.



Biharmonic hypersurfaces 105

The proper biharmonicity of constant mean curvature real hypersurfaces
can be rephrased as follows:

PROPOSITION 1. Let M be a real hypersurface in Gra(C™?) with constant
mean curvature. Then M is proper biharmonic if and only if the length |A| of
the shape operator satisfies |A|* = 4(m + 2).

In [1], Berndt studied two remarkable classes of real hypersurfaces in the
Grassmannian manifold Gr,(C"*?) with m > 3.

6.2. Let us consider a totally geodesic (Kihler) imbedding of C™*! into C"*2.
Then this imbedding induces a totally geodesic Kéhler imbedding Gr,(C™"!)
Gry(C™?). Take a tube M = M, around Gr,(C™"") of radius r € (0, 7/(2v/2)).
Then M is a real hypersurface of Gry(C™™?). The tube has at most four
constant principal curvatures

o = 2V2 cot(2V2r), B =2 cot(V2r), A= —V2 tan(v2r), u=0.

The multiplicities of these principal curvatures are
my, =1, mg =2, m) =m, =2m—2.

Note that in case r=7/(4v/2), o« =y =0, the number of distinct principal
curvatures is 3.

THEOREM 5. The tube M, around Gry(C™*Y) of radius

1 4 V3
r =—= tan —_—
V2 V2m —1

is minimal for any m > 3.
The tubes M, around Gry(C™") of radius

r=——tan"

V2

are proper biharmonic for any m > 3.

L fm4+3 £ vVm?+12
2m— 1

Proor. The mean curvature H of M, is computed as
(4m — 1)H = o+ 2B+ (2m — 2)/

=V2{3 — (2m — 1) tan*(v/2r)} /tan(V2r).
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Hence M, is minimal if and only if the radius of M is

r—itan71 L<L
V2 V2m—1 22

Next the square norm |A4|* of the shape operator is

|A|* = o + 287 + (2m — 2)2°
2

= m{(zm — 1) tan*(V2r) — 2 tan*(V2r) + 3}.

Thus M, is proper biharmonic if and only if |4|* = 4(m + 2), that is,
(2m — 1) tan*(V2r) — 2(m + 3) tan?(V2r) + 3 = 0.

From this we get

_m+3i\/m2+12>

tan’(V2r) =1

0.

Hence

r =

1 o fm+3+Vm?+12 7
t < O

— tan .
V2 2m—1 22

6.3. The quaternion projective space HP" is the manifold of all quaternion
lines through the origin in the quaternion linear space H"™'. Since H"'!' ~
C>"*2 as a right complex linear space, every element of HP" = Gr, (H”“)
is regarded as an element of Gry(C**2). This induces a totally geodesic
imbedding HP" = Gr,(C™"?) with m =2n. The tube M = M, around HP"
of radius re (0,7n/4) is a real hypersurface that has five constant principal
curvatures

o= —2 tan(2r), =2 cot(2r), y=0, A =cotr, u=—tanr
with multiplicities
my, =1, mg =3, m, =3, m, =m, =4n —4.
THEOREM 6. The tube around HP" of radius

712\/ﬁ—l<§
Van—1 4

r = tan

is minimal in Gry(C*""2),

The only biharmonic tubes around HP" in Gry(C**%) are the minimal ones.
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Proor. The mean curvature H is
Bn—1)H=0+38+ (4n—4)(A+un)

= —2 tan(2r) + 6 cot(2r) + (4n — 4)(cot r — tan r)

_ ﬁ{““z 31— )2 +4n—1)(1 - )2,

where ¢t = tan r. Thus M, is minimal if and only if the radius r of M satisfies

4 1+4 2vn+ 1
r = tan71 u — tan71 L .
4n—1 Van —1
Here we notice that
2v/n —1 2 1
0<tan! v d vnt

< tan~!

< .
an—-1 4 Vian —1

Next we look for proper biharmonic tubes. The square norm \A\Z of the
shape operator is computed as

A" = o + 367 + (4n = 4)(2 + 1)

= 4 tan?(2r) + 12 cot?(2r) + (4n — 4)(cot® r + tan? r)

= 12(1217_1)2{16# 131 =+ dn -4+ D)2 -1

Thus M, is proper biharmonic if and only if

. 2+ 1205 — 4204 + 1202 4 1
42 —1)*

0<r<l),
whose right hand side attains its maximum 5/4 at t = /2 — /3. Since n > 2,
this equation can have no real solution. O
REMARK 1. When r = 7/(4v/2), M, has three distinct principal curvatures
u=0, f=V2, y=0, i=-V2

Thus this tube satisfies

H:,W?ﬂ)’ |4]* = 4m.
4m — 1

Hence M, is not biharmonic.
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7. Complex quadrics

In [3], Berndt and Suh studied real hypersurfaces in the Grassmannian
manifold Gry(R™"?) of oriented 2-planes in Euclidean (m + 2)-space. As
is well known, the Grassmannian manifold (A}/rz(R’"”) is identified with the
complex quadric:

2 ={[z21 :22:---:z,,Hz]eCP’”“\zf+z§+~--+z§1+2:0}

in the complex projective (m + 1)-space.

Now we equip the ambient projective space with the Fubini-Study metric
of constant holomorphic sectional curvature 4, then 2,, = SO(m + 2)/SO(2) x
SO(m) is a Hermitian symmetric space of rank 2 and maximal sectional
curvature 4 with respect to the induced metric g. The Ricci tensor is given by
Ric = 2mg (see [21, Example 10.6 in Chapter XI]).

Hereafter we assume that m > 3. For m = 2k, the map

[z1:iza: - iz iz oz s dzy iz e 2y

defines a totally geodesic complex immersion of CP* into 2., = CP*+!,
For r e (0,7/2), the tube around CP* is a homogeneous real hypersurface
with principal curvatures:

A1 =2 cot(2r), A =0, A3 = —tanr, Ay =cotr
and multiplicities
Wl]Zl, m2=2, m3:m4:2k—2.

In case m =2, ie., k=1, then we have CP; = 2, =S?* x S>. The prin-
cipal curvatures of a tube around CP! are 0 and 2 cot(2r).

THEOREM 7. The only minimal tube around CP* in 2, is the tube of radius

n/4.
The only proper biharmonic tubes around CP* in 2, are tubes of radius
V2 +1
tan” ———.
V2k -1

Proor. For k > 1, we have
(4k — 1)H = A1 + 2k — 2)(A3 + L)

RS

+(2k—2)(—z+%),

where ¢t =tanr. Thus H =0 if and only if > =1, that is r = n/4.
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Next we have

-1 1
4] (tz)+(2k2)<t2+t2)

:tlz{z“ — 200 4 14 2k =2)(t* + 1)}

= tlz{(zk — 1)t =27 + 2k - 1)}

Hence the biharmonicity equation |4|* = 4k is
2k — 1)t* =22k + 1)* + 2k — 1) = 0.
Hence

l2_2k+1i\/@
T 2k—1

L [2k+1+ 8k V2K + 1
r = tan — =tan  ——— O
2k — 1 V2k =1

COROLLARY 1. Let M, be the tube of radius r around CP? = Gry(C?)
Gry(C*). Then M, is
o minimal in Gry(C*) if and only if r=n/4.
 proper biharmonic in Gry(C*) if and only if r=tan"'(3) or r=
tan—!(1/3).

Thus we obtain

8. Cayley projective plane

8.1. Let us denote by O the division algebra of octonions (also called the
Cayley algebra). Denote by J the real linear space of all 3 by 3 Hermitian
matrices of octonions. On this linear space the Jordan product o is defined by

XoY:=—(XY+7YX), X, Ye3.

N —

The real algebra J equipped with Jordan product is called the exceptional
Jordan algebra. The automorphism group Fs of the Jordan algebra J is a
simply connected compact simple Lie group of dimension 52.

The projective plane OP? over O is called the Cayley projective plane.
The projective plane OP? is realized as

{(XeJ|X*=X,tr X =1}



110 Jun-ichi INoGUcHI and Toru SASAHARA

and represented by F4/Spin(9). The negative of the Killing form of Fy4
induces an invariant Riemannian metric on OP? so that OP? is a Riemannian
symmetric space of rank 1. To adapt our discussion with Dimitric’s paper
[10], we normalize the metric such that the maximal sectional curvature of
OP? is 4 (see also [29, §5]). More precisely, the metric is induced form —%B.
Then the resulting Riemannian symmetric space (OP?,§) is a homogeneous
Einstein manifold with Ricci tensor Ric = 364.

In OP?, we have the following criterion.

PROPOSITION 2. Let M < OP? be a hypersurface of constant mean
curvature. Then M is proper biharmonic if and only if |A|2 = 36.

The homogeneous hypersurfaces in OP? are (essentially) classified by Iwata
[19] (see also [2, 24]). There exist only two families of homogeneous hyper-
surfaces in OP2. Geodesic spheres in OP? and tubes around a totally geodesic
quaternion projective plane HP?> ¢ OP?.

8.2. Geodesic spheres. Now let us investigate biharmonicity of geodesic
spheres in OP2.

Let M, be a geodesic sphere in OP? of radius r. Then M, has two
constant principal curvatures. The principal curvatures and their multiplicities
are given as follows (see Dimitric [10], Murphy [24] and Verhdczki [27]):

A=cotr, w=2cot(2r), re(0,7/2),
my =8, my, =1.

THEOREM 8. Let M, be a geodesic sphere in OP? of radius r. Then M, is
* minimal if and only if the radius is

r:tan’I\/E.
7

e proper biharmonic if and only if the radius is

a1y 25 £ 2V130
- s

Proor. The mean curvature H is computed as
15H = 82+ 7u = (15 — 7 tan® r) /tan r.

Thus M is minimal if and only if its radius is

15 =
O<r=t ’11/— —.
r an 7 <2
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Next, we have

AP =822 4+ T = — (8 +7(1 — tan® 2.
r

tan
Thus M is proper biharmonic if and only if # = tan r is a positive solution to

74 — 502 + 15 =0.

O<r:tan’1\/725i§ 130<g. O

REMARK 2. Geodesic spheres in OP? have been used to construct
examples of Riemannian manifolds with special properties. For instance, a
geodesic sphere M, is of 1-type submanifold in the sense of Chen [6] via the
Ist standard imbedding of OP? if and only if the radius is r = tan~'(v/17//7)
(see Dimitric [10]).

Jensen [20] constructed Einstein metrics of non-constant curvature on
the 15-sphere S'° (see also Ziller [32]). The resulting Einstein manifolds
are realized as geodesic spheres in OP? of radius r = tan~!(2v/2/v/3). Thus
biharmonic geodesic spheres and minimal geodesic spheres are neither Einstein

nor l-type (¢f [5]).

REMARK 3. Take a totally geodesic OP! =S® < OP2. Then its tube
of radius 7 < m/4 is a homogeneous hypersurface. The tube around OP!' is
nothing but a geodesic sphere of radius r = /2 — 7.

Hence we get

8.3. Tubes around HP>. The totally geodesic quaternion projective plane
HP? in OP? =F,/Spin(9) is represented by Sp(3)-Sp(1)/Spin(4) - Spin(3).
Here we use notation Sp(3) - Sp(1) := Sp(3) x Sp(1)/Z, and Spin(4) - Spin(3) =
Spin(4) x Spin(3)/Zs.

For a positive constant r < 7/4, tubes around HP? of radius r are hyper-
surfaces in OP?. The principal curvatures and their multiplicities are given
by Verhoczki [30, §5]:

A1 =2 tan(2r), m; =4,
Ay =tanr, my =4,
Az = =2 cot(2r), m3 =3,

Jg = —cotr, my = 4.
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THEOREM 9. The only minimal tube around HP?> in OP? is the tube of
radius

an~! Vii-2
N

There are no proper biharmonic tubes around HP? in OP>.

r=t

Proor. The mean curvature is computed as
15H =421 +42) + 343 + 414

16 3
= (441 -=
it
R
t(1—1¢%)

4
(1-)-2

7t — 3062 4 7),

where we put ¢ =tanr.
Thus M, is minimal if and only if

2 15 + 411
=
Hence
15+ 411 V1T 42
r = tan ———— =tan —_—.
7 V7

However we notice that

L VII=2 =z L VI 42

0 < tan < —<tan~
V7 4 V7
Thus the radius of the minimal tube is
F=tan"! \/ﬁ —2
= .

Next, the square norm |4|* is computed as:

2 12 2 3 2
|[A|” =447 + 425 + 325 + 47,

4
= 16+ - -1 -+ (1 -7 2}.
12(1_12)2{ (-2 ta-pyea-n
Thus the biharmonic equation |4|* = 1/2 is rewritten as:

1) =764 = 561° 4 162¢* — 561> +7 = 0. (11)

This equation has no real solution. In fact f(¢) >0 for all zeR. O
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8.4. Compact Riemannian symmetric spaces of rank 1. In [15, 16], bihar-
monic homogeneous hypersurfaces in the unit sphere S” and the complex
projective space CP"(4) of constant holomorphic sectional curvature 4 are
classified. In addition biharmonic curvature-adapted real hypersurfaces of
constant principal curvatures in the quaternion projective space HP"(4) of
maximal sectional curvature 4 are classified. Comparing these results with
the classification of homogeneous real hypersurfaces in HP"(4) due to D’Atri
[9] and Iwata [18] and combining with Theorem 8 and Theorem 9, we obtain
the following complete classification of all proper biharmonic homogeneous
hypersurfaces in simply connected compact Riemannian symmetric spaces of
rank 1.

THEOREM 10. The proper biharmonic homogeneous hypersurfaces in sim-
ply connected compact Riemannian symmetric spaces of rank 1 are given as
follows:

e Totally umbilical small hyperspheres of radius r=1/\/2 in the unit

sphere S".
o The product immersion S"P(1/\/2) x SP"1(1/v/2) = S" with n—p #
p—L
* Tubes M, around totally geodesic subspace CP? = CP"(4) of radius
5 1/2
_ P+Q+3i\/(P—Q) +4(p+q+2) n
r = cot <z.
1+ 2¢q 2

in the complex projective space CP"(4) of constant holomorphic sectional
curvature 4, where 0 < p<n—-1, g:=n—1—p.

s Tubes M, around the Plicker imbedding Gry(C>) = CP°(4) of radius
r < /4 which is determined by the equation 41t> +43t* + 411> —15=0
with t = cot r.

o Tubes M, around SO(10)/U(5) = CP*(4) of radius r < n/4 which is
determined by the equation 13t® — 107t* + 431> — 9 = 0.

* Geodesic spheres of radius r in the quaternion projective space HP" of
maximal sectional curvature 4. Here t = cotr is a positive solution to

(4n—Dr* =220+ 7)r* +3=0.

* Tubes M, around CP" < HP"(4) of radius r which is determined by the
equation

2n— 1) —8(n+ 1)t® — (6n+11)* —22n— 1)1 =12 =0

for t=cotr.
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e Tubes M, around HP* = HP"(4) of radius r which is determined by the
equation

(4n—dk - 1)* —22n+4)* +4k+3=0, 1<k<n-1

for t =cotr.
» Geodesic spheres of radius r=tan~! w in Cayley projective

plane OP?* of maximal sectional curvature 4.

As a corollary we obtain the following classification of all proper bihar-
monic geodesic spheres in simply connected compact Riemannian symmetric
spaces of rank 1:

COROLLARY 2. The proper biharmonic geodesic spheres in simply connected
compact Riemannian symmetric spaces of rank 1 are given as follows:

e Totally umbilical small spheres of radius r = 1/\/5 in the unit sphere S".

* Geodesic spheres of radius

r_Cotl\/n+2J_r\/n2+2n+5
B 2n—1

in the complex projective space CP" of constant holomorphic sectional
curvature 4.
* Geodesic spheres of radius v which is a positive solution to

(4n—Dr* —22n+)r* +3=0

in the quaternion projective space HP" of constant quaternion sectional
curvature 4.

* Geodesic spheres of radius r:tan‘lx/w in Cayley projective
plane OP? of maximal sectional curvature 4.

Chen and Vanhecke developed differential geometric study of geodesic
spheres. In particular they obtained the following characterization of real
space forms in terms of geodesic spheres.

THEOREM 11 ([7]). A Riemannian manifold N of dim N > 3 is of constant
curvature if and only if every geodesic sphere is a parallel hypersurface.

As we have seen, every simply connected compact Riemannian symmetric
space of rank 1 admits proper biharmonic geodesic spheres. Thus we are
interested in the following conjecture:

CONJECTURE. A Riemannian manifold N of dim N > 3 is locally iso-
metric to a compact Riemannian symmetric space of rank 1 if and only if it
contains biharmonic geodesic spheres.
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9. Exceptional Lie group G;
The automorphism group

Gy = {g e GL(D) | g(xy) = g(x)g(y), x,y € O}

of O is a compact Lie group of dimension 14. Since every g € G; is a linear
isometry, G, is a closed subgroup of O(8). Moreover, since every element
of G, fixes the identity element of O, G, is a closed subgroup of O(7) =
{g€0O(8)|g(id) =id}. The exceptional Lie group G, with the Killing form is
a compact Riemannian symmetric space of rank 2 of the form G, x G,/G,.
With respect to the Killing metric, G, has maximal sectional curvature 1/16.
For a positive < 21/37, tubes M, of radius r around SU(3) are hypersurfaces
of Gz.
Principal curvatures of M, are given by Verhoczki [29]:

A 2 cot —+ , /4 cot? — + 3)

' 8\/_ < \/§ \ 2\/5

Jp = < 2 cot —= deot? 4 3)
8\/_ \/§ V 2V/3 ’

;
A3 =——= tan ——,
’ 4\/5 4/3
Ay = ! cot —-
RV RV
As =0
with multiplicities
m1:m2:4, I’l’l3:I’ifl4:17 I’VI5:3.
THEOREM 12. A tube M, around SU(3) in G, is minimal if and only if the

radius is /3. The only proper biharmonic tubes around SU(3) in G, are tubes
of radius

4+/3 tan! % or  4/3tan ! V5.

Proor. The mean curvature is computed as
13H =4(A1 4+ A2) + A3+ A4

1 r 1 r 1 r
——— cot + tan — cot
V3 2V3 43 43 43 43

= 3 (tan2 ! —1)
4/3 tan ;= 4/3
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Hence M, is minimal if and only if
r=4V3tan"'1 =37 < 2V/3x.

Next we compute |4|.
1
AP =43+ 23 + 22+ 2] = W(sf* — 22+ 5),
where we put ¢ = tan ﬁ?' The biharmonicity equation |A4|* = 1/2 is rewritten
as 5t* — 261> +5=0. Hence

p_13x12
s

Namely > =1/5 or 5. Thus we have

1
r=4V3tan"! — or r=4/3tan"' V5
V5
Both the values satisfy the inequality r < 2v/3x. O

10. Exceptional Lie group F4

The exceptional Lie group F, equipped with Killing metric is a 52-
dimensional compact Riemannian symmetric space of rank 4 with the form
F, x F4/F4. The maximal sectional curvature of F4 is 1/36. The exceptional
Lie group F4 has totally geodesic submanifold Spin(9). The maximal sectional
curvature of Spin(9) with respect to the induced metric is 1/36.

For a positive r < 3v/2x, tubes M, of radius r around Spin(9) are hyper-
surfaces of Fj.

The principal curvatures of M, are given explicitly by Cskoés and
Verhoczki [8]:

v

1
Al =——= tan ,
"Tev2 T 6v2

Ay = ! tan r
T2 T 12v2
A3 =0,

Ay = ! cot !

4 6\/§ 6\/5’
As = ! cot !
T v2 12
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with multiplicities

THEOREM 13. A4 tube M, around OP? in Fy is minimal if and only if the
radius is

V22 =1
12v2tan ! Y22 Y °
V15

The only proper biharmonic tubes around OP?* in Fy are tubes of radius

51 — 2v/35 — 2¢/553 — 51/35
-1
12v2 tan (\/ 3 )

2
or
1+2 -2 1
12V3 tan-! \/5 +2v/35 — 24/553 + 51V/35 .
23
Proor. The mean curvature H is computed as
S1H = TA1 + 84y + T4 + 845
7 2t 1—1¢2 2 1
6v2 \1 —¢2 2t 32 t
7 412—(1—t2)2+ 2 21
6v2 2(1-12) 3v2 1
T t4—6t2—|—1+ 2 -1
6v2 2t(1—¢2) 32 t
Here we put ¢ =tan 1zrﬁ' From this, M, is minimal if and only if
15¢* — 584 + 15 =0.
Hence

o _29£2VI34
R

Since 0 < r < 3v2n, we need to choose

P25 V22 -7
- 5 V5
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Next we look for proper biharmonic tubes. The square norm |A|* is

computed as
2
, T 20\ (17 4
MF=5liza) *5 ) )+

The biharmonic equation |4|* = 1/2 can be written as

2318 — 204¢% + 474¢* — 204¢* + 23 = 0.

Since 0 < r < 3y/27, we obtain

L \/51 —2v/35-2/553 - 5135

23

or

B \/51 +2v/35 - 2¢/553 4+ 511/35

23

11. Exceptional symmetric space F4/Sp(3) - Sp(1)

In this section we consider the real 28-dimensional Riemannian symmetric
space F4/Sp(3) - Sp(1) with isotropy subgroup Sp(3) - Sp(1) = Sp(3) x Sp(1)/Z,
of rank 4 (type FI). Note that F4/Sp(3)-Sp(l) is a quaternionic symmetric
space. The maximal sectional curvature of F4/Sp(3)-Sp(1) with respect to
Killing metric is 1/9. Note that F4/Sp(3) - Sp(1) is quaternionic symmetric.
This symmetric space has totally geodesic submanifolds Gr4(R9) The max-
imal sectional curvature of Gr4(R9) < F4/Sp(3) - Sp(1) is 1/9. The tube
around Gr4(R9) of radius r < -7 is homogeneous and has principal curvatures

) V2
([30, §4)):
1 r
A =—= tan —, m; =4,
'T3v2 32 :
r r
Ay =—— tan ——, 4,
Tev2 6v2 ?

/13 = 0, ms3 = 12,

3f 3v2

As = ——— cot ——=

6\/— 6v2’
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THEOREM 14. There are no proper biharmonic tubes around (f}vr4(R9) in
F4/Sp(3) - Sp(1). The only minimal tube is a tube of radius

VI =2
o

Proor. From the table of principal curvatures, we have

r=6v2tan"!

27TH = 421 + 425 + 374 + 475

1 8t ey 31— 2
32\ -2 2t t
1

- (7" =307+ 1),
6v/21(1 —tz)( )

where ¢ = tan(r/(6v2)). Hence H =0 if and only if

i 15+4V11 V1T £2
=/ N

Since r < 37/v/2, we need to choose

VII=2
N

Next we look for proper biharmonic tubes. The square norm |A\2 is

computed as
1 [ 16 31— 1
A =— 2 = .
‘ | 18 <(1 - t2)2 o+ 42 + 12

The biharmonic equation |A4|* =1/2 can be written as

r=6v2 tan"!

7t — 561° 4+ 162¢* — 561> +7 = 0.
As we have seen before in (11), this equation has no real solutions. O

In a separate publication [17], we shall study biharmonic homogeneous
hypersurfaces in compact Riemannian symmetric spaces associated with the
exceptional simple Lie groups E¢ and G, as well as real Grassmannian mani-
folds and quaternion Grassmannian manifolds.

Acknowledgement

The authors would like to thank Yelin Ou for useful discussions. The
authors would also like to thank the referee for his/her invaluable comments.



120

[1]
[2]

Jun-ichi INoGucHI and Toru SASAHARA

References

J. Berndt, Riemannian geometry of complex two-plane Grassmannians, Rend. Sem. Mat.
Univ. Politec. Trino 55 (1997), 19-83.

J. Berndt, A note on hypersurfaces in symmetric spaces. (English summary) in: Proceedings of
the 14th International Workshop on Differential Geometry and the 3rd KNUGRG-OCAMI
Differential Geometry Workshop, Natl. Inst. Math. Sci. (NIMS), Taejn, 2010, pp. 31-41.
J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex
quadrics, Internat. J. Math. 24 (2013), 1350050, 18 pages.

A. L. Besse, Einstein Manifolds, Springer Verlag, Berlin, 1987.

J. P. Bourguignon and H. Karcher, Curvature operators: pinching estimates and geometric
examples, Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), no. 1, 71-92.

B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, 2nd edition, World
Scientific, Singapore, 2015.

B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. reine Angew.
Math. 325 (1981), 28-67.

B. Csikos and L. Verhoczki, Tubular structures of compact symmetric spaces associated
with the exceptional Lie Group Fy, Geom. Dedicata 109 (2004), 239-252.

J. E. D’Atri, Certain isoparametric families of hypersurfaces in symmetric spaces,
J. Differential Geom. 14 (1979), no. 1, 21-40 (1980).

I. Dimitric, CR-submanifolds of HP” and hypersurfaces of the Cayley plane whose Chen-
type is 1, Kyungpook Math. J. 40 (2000), 407—429.

J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, Regional Conference Series
in Math. 50 (1983), Amer. Math. Soc.

J. Eells and J. C. Wood, Restrictions on harmonic maps of surfaces, Topology 15 (1976),
263-266.

D. Fetcu, E. Loubeau, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of CP”,
Math. Z. 266 (2010), no. 3, 505-531.

A. N. Garcia, E. G. Hullet and C. U. Sanchez, On homogeneous hypersurfaces in com-
plex Grassmannians, Beit. Alg. Geom. 43 (2002), no. 2, 521-536.

T. Ichiyama, J. Inoguchi and H. Urakawa, Biharmonic map and bi-Yang-Mills fields,
Note Mat. 28 (2009), suppl. 1, 233-275.

T. Ichiyama, J. Inoguchi and H. Urakawa, Classifications and isolation phenomena of
biharmonic maps and bi-Yang-Mills fields, Note Mat. 30 (2010), no. 2, 15-48.

J. Inoguchi and T. Sasahara, Biharmonic hypersurfaces in Riemannian symmetric spaces
I, submitted.

K. Iwata, Classification of compact transformation groups on cohomology quaternion
projective spaces with codimension one orbits, Osaka J. Math. 15 (1978), no. 3, 475-508.
K. Iwata, Compact transformation groups on rational cohomology Cayley projective
planes, Tohoku Math. J. 33 (1981), 429-442.

G. Jensen, Imbeddings of Stiefel manifolds into Grassmannians, Duke Math. J. 42
(1975), no. 3, 397-407.

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II, Interscience
Publishers John Wiley & Sons, Inc., 1969.

A. Kollross, A Classification of hyperpolar and cohomogeneity one actions, Trans. Amer.
Math. Soc. 354 (2001), no. 2, 571-612.

S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian
manifolds, Rev. Un. Mat. Argentina 47 (2006), no. 2, 1-22.



24]

Biharmonic hypersurfaces 121

T. Murphy, Curvature-adapted submanifolds of symmetric spaces, Indiana Univ. Math.
J. 61 (2012), no. 2, 831-847.

Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math. 248 (2010),
no. 1, 217-232.

T. Sasahara, Biharmonic Lagrangian surfaces of constant mean curvature in complex space
forms, Glasgow Math. J. 49 (2007), no. 3, 497-507.

L. Verhoczki, Principal curvatures of special hypersurfaces in symmetric spaces, Acta
Scient. Math. (Szeged) 58 (1993), 349-361.

L. Verhoczki, Special cohomogeneity one isometric actions on irreducible symmetric spaces
of types I and II, Beit. Alg. Geom. 44 (2003), no. 1, 57-74.

L. Verhoczki, Exceptional compact symmetric spaces G, and G,/SO(4) as tubes, Monats.
Math. 141 (2004), 323-335.

L. Verhoczki, Tubular structures of compact symmetric spaces associated with the excep-
tional Lie groups F4, Geom. Dedicata 109 (2004), 239-252.

I. Yokota, Exceptional Lie Groups, arXiv:0902.0431.

W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann.
259 (1982), 352-358.

Jun-ichi Inoguchi
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Yamagata 990-8560, Japan
Current address:

Institute of Mathematics
University of Tsukuba
Tsukuba 305-8571, Japan
E-mail: inoguchi@math. tsukuba.ac.jp

Toru Sasahara
General Education and Research Center
Hachinohe Institute of Technology
Hachinohe, 031-8501, Japan
E-mail: sasahara@hi-tech.ac.jp



