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Almost universality of a sum of norms
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Abstract. In this paper the author considers a particular type of polynomials with

integer coe‰cients, consisting of a perfect power and two norm forms of abelian number

fields with coprime discriminants. It is shown that such a polynomial represents every

natural number with only finitely many exceptions. The circle method is used, and the

local class field theory played a central role in estimating the singular series.

1. Introduction

Let f ¼ f ð~zzÞ ¼ f ðz1; z2; . . .Þ be an integer-valued polynomial in many

variables that is locally universal, meaning that for any n A N and a prime p

f ð~zzÞ ¼ n ð1:1Þ

is soluble with zi A Zp. When (1.1) is soluble for all n A N in integers z1; z2; . . . ,

f is said to be universal, and when it is soluble for all but finitely many n A N

it is almost universal. It is quite often the case that f is not universal or even

almost universal as indicated by the Brauer-Manin obstruction. The failure of

the Hasse principle, though, can be in some sense overcome if we allow more

variables in the equation. It is a general phenomenon that if a surface SðnÞ of
a higher dimension, defined by Fð~zzÞ ¼ n, contains the original surface S0ðnÞ
given by f ð~zzÞ ¼ n as a section, then it becomes almost universal, provided their

codimension is su‰ciently large. The Hardy-Littlewood method provides a

powerful tool for estimating the number of variables necessary for this.

Although this analytic method is powerful for many problems of additive

nature, it has some technical limitations and a factor of logðdeg f Þ is invin-

cible in general; most of the results satisfy dimðSðnÞÞ=dimðS0ðnÞÞg logðdeg f Þ.
The term logðdeg f Þ arises from the technical di‰culty to handle the minor

arcs. If one considers a specific polynomial that is irrelevant of this di‰culty,

it is provable that logðdeg f Þ reduces to Oð1Þ.
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In the 1960s, Birch, Davenport and Lewis already observed this and

considered a specific type of k-forms. Let K , E be the number fields of degree

k with integral bases fo1; . . . ;okg, fo 0
1; . . . ;o

0
kg. Denote the norm of x1o1 þ

� � � þ xkok and y1o
0
1 þ � � � þ yko

0
k by NKðx1; . . . ; xkÞ and NEðy1; . . . ; ykÞ. In

[1] they considered zk þNKðx1; . . . ; xkÞ þNEðy1; . . . ; ykÞ under some provisos,

reached the following theorem as their main result.

Theorem 1.1. Suppose K, E are not both totally complex, and let dK, dE
denote their discriminants. Suppose that, for every prime p dividing both dK and

dE, the equation

n ¼ zk þNKðx1; . . . ; xkÞ þNEðy1; . . . ; ykÞ ð1:2Þ

has a non-sinigular solution in the p-adic field. Then (1.2) has infinitely many

solutions in integers.

The strategy in their work was to follow the routine procedure of the

circle method, except for the treatment of the singular series. A typical way

of dealing with the singular series is to obtain an estimate of exponential sums

Sa;q ¼
P

~zz mod q
eðaf ð~zzÞ=qÞ by factoring them into products of exponential

sums over a single variable. But a norm form NKðx1; . . . ; xkÞ has many

o¤-diagonal terms and it is not easy to do that directly. In [1] instead, a

technique invented by Birch was used to get an auxiliary lemma of the

type
P

qaX q�2k
Pq

a¼1
ða;qÞ¼1

jSa;qj2 fX �. They also showed the positivity of the

singular series, but without giving an estimate of its range.

In this study we prove the almost universality of the polynomial zk0 þ
NKð~xxÞ þNEð~yyÞ in a di¤erent setting that enlightens several new aspects. We

treat abelian number fields K , E whose degrees k1, k2 may be di¤erent and

can be totally imaginary as well. We also provide an e¤ective bound for the

singular series. In the last section we will include an example which shows

the optimality of our conclusion, i.e., that the sum of two norms can fail to be

almost universal even when it is locally universal. There are very few optimal

results in the theory of additive problems, but this result seems to provide one

of them.

The techniques in [1] may help us deduce some parts of our results, but

will not exhaust the contents of this research. On a technical point of view,

the significance of this study is that estimates of the exponential sum Sa;q

uses local class field theory and a restricted sum, which plays an essential role

in dealing with the singular series by removing solutions that are p-adically

singular for a ‘bad’ prime p. (Here ‘bad’ means that either p is too small or

it is ramified in one of K, E.)

This article is organized as follows. In Section 2 we give some definitions,

in particular of the congruence residue classes �RRQ and �BBðnÞ that will be
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important in the treatment of the major arcs. In Section 3 we reduce the

integration over major arcs into singular series and singular integral. The

estimation of the singular series follows in three subsequent sections. Section 4

covers the exponential sums over bad primes. Section 5 gives some basics

about algebraic number theory, which will be used in Section 6 to design

a particular system of representatives of OK=p
LOK , together with local class

field theory, in order to obtain a successful bound of Sa; pL for good primes

p. Section 7 lays down a fairly classical argument on the singular integral.

We omit estimation on the minor arcs because the reasoning in [1] carries over

verbatim. The last section gives the desired asymptotic formula and describes

how to construct a sum of two norms that is locally universal but is not almost

universal, demonstrating why the term zk is necessary in our problem.

2. Notations and settings

Let K and E be abelian number fields with ring of integers OK , OE and

integral bases fj1; . . . ; jk1g and fc1; . . . ;ck2
g whose discriminants dK , dE are

relatively prime. Since ðdK ; dEÞ ¼ 1, for each rational prime p at least one

of the inertial groups TKðpÞ, TEðpÞ is trivial. Suppose TKðpÞ is trivial. Let

p1; . . . ; pg be the prime ideals in K above p, and OK ;pi the completion of OK at

pi. The local class field theory says that the local norm map NK ; i : ðOK;piÞ
� !

ðZpÞ� is surjective. We also know that NKðaÞ ¼
Qg

i¼1 NK; iðaÞ for a A K , where

we consider a, NKðaÞ as elements in adequate completions of K [6]. Since OK

embeds into
Qg

i¼1 OK ;pi as a dense subset, combining the surjectivity of NK ; i,

the local universality of NKð~xxÞ þNEð~yyÞ ¼ NK jQð~xx �~jjÞ þNEjQð~yy �~ccÞ will follow

if the local norm maps NK ;1; . . . ;NK ;g are all continuous. But NK ; i is indeed

continuous as we easily see. Choose a uniformizer p A pi in OK ;pi . Any

element s A GalðKpi jQpÞ maps p to another uniformizer in OK;pi , so for an

element y A OK ;pi we can write ðyplÞs ¼ ~yyðsÞpl for some ~yyðsÞ A OK ;pi . Thus

for x; y A OK ;pi , one has

NK; iðxþ yplÞ ¼
Y
s

ðxþ yplÞs ¼
Y
s

ðxs þ ~yyðsÞplÞ ¼ NK ; iðxÞ þ plz

for some z A OK ;pi . But plz ¼ NK ; iðxþ yplÞ �NK ; iðxÞ A pl
i VZp, whence we

have NK ; iðxþ yplÞ1NK ; iðxÞ mod pl. It follows that NK; i is a continuous

map, and the sum of norms NKð~xxÞ þNEð~yyÞ is therefore locally universal.

Throughout this paper we write

Fð~zzÞ ¼ F ðz0; z1; . . . ; zk1þk2Þ ¼ F ðz0; x1; . . . ; xk1 ; y1; . . . ; yk2Þ

¼ F ðz0;~xx; ~yyÞ ¼ zk00 þNKð~xxÞ þNEð~yyÞ:
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eðaÞ denotes e2pia and vp denotes the p-adic valuation as in tradition. P

denotes the set of rational primes. We put Q ¼
Q

p A �PP p where

�PP ¼ fp A P : p < ðk1k2Þ2k0 or p j dK dEg:

In particular 1fQf 1 for fixed k0, K and E.

Let �RRK
q be a system of representatives ~xx modulo q such that for any prime

p in �PP that divides q, one has NKð~xxÞ2 0 ðmod pÞ. �RRE
q is defined in the

same manner, and let �RRq be a system of representatives ~zz ¼ ðz0;~xx; ~yyÞ ðmod qÞ
with ~xx A �RRK

q , ~yy A �RRE
q . Note that j �RRqrj ¼ j �RRqj j �RRrj if ðq; rÞ ¼ 1. For brevity in

the sequel we write ~zz1 �RRq for an integral vector ~zz if ~zz1~aa ðmod qÞ for some

~aa A �RRq. Observe that ~zz1 �RRq for all qb 1 if and only if ~zz1 �RRQ.

Throughout this article we let k ¼ maxfk0; k1; k2g and Xi ¼ n1=ki . In the

definition of major and minor arcs, we consider the Farey dissection of order

n1�n where n is a fixed small positive number, in particular, less than 1
5k . For a

technical reason in the estimation of the singular integral, we need to choose

small boxes Bi in ½0; 1�, ½0; 1�k1 and ½0; 1�k2 so that B ¼ B0 �B1 �B2 is around

a nonsingular point of the Euclidean surface defined by F ð~ffÞ ¼ 1. Let XiBi ¼�
~rr : 1

Xi
~rr A Bi

�
. The restricted sum

P
~zz A �BBðnÞ eðaF ð~zzÞÞ is defined over

�BBðnÞ ¼ f~rr A ðX0B0 � X1B1 � X2B2ÞVZ1þk1þk2 :~rr1 �RRQg:
�BBKðnÞ is defined similarly using X1B1 VZk1 and �RRK

Q , and so is �BBEðnÞ. We

want to estimate the number of solutions to Fð~zzÞ ¼ n with ~zz A �BBðnÞ, viz,

�rrðnÞ ¼
ð1þc

c

X
~zz A �BBðnÞ

eðaFð~zzÞÞeð�naÞda

for some real number c.

For simplicity we write
P

a mod � q to denote the summation over a that

runs through 1 to q under the condition ða; qÞ ¼ 1. We define the major arcs

for 1a aa qa nn and ða; qÞ ¼ 1 by

Mðq; aÞ ¼ fa : ja� a=qja n�1þng; M ¼ 6
qan n

6
a mod � q

Mðq; aÞ

and put the minor arcs m ¼ ðnn�1; 1þ nn�1� �M. Note that M is a disjoint

union of the segments Mðq; aÞ.

3. The major arcs

For each rational prime p and ða; pÞ ¼ 1, let

SK
a; pL ¼

X
~xx mod pL

e
a

pL
NKð~xxÞ

� �
; �SSK

a; pL ¼
X

~xx A �RRK

pL

e
a

pL
NKð~xxÞ

� �
:
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SE
a; pL and �SSE

a; pL are defined in the same manner. For ða; qÞ ¼ 1 we also put

�SSa;q ¼
X
~zz A �RRq

e
a

q
F ð~zzÞ

� �
; IðbÞ ¼

ð
X0B0�X1B1�X2B2

eðbF ð~rrÞÞd~rr:

Let kðqÞ be the product of distinct prime factors of ðq;QÞ.

Lemma 3.1. Assume jbja nn�1, 1a aa qa nn, ða; qÞ ¼ 1. Then

X
~zz A �BBðnÞ

e
a

q
þ b

� �
F ð~zzÞ

� �

¼ j �RRQj
Q1þk1þk2

kðqÞ1þk1þk2

j �RRkðqÞj
1

q1þk1þk2
�SSa;qIðbÞ þOðn2þ1=k0�1=kþ2nÞ

Proof. Let q ¼ lcmðq;QÞ ¼ q
Q

kðqÞ and write ~zz ¼ q~aaþ~bb, 0a bi < q. Let

Aðq;~bbÞ ¼ f~hh A R1þk1þk2 : q~hhþ~bb A X0B0 � X1B1 � X2B2g and Aðq;~bbÞ ¼ Aðq;~bbÞ
VZ1þk1þk2 . One easily has

X
~zz A �BBðnÞ

e
a

q
þ b

� �
F ð~zzÞ

� �
¼
X
~bb A �RRq

X
~aa AAðq;~bbÞ

e
a

q
Fðq~aaþ~bbÞ

� �
eðbF ðq~aaþ~bbÞÞ

¼
X
~bb A �RRq

e
a

q
Fð~bbÞ

� � X
~aa AAðq;~bbÞ

eðbFðq~aaþ~bbÞÞ:

Let h : R1þk1þk2 ! C be a map defined by hð~hhÞ ¼ eðbFðq~hhþ~bbÞÞ. If ~aa

is an integral vector near ~hh so that jhi � aija 1=2 for all 0a ia k1 þ k2,

and M is the supremum of the absolute value of directional derivatives of

hð~hhÞ for ~hh A Aðq;~bbÞ, then clearly jhð~hhÞ � hð~aaÞjfM. Observe that any convex

body U HAðq;~bbÞ can be divided into unit boxes together with at most

O
�X0

q

�X1

q

�k1�X2

q

�k2� q

X0
þ q

X1
þ q

X2

��
possible broken boxes. Hence

ð
Aðq;~bbÞ

hð~hhÞd~hh�
X

~aa AAðq;~bbÞ

hð~aaÞ

������
������

f jAðq;~bbÞjM þ X0X
k1
1 X k2

2

qk1þk2

1

X0
þ 1

X1
þ 1

X2

� �
sup
~hh

jhð~hhÞj

where jAðq;~bbÞj is the Lebesgue measure of Aðq;~bbÞ. Here

jAðq;~bbÞjf X0X
k1
1 X k2

2

q1þk1þk2
; sup

~hh

jhð~hhÞj ¼ 1;
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and

Mf
Xk1þk2

i¼0

q

qhi
hð~hhÞ

����
����f qjbjðX k0�1

0 þ X k1�1
1 þ X k2�1

2 Þf qjbjn1�1=k

which gives

ð
Aðq;~bbÞ

hð~hhÞd~hh�
X

~aa AAðq;~bbÞ

hð~aaÞ

������
������f

n2þ1=k0

qk1þk2
n1�1=kjbj þ n2þ1=k0�1=k

qk1þk2

f
n2þ1=k0�1=kþn

qk1þk2
:

Writing q~hhþ~bb ¼~rr,ð
Aðq;~bbÞ

hð~hhÞd~hh ¼
ð
Aðq;~bbÞ

eðbF ðq~hhþ~bbÞÞd~hh

¼
ð
X0B0�X1B1�X2B2

eðbFð~rrÞÞd~rr 1

q1þk1þk2

¼ 1

q1þk1þk2
IðbÞ:

Since q ¼ q
Q

kðqÞ , one has

X
~bb A �RRq

e
a

q
Fð~bbÞ

� �
¼ j �RRQ=kðqÞj

X
~bb A �RRq

e
a

q
Fð~bbÞ

� �
¼ j �RRQ=kðqÞj �SSa;q:

It follows that

X
~zz A �BBðnÞ

e
a

q
þ b

� �
F ð~zzÞ

� �

¼
X
~bb A �RRq

e
a

q
F ð~bbÞ

� �
1

q1þk1þk2
IðbÞ þO

n2þ1=k0�1=kþn

qk1þk2

� �� �

¼
j �RRQ=kðqÞj

ðQ=kðqÞÞ1þk1þk2

�SSa;q

q1þk1þk2
IðbÞ þO j �RRqj

n2þ1=k0�1=kþn

qk1þk2

� �

¼ j �RRQj
Q1þk1þk2

kðqÞ1þk1þk2

j �RRkðqÞj
�SSa;q

q1þk1þk2
IðbÞ þOðqn2þ1=k0�1=kþnÞ

and the lemma follows. r
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We introduce typical notations for the major arcs now. Compared to

the classical ones, the singular series contains some additional terms in its

summands as we use the restricted sum over ~zz A �BBðnÞ.

�AAnðqÞ ¼
X

a mod � q

�SSa;q

q1þk1þk2
e � a

q
n

� �
; �SSðX ; nÞ ¼

X
qaX

kðqÞ1þk1þk2

j �RRkðqÞj
�AAnðqÞ

�wwnðpÞ ¼
Xy
l¼0

kðplÞ1þk1þk2

j �RRkðp lÞj
�AAnðplÞ:

In particular �AAnð1Þ ¼ 1. Possible issues on the convergence of �wwnðpÞ will

be clarified later. We also define the singular integral

JðcÞ ¼
ð c
�c

ð
B

eðgF ð~zzÞÞd~zzeð�gÞdg:

Theorem 3.2.

ð
M

X
~zz A �BBðnÞ

eðaF ð~zzÞÞeð�naÞda

¼ j �RRQj
Q1þk1þk2

�SSðnn; nÞJðnnÞn1þ1=k0 þOðn1þ1=k0�1=kþ5nÞ: ð3:1Þ

Proof. Let Jðc; nÞ ¼
Ð c
�c

IðbÞeð�nbÞdb. Note that there are Oðn2nÞ pairs
ðq; aÞ in the major arcs and each interval Mðq;aÞ is of length 2nn�1. From

Lemma 3.1,

X
qan n

X
a mod � q

ð
Mðq; aÞ

X
~zz A �BBðnÞ

eðaF ð~zzÞÞeð�naÞda

¼
X
qan n

X
a mod � q

j �RRQj
Q1þk1þk2

kðqÞ1þk1þk2

j �RRkðqÞj
�SSa;q

q1þk1þk2
e � a

q
n

� �
Jðnn�1; nÞ

þOðn2nnn�1n2þ1=k0�1=kþ2nÞ

¼ j �RRQj
Q1þk1þk2

�SSðnn; nÞJðnn�1; nÞ þOðn1þ1=k0�1=kþ5nÞ:

Put ~rr ¼ ðX0z0;X1z1; . . . ;X1zk1 ;X2zk1þ1; . . . ;X2zk1þk2Þ and g ¼ nb so that

bFð~rrÞ ¼ gF ð~zzÞ. Then
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Jðnn�1; nÞ ¼
ð n n�1

�n n�1

ð
X0B0�X1B1�X2B2

eðbF ð~rrÞÞd~rreð�nbÞdb

¼
ð n n

�n n

X0X
k1
1 X k2

2

ð
B

eðgFð~zzÞÞd~zzeð�gÞ dg
n

¼ JðnnÞn1þ1=k0

and (3.1) follows. r

4. The singular series: Bad primes

Lemma 4.1. If ðq; rÞ ¼ ða; qÞ ¼ ðb; rÞ ¼ 1 then �SSa;q
�SSb; r ¼ �SSarþbq;qr.

Proof. Write ~zz ¼ ðz0;~xx; ~yyÞ and ~xx ¼ ðx0;~aa;~bbÞ.

X
~zz A �RRq

e
a

q
Fð~zzÞ

� �X
~xx A �RRr

e
b

r
Fð~xxÞ

� �

¼
X
~zz A �RRq

X
~xx A �RRr

e
a

q
Fð~zzÞ þ b

r
F ð~xxÞ

� �

¼
Xq
z0¼1

Xr
x0¼1

X
~xx A �RRK

q

X
~aa A �RRK

r

X
~yy A �RRE

q

X
~bb A �RRE

r

e
a

q
F ð~zzÞ þ b

r
F ð~xxÞ

� �
:

Let s0 ¼ rz0 þ qx0 so that s0 takes every value modulo qr. Since q A OK is a

unit modulo rOK , for any ~aa A �RRK
r one has NKðq~aaÞ2 0 ðmod pÞ for all p A �PP

that divides r, i.e., q~aa1 �RRK
r . Because the map ~aa �~jj 7! q~aa �~jj gives a bijection

between systems of representatives of OK modulo rOK , we obtain a bijection

q �RRK
r ! �RRK

r . In the same manner, the set

f~uu ¼ r~xxþ q~aa :~xx A �RRK
q ;~aa A �RRK

r g

is bijective to �RRK
qr and so is

f~vv ¼ r~yyþ q~bb :~yy A �RRE
q ;
~bb A �RRE

r g

to �RRE
qr. Therefore
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Xq
z0¼1

Xr
x0¼1

X
~xx A �RRK

q

X
~aa A �RRK

r

X
~yy A �RRE

q

X
~bb A �RRE

r

e
a

q
F ð~zzÞ þ b

r
F ð~xxÞ

� �

¼
Xq
z0¼1

Xr
x0¼1

e
a

q
sk00 þ b

r
sk00

� � X
~xx A �RRK

q

X
~aa A �RRK

r

e
a

q
NKð~uuÞ þ

b

r
NKð~uuÞ

� �

X
~yy A �RRE

q

X
~bb A �RRE

r

e
a

q
NEð~vvÞ þ

b

r
NEð~vvÞ

� �
;

which is
P

~ss A �RRqr
e
� arþbq

qr
Fð~ssÞ

�
¼ �SSarþbq;qr. r

An immediate implication of Lemma 4.1 is the following.

Corollary 4.2. If ðq; rÞ ¼ 1, then �AAnðqÞ �AAnðrÞ ¼ �AAnðqrÞ.

Observe that we obviously have
kðqÞ1þk1þk2

j �RRkðqÞj
kðrÞ1þk1þk2

j �RRkðrÞj
¼ kðqrÞ1þk1þk2

j �RRkðqrÞj
for ðq; rÞ ¼ 1.

Hence if we assume the convergence of limt!y
�SSðt; nÞ ¼ �SSðy; nÞ which will be

established later, we get

�SSðy; nÞ ¼
Y
p AP

�wwnðpÞ:

Let �MMnðqÞ be the number of solutions to F ð~zzÞ1 n ðmod qÞ with ~zz A �RRq.

Lemma 4.3. For Lb 1

�MMnðpLÞ
pðk1þk2ÞL

¼ j �RRpj
p1þk1þk2

þ �AAnðpÞ þ �AAnðp2Þ þ � � � þ �AAnðpLÞ:

Proof. Let q ¼ pL. It is obvious that �RRpm can be constructed from �RRp

for any mb 1, namely

�RRpm :¼ f~zz mod pm :~zz1 �RRpg

so that
j �RRpm j

pmð1þk1þk2Þ
¼ j �RRpj

p1þk1þk2
. For d ¼ ða; qÞ ¼ pl , laL, write

�SSa=d�d;q=d�d ¼
X
~zz A �RRq

e
a=d

q=d
Fð~zzÞ

� �
¼ d 1þk1þk2 �SSa=d;q=d if d0 q

j �RRqj if d ¼ q:

(

It follows that
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�MMnðqÞ ¼
X
~zz A �RRq

1

q

Xq
a¼1

e
a

q
ðFð~zzÞ � nÞ

� �

¼ 1

q

X
djq

Xq
a¼1

ða;qÞ¼d

�SSa=d�d;q=d�de � a=d

q=d
n

� �

¼ 1

q

XL�1

l¼0

Xq
a¼1

ða;qÞ¼ pl

plð1þk1þk2Þ �SSa=p l ;pL�l e � a=pl

pL�l
n

� �
þ j �RRqj

0
BB@

1
CCA

¼ qk1þk2
XL�1

l¼0

Xq
a¼1

ða;qÞ¼p l

�SSa=p l ;pL�l

ðpL�lÞ1þk1þk2
e � a=pl

pL�l
n

� �
þ j �RRqj
q1þk1þk2

0
BB@

1
CCA

¼ qk1þk2
XL
l¼1

X
a mod � p l

�SSa; p l

plð1þk1þk2Þ
e � a

pl
n

� �
þ j �RRqj
q1þk1þk2

0
@

1
A

¼ qk1þk2
j �RRpj

p1þk1þk2
þ �AAnðpÞ þ �AAnðp2Þ þ � � � þ �AAnðpLÞ

 !
: r

The estimation of �AAnðpLÞ for p A �PP uses next lemma.

Lemma 4.4. Let f ð~zzÞ be an integral polynomial in tþ 1 variables for which
~zz ¼ ðz0; z1; . . . ; ztÞ is a solution to f ð~zzÞ1 n ðmod pMÞ. Assume that there is

an i such that ui ¼ vp
�qf ð~zzÞ

qzi

��
~zz¼~zz
�
a M�1

2 . Let NiðMÞ be the number of solutions
~xx modulo pM such that xj 1 zj ðmod p2uiþ1Þ for j0 i, xi 1 zi ðmod puiþ1Þ and

f ð~xxÞ1 n ðmod pMÞ. Then NiðMÞ ¼ ptðM�2ui�1Þþui .

Proof. Without loss of generality, assume i ¼ 0 and let D0 ¼ qf ð~zzÞ
qz0

��
~zz¼~zz,

D0ða; b; c; . . .Þ ¼ qf ð~zzÞ
qz0

��
~zz¼ðz0þpu0þ1aþpu0þ2bþ���; z1;...; ztÞ

. Note that

vpðD0ða; b; c; . . .ÞÞ ¼ u0

for all a; b; c; . . . A Z. The Hensel’s lemma can be applied to this situation in a

form that starts from a higher power of p:

f ðz0 þ pu0þ1z0; z1; . . . ; ztÞ1 f ð~zzÞ þ D0 p
u0þ1z0 mod p2u0þ2;

f ðz0 þ pu0þ1z0 þ pu0þ2z 00; z1; . . . ; ztÞ

1 f ðz0 þ pu0þ1z0; z1; . . . ; ztÞ þ D0ðz0Þpu0þ2z 00 mod p2u0þ3;
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and this process goes on. Thus for any x1; . . . ; xt modulo pM with xj 1 zj
ðmod p2u0þ1), there exists a unique r modulo pM�2u0�1 such that

f ðz0 þ pu0þ1r; x1; . . . ; xtÞ1 n mod pM :

Observe that this r can be lifted to a number modulo pM�u0�1 in pu0 distinct

ways. The value of N0ðMÞ easily follows by counting the choices of x1; . . . ; xt
and z0 þ pu0þ1r modulo pM . r

Let g ¼ gðpÞ ¼ minfvpðk1Þ; vpðk2Þg.

Lemma 4.5. If p A �PP then �AAnðpLÞ ¼ 0 for all L > 2gþ 1.

Proof. Note that pðk1þk2ÞL �AAðpLÞ ¼ �MMnðpLÞ � pk1þk2 �MMnðpL�1Þ for Lb 2.

We show that all of the solutions that are counted in �MMnðpLÞ and �MMnðpL�1Þ
cancel out if Lb 2gþ 2. Assume g ¼ vpðk1Þ. Suppose~zz ¼ ðz0;~xx; ~yyÞ A �RRpm is a

solution counted in �MMnðpmÞ where p A �PP. Let G ¼ GalðKjQÞ. Then NKð~xxÞ ¼Q
s AGðx1js

1 þ � � � þ xk1j
s
k1
Þ, and we have

qNKð~xxÞ
qxi

¼
X
s AG

js
i

Y
t AG
t0s

ðx1jt
1 þ � � � þ xk1j

t
k1
Þ

¼ TrK jQ ji
Y
s AG
s0id

ðx1js
1 þ � � � þ xk1j

s
k1
Þ

0
B@

1
CA

¼ NKð~xxÞ TrK jQ
ji

x1j1 þ � � � xk1jk1

� �
:

Hence

x1
qNKð~xxÞ
qx1

þ � � � þ xk1
qNKð~xxÞ
qxk1

¼ NKð~xxÞ TrK jQð1Þ ¼ k1NKð~xxÞ:

But ~xx A �RRK
pm , i.e., NKð~xxÞ2 0 ðmod pÞ which implies xi

qNK ð~xxÞ
qxi

2 0 ðmod pgþ1Þ
for some i. As described in the proof of Lemma 4.4, this solution ~zz is one

of the lifts of ~zz A �RRp2gþ1 when mb 2gþ 1 and so the solutions ~zz A �RRpL and
~z 0z 0 A �RRpL�1 that are counted in �MMnðpLÞ and �MMnðpL�1Þ are all lifts of the

solutions ~zz A �RRp2gþ1 . Lemma 4.4 shows that the number of such lifts grows

by a factor of pk1þk2 for each increment of m in the modulus pm for

mb 2gþ 1. Thus all of them are canceled in �MMnðpLÞ � pk1þk2 �MMnðpL�1Þ.
r

65Almost universality of a sum of norms



The estimation of �AAnðpLÞ for p B �PP is a bit more complicated. Contrary

to the classical problems in additive number theory for which the exponential

sum Sa; pL splits into the product of many exponential sums over single

variable, SK
a; pL does not behave in the same way because NKð~xxÞ has many

o¤-diagonal terms of the form xa1
1 xa2

2 . . . xak
k . Instead of obtaining a bound of

exponential sums over a single variable, therefore, we focus on the properties of

the norm map NK jQ and it is here that the class field theory plays a role. A

successful bound for SK
a; pL comes in following sections.

5. Algebraic preparation for the singular series

For the estimation of the exponential sum Sa;q, we translate the summands

~xx in SK
a; pL to a system of well-chosen representatives of the quotient ring

OK=p
LOK .

Lemma 5.1. Let e, f , g be the ramification index, inertial degree and

decomposition number of p in K jQ and write pOK ¼ pe
1p

e
2 . . . p

e
g. Let

aðmÞ A
Yg
i¼1
i0m

peL
i

0
B@

1
CA
-

pm

and for each m with 1ama g, let frðmÞ
1 ; r

ðmÞ
2 ; . . . ; r

ðmÞ
pefLg be a system of repre-

sentatives of OK modulo peL
m . Then

SK
a; pL ¼

XpefL

i1¼1

. . .
XpefL

ig¼1

e
a

q
NK jQðað1Þrð1Þi1

þ � � � þ aðgÞr
ðgÞ
ig
Þ

� �
:

Proof. Let G ¼ GalðK jQÞ. We first recall that NKð~xxÞ A Z½x1; . . . ; xk1 �.
Indeed, the coe‰cient of each term xa1

1 . . . x
ak1
k1

in NKð~xxÞ ¼
Q

s AGðx1js
1 þ � � � þ

xk1j
s
k1
Þ is an algebraic integer which is invariant under every s A G, so it

is a rational integer. Hence for any integral vector ~vv that is congruent to

~xx modulo pL one has NKð~vvÞ1NKð~xxÞ ðmod pLÞ. Since x1j1 þ � � � xk1jk1 1
v1j1 þ � � � vk1jk1 ðmod pLOKÞ if and only if xi 1 vi ðmod pLÞ for all i, clearly

SK
a; pL ¼

X
g AR

e
a

pL
NKjQðgÞ

� �

for any system R of representatives of OK=p
LOK .

We may work on a more general situation like the following. Let I , J

be integral ideals of OK that are relatively prime and q, r be their absolute
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norms. Note that q, r need not be relatively prime. Let ft1; . . . ; tqg and

fu1; . . . ; urg be systems of representatives of OK=I and OK=J. Suppose we

put vi; j ¼ bti þ auj for some a A I , b A J. Then vi; j 1 bti mod I , and hence

vi; j 1 vi 0; j 0 mod I , bðti � ti 0 Þ A I . If b þ I is not a zero divisor of OK=I ,

this is equivalent to ti 1 ti 0 mod I . Thus vi; j for 1a ia q, 1a ja r form a

system of representatives of OK=IJ if and only if b þ I and aþ J are not zero

divisors in OK=I and OK=J respectively.

Because I and J are relatively prime, I þ J ¼ OK and there exist a A I and

b A J such that a1 1 mod J and b1 1 mod I . 1þ I is clearly a unit in OK=I

(in particular, not a zero divisor). The existence of a, b that satisfies the

conditions mentioned above follows from this.

As an obvious generalization, assume I ð1Þ; . . . ; I ðgÞ are integral ideals that

are relatively prime and let nm ¼ NðI ðmÞÞ. If frðmÞ
1 ; r

ðmÞ
2 ; . . . ; r

ðmÞ
nm g is a system

of representatives of OK=I
ðmÞ, there exist að1Þ; . . . ; aðgÞ with aðmÞ A

Qg
i¼1
i0m

I ðiÞ

for which aðmÞ þ I ðmÞ is not a zero divisor in OK=I
ðmÞ for all m. Writing

vi1;...; ig ¼ að1Þr
ð1Þ
i1

þ � � � þ aðgÞr
ðgÞ
ig
, the set

fvi1;...; ig : 1a i1 a n1; . . . ; 1a ig a ngg

forms a system of representatives of OK=I
ð1Þ . . . I ðgÞ. With the substitution

I ðmÞ ¼ peL
m and the choice of aðmÞ as stated in the lemma, aðmÞ is trivially not a

zero divisor of OK=p
eL
m . This completes the proof. r

The following is a well-known fact in algebraic number theory (for

example, see Chapter 8 of [7].)

Proposition 5.2. Let p be a nonzero prime ideal of OK and mb 1. Let

G be a system of representatives of OK modulo p containing 0. Let t A pnp2.

Then D ¼ fs0 þ s1tþ � � � þ sm�1t
m�1 : si A Gg is a system of representatives of

OK modulo pm.

Let e, f , g be as in Lemma 5.1. We want to choose a system of

representatives of OK modulo peL
m in a nice way. Consider the ideal class

group C of K and a class ½I � A C containing I . An analogue of Dirichlet’s

theorem on primes in arithmetic progression is that the prime ideals of OK

are equi-distributed among ideal classes in C on a probabilistic point of view

(Chapter 11 of [5]). We simply take a weaker form of this for granted that

every ideal class contains infinitely many prime ideals.

Firstly, consider ½p1� A C. Then there is a prime ideal a1 such that

½a1� ¼ ½p1��1 in C and gcdða1; p1p2 . . . pgÞ ¼ OK . Now p1a1 is principal,

say, tOK and for m0 1
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Yg
i¼1
i0m

peL
i

0
B@

1
CA
-

pm

0
B@

1
CAV teLOK ¼ lcm

Yg
i¼1
i0m

peL
i ; teLOK

0
B@

1
CA
-

pm

¼ aeL
1

Yg
i¼1
i0m

peL
i

0
B@

1
CA
-

pm

0q

whence one can choose aðmÞ A ðaeL
1

Qg
i¼1
i0m

peL
i Þnpm, i.e., aðmÞ A aeL

1 peL
1 ¼ teLOK

and aðmÞ=teL A OK for m ¼ 2; 3; . . . ; g.

Similarly, we can choose a1; a2; . . . ; ag so that piai ¼ tiOK is principal and

gcdðai; p1p2 . . . pgÞ ¼ OK for all i. In particular ti A pinp2
i and vpðNK jQðtiÞÞ ¼ f .

By the infinitude of the prime ideals in every ideal class, we can in addition

assume ðai; ajÞ ¼ OK for i0 j. It follows that there exists an element

aðmÞ A
Yg
i¼1
i0m

aeL
i peL

i

0
B@

1
CA
-

pm

for each m so that

aðmÞQg
i¼1
i0m

teLi
A OKnpm:

Let G ð1Þ; . . . ;G ðgÞ be systems of representatives of OK=p1; . . . ;OK=pg that

contain 0. In the estimation of SK
a; pL later, we choose the representatives that

are of the form

Xg
m¼1

aðmÞðsðmÞ
0 þ s

ðmÞ
1 tm þ s

ðmÞ
2 t2m þ � � � þ s

ðmÞ
eL�1t

eL�1
m Þ ð5:1Þ

where s
ðmÞ
j A G ðmÞ.

6. The singular series: Good primes

Let R be a system of representatives of OK=p
LOK and R� ¼ fr A R :

pFNK jQðrÞg. Let e, f , g be as in Lemma 5.1. Note that �SSK
a; pL ¼ SK

a; pL if

p B �PP.
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Lemma 6.1. Write SK
a; pL ¼ SK;1

a; pL þ SK ;2
a; pL where

S
K ;1
a; pL ¼

X
g AR �

e
a

pL
NK jQðgÞ

� �
; S

K;2
a; pL ¼

X
g ARnR�

e
a

pL
NK jQðgÞ

� �
:

(1) If La f then S
K ;2
a; pL ¼

Pg
i¼1ð�1Þ i�1 g

i

� �
pk1L�if

(2) If L > 1 and pF k1 then S
K ;1
a; pL ¼ 0

(3) If L ¼ 1 and p is unramified in K jQ then S
K;1
a; pL ¼ � ðp f�1Þ g

p�1 .

Proof. Assume La f . Since p jNKjQðgÞ if and only if p f jNKjQðgÞ,
in this case S

K ;2
a; pL merely counts the number of nonunits of OK=p

LOK ¼
OK=p

eL
1 . . . peL

g . Let T be the number of nonunits in OK=pOK . The number

of units in OK=pOK is ðpef � pðe�1Þ f Þg, so

T ¼ pk1 � ðpef � pðe�1Þ f Þg ¼ pk1 � pefgð1� p�f Þg

¼
Xg
i¼1

ð�1Þ i�1 g

i

� �
pk1�if

and S
K ;2
a; pL ¼ pðL�1Þk1T ¼

Pg
i¼1ð�1Þ i�1 g

i

� �
pk1L�if .

As for SK ;1
a; pL , first assume L > 1 and pF k1. Let ~xx be given by g ¼~xx �~jj.

Since pF k1, pFNKð~xxÞ implies that there exists i such that qNK ð~xxÞ
qxi

2 0

ðmod pÞ as shown in the proof of Lemma 4.5. If m is any integer such

that m1NKð~xxÞ ðmod pÞ, Lemma 4.4 shows that the number of ~vv modulo

pL�1 satisfying NKð~xxþ p~vvÞ1m ðmod pLÞ is pðk1�1ÞðL�1Þ. Thus

SK ;1
a; pL ¼ pðk1�1ÞðL�1Þ

X
~xx mod p
pFNK ð~xxÞ

XpL�1

z¼1

e
a

pL
ðNKð~xxÞ þ pzÞ

� �
¼ 0:

Now assume L ¼ 1 and p is unramified in K jQ so that NK jQðrÞ takes every
nonzero value modulo p. Considering NK jQðruÞ for u A R�, it is easy to see

that the number of r A R� satisfying NKjQðrÞ1m ðmod pÞ is the same for each

value of m ¼ 1; 2; . . . ; p� 1. It follows that

X
r AR�

e
a

p
NKjQðrÞ

� �
¼ ðpef � pðe�1Þ f Þg

p� 1

Xp�1

m¼1

e
a

p
m

� �

¼ �pk1�fg ðp f � 1Þg

p� 1
¼ �ðp f � 1Þg

p� 1
: r

We include a classical bound of an exponential sum for convenience. Let

S0
a;q ¼

Pq
m¼1 e

�
a
q
mk0

�
.
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Lemma 6.2 (Theorem 4.2 of [8]). For ða; qÞ ¼ 1, S0
a;q f q1�1=k0 .

Let e, f , g be as in Lemma 5.1, t1; . . . ; tg and að1Þ; . . . ; aðgÞ as described in

Section 5. Choose a system R of representatives of OK=p
LOK whose elements

are of the form given by (5.1).

Lemma 6.3. Let p B �PP. For Lb 1,

jSK
a; pL jf ðpLÞk1�1þ2 logp k1 and jSE

a; pL jf ðpLÞk2�1þ2 logp k2 :

Proof. We prove the first inequality. Write L ¼ uf þ v, 1a va f and

let Ri ¼ fr A R : r A pig. The case L ¼ 1 easily follows from Lemmas 6.1 and

6.2, so we assume L > 1. Since pF k1, by Lemma 6.1 and the inclusion-

exclusion principle

SK
a; pL ¼ S

K;2
a; pL ¼

X
r A6g

m¼1Rm

e
a

pL�f

NK jQðrÞ
p f

� �

¼
Xg
l¼1

ð�1Þ l�1
Xg

i1;...; il¼1
i1<���<il

X
r A7 l

m¼1Rim

Eði1; . . . ; ilÞ

¼
X
1

þ
X
2

where

Eði1; . . . ; ilÞ ¼ e
a

pL�lf

NKjQðti1 ti2 . . . til Þ
plf

NK jQ
r

ti1 ti2 . . . til

� �� �
;

and, in case La fg, we wrote the sum over l < bL=f c as
P

1 and the sum over

bL=f ca la g as
P

2. Let aði1;...; ilÞ ¼ a
NK jQðti1 ti2 ...til Þ

p lf
. By the choice of R, we

have ðaði1;...; ilÞ; pÞ ¼ 1 and r
ti1 ti2 ...til

A OK when r A 7 l

m¼1
Rim . For

P
1, observe

that
�

r
ti1 ti2 ...til

: r A 7 l

m¼1
Rim

�
runs through a system of representatives modulo

pL�lf OK by plfk1�lf times. As for
P

2, we first note that Eði1; . . . ; ilÞ ¼ 1

always. Recall that an element of R is of the form

r ¼
Xg
m¼1

aðmÞðsðmÞ
0 þ s

ðmÞ
1 tm þ s

ðmÞ
2 t2m þ � � � þ s

ðmÞ
L�1t

L�1
m Þ

where s
ðmÞ
j A G ðmÞ, jG ðmÞj ¼ p f , and r A Ri if and only if s

ðiÞ
0 ¼ 0. The set

7 l

m¼1
Rim consists of the numbers with s

ði1Þ
0 ¼ � � � ¼ s

ðilÞ
0 ¼ 0 and hence contains

plf ðL�1Þpðg�lÞ fL ¼ pk1L�lf elements. We thus can write
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SK
a; pL ¼

X
1alag
l<bL= f c

ð�1Þ l�1
Xg

i1;...; il¼1
i1<���<il

pðk1�1Þlf SK
aði1 ;...; il Þ;p

L�lf

þ
X

bL=f calag

ð�1Þ l�1
Xg

i1;...; il¼1
i1<���<il

pk1L�lf :

Let MðxÞ be the maximum value of jSK
b; px j among all b2 0 ðmod pÞ for

xb 1, and pk1x when xa 0. Let yðxÞ ¼ yK ; pðxÞ be the real number satisfying

MðxÞ ¼ pxðk1�1þyðxÞÞ. (In particular, yðxÞ ¼ 1 when x < 0 and by convention

we put yð0Þ ¼ 1.) Then we have

jSK
a; pL ja

Xg
l¼1

g

l

� �
plf ðk1�1ÞMðL� lf Þ

a g �max
l

g

l

� �
plf ðk1�1ÞMðL� lf Þ

� 	

a g �max
l

g

l

� �
plf ðk1�1ÞþðL�lf Þðk1�1þyðL�lf ÞÞ

� 	

a max
l

fpðL�lf Þðk1�1þyðL�lf ÞÞþlf ðk1�1þlogp g= fþlogp g=lf Þg

whence for some l

Lðk1 � 1þ yðLÞÞaLðk1 � 1þ yðL�lf ÞÞ þ lf �yðL�lf Þ þ
l þ 1

lf
logp g

� �

or

LyðLÞ a max
l

fðL� lf ÞyðL�lf Þ þ ðl þ 1Þ logp gg:

From this expression, in an inductive way, one immediately has

ðuf þ vÞyðufþvÞ a vyðvÞ þ 2u logp g: ð6:1Þ

Assume v ¼ 1 first. By Lemma 6.1, SK
a;p ¼ � ðp f�1Þ g

p�1 þ
Pg

i¼1ð�1Þ i�1 �
g
i

� �
pk1�if . Here

ðp f � 1Þg

p� 1
¼ ðp f�1 þ p f�2 þ � � � þ 1Þðp f � 1Þg�1

< 2p f�1p f ðg�1Þ ¼ pk1�1þlogp 2;
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and observe that 0 <
Pg

i¼1ð�1Þ i�1 g
i

� �
pk1�if a gpk1�f . Thus

jSK
a;pj < maxfpk1�1þlogp 2; gpk1�f ga k1 p

k1�1 ¼ pk1�1þlogp k1 :

Now assume v > 1. Then

jSK
a; pv j ¼

Xg
i¼1

ð�1Þ i�1 g

i

� �
pvk1�if

�����
�����a k1 p

vk1�f ¼ pvðk1�1þ1� f =vþlogp k1=vÞ

and 1� f

v
þ logp k1

v
a

logp k1

f
where the equality holds when v ¼ f . We have

proved that vyðvÞ a logp k1 in both cases; hence from (6.1)

yðufþvÞ a
logp k1 þ 2u logp g

uf þ v
a

ð2uþ 1Þ logp k1
uþ 1

< 2 logp k1: r

The next one is an immediate corollary.

Lemma 6.4. If p B �PP then there exists an absolute constant d > 0 such that
�AAnðpLÞf 1

ðpLÞ1þd .

Proof. Since �SSa; pL ¼ Sa; pL for p B �PP, by Lemmas 6.2 and 6.3

�AAnðpLÞf 1

ðpLÞ1þk1þk2
� pL � jS0

a; pLS
K
a; pLS

E
a; pL j

f pLð�k1�k2þð1�1=k0Þþðk1�1þ2 logp k1Þþðk2�1þ2 logp k2ÞÞ

< pLð�1�1=k0þ2 logp k1k2Þ

and 2 logp k1k2 <
1
k0

because p B �PP. r

Now the singular series is estimated.

Theorem 6.5. There exist positive absolute constants c1, c2 that depend

only on K and E such that c1 < �SSðnn; nÞ < c2 for all su‰ciently large n.

Proof. Since 1a
kðqÞ1þk1þk2

j �RRkðqÞj
a

Q1þk1þk2

j �RRQj
f 1, the absolute convergence of

lim
t!y

�SSðt; nÞ ¼ �SSðy; nÞ

follows from Corollary 4.2, Lemmas 4.5 and 6.4. More precisely we have

j �SSðy; nÞ � �SSðnn; nÞjf 1

nnd

so it su‰ces to show that 0 < c1 < �SSðy; nÞ ¼
Q

p AP �wwnðpÞ < c2 for some con-

stants c1 and c2.
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For p B �PP,
kðpÞ1þk1þk2

j �RRkð pÞj
¼ 1 so Lemma 6.4 gives

j�wwnðpÞ � 1ja
Xy
L¼1

j �AAnðpLÞjf
Xy
L¼1

1

ðpLÞ1þd
f

1

p1þd

which implies that there exists a prime p0 depending only on K and E such that

1

2
<
Y
pbp0

�wwnðpÞ <
3

2
:

Suppose p < p0. Recall that every prime p is unramified in at least one

of K jQ and EjQ, so assume p is unramified in K jQ. For Lb 2, �MMnðpLÞb
NnðpLÞ where

NnðpLÞ ¼ jf~zz A �RRpL : Fð~zzÞ1 n mod pL; NKð~xxÞ2 0 mod pgj:

As in the proof of Lemma 6.1, the number sðmÞ of ~xx modulo pL satisfying

NKð~xxÞ1m ðmod pLÞ is the same for all m2 0 ðmod pÞ. Since there are

ðp f � 1ÞgpðL�1Þk1 units in OK=p
LOK ¼ pL

1 . . . pL
g , it is easy to see that sðmÞ ¼

ðp f�1Þ gpðL�1Þk1

ðp�1ÞpL�1 . Let hðLÞ be the number of ðz0; ~yyÞ modulo pL such that ~yy A �RRE
pL

and zk00 þNEð~yyÞ� n20 ðmod pÞ. For each ~yy A �RRE
pL , if NEð~yyÞ� n10 ðmod pÞ

then there are pL � pL�1 z0’s counted by hðLÞ. Otherwise there are at least

pL�1 z0’s, so hðLÞb j �RRE
pL jpL�1 ¼ j �RRE

p jpðL�1Þðk2þ1Þ. It follows that

NnðpLÞb sð1ÞhðLÞb ðp f � 1Þg

p� 1
pðL�1Þðk1�1ÞþðL�1Þðk2þ1Þj �RRE

p j

b ðp� 1Þk1�1j �RRE
p jpðk1þk2ÞðL�1Þ:

Let e 0, f 0, g 0 be the ramification index, inertial degree and decomposition

number of p in EjQ. Then

j �RRE
p jb jðOE=pOEÞ�j ¼ ðpe 0f 0 � pðe

0�1Þ f 0 Þg
0
¼ pk2 1� 1

p f 0

� �g 0

b
p

2

� �k2
;

and hence

NnðpLÞ
pðk1þk2ÞL

b
ðp� 1Þk1�1

2k2pk1
:

Now write �ww
ðLÞ
n ðpÞ ¼

PL
l¼0

kðp lÞ1þk1þk2

j �RR
kð p l Þj

�AAnðplÞ. By Lemma 4.3,

�wwðLÞn ðpÞ ¼ kðpÞ1þk1þk2

j �RRkðpÞj
�MMnðpLÞ
pðk1þk2ÞL

b
kðpÞ1þk1þk2

j �RRkðpÞj
ðp� 1Þk1�1

2k2pk1
¼: up

and so �wwnðpÞb up > 0.
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As for the upper bound of �wwnðpÞ, if p A �PP then Lemmas 4.5 and 4.3 give

�wwnðpÞ ¼
X2gðpÞþ1

l¼0

kðplÞ1þk1þk2

j �RRkðpl Þj
�AAnðplÞ ¼ p1þk1þk2

j �RRpj
�MMnðp2gðpÞþ1Þ

pðk1þk2Þð2gðpÞþ1Þ

a
p1þk1þk2

j �RRpj
j �RRpjpð1þk1þk2Þ2gðpÞ

pðk1þk2Þð2gðpÞþ1Þ ¼ p2gðpÞþ1:

If p B �PP, �wwnðpÞ converges absolutely by Lemma 6.4. As the bound in Lemma

6.4 is independent of n, one can choose an upper bound Up of �wwnðpÞ that

depends only on K and E. Therefore

c1 ¼
1

2

Y
p<p0

up < �SSðy; nÞ < 3

2
ðk1; k2Þ2

Y
p A �PP

p
Y
p<p0
p B �PP

Up ¼ c2: r

7. The singular integral and minor arcs

The following proof is basically from [4].

Theorem 7.1. We can choose B so that JðnnÞ ! J0 > 0 as n ! y.

Proof. Choose small positive numbers f1; . . . ; fk1þk2
so that the real

value f0 that makes fk0
0 þNKðf1; . . . ; fk1Þ þNEðfk1þ1; . . . ; fk1þk2

Þ ¼ 1 is posi-

tive, not equal to 1, and hence

qF=qf0 0 0 and NKðf1; . . . ; fk1Þ þNEðfk1þ1; . . . ; fk1þk2
Þ0 0:

Then ~ff ¼ ðf0; . . . ; fk1þk2
Þ is a nonsingular solution to F ð~ffÞ ¼ 1. Let B

be a box centered at ~ff with side lengthes 2l. Write

JðmÞ ¼
ð m
�m

ð
B

eðgF ð~zzÞÞd~zzeð�gÞdg

¼
ð
B

sin 2pmðFð~zzÞ � 1Þ
pðFð~zzÞ � 1Þ

d~zz

¼
ð l
�l

. . .

ð l
�l

sin 2pmðFð~ffþ~yyÞ � 1Þ
pðF ð~ffþ~yyÞ � 1Þ

d~yy:

Write F ð~ffþ~yyÞ � 1 ¼ c0y0 þ � � � þ ck1þk2yk1þk2 þ P2ð~yyÞ þ � � � þ Pkð~yyÞ where

Pmð~yyÞ is a homogeneous polynomial of degree m. Note that c0 ¼
qF=qy0j~yy¼~00 ¼ k0f

k0�1
0 0 0. Now for r0; r1; r2 A R consider the equation

rk00 fk0
0 þ rk11 NKðf1; . . . ; fk1Þ þ rk22 NEðfk1þ1; . . . ; fk1þk2

Þ � 1 ¼ 0:
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Since both of f0 and NKðf1; . . . ; fk1Þ þNEðfk1þ1; . . . ; fk1þk2
Þ are nonzero,

one can choose r0; r1; r2 > 0 such that k0ðr0f0Þ
k0�1 ¼ 1 and still satisfying

F ðr0f0; r1f1; . . . ; r1fk1 ; r2fk1þ1; . . . ; r2fk1þk2
Þ � 1 ¼ 0 and

NKðr1f1; . . . ; r1fk1Þ þNEðr2fk1þ1; . . . ; r2fk1þk2
Þ0 0:

So we can assume c0 ¼ k0f
k0�1
0 ¼ 1 from the beginning.

For j~yyj < l, we have jF ð~ffþ~yyÞ � 1j < s where s ¼ sðlÞ is small for small

l. Put F ð~ffþ~yyÞ � 1 ¼ t, and consider this as a map from y0 to t. Then, if l is

su‰ciently small, the inverse function theorem tells us that y0 can be expressed

in terms of t; y1; . . . ; yk1þk2 as a power series

y0 ¼ t� c1y1 � � � � � ck1þk2yk1þk2 þPðt; y1; . . . ; yk1þk2Þ

where P is a multiple power series whose least degree terms are of degree at

least 2. Hence qy0=qt ¼ 1þP1ðt; y1; . . . ; yk1þk2Þ where P1 is a multiple power

series without a constant term. By taking l su‰ciently small, we can make

jP1ðt; y1; . . . ; yk1þk2Þj < 1=2 for jy1j; . . . ; jyk1þk2 j < l, jtj < s. A change of vari-

able from y0 to t gives

JðmÞ ¼
ð l
�l

. . .

ð l
�l

sin 2pmðFð~ffþ~yyÞ � 1Þ
pðFð~ffþ~yyÞ � 1Þ

dy1 . . . dyk1þk2dy0

@
ð s
�s

sin 2pmt

pt
VðtÞdt

where VðtÞ ¼
Ð l
�l

. . .
Ð l
�l
ð1þP1ðt; y1; . . . ; yk1þk2ÞÞdy1 . . . dyk1þk2 and we wrote

a@ b to mean that the limit of their ratio equals 1.

VðtÞ is clearly a continuous function of t for jtj su‰ciently small. We also

observe that VðtÞ has left and right derivatives at every value of t, and these

derivatives are certainly bounded for t in a small confined region. Therefore

by Fourier integral theorem one has

lim
m!y

JðmÞ ¼ lim
m!y

ð s
�s

sin 2pmt

pt
VðtÞdt ¼ Vð0Þ ¼: J0:

But

jVð0Þj ¼
ð l
�l

. . .

ð l
�l

ð1þP1ð0; y1; . . . ; yk1þk2ÞÞdy1 . . . dyk1þk2

����
����

>

ð l
�l

. . .

ð l
�l

1

2
dy1 . . . dyk1þk2 > 0

and the theorem follows. r
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We merely state the estimation on the minor arcs, which can be easily seen

in [1].

Theorem 7.2. There exists d > 0 that depends only on K and E such thatð
m

X
~zz A �BBðnÞ

eðaFð~zzÞÞeð�naÞdaf n1þ1=k0�d:

8. Conclusion

By Theorems 3.2, 6.5, 7.1 and 7.2 one has

Theorem 8.1. The number of representations, �rrðnÞ, of n in the form

zk00 þNKð~xxÞ þNEð~yyÞ with ~zz ¼ ðz0;~xx; ~yyÞ A �BBðnÞ satisfies

�rrðnÞ ¼ j �RRQj
Q1þk1þk2

J0

Y
p AP

�wwnðpÞ
 !

n1þ1=k0 þ oðn1þ1=k0Þ

where 1fJ0

Q
p AP �wwnðpÞf 1.

A remark can be made on this result. Theorem 8.1 is optimal in the sense

that the term zk00 is invincible to make the polynomial almost universal in any

cases. We give here an example of a sum of two norms NKð~xxÞ þNEð~yyÞ which
is locally universal but is not almost universal. This can be summarized as

follows.

Let f ¼ fA;Bð~uuÞ ¼ NQð
ffiffiffiffiffiffi
�A

p
ÞjQðu1 þ u3

ffiffiffiffiffiffiffiffi
�A

p
Þ þNQð

ffiffiffiffiffi
�B

p
ÞjQðu2 þ u4

ffiffiffiffiffiffiffi
�B

p
Þ ¼

u21 þ u22 þ Au23 þ Bu24 be a quaternary quadratic form. Choose A, B among

prime numbers congruent to 1 modulo 8 that are su‰ciently large so that f

cannot represent all of f16; 32; 48; 80; 96; 112; 160; 224g. (In particular, 48 ¼
24 � 30 u21 þ u22 ). f is locally universal, since NQð

ffiffiffiffiffiffi
�A

p
ÞjQ takes every unit value

in Zp for p0 2;A and the same holds for NQð
ffiffiffiffiffi
�B

p
ÞjQ in Zp when p0 2;B.

When p ¼ 2, we see that A and B are in ðZ�
2 Þ

2 and f is equivalent to

u21 þ u22 þ u23 þ u24 over Z2, which is universal by Lagrange theorem. But our

choice of A, B makes f a 2-anisotropic form ([3]) with a large discriminant

dð f Þ ¼ AB. By the complete classification of almost universal quaternary

quadratic forms ([2]), therefore, f is not almost universal.
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