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Abstract. We construct natural polarized log Hodge structures associated to a pro-

jective log deformation over the standard log point.
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1. Introduction

Since K. Kato and S. Usui introduced the notion of polarized log Hodge

structure (see [15]), the theory rapidly grew. On the other hand, to apply the

vast theory to geometry, evidently necessary are results of the type that a

geometric family yields polarized log Hodge structures.

More precisely, let f : P! S be a projective log smooth morphism of

fs log analytic spaces. Then, the question is whether f yields polarized log

Hodge structures over S. The current situation concerning this question is

summarized in Section 9 of [10] by T. Kajiwara, K. Kato, and the second

author of this paper. Roughly speaking, the situation is as follows: Although
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there are satisfactory, a‰rmative answers in the case where the base S is log

smooth, there are no nontrivial example when the base is not log smooth, even

when the base is the standard log point.

The authors of [10] developed the theory of log Picard varieties and log

Albanese varieties under the assumption that the answer to this question is

a‰rmative (that f is good in their terminology), and stated that one can expect

the goodness if f is exact. Note that the last condition that f is exact is

always satisfied when S is the standard log point.

In this paper, we prove the following.

Theorem 1.1 (¼ Theorem 2.7). A projective log deformation over the

standard log point is good.

That is, f is indeed good if S is the standard log point and if P is a

projective log deformation which means that P is projective and is locally

isomorphic to the special fiber of a semistable family with the natural log

structure (this usage of ‘‘log deformation’’ was introduced by J. H. M.

Steenbrink in [21]). Accordingly, the theory of [10] can be applied to such

an f so that we now have for such an f the log Picard variety and the log

Albanese variety, and so on.

For readers’ convenience, we include here a vague but more understand-

able statement.

Corollary 1.2. Let f : P! S be a log deformation over the standard log

point. Then the triple

ðRqf log
� Z; ðRqf�o

�
P=S;FÞ; iÞ

is a log Hodge structure of weight q for every integer q, where f log : ðP log;O log
P Þ

! ðS log;O log
S Þ is the associated morphism of ringed spaces, o�P=S denotes the

relative log de Rham complex, F the decreasing filtration induced by the stupid

filtration on o�P=S, and i : Rqf log
� Z! O

log
S nRqf�o

�
P=S the natural morphism

induced by the canonical morphism Z ,! O
log
P ! o

�; log
P=S .

In Section 2, we review the definition of polarized log Hodge structure and

the definition of the goodness and state our main theorem 2.7. In Section 3,

we review the paper [5] which shows that a projective log deformation yields

nilpotent orbits. Since a nilpotent orbit is an equivalent notion of a polarized

log Hodge structure, this result in [5] already associates polarized log Hodge

structures to a projective log deformation. However, the construction in [5]

heavily depends on the various double complex constructions à la Steenbrink,

and quite far from the definition of the goodness in [10] (which does not use

any double complex). Thus, as is explained in Section 4, our task is to show

that the two constructions in [5] and in [10] coincide. To see this, we introduce
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an intermediate one, and compare it with each of two one by one. In Section

5, we prove the coincidence of the construction of [5] including double

complexes with the intermediate one. There, after recalling several definitions

and results in [5], we prove the commutativity of the diagram as expected.

In Section 6, we give several isomorphisms concerning log Riemann–Hilbert

correspondences, which is essentially a part of the theory in [7]. In Section 7,

we prove the coincidence of the construction of [10] with the intermediate

one. A key is a comparison between the relative log de Rham complex and

the absolute one. In Section 8, by using the results obtained so far, we

complete the proof of the main theorem. Finally, in Section 9, we apply the

geometric machinery of [10], and define the log Picard and log Albanese

varieties for a projective log deformation and state some results.

We note that it is well-known that the answer to the original question is

a‰rmative for the non-log case, that is, the case of usual analytic spaces. This

is classical but we could not find an appropriate reference, so we include a

sketch of the proof as an appendix.

Notation and Terminology. For the basic notions on log geometry, see

[15]. Here we review some of them. A monoid means a commutative

semigroup. For an analytic space S, we denote by OS the sheaf of holo-

morphic functions over S. A log structure on S is a pair of a sheaf of monoids

M and a homomorphism a : M ! OS of sheaves of monoids such that the

induced homomorphism a�1ðO�S Þ ! O�S is an isomorphism ([15] 2.1.1). Here

we regard OS as a sheaf of monoids by multiplication. Let P be a monoid.

Then Pgp is an abelian group that represents the functor A 7! HomðP;AÞ (the
set of the homomorphisms from P to an abelian group A as monoids). A

monoid P is said to be fs (fine and saturated) if it is finitely generated, if the

canonical homomorphism P! Pgp is injective and if for any a A Pgp, a belongs

to the image of P whenever there is an nb 1 such that an belongs to the image

of P ([15] 2.1.4). A log structure M on an analytic space S is fs if, locally

on S, there exist an fs monoid P and a homomorphism b : PS ! OS of sheaves

of monoids such that the pushout of PS  b�1ðO�S Þ ! O�S endowed with the

induced homomorphism to OS is isomorphic to M as a log structure ([15]

2.1.5). An fs log analytic space is a pair of an analytic space and an fs log

structure on it ([15] 2.1.5). For an fs log analytic space S, we denote by MS

the log structure on it. A morphism of fs log analytic spaces is called proper

(resp. separated) if its underlying continuous map of topological spaces is so

(cf. [15] 0.7.5). See 2.1.11 of [15] for the definition of log smoothness of

a morphism of fs log analytic spaces. There is a natural functor from the

category of fs log analytic spaces to that of ringed spaces: S 7! ðS log;O log
S Þ.

See [15] 2.2.3–2.2.4.
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Throughout the paper, we fix a standard log point

0 :¼ ðSpec C;NlC�Þ;

which is an fs log analytic space. Here the structural homomorphism

M0 ¼ NlC� ! O0 sends the generator 1 of N to zero. This 1 as a section

of M0 is denoted by t. The topological space 0log is canonically identified with

the unit circle fa A C j aa ¼ 1g by definition. Let log t be a section of the sheaf

of logarithms L0 HO
log
0 such that expðlog tÞ ¼ t A M

gp
0 , which is determined

modulo 2piZ. We often identify a sheaf of abelian groups on 0 with the

module of the global sections of it.

For simplicity, we often denote the pullback of a sheaf on a space by the

same symbol as that for the original sheaf.

Sometimes, we omit the dot in the symbol A� for a complex. For

example, oY=0 denotes the relative log de Rham complex o�Y=0.

2. Main theorem

In this section, we state our main theorem 2.7. For this, we recall the

definition of polarized log Hodge structure and the definition of the goodness

only in the case where the base is the standard log point 0, which are enough

for our purpose. See [9, 2.3], [15, 2.4], and [10] for the general theories.

2.1. Let q be an integer. A log Hodge structure of weight q over the

standard log point 0 is a triple ðHZ;HO; iÞ, where HZ is a locally free sheaf

of finitely generated Z-modules over 0log, HO is a C-vector space regarded as

a sheaf of O0-modules endowed with a decreasing filtration F �, and i is an

isomorphism

i : O log
0 nZ HZ GO

log
0 nO0

HO

of O
log
0 -modules satisfying the following conditions (i)–(iii). Let z be the

point of 0log corresponding to 1, where we identify the set 0log with the set

fa A C j aa ¼ 1g.
(i) For any su‰ciently shifted specialization a : O log

0; z ! C (which means

that expðaðlog tÞÞ is su‰ciently near to 0 A C), the specialization Cn
O

log
0; z

i gives

a Hodge structure of weight q in the usual sense.

(ii) Any specialization Cn
O

log
0; z

i together with the monodromy filtration

WðNÞ½�q�, where N is the monodromy, is a mixed Hodge structure in the

usual sense.

(iii) Gri‰ths transversality is satisfied, that is,

‘ðF pÞHo1
0 nO0

F p�1
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for all p A Z, where ‘ : HO ! o1
0 nO0

HO is induced from d : O log
0 !

o1
0 nO0

O
log
0 .

We explain that the general definition is equivalent to the above definition

in this case. Since we consider only the pure log Hodge structure, the admis-

sibility ([9, 2.3.5 (i)]) is an empty condition. As for the condition [9, 2.3.5 (ii)],

the monodromy cone (denoted by ‘‘CðsÞ’’ there) is isomorphic to Rb0, and has

two faces. The part of [9, 2.3.5 (ii)] where ‘‘s’’ there is trivial is equivalent

to the above condition (i). The part of [9, 2.3.5 (ii)] where ‘‘s’’ is the whole

monodromy cone is equivalent to the above condition (ii) because for any

two specializations a, b, the data in
O

log
0; z

;a
C with WðNÞ½�q� is a mixed Hodge

structure if and only if the data in
O

log
0; z

;b
C with WðNÞ½�q� is a mixed Hodge

structure (hence, (ii) is even equivalent to the condition that ‘‘There is a

specialization . . .’’). Finally, the condition [9, 2.3.5 (iii)] is equivalent to the

above condition (iii).

Remark 2.2. The authors learned from K. Kato that (i) in the above

definition is in fact a consequence of the other conditions. (Though we do not

use this fact, we note that it makes the last sentence of 8.2 in the proof of the

main theorem unnecessary.) We sketch the proof here. It is enough to prove

the following:

Let N be a nilpotent endomorphism on a finite dimensional R-vector space

H and let F be a decreasing filtration on HC. Let ðWðNÞ½�q�;F Þ be the

mixed Hodge structure. Then, expðiyNÞF is a Hodge structure of weight q for

any su‰ciently large y > 0.

To see this, let F̂F be the R-split mixed Hodge structure associated with

ðWðNÞ½�q�;FÞ of Cattani–Kaplan–Schmid [2] (cf. [15, 6.1.2]). Let n be the

splitting of F̂F . Then we have AdðnðtÞÞN ¼ t�2N for any t A R>0 and

nðtÞF ! F̂F ðt!yÞ ([15, Lemma 6.1.11 (ii)]) so that nð ffiffiffi
y
p Þ expðiyNÞF !

expðiNÞF̂F ðy!yÞ. Since expðiNÞF̂F is a Hodge structure by [2, Lemma

3.12], nð ffiffiffi
y
p Þ expðiyNÞF is a Hodge structure for any su‰ciently large y > 0.

This implies that expðiyNÞF is a Hodge structure for any su‰ciently large

y > 0.

Next we review the definition of the goodness based on [10, Section 7].

Here we adopt a simplified description. Later in 9.2 and 9.3, we discuss the

equivalence of the definition here and that in [10, Section 7]. Let f : Y ! 0 be

a proper, separated and log smooth fs log analytic space over 0. Assume that

for any y A Y , the cokernel of Z ¼M
gp
0 =O�0 !M

gp
Y ;y=O

�
Y ;y is torsion-free.

Definition 2.3. Let qb 0. We say that Y=0 is good for Hq if the

following conditions (i)–(iii) are satisfied. We say that Y=0 is good if it is

good for Hq for any q.
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(i) The three homomorphisms

O
log
0 nZ Rqf log

� Z O
log
0 nC t�ðO log

0 nZ Rqf log
� ZÞ

! O
log
0 nC t�R

qf log
� o

�; log
Y=0  O

log
0 nC Rqf�o

�
Y=0;

where the first homomorphism is induced by the adjoint map, the second one

is by the natural map f log�1O log
0 ! o

�; log
Y=0 , and the third one is induced by the

composite

t�R
qf log
� o

�; log
Y=0  Rqf�Rt�o

�; log
Y=0  

@
Rqf�o

�
Y=0;

are isomorphisms.

Here, o�Y=0 is the relative analytic log de Rham complex.

(ii) For any integer r, the natural map Rqf�o
�br
Y=0 ! Rqf�o

�
Y=0 is injective,

and the natural map Rqf�o
�br
Y=0 ! Rqf�o

r
Y=0 is surjective.

(iii) The isomorphisms in (i) together with the filtration induced by the

injections in (ii) give a log Hodge structure of weight q.

2.4. We discuss the relationship with [10, Section 7].

First, note that there is a mistake in [10, 7.1]: The first arrow in the

last line of ibid. p. 164 should be converted. Hence, the condition (i) there

should be the same form of the above condition 2.3 (i), i.e., ‘‘The three

homomorphisms. . . .’’

Assume that we made this modification on [10, 7.1]. Then, our definition

of goodness 2.3 is precisely equivalent to the goodness of [10, 7.1], and also

equivalent to another goodness of [10, 7.2] (note that our f is always exact

because the log of the base 0 is just N). We prove these equivalences in the

last section.

More strongly, for Y ! 0 as above, the condition 2.3 (i) always holds,

which we will prove in 6.1. Similarly, both the condition [10, 7.1 (i)] and the

modified (i) in [10, 7.2] also always hold. Further, these two isomorphisms in

the derived category coincide, as we will see in the last section (9.3).

2.5. We summarize the current situation of the problem of the goodness.

See [10, Section 9] for details. Let f : P! S be a proper, separated, vertical

and log smooth morphism of fs log analytic spaces. Assume that for any

p A P, the cokernel of M
gp
S; f ðpÞ=O

�
S; f ðpÞ !M

gp
P;p=O

�
P;p is torsion-free.

Then, we can expect that, under some Kähler type conditions, f is good

either if S is log smooth or if f is exact. For the former case, there is a

satisfactory result by Kato–Matsubara–Nakayama ([13]). On the other hand,

there have not been known any nontrivial example if S is not log smooth.

The main theorem 2.7 in this paper provides such examples for the first time.

236 Taro Fujisawa and Chikara Nakayama



2.6. A morphism f : Y ! 0 of fs log analytic spaces is called a log

deformation ([21]) if Y is locally isomorphic to an open subspace of

SpecðC½t1; . . . ; tdþ1�=ðt1 � � � tdþ1ÞÞ ðdb 0Þ

endowed with the log structure defined by Ndþ1 sending ej to tj and endowed

with the structure morphism sending 1 A N to t1 � � � tdþ1. Here ðejÞ1ajadþ1 is

the canonical basis of Ndþ1. (Equivalently, f is a log deformation if and only

if Y is locally isomorphic to the log special fiber of a semistable family over a

log pointed disk endowed with the natural log structure.)

A log deformation is said to be projective if the underlying space of Y is

projective.

Theorem 2.7. A projective log deformation f : Y ! 0 is good.

3. Review of [5]

In this section, we briefly review [5].

3.1. Let f : Y ! 0 be a projective log deformation. We describe the

irreducible decomposition of Y by Y ¼6
l AL Yl. We set

Yl ¼ Yl0 VYl1 V � � �VYlk

for a subset l ¼ fl0; l1; . . . ; lkgHL (for l ¼q, we set Yq ¼ Y ) as in [5,

3.2]. The inclusion Yl ! Y is denoted by al. In what follows, we often omit

the symbol ðalÞ� for short. A log structure on Yl is induced by al : Yl ! Y .

Thus an augmented cubical log analytic space a : Y� ! Y is obtained. The

relative log de Rham complex oYl=0 for lHL defines a co-cubical complex

oY�=0 on Y . On Yl, a morphism of complexes

d log t5 : oYl
! oYl

½1�

is given by

o
p
Yl

C x 7! d log t5x A o
pþ1
Yl

for every p. Then a complex C½u�noYl
, where u is an indeterminate, is

obtained by the di¤erential

idn d þ ð2p
ffiffiffiffiffiffiffi
�1
p

Þ�1 d

du
n d log t5 : C½u�no

p
Yl
! C½u�no

pþ1
Yl

for every p. We denote it by oYl
½u� for short. In particular, we have a

complex oY ½u� on Y as the case of l ¼q. Thus we obtain a co-cubical

complex oY� ½u� on Y .
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3.2. As in [5, 5.5], we set

KC ¼ CðoY� ½u�Þ;

where C denotes the Čech complex of the co-cubical complex (see e.g. [5, 2.5]).

We define the complex KQ similarly by replacing oY� with the Koszul complex

on Y�. The increasing filtrations W on KQ and KC, and the decreasing

filtration F on KC are defined in [5, 5.5]. Moreover the morphism KQ ! KC is

also defined in [5, 5.5]. Theorem 5.9 of [5] states that these data yield a mixed

Hodge structure

ðHqðY ;KQÞ;W ½q�;HqðY ;KCÞ;F Þ
for every q.

3.3. The morphism

d

du
n id : C½u�no

p
Yl
! C½u�no

p
Yl

induces an endomorphism of the co-cubical complex oY� ½u�. Then a morphism

of complexes

d

du
n id : KC ! KC

is induced. We obtain a morphism

Hq Y ;
d

du
n id

� �
: HqðY ;KCÞ ! HqðY ;KCÞ

for every q, denoted by NK in [5, 5.16]. Similarly, we obtain a morphism of

complexes KQ ! KQ and a morphism HqðY ;KQÞ ! HqðY ;KQÞ for every q.

The latter is also denoted by NK in [5, 5.16]. These morphisms are compatible

with the morphism KQ ! KC above. Theorem 8.16, the main result of [5],

claims the following.

Theorem 3.4. For every q, there exists a bilinear form Sq on HqðY ;KQÞ
such that

ðHqðY ;KQÞ;W ½q�;HqðY ;KCÞ;F ;NK ;SqÞ

is a polarized mixed Hodge structure in the sense of Cattani–Kaplan–Schmid

[2, Definition (2.26)].

4. Q-structures

The main step of our proof of Theorem 2.7 is to show the compatibility

of the two Q-structures: that in 2.3 and that by [5] reviewed in Section 3.
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To prove this compatibility, we introduce an intermediate Q-structure in this

section, and later, in Sections 5 and 7, we prove that this intermediate

Q-structure coincides with each Q-structure of two, respectively.

4.1. Fix an integer q. Let HQ ¼ Rqf log
� Q. Let HO ¼ HqðY ;o�Y=0Þ.

We will prove in 6.1 that we have the quasi-isomorphisms

O
log
0 nHQ  @ O

log
0 n t�ðO log

0 nHQÞ !@ O
log
0 n t�R

qf log
� o

�; log
Y=0  

@
O

log
0 nHO ð1Þ

as in 2.3 (i).

Let z be the point of 0log corresponding to 1. Taking the stalk at z of (1)

and specializing it by the ring homomorphism O
log
0; z ¼ C

log t

2pi

h i
! C; log t

2pi 7! 0, we

have an isomorphism

CnHQ; z GHO: ð2Þ

Then, the main part of the proof of Theorem 2.7 is the following statement.

4.1.1. The Q-structure defined by (2) coincides with the Q-structure

defined by the isomorphism

CnHqðY ;KQÞGHqðY ;KCÞGHO ð3Þ

constructed in [5, Theorem 5.9].

4.2. To prove 4.1.1, we introduce an intermediate Q-structure.

Consider the following commutative diagram of ringed spaces:

Y log
z ���!i Y

log
y ���!p Y log ���!t Y???yf log

???yfy

???yf log

???yf

f0g R 0log 0;����!i ����!p ���!t
where the bottom p is the map R C r 7! e2pir A fa j aa ¼ 1g ¼ 0log, and the left

two squares are cartesian.

Consider the composite of quasi-isomorphisms

RðtpÞ�C!
@

RðtpÞ�p�1o
�; log
Y  @ o�Y ½u� !

@
o�Y=0 ð4Þ

on Y , where the first quasi-isomorphism is by log Poincaré lemma ([14,

Theorem (3.8)]), the second is by [6, Lemma 3.3], and the last one is by

[14, Remark (4.10)] and sends the indeterminate u to 0.

Consider its Rqf� on 0:

CnHqðY log
y ;QÞ ¼ HqðY log

y ;CÞGHO: ð5Þ

Then, the statement 4.1.1 reduces to the following two statements:
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4.2.1. The Q-structure defined by (3) coincides with the Q-structure

defined by (5).

4.2.2. The Q-structure defined by (2) coincides with the Q-structure

defined by (5).

We will prove 4.2.1 in Section 5, and 4.2.2 in Section 7.

5. Double complexes

5.1. In this section, we prove 4.2.1. The strategy is as follows. Just as

Steenbrink uses the commutativity of the diagram

Q-nearby cycle AQ???y
???y

C-nearby cycle ���! WX=Sðlog YÞnOY ���! AC

������������������������!

in the proof of [20, Theorem (4.19)] (notation be as there), we construct the

commutative diagram

RðtpÞ�Q KQ???y
???y

RðtpÞ�C ���!ð4Þ oY=0 ���! KC:

�������������!

Then, by taking Rqf�, we have 4.2.1.

To this end, we recall several definitions in [6] and correct small mistakes

on the sign of the di¤erentials.

Definition 5.2. Let ðKn;WÞ be a family of complexes equipped with an

increasing filtration W for every non-negative integer n, and yn : Kn ! Knþ1½1�,
nb 0, a morphism of complexes, such that the conditions (1.4.1)–(1.4.5) in

[6, Definition 1.4] are satisfied. Then we set
� Dp;q ¼ K pþqþ1

q =Wq for p; q A Zb0

� d 0 : Dp;q ! Dpþ1;q is the morphism induced by �dKq
, where dKq

denotes

the di¤erential of the complex Kq

� d 00 : Dp;q ! Dp;qþ1 is induced by the morphism �yq : Kq ! Kqþ1½1�
for every p; q A Zb0. Then we can easily see the equality d 0d 00 þ d 00d 0 ¼ 0.

Thus we obtain a double complex D ¼ DðKn;W ; ynÞ. The associated single

complex is denoted by sDðKn;W ; ynÞ and called the Steenbrink complex of

fðKn;WÞ; yng. The Steenbrink complex sDðKn;W ; ynÞ is equipped with the

increasing filtration L defined in [6, Definition 1.4] and with the decreasing

filtration F defined in [6, Remark 1.6].
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For the case where there exist K and y : K ! K ½1� such that ðKn;WÞ ¼
ðK;WÞ and yn ¼ y for all n, sDðKn;W ; ynÞ is simply denoted by sDðK ;W ; yÞ in
this article.

Remark 5.3. Compared with Definition 1.4 in [6], we change the signs of

d 0 and d 00. By the definition above, we obtain the formula

grLm sDðKn;W ; ynÞ ¼ 0
qb0

qb�m

grWmþ2qþ1 Kq½1�

for every m.

Remark 5.4. As described in [6, Remark 1.7], the construction of the

Steenbrink complex satisfies the natural functoriality. In particular, we have

the following functoriality:

Let fðKn;WÞ; yng be as above, K 0 a complex, and f : K 0 ! K0½1� a mor-

phism of complexes satisfying the condition y0 f ¼ 0. Then the morphism

ðK 0Þp ! DðKn;W ; ynÞp;0 ¼ K
pþ1
0 =W0

induced by f defines a morphism of complexes K 0 ! sDðKn;W ; ynÞ.

Definition 5.5. Let d : K ! Kð�1Þ be a morphism of complexes. A

complex rðK ; dÞ is defined by rðK ; dÞp ¼ K p lK p�1ð�1Þ with the di¤erential

d : rðK; dÞp ! rðK ; dÞpþ1 defined by dðx; yÞ ¼ ðdx;�dyþ dðxÞÞ for ðx; yÞ A
K p lK p�1ð�1Þ ¼ rðK ; dÞp. The morphisms of complexes y : rðK ; dÞ !
rðK; dÞð1Þ½1� and m : K ! rðK ; dÞð1Þ½1� are defined by

yðx; yÞ ¼ ð0; xÞ A K pþ1ð1ÞlK p ¼ rðK ; dÞpþ1ð1Þ

for ðx; yÞ A K p lK p�1ð�1Þ ¼ rðK ; dÞp and

mðxÞ ¼ ð0; xÞ A K pþ1ð1ÞlK p ¼ rðK ; dÞpþ1ð1Þ

for x A K p. It is easy to check that they actually define morphisms of

complexes.

For Kn ¼ rðK ; dÞðnþ 1Þ with the canonical filtration W ¼ t and yn ¼
yðnþ 1Þ, the Steenbrink complex sDðKn;W ; ynÞ is denoted by SZðK ; dÞ and

called the Steenbrink–Zucker complex for ðK ; dÞ. Then we obtain a morphism

of complexes

m : K ! SZðK ; dÞ ð6Þ

by Remark 5.4 because we have y0m ¼ yð1Þm ¼ 0 by definition.
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Remark 5.6. The definition of the morphism m is di¤erent from that in

[6, Remark 1.13] because the sign of di¤erential of the Steenbrink complex in

Definition 5.2 is changed.

5.7. Let f : Y ! 0 be a log deformation. We fix an injective resolu-

tion QY log ! I of QY log . Then we have the monodromy automorphism

T : ðtpÞ�p�1I ! ðtpÞ�p�1I . A subcomplex BðIÞ of ðtpÞ�p�1I is defined by

BðIÞ ¼ 6
mb0

ðKerðT � idÞmþ1ÞH ðtpÞ�p�1I

in [6, (3.4.1)]. The inclusion BðIÞ ! ðtpÞ�p�1I is a quasi-isomorphism by

[6, Lemma 3.5]. Moreover, log T is well-defined on BðIÞ by definition.

5.8. We consider the commutative diagram

L0 L1

v0

???y
???yv1

OY ���!
e

M
gp
Y

ð7Þ

����!e

of abelian sheaves on Y which appeared in [6, (5.1.1)], where L0 and L1 are

torsion-free abelian sheaves and the morphism e : OY !M
gp
Y is defined by

eð f Þ ¼ expð2p
ffiffiffiffiffiffiffi
�1
p

f Þ for f A OY . As in [6, (5.1.2)], we assume that there exists

an element of GðY ;L1Þ whose image by v1 is t A GðY ;MY Þ. We denote this

element by t A GðY ;L1Þ by abuse of the notation.

We obtain the Koszul complexes KosnðeÞ and KosnðeÞ by

KosnðeÞp ¼ Gn�pðL0Þn5
p

L1

KosnðeÞp ¼ Gn�pðOY Þn5
p

M
gp
Y

as in [21, Section 1]. (For the details, see [21], [5], [6]). An increasing

filtration W on KosnðeÞ is defined in [21, (2.8)]. Similarly, an increasing

filtration W is defined on KosnðeÞ (see also [5, 3.15]). Moreover, the

morphism

Gn�pðOY Þn5
p

M
gp
Y C xn y 7! 1½1�xn y A Gnþ1�pðOY Þn5

p

M
gp
Y

defines a morphism of complexes KosnðeÞ ! Kosnþ1ðeÞ as [5, (3.11.2)]. Thus

we obtain an inductive system

� � � ! KosnðeÞ ! Kosnþ1ðeÞ ! � � �
and set

KosY ðMY Þ ¼ lim�!
n

KosnðeÞ
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as in [5, 3.11]. The increasing filtration W is obtained by

Wm KosY ðMY Þ ¼ lim�!
n

Wm KosnðeÞ

for every m.

The morphism

Gn�pðL0Þn5
p

L1 C xn y 7! xn t5y A Gn�pðL0Þn 5
pþ1

L1

defines a morphism of complexes

KosnðeÞ ! Kosnþ1ðeÞ½1�

denoted by t5 for short. Similarly, we obtain a morphism of complexes

t5 : KosnðeÞ ! Kosnþ1ðeÞ½1�:

Moreover, the morphism

t5 : KosY ðMY Þ ! KosY ðMY Þ

is similarly defined in [5, (3.13.1)].

From the commutative diagram (7), the morphism of complexes

KosnðeÞ ! KosnðeÞ

is obtained for every n. On the other hand, we have the canonical morphism

KosnðeÞ ! KosY ðMY Þ ¼ lim�!
n

KosnðeÞ

for every n. These morphisms preserve the filtrations W by definition. The

morphism of complexes c : KosY ðMY Þ ! oY is defined as in [5, (3.11.3)],

which preserves the filtration W on the both sides. Then we have the

following commutative diagram:

KosnðeÞ Kosnþ1ðeÞ½1�???y
???y

KosnðeÞ Kosnþ1ðeÞ½1�???y
???y

KosY ðMY Þ ���!t5 KosY ðMY Þ½1�

c

???y
???yc

oY oY ½1�;

�����!t5

�����!t5

���������!
ð2p

ffiffiffiffiffi
�1
p

Þ�1d log t5
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where the commutativity of the bottom square is proved in [5, (3.13.2)]. The

composite KosnðeÞ ! oY of the vertical arrows coincides with the morphism f

defined in [6, (5.1.4)].

Definition 5.9. In the situation above, we set

AQ ¼ sDðKosY ðMY Þ;W ; t5Þ; AC ¼ sDðoY ;W ; d log t5Þ

as in [5, (5.17)].

On the other hand, we set

Kn ¼ Kosn0þnþ1ðeÞðnþ 1Þ; yn ¼ ð2p
ffiffiffiffiffiffiffi
�1
p

Þt5 : Kn ! Knþ1½1�;

where n0 ¼ dim Y þ 1. Thus we obtain the Steenbrink complex sDðKn;W ; ynÞ.
We have the following commutative diagram:

Kosn0þnþ1ðeÞðnþ 1Þ ������!ð2p
ffiffiffiffiffi
�1
p

Þt5
Kosn0þnþ2ðeÞðnþ 2Þ½1�

ð2p
ffiffiffiffiffi
�1
p

Þ�n�1 id

???y
???yð2p ffiffiffiffiffi

�1
p

Þ�n�2 id

Kosn0þnþ1ðeÞ Kosn0þnþ2ðeÞ½1�???y
???y

KosY ðMY Þ KosY ðMY Þ½1�

ð2p
ffiffiffiffiffi
�1
p

Þ nþ1c

???y
???yð2p ffiffiffiffiffi

�1
p

Þ nþ2c

oY oY ½1�;

�����������!t5

������������!t5

������������������!
d log t5

where the both composites of the vertical arrows coincide with f. Therefore

we obtain the commutative diagram

sDðKn;W ; ynÞ ���! AQ???y
???y

AC AC

ð8Þ

of the Steenbrink complexes. The vertical arrows sDðKn;W ; ynÞ ! AC and

AQ ! AC are denoted by sDðfÞ and a respectively.

Remark 5.10. The triple ððAQ;LÞ; ðAC;L;FÞ; aÞ above coincides with

ðA;W ;FÞ defined in [5, Definition 5.18]. On the other hand, the triple

ððsDðKn;W ; ynÞ;LÞ; ðAC;L;F Þ; sDðfÞÞ

coincides with (5.1.5) in [6] except the sign of the di¤erentials.

244 Taro Fujisawa and Chikara Nakayama



5.11. As in [6, (3.4)] and the proof of [6, Lemma (3.5)], we have the

commutative diagram

RðtpÞ�Q ����!@ ðtpÞ�p�1I BðIÞ???y
???y

???y
RðtpÞ�C ���!@ ðtpÞ�p�1IC  ���@

BðIÞC  ���@
oY ½u�

 ����@

whose horizontal arrows are quasi-isomorphisms. The diagram

oY ½u� ���!ddu oY ½u�???y
???y

BðIÞC ���!
log T

BðIÞC

ð9Þ

is commutative as stated in [6, (3.6)]. We set d ¼ �ð2p
ffiffiffiffiffiffiffi
�1
p

Þ�1 log T on BðIÞ
and d ¼ �ð2p

ffiffiffiffiffiffiffi
�1
p

Þ�1 d
du

on oY ½u� for the simplicity of notation.

The morphism of complexes

SZðBðIÞ; dÞ ! SZðBðIÞC; dÞ ¼ SZðBðIÞ; dÞC

coincides with the natural morphism induced by the base extension Q ,! C.

Moreover, we obtain the morphism of complexes

SZðoY ½u�; dÞ ! SZðBðIÞC; dÞ

by the commutative diagram (9). It turns out that this is a (filtered) quasi-

isomorphism by [6, Lemma 3.7].

On the other hand, the morphism

j : rðoY ½u�; dÞp ! o
p
Y

is defined by

jðx; yÞ ¼ x0 þ d log t5y0

for ðx; yÞ A o
p
Y ½u�lo

p�1
Y ½u�, where x ¼

P
j xjðu j=j!Þ and y ¼

P
j yjðu j=j!Þ. It is

easy to check that this defines a morphism of complexes j : rðoY ½u�; dÞ ! oY .

(This morphism is denoted by c in [6, (3.9.1)].) Moreover, we can easily check

that the diagram

rðoY ½u�; dÞ ���!y rðoY ½u�; dÞ½1�

j

???y
???yj½1�

oY oY ½1����������!
d log t5
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is commutative. Thus the morphism of complexes

SZðoY ½u�; dÞ ¼ sDðrðoY ½u�; dÞ; t; yÞ ! sDðoY ;W ; d log t5Þ ¼ AC

is obtained by the functoriality of the Steenbrink complexes. The diagram

SZðBðIÞC; dÞ  
@

SZðoY ½u�; dÞ ! AC ð10Þ

defines a morphism

a : SZðBðIÞC; dÞ ! AC

in the (filtered) derived category.

Theorem 5.12. The data

ððAQ;LÞ; ðAC;L;F Þ; aÞ; ð11Þ

ððSZðBðIÞ; dÞ;LÞ; ðAC;L;FÞ; aÞ; ð12Þ

ððsDðKn;W ; ynÞ;LÞ; ðAC;L;F Þ; sDðfÞÞ ð13Þ

are cohomological mixed Hodge complexes on Y.

Proof. For ððAQ;LÞ; ðAC;L;FÞ; aÞ, Theorem 5.21 of [5] implies the

conclusion. For the other two, the same proofs as those for Theorem 3.12

in [6] and for (5.4) in [21] work.

5.13. In order to relate (12) and (13), the commutative diagram in the

derived category

SZðBðIÞ; dÞ  ���@
SZðKosn0ð~eeÞ; dÞ ���!@ sDðKn;W ; ynÞ???y

???y
???y

AC AC AC

ð14Þ

is constructed in the paragraph before Proposition 5.5 and in the proof

of Proposition 5.7 in [6], where ððSZðKosn0ð~eeÞ; dÞ;LÞ; ðAC;L;FÞÞ together with

the middle vertical morphism is a cohomological mixed Hodge complex in

[6, Proposition 5.5].

5.14. The comparison morphisms

AQ ! KQ; AC ! KC ð15Þ

defined in Definition 5.26 and Definition 5.24 in [5] give us the commutative

diagram
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AQ ���! KQ???y
???y

AC ���! KC

ð16Þ

by [5, Lemma 5.27].

Combining the commutative diagrams (8), (14) and (16), we obtain the

commutative diagram

SZðBðIÞ; dÞ  ��� SZðKosn0ð~eeÞ; dÞ ���! sDðKn;W ; ynÞ ���! AQ ���! KQ???y
???y

???y
???y

???y
AC AC AC AC KC���!

in the derived category.

5.15. Now it su‰ces to construct a commutative diagram

RðtpÞ�Q SZðBðIÞ; dÞ???y
???ya

RðtpÞ�C ���!ð4Þ oY=0 ���! AC

����������!

in the derived category.

Because we have an isomorphism

BðIÞ ! RðtpÞ�Q

in the derived category, the diagram

RðtpÞ�Q 
@

BðIÞ !m SZðBðIÞ; dÞ ð17Þ

defines a morphism RðtpÞ�Q! SZðBðIÞ; dÞ in the derived category, where m

denotes the morphism defined in (6).

On the other hand, the morphism

d log t5 : oY ! oY ½1�

induces a morphism oY ! AC as in Remark 5.4. Then we obtain a morphism

oY=0 ! AC ð18Þ

because the morphism oY ! AC clearly factors through the morphism

oY ! oY=0.

What we have to prove is the following:
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Proposition 5.16. The morphisms (17) and (18) make the diagram (5.15)

commutative.

Proof. It is su‰cient to prove that the diagram

RðtpÞ�Q BðIÞ SZðBðIÞ; dÞ???y
???y

???y
RðtpÞ�C  ���@

BðIÞC ���!m SZðBðIÞ; dÞCx???o
x???o

oY ½u� ���!m SZðoY ½u�; dÞ???y
???ysDðjÞ

oY=0 AC

ð19Þ

 ����@ ����!m

�������!
is commutative because the morphism (4) is represented by

RðtpÞ�CF ðtpÞ�p�1IC  
@

BðIÞC  
@

oY ½u� ! oY=0

in the derived category and because the morphism a : SZðBðIÞ; dÞ ! AC is

represented as the composite of the right vertical arrows in (19) in the derived

category. The squares except the bottom are trivially commutative by

definition.

The diagram

o
p
Y ½u� ���!m o

pþ1
Y ½u�lo

p
Y ½u�???y

???yj

o
p
Y o

pþ1
Y��������!

d log t5

is commutative because we have

jðmðxÞÞ ¼ jð0; xÞ ¼ d log t5x0

for x ¼
P

xjðu j=j!Þ A o
p
Y ½u�. Then we can easily check the commutativity of

the bottom square in the diagram (19).

5.17. Now we prove the coincidence of the morphisms NK on HqðY ;KQÞ
and the logarithm of the monodromy automorphism on HQ; z under the iden-

tification above.

It is known that the monodromy automorphism on the stalk HQ; z is

induced from the monodromy automorphism on GðR; p�1HQÞF ðtpÞ�p�1HQ
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(see e.g. Iversen [8, IV Theorem 9.7]). Thus the monodromy automorphism is

induced by

T : ðtpÞ�p�1I ! ðtpÞ�p�1I

because

ðtpÞ�p�1HQ F ðtpÞ�p�1Rqf log
� QF ðtpÞ�Rqð fyÞ�Q

FRqð f tpÞ�QFRqf�ðtpÞ�p�1I FHqðY ;BðIÞÞ

by the base change.

Therefore, it is su‰cient to prove that log T on HqðY ;BðIÞCÞ coincides

with NK on HqðY ;KCÞ under the identification induced by the morphism

BðIÞC  
@

oY ½u� ! oY=0 ! AC ! KC

in the derived category. We already know that log T on BðIÞC is identified

with d
du

on oY ½u� as in [6]. On the other hand, the canonical morphism

a : Y� ! Y induces the morphism

a� : oY ½u� ! KC

by definition. It is easy to see that the diagram

oY ½u� ���!ddu oY ½u�

a �

???y
???ya�

KC KC�����!
d
du
nid

is commutative. Therefore the following lemma implies the conclusion.

Lemma 5.18. The morphism

HqðY ; a�Þ : HqðY ;oY ½u�Þ ! HqðY ;KCÞ

coincides with the isomorphism induced by the morphisms

oY ½u� ! oY=0 ! AC ! KC

above for any q.

Proof. The canonical morphism a : Y� ! Y induces the morphism

a� : oY=0 ! CðoY�=0Þ

as in [5, 5.7], where C denotes the Čech complex of the co-cubical complex

oY�=0 as in 3.2 (see e.g. [5, 2.5]). Similarly to the morphism oY ½u� ! oY=0
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in (4), we have a morphism of complexes

oYl
½u� ! oYl=0

for every lHL. They form a morphism of co-cubical complexes oY� ½u� !
oY�=0. Thus the morphism of complexes

KC ! CðoY�=0Þ

is obtained in [5, 5.5]. As in the proof of Theorem 5.29 in [5], we can easily

check that the diagram

oY ½u� oY=0 AC

a �

???y a �

???y
???y

KC ���! CðoY�=0Þ  ��� KC

����! �����!

is commutative. Therefore we obtain the conclusion because the morphism

KC ! CðoY�=0Þ above induces the isomorphism

HqðY ;KCÞ !@ HqðY ;CðoY�=0ÞÞ

for any q by Theorem 5.9 in [5].

6. Log Riemann–Hilbert correspondences

In this section, we prove that the condition of 2.3 (i) is in fact always

satisfied. This is essentially a part of [7]. In the course of the proof, we also

prove some facts which will be used to prove 4.2.2.

Proposition 6.1. Let f : Y ! 0 be a proper, separated and log smooth fs

log analytic space over 0. Assume that for any y A Y, the cokernel of Z ¼
M

gp
0 =O�0 !M

gp
Y ;y=O

�
Y ;y is torsion-free. Then, Y ! 0 satisfies the condition (i)

in 2:3.

For a later use, we prove the following generalized statement.

Proposition 6.2. Let f : P! S be a proper, separated, exact and log

smooth morphism of fs log analytic spaces. Assume that for any p A P, the

cokernel of M
gp
S; f ðpÞ=O

�
S; f ðpÞ !M

gp
P;p=O

�
P;p is torsion-free. Let qb 0. Then the

following hold.

(i) The three homomorphisms

O
log
S nZ Rqf log

� Z O
log
S nOS

t�ðO log
S nZ Rqf log

� ZÞ

! O
log
S nOS

t�R
qf log
� o

�; log
P=S  O

log
S nOS

Rqf�o
�
P=S;
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where the first homomorphism is induced by the adjoint map, the second one is by

the natural map f log�1O log
S ! o

�; log
P=S together with the projection formula, and the

third one is induced by the composite

t�R
qf log
� o

�; log
P=S  Rqf�Rt�o

�; log
P=S  

@
Rqf�o

�
P=S;

are isomorphisms.

(ii) Two homomorphisms

O
log
S nZ Rqf log

� Z! Rqf log
� o

�; log
P=S  O

log
S nOS

Rqf�o
�
P=S;

where the first homomorphism is induced by the projection formula and the

natural map f log�1O log
S ! o

�; log
P=S and the second one is by the projection formula,

are isomorphisms. Further the composite of these two coincides with the com-

posite of three in (i).

6.3. We prepare for the proof of the above proposition.

First we show the following vanishing results.

Rpt�R
qf log
� O

log
S ¼ 0 ðp > 0Þ: ð20Þ

Rpt�R
qf log
� o

�; log
P=S ¼ 0 ðp > 0Þ: ð21Þ

As for (20), we note that, by [7, Theorem (6.3)], Rqf log
� O

log
S is isomorphic

to O
log
S nOS

V q for some OS-module V q. Then, [7, Proposition (3.7) (3)]

implies the desired vanishing (20).

As for (21), we use the following proposition.

Recall that a morphism f : P! S is said to be log injective if for any

p A P, the homomorphism MS; f ðpÞ=O
�
S; f ðpÞ !MP;p=O

�
P;p is injective (cf. [18,

Definition (5.5.1)]).

Proposition 6.4. Let f : P! S be a proper, separated and log injective

morphism of fs log analytic spaces. Assume that for any p A P, the cokernel

of M
gp
S; f ðpÞ=O

�
S; f ðpÞ !M

gp
P;p=O

�
P;p is torsion-free. Let F be an OP-module. Then

the natural homomorphism

O
log
S nOS

Rf�F ! Rf log
� ðO

log
P nt�1OP

t�1FÞ

is a quasi-isomorphism.

We remark that the case where f is exact and F ¼ OP of this proposition

is explained in [10, 8.13]. The proof below is essentially the same.

Proof. Factor f into P!n P 0 !f
0

S such that the underlying morphism

of n is the identity and that f 0 is strict. Note that both n and f 0 are proper,
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separated and log injective. Then, we have

O
log
P 0 nOP

F !@ Rn log� ðO
log
P nOP

F Þ; ð22Þ

i.e., 6.4 holds for n. This is a generalization of [16, Lemma 4.5], and proved

at stalks as follows. Let s A P log. Let s 0 A P 0log and p A P be its images. Let

B :¼ Fp. Let K :¼ HomðC;ZÞ, where C is the cokernel of M
gp
S; f ð pÞ=O

�
S; f ð pÞ !

M
gp
P;p=O

�
P;p. Then, K acts on the stalk ðO log

P nOP
FÞs ¼ O

log
P; s nOP; p

B and we can

see that the cohomology HqðK; ðO log
P nOP

FÞsÞ is zero for q > 0 and is naturally

isomorphic to O
log
P 0; s 0 nOP; p

B ¼ ðO log
P 0 nOP

F Þs 0 for q ¼ 0 (cf. the case where n ¼ 1

of [7, Lemma (8.6.3.1) (1)]). Here we use the assumption of torsion-freeness

and log injectiveness. Hence, we have (22) and

Rf 0log� ðO
log
P 0 nOP

FÞ !@ Rf log
� ðO

log
P nOP

F Þ:

The rest is to show that

O
log
S nOS

Rf 0�F !
@

Rf 0log� ðO
log
P 0 nOP

FÞ;

i.e., that 6.4 holds also for f 0. Since O
log
P 0 ¼ O

log
S nOS

OP ([7, Lemma (3.6) (1)]),

we have O
log
P 0 nOP

F ¼ O
log
S nOS

F . Further, since P 0log ¼ S log �S P, the proper

base change theorem and the projection formula imply the desired result.

By 6.4, we have

O
log
S nOS

Rqf�o
�
P=S !

@
Rqf log

� o
�; log
P=S : ð23Þ

Hence, by [7, Proposition (3.7) (3)], we get (21).

6.5. We prove the proposition 6.2 (i). First, by [7, Theorem (6.3)] and

its proof, we know that the composite

O
log
S nZ Rf log

� Z @ O
log
S nOS

t�ðO log
S nZ Rf log

� ZÞ ! O
log
S nOS

Rt�Rf
log
� O

log
S

! O
log
S nOS

Rt�Rf
log
� o

�; log
P=S ¼ O

log
S nOS

Rf�Rt�o
�; log
P=S

 @ O
log
S nOS

Rf�o
�
P=S

ð24Þ

is an isomorphism in the derived category.

Here, by (20), the second map is a quasi-isomorphism. Hence, the third

one is also a quasi-isomorphism. Taking the q-th cohomology Hq, we have

the commutative diagram

t�Hqðt�ðRf log
� O

log
S ÞÞ �!

@
t�Rqt�Rf

log
� O

log
S �!@ t�Rqf�Rt�o

�; log
P=S  �

@
t�Rqf�o

�
P=S

F

???y
???y

???y
O

log
S nZ Rqf log

� Z t�t�R
qf log
� O

log
S t�t�R

qf log
� o

�; log
P=S : ���adj ��!
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Here, t�ð�Þ means O log
S n t�1ð�Þ. By (20) and (21), the middle vertical arrow

and the right vertical arrow are quasi-isomorphisms, respectively. Hence the

bottom arrows are also quasi-isomorphisms. This completes the proof of

6.2 (i).

6.6. We prove 6.2 (ii). It is enough to show that the composite of quasi-

isomorphisms in (24) coincides with the composite

O
log
S nZ Rf log

� Z! Rf log
� o

�; log
P=S  

@
O

log
S nOS

Rf�o
�
P=S; ð25Þ

where the latter morphism is a quasi-isomorphism by (23).

First we have the commutative diagram

O
log
S nRt�Rf

log
� o

�; log
P=S O

log
S nRf�Rt�o

�; log
P=S O

log
S nRf�o

�
P=S

adj

???y
???y

???y
Rf log
� o

�; log
P=S Rf log

� ðO
log
S nRt�o

�; log
P=S Þ  �@ Rf log

� ðO
log
S no�P=SÞ;

ð26Þ

 ����@

 ����adj

where the top row is nothing but the second and the third lines in (24) and the

composite of the right vertical arrow and the bottom horizontal arrows

coincides with the latter morphism in (25). Since the latter morphism in (25)

is a quasi-isomorphism, the left vertical arrow in (26) is a quasi-isomorphism.

Second we have another commutative diagram

O
log
S n t�ðO log

S nRf log
� ZÞ �!@ O

log
S nRt�Rf

log
� O

log
S �!@ O

log
S nRt�Rf

log
� o

�; log
P=S

F

???y
???yadj

???yF

O
log
S nRf log

� Z O
log
S nRf log

� Z Rf log
� o

�; log
P=S ;

ð27Þ

��������!
where the left vertical arrow and the top row are the ones which appeared

in (24), the right vertical arrow is the same as the left vertical one in (26),

and the bottom horizontal arrow is the former morphism in (25). This implies

the desired compatibility and that the former morphism in (25) is a quasi-

isomorphism, which completes the proof of 6.2.

7. Log de Rham complexes: absolute and relative

In this section, we prove 4.2.2. Let the notation be as in Section 4.

7.1. We define a homomorphism sðYÞ : f log�1O log
0 ! Rp�C as the adjoint

of the homomorphism of the constant sheaves p�1f log�1O log
0 ¼ C

log t

2pi

h i
! C on

Y
log
y sending log t

2pi to 0. Note that sðYÞ is the pullback of sð0Þ in the sense that
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sðYÞ coincides with f log�1O log
0 ������!f log�1ðsð0ÞÞ

f log�1Rp�C ������!@
Rp�C, where the

last quasi-isomorphism is by the facts that Y log is a topological manifold and

that p : Y log
y ! Y log is locally trivial with discrete fibers. Note that we also

have Rp�C ¼ p�C on Y log by the same reason.

We will reduce 4.2.2 to the following:

Proposition 7.2. The composite

Rt�f
log�1O log

0 ! Rt�o
�; log
Y=0  

@
o�Y=0 ð28Þ

induced by the natural homomorphism f log�1O log
0 ! o

�; log
Y=0 coincides with the

composite

Rt�f
log�1O log

0 �����!Rt�ðsðYÞÞ
RðtpÞ�C �����!@

RðtpÞ�p�1o
�; log
Y

 �����@
o�Y ½u� �����!@

o�Y=0

ð29Þ

of the morphism Rt�ðsðYÞÞ and the morphism (4) in 4:2.

7.3. We prove 7.2 in several steps.

First, we introduce an extended log de Rham complex. Let u be an

indeterminate. Consider the complex o
�; log
Y ½u� on Y log whose component of

degree p is o
p; log
Y nC C½u�, where C½u� is the constant sheaf, and whose

derivation is defined by u 7! d log t
2pi A o

1; log
Y . Let e : f log�1O log

0 ! o
�; log
Y ½u� be

the morphism sending log t
2pi to log t

2pi � u. Then, the composite

f log�1O log
0 ��!e o

�; log
Y ½u� ��!u 7! 0

o
�; log
Y=0

is nothing but the natural map f log�1O log
0 ! o

�; log
Y=0 .

7.4. Next, we define a morphism of complexes

w : p�1o�; logY ½u� ! p�1o�; logY

on Y
log
y by sending u to log t

2pi A O
log
Y . The well-definedness is shown as follows.

For any p, let umh A p�1o p; log
Y ½u�, where h A p�1o p; log

Y . Then,

dðumhÞ ¼ mum�1 d log t

2pi
5hþ um dh:

On the other hand, wðumhÞ ¼ log t
2pi

� �m
h, and

d
log t

2pi

� �m

h

� �
¼ m

log t

2pi

� �m�1
d log t

2pi
5hþ log t

2pi

� �m

dh:

Hence, wdðumhÞ ¼ dwðumhÞ.
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The diagram

p�1f log�1O log
0 ���!p�1ðeÞ

p�1o�; logY ½u�???y
???yw

C p�1o�; logY ;��������!@

where the left vertical arrow is the morphism defined by log t
2pi 7! 0, and the

bottom quasi-isomorphism is by the log Poincaré lemma ([14, Theorem (3.8)]),

is commutative. This is seen by w ðp�1ðeÞÞ log t
2pi

� �� �
¼ w

log t
2pi � u

� �
¼ log t

2pi �
log t
2pi

¼ 0.

By taking the adjoint, we have a commutative diagram

f log�1O log
0 o

�; log
Y ½u�

sðY Þ

???y
???y

Rp�C ���!@ Rp�p
�1o�; logY :

���!e

7.5. The last commutativity implies that the morphism (29) in 7.2

coincides with

Rt�f
log�1O log

0 ���!Rt�ðeÞ
Rt�o

�; log½u� ���! RðtpÞ�p�1o
�; log
Y  ���@

o�Y ½u� ���!@ o�Y=0:

Hence the composite of the morphism (29) and the natural homomorphism

o�Y=0 !
@

Rt�o
�; log
Y=0 coincides with

Rt�f
log�1O log

0 ���!Rt�ðeÞ
Rt�o

�; log
Y ½u� ���! RðtpÞ�p�1o

�; log
Y  ���@

o�Y ½u�

���! Rt�o
�; log
Y ½u� ���!u 7! 0

Rt�o
�; log
Y=0 :

On the other hand, 7.3 implies that the first morphism

Rt�f
log�1O log

0 ! Rt�o
�; log
Y=0

in 7.2 coincides with the composite

Rt�f
log�1O log

0 ���!Rt�ðeÞ
Rt�o

�; log
Y ½u� ���!u 7! 0

Rt�o
�; log
Y=0 :

Therefore, 7.2 reduces to the statement that the composite

Rt�o
�; log
Y ½u� ! RðtpÞ�p�1o

�; log
Y  @ o�Y ½u� ! Rt�o

�; log
Y ½u�

is the identity.

7.6. We prove the last statement. By [7, Proposition (3.7) (3)], o�Y ½u� !
Rt�o

�; log
Y ½u� is a quasi-isomorphism. Hence, this statement is equivalent to that
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the composite

o�Y ½u� ! Rt�o
�; log
Y ½u� ! RðtpÞ�p�1o

�; log
Y  @ o�Y ½u�

is the identity. To see this, we consider the morphisms of complexes and

the statement is deduced from the following two properties of the quasi-

isomorphism o�Y ½u� !
@

RðtpÞ�p�1o
�; log
Y by [6, Lemma 3.3].

(i) It sends the indeterminate u to log t
2pi A O

log
Y .

(ii) The composite o�Y ! o�Y ½u� ! RðtpÞ�p�1o
�; log
Y is the one induced by

the adjoint map.

This completes the proof of 7.2.

Proposition 7.7. We have the following.

(i) The homomorphism

Rf�Rt�f
log�1O log

0 ! Rf�Rt�o
�; log
Y=0

is a quasi-isomorphism.

(ii) The homomorphism

Rf�Rt�ðsðYÞÞ : Rf�Rt�f log�1O log
0 ! Rf�RðtpÞ�C

is a quasi-isomorphism.

Proof. (i) By 6.2 (ii), we have

Rf log
� f log�1O log

0 !
@

Rf log
� o

�; log
Y=0 :

By sending this by Rt�, we obtain (i).

(ii) By (i), the image by Rf� of the morphism (28) in 7.2 is a quasi-

isomorphism. Hence, by 7.2, the image by Rf� of the morphism (29) in 7.2 is

also a quasi-isomorphism. This implies (ii).

7.8. We prove 4.2.2 by the above proposition 7.2.

First, we prove that the homomorphism induced from

O
log
0 nRf log

� C �!@ Rf log
� f log�1O log

0  �adj
t�1Rt�Rf

log
� f log�1O log

0

¼ t�1Rf�Rt�f
log�1O log

0 �!@ t�1Rf�Rt�o
�; log
Y=0  �@ t�1Rf�o

�
Y=0

ð30Þ

by taking Hq, taking the stalk at z and specializing by log t
2pi 7! 0 coincides with

(2). Here the first arrow in the second line of (30) is a quasi-isomorphism by

7.7 (i).

By (20) and (21), the composite of the three quasi-isomorphisms in 2.3 (i)

coincides with the Hq of the homomorphism
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O
log
0 nRf log

� C @ O
log
0 nRt�ðO log

0 nRf log
� CÞ !@ O

log
0 nRt�Rf

log
� o

�; log
Y=0

¼ O
log
0 nRf�Rt�o

�; log
Y=0  

@
O

log
0 nRf�o

�
Y=0:

ð31Þ

Hence, (2) coincides with the homomorphism induced from

the stalk of ðO log
0 nRf log

� CÞ  Rt�ðO log
0 nRf log

� CÞ

!@ Rt�Rf
log
� f log�1O log

0 !
@

Rt�Rf
log
� o

�; log
Y=0 ¼ Rf�Rt�o

�; log
Y=0  

@
Rf�o

�
Y=0

ð32Þ

by taking Hq and specializing by log t
2pi 7! 0. Since it is clear that (30) and (32)

are compatible, we see that the homomorphism induced from (30) and (2)

coincide, as desired.

Since the stalk of Rf� of the composite RðtpÞ�C!
@

RðtpÞ�p�1o
�; log
Y  @

o�Y ½u� !
@

o�Y=0 in (29) in 7.2 coincides with (5), 7.2 reduces 4.2.2 to the

following claim.

Claim. The quasi-isomorphism

Rf�Rt�ðsðYÞÞ : Rf�RðtpÞ�C 
@

Rf�Rt�f
log�1O log

0

in 7.7 (ii) is compatible with the stalk of the homomorphism O
log
0 nRf log

� C �!@
Rf log
� f log�1O log

0  �adj
t�1Rt�Rf

log
� f log�1O log

0 ¼ t�1Rf�Rt�f
log�1O log

0 :

To prove this claim, we use the following lemma.

Lemma 7.9. The diagram

f log�1O log
0 p�C???y

???y
ðpiÞ�ðpiÞ

�1
f log�1O log

0 ���! ðpiÞ�C

��������!

is commutative, where the upper arrow is induced by the homomorphism sðYÞ in
7:1, the vertical arrows are the adjoint morphisms, and the bottom arrow is ðpiÞ�
of the morphism of constant sheaves ðpiÞ�1f log�1O log

0 ! ðpiÞ�C on Yy defined by

sending
log t
2pi to 0.

Proof. By taking the adjoint, the commutativity is reduced to that of

p�1f log�1O log
0 C

adj

???y
???y

i�i
�1p�1f log�1O log

0 ���!
log t

2pi 7! 0

i�C:

������!log t

2pi 7! 0
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7.10. To prove the above claim, we consider the following commutative

diagram:

Rf log
� f log�1O log

0 t�1Rt�Rf
log
� f log�1O log

0 t�1Rt�Rf
log
� p�C???y

???y
???y

Rf log
� ðpiÞ�ðpiÞ

�1
f log�1O log

0  �adj
t�1Rt�Rf

log
� ðpiÞ�ðpiÞ

�1
f log�1O log

0 �! t�1Rt�Rf
log
� ðpiÞ�C;

 ��������adj �����!@

where the right square is induced from the commutative diagram in 7.9. By

taking the stalk at z of this diagram, we get the following commutative

diagram:

RG Y log
z ;C log t

2pi

h i� �
 ����adj

RG Y log;C log t
2pi

h i� � ����!@
RGðY log

y ;CÞ

F

???y
???y

???yF

RG Y
log
y; z;C

log t
2pi

h i� �
 ���id

RG Y
log
y; z;C

log t
2pi

h i� � ���!
log t

2pi 7! 0

RGðY log
y; z;CÞ:

This implies the claim and completes the proof of 4.2.2.

Remark 7.11. It is plausible that the natural homomorphism

f log�1O log
0 ! o

�; log
Y=0

in 7.2 is a quasi-isomorphism, or more generally, that

f log�1O log
S ! o

�; log
P=S

in 6.2 is a quasi-isomorphism. If this is the case, it makes proofs in Sections

6–7 considerably simpler.

8. Proof of main theorem

In this section, we prove the main theorem 2.7.

8.1. Let f : Y ! 0 be as in 2.7. We claim that the data

ðHQ;WðNÞ;HO;F ;NÞ; ð33Þ

where F is the Hodge filtration and N is the monodromy logarithm on HQ, are

isomorphic to

ðHqðY ;KQÞ;W ½q�;HqðY ;KCÞ;F ;NKÞ ð34Þ

in Theorem 3.4. In fact, we have a filtered quasi-isomorphism (18)

ðoY=0;FÞ !
@ ðAC;F Þ;
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where F on the source is defined by o�br
Y=0, and the morphism AC ! KC in (15)

such that Theorem 5.21 and Theorem 5.29 in [5] enable us to identify

ðHO;F ÞF ðHqðY ;ACÞ;F ÞF ðHqðY ;KCÞ;FÞ ð35Þ

as filtered C-vector spaces. The Q-structures coincide by 4.1.1, which is now

proved by the results in Sections 5 and 7. The coincidence of N on HQ and

NK on HqðY ;KQÞ is proved in 5.17. Then the weight filtrations coincide

because they are the monodromy filtrations of the compatible operators N

and NK .

8.2. Now we prove the goodness as follows. By 6.1, the first condition

(i) of the goodness is always satisfied. The second condition is by the

coincidence of the Hodge filtration (35) and the fact that ðAC;FÞ is a part

of a CMHC ([5, Theorem 5.21]). The third condition of the goodness, that is,

that the data form an LH, is proved as follows. The Gri‰ths transversality

(2.1 (iii)) holds because the construction in [5] satisfies the Gri‰ths trans-

versality (a part of the definition of polarized MHS in [2, Definition (2.26)]).

Condition 2.1 (ii) also holds because the construction in [5] is a MHS. Then,

[2, Corollary (3.13)] implies Condition 2.1 (i).

9. Log Picard varieties and log Albanese varieties

In this section, we apply the main result 2.7 to the theory of log Picard

and log Albanese varieties.

9.1. First we recall the definition of log Picard variety and log Albanese

variety briefly. See [10] for the details.

Let S be an fs log analytic space. Let AS be the category of log complex

tori over S and let HS be the category of log Hodge structures H on S of

weight �1 satisfying F �1HO ¼ HO and F 1HO ¼ 0. Then we have a category

equivalence

HS FAS:

Let P! S be as in 6.2. Assume that it is good for H1 in the sense of

[10, 7.1]. Then the log Picard variety A�P=S is the log complex torus correspond-

ing to H1ðPÞð1Þ and the log Albanese variety AP=S is the log complex torus

corresponding to the dual log Hodge structure of H1ðPÞ. Here H1ðPÞ is the

log Hodge structure underlain by R1f log
� Z which is given by the definition of

the goodness.

9.2. We prove that a projective log deformation Y ! 0 is good even

in the sense of [10, 7.1] so that there are well-defined log complex tori A�Y=0

and AY=0.
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For this, we prove that our definition of goodness coincides with that in

[10]. As in 2.3, let Y ! 0 be a proper, separated and log smooth morphism

of fs log analytic spaces such that for any y A Y , the cokernel of M
gp
0 =O�0 !

M
gp
Y ;y=O

�
Y ;y is torsion-free.

We do not recall the definition of the goodness in [10] here, but recall that

its main di¤erence from the goodness in Section 2 of this paper lies in that, in

[10], the sheaves are all considered on the big sites.

Let f : P! S be as in 6.2. Then, any (fs) base change of f also satisfies

the assumption of 6.2 so that the conclusion of 6.2 is satisfied also for any base

changed morphism. This means that f satisfies the condition (i) in [10, 7.1].

(Actually, the modified one as explained in 2.4.)

Further, [11, Proposition 5.1] (the proper base change theorem in log Betti

cohomology) implies that the construction of Rqf logZ is compatible with any

base change. This means that the former part of the condition (iii) in [10, 7.1]

is satisfied.

Thus, in particular, Y ! 0 as above always satisfies (i) and the former part

of (iii) in [10, 7.1].

Next, in order to see that the condition (ii) for Y ! 0 in [10, 7.1] is

equivalent to our (ii) in 2.3, it is enough to show that the constructions of the

two maps in 2.3 (ii) are compatible with any base change. (Note that the

injection there is a split injection.) This is by the fact that the construction of

the relative di¤erential sheaf is compatible with any (fs) base change (cf. [12,

1.7 and 3.12]) and by the usual flat base change theorem.

Finally, the latter part of the condition (iii) in [10, 7.1] is the same as our

2.3 (ii). This completes the proof of the equivalence of our definition of

goodness and that in [10, 7.1]. In particular, our main theorem 2.7 implies

that a projective log deformation Y ! 0 is good even in the sense of [10, 7.1].

9.3. There is another definition of the goodness in [10, 7.2]. For an f as

in 6.2 (especially, for a projective log deformation), both goodness in [10, 7.1]

and in [10, 7.2] coincide and the quasi-isomorphisms given by the first condi-

tions in both definitions also coincide. This is a consequence of 6.2 (ii).

9.4. To discuss the applications, we further introduce notation.

Let ðfs=SÞ be the category of fs log analytic spaces over S endowed with

the usual topology. Recall that a log complex torus over S is a sheaf of

abelian groups on ðfs=SÞ.
Let ðfs=SÞ log be the site of pairs ðU ;TÞ, where T A ðfs=SÞ and U is an

open set of T log, defined in [9, 3.1.6] (cf. [10, 3.2]). For a sheaf F on ðfs=SÞ log,
we denote by t�F the sheaf on ðfs=SÞ defined by ðt�FÞðTÞ ¼ FððT log;TÞÞ for
T A ðfs=SÞ.

Let P A ðfs=SÞ and q A Z.
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For a sheaf F of abelian groups on ðfs=PÞ, let HqðP;FÞ be the

sheaf of abelian groups on ðfs=SÞ whose restriction on any T A ðfs=SÞ is

RqðP�S T ! TÞ�ðFP�STÞ. Here FP�ST is the restriction of F on the small site

of P�S T .

For a sheaf F of abelian groups on ðfs=PÞ log, let HqðP log;F Þ (denoted

by Hqðt�1ðPÞ;F Þ in [10]) be the sheaf of abelian groups on ðfs=SÞ log
whose restriction on the small site of ðT log;TÞ for any T A ðfs=SÞ is

RqðP�S T ! TÞ log� ðFðP�STÞ logÞ. Here FðP�STÞ log is the restriction of F on

the small site of ðP�S TÞ log.
Let Gm (resp. Gm; logÞ be the sheaf of abelian groups on ðfs=PÞ defined by

GmðTÞ ¼ GðT ;O�T Þ (resp. Gm; logðTÞ ¼ GðT ;M gp
T Þ) for T A ðfs=PÞ.

Now we apply Section 8 of [10] on log Picard varieties. Note that the

assumption 8.1 of [10] is satisfied (cf. the remark after it). Then, ibid. 8.2 and

8.3 imply the following.

Theorem 9.5. Let Y ! 0 be a projective log deformation.

(i) Let

H1ðY ;GmÞ0 ¼ KerðH1ðY ;GmÞ !H2ðY ;ZÞÞ;

H1ðY ;Gm; logÞ0 ¼ KerðH1ðY ;Gm; logÞ ! t�H
2ðY log;ZÞÞ:

Then we have canonical embeddings

H1ðY ;GmÞ0 HA�Y=0 HH1ðY ;Gm; logÞ0:

(ii) We have a canonical isomorphism

H1ðY ;Gm; logÞ=H1ðY ;Gm; logÞ0 FHomðZ;H2ðYÞð1ÞÞ:

Here H2ðYÞ is the log Hodge structure underlain by R2ðY log ! 0logÞ�Z which is

given by the definition of the goodness, and Hom is the Hom for log Hodge

structures.

We remark that in (i), more precisely, [10, Theorem 8.2] describes the

groups H1ðY ;GmÞ0, H1ðY ;Gm; logÞ0, and the quotients A�Y=0=H
1ðY ;GmÞ0 and

H1ðY ;Gm; logÞ0=A�Y=0 in terms of the log Hodge structure H1ðYÞð1Þ. We omit

here the details.

Corollary 9.6. We have an exact sequence

0! Ext1ðAY=0;Gm; logÞ !H1ðY ;Gm; logÞ ! t�H
2ðY log;ZÞ !H2ðY ;OY Þ:

Next, we apply Section 10 of [10] on log Albanese varieties.
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Proposition 9.7. Let Y ! 0 be a connected projective log deformation.

Then, for a log complex torus B over 0, the following sequence is exact.

0! Bð0Þ ! BðYÞ ! HomðAY=0;BÞ:

9.8. Finally we discuss some problems.

Problem 1. Prove that the last arrow BðYÞ ! HomðAY=0;BÞ is sur-

jective so that each section e of Y=0 induces the log Albanese map

ce : Y ! AY=0.

To prove this, it is enough to show that the extension ‘‘ceðaÞ’’ of log

Hodge structures in the page 177 of [10] is admissible.

Problem 2 (cf. [10, Problem 10.6]). Prove the following: Let Y=0 be a

projective log deformation. Then we have the inclusion

H1ðP;Gm; logÞ0 V ImageðH1ðP;GmÞ !H1ðP;Gm; logÞÞHA�Y=0:

When this statement is valid, the inclusion map should be called the log

Abel–Jacobi map.

More generally, we can ask the following.

Problem 3 (cf. [10, 10.7]). Define a log Abel–Jacobi map of degree r

whose target is the log intermediate Jacobian Ext1ðZ;H 2r�1ðYÞðrÞÞ of degree r,

where Ext1 is taken in the category of log mixed Hodge structures.

Problem 1 should be the case of Problem 3 where r ¼ dim Y , and Problem

2 is the case r ¼ 1.

Appendix

Because we could not find an appropriate reference, we give a sketch

of the proof of the following basic statement, though it is not used in the

text.

Theorem A.1. Let f : X ! S be a proper, separated, smooth and Kähler

morphism of complex analytic spaces. Then the triple

ðRqf�Z; ðRqf�WX=S;F Þ; iÞ

is a variation of Hodge structures of weight q for every integer q, where WX=S

denotes the relative de Rham complex, F the decreasing filtration induced by

the stupid filtration on WX=S, and i : Rqf�Z! Rqf�WX=S the morphism induced
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by the canonical morphism Z ,! OX ! WX=S. Moreover, the Hodge to de Rham

spectral sequence degenerates at E1-terms.

Proof. By the result of Siebenmann [19, Corollary 6.14] (cf. [14, Prop-

osition 3.5, Remark 3.5.1]) Rqf�Z is a locally constant abelian sheaf of finite

rank on S. By the relative Poincaré lemma [4, Théorème 2.23 (ii)] and by the

projection formula, the morphism i induces an isomorphism OS nRqf�Z!@

Rqf�WX=S. Thus Rqf�WX=S is a locally free OS-module of finite rank and

compatible with any base change.

Now we take a point s A S and set A ¼ OS; s for a while. We denote by m

the maximal ideal of A. By [1, Théorème 4.1] (cf. [17, Section 5]), there exists

a complex K of OS; s-modules satisfying the following:
� K is bounded from the above and the below.
� Kn is a free A-module of finite rank for every n.
� For a coherent OS-module F, we have a functorial isomorphism

Rf�ðW p

X=S n f �FÞs FKnFs

in the derived category.

Therefore we have

lA=m nþ1ðRqf�ðW p

X=S nA=mnþ1ÞsÞ

¼ lA=mnþ1ðHqðKnA=mnþ1ÞÞ

a lA=m nþ1ðA=mnþ1Þ dim HqðKnA=mÞ

¼ lA=mnþ1ðA=mnþ1Þ dim Rqf�ðWp

X=S nA=mÞs

ð36Þ

for every nb 0 by the case k ¼ 0 of [3, Corollaire (3.4)], where lA=mnþ1ð�Þ
denotes the lengths of the finite modules over A=mnþ1.

On the other hand, we have the isomorphism

A=mnþ1 n ðRqf�ZÞs FRqf�ðWX=S nA=mnþ1Þs

for every n, q by the relative Poincaré lemma and by the projection formula.

Thus we obtain

lA=mnþ1ðRqf�ðWX=S nA=mnþ1ÞsÞ ¼ lA=m nþ1ðA=mnþ1Þ dim Rqf�ðWX=S nA=mÞs

for every n, q. By considering the Hodge to de Rham spectral sequences for

A=mnþ1 and A=m, we conclude that the equality holds in (36) for every n, p, q

and that the Hodge to de Rham spectral sequences for A=mnþ1 and A=m

263Geometric log Hodge structures



degenerate at E1-terms as in [3, Section 5]. By [3, Corollaire (3.4), Remarque

(3.3.3)] again, HqðKÞ is a free A-module and the canonical morphism

HqðKÞnM ! HqðKnMÞ is an isomorphism for every A-module M and

for every q. Therefore Rqf�W
p

X=S is a locally free OS-module of finite rank and

compatible with any base change for every p, q. Moreover the Hodge to de

Rham spectral sequence degenerates at E1-terms by the local freeness and the

base change property of Rqf�W
p

X=S and Rqf�WX=S, and by the E1-degeneration

of the Hodge to de Rham spectral sequence for A=m. Once we know the base

change property above, it is easy to see that the pair

ððRqf�ZÞs; ðRqf�WX=S;FÞnCðsÞÞ

equipped with the isomorphism induced by i is a Hodge structure of weight q.

What remains to check is the Gri‰ths transversality. For this purpose,

we consider WX and WS. We denote by GrW
p
X the image of the morphism

Wr
S nW

p�r
X ! W

p
X induced by the wedge product. Then G defines a finite

decreasing filtration on WX . On the other hand, the stupid filtration on WS is

denoted by G for a while. By the smoothness of f , we have

grrG WX F f �Wr
S nWX=S½�r� ¼ f �1Wr

S nWX=S½�r�

for every r. Therefore the canonical morphism f �1WS ! WX is a filtered

quasi-isomorphism by the relative Poincaré lemma and by the flatness of W
p

X=S

over f �1OS. Then we have

W
p
S nRqf�CFRqf�f

�1Wp
S FE

p;q
1 ðRf�f �1WS;GÞ

FE
p;q
1 ðRf�WX ;GÞFW

p
S nRqf�WX=S

by the projection formula and by the base change property of Rqf�WX=S.

Moreover, the morphism of E1-terms

W
p
S nRqf�WX=S ! W

pþ1
S nRqf�WX=S

is identified with the morphism

dn id : W p
S nRqf�C! W

pþ1
S nRqf�C

under this identification. Thus we can check the Gri‰ths transversality in the

usual way.

Remark A.2. Note that S is not necessarily reduced in the theorem

above.
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