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Geometric log Hodge structures on the standard log point
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ABSTRACT. We construct natural polarized log Hodge structures associated to a pro-
jective log deformation over the standard log point.
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1. Introduction

Since K. Kato and S. Usui introduced the notion of polarized log Hodge
structure (see [15]), the theory rapidly grew. On the other hand, to apply the
vast theory to geometry, evidently necessary are results of the type that a
geometric family yields polarized log Hodge structures.

More precisely, let f: P — S be a projective log smooth morphism of
fs log analytic spaces. Then, the question is whether f yields polarized log
Hodge structures over S. The current situation concerning this question is
summarized in Section 9 of [10] by T. Kajiwara, K. Kato, and the second
author of this paper. Roughly speaking, the situation is as follows: Although
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there are satisfactory, affirmative answers in the case where the base S is log
smooth, there are no nontrivial example when the base is not log smooth, even
when the base is the standard log point.

The authors of [10] developed the theory of log Picard varieties and log
Albanese varieties under the assumption that the answer to this question is
affirmative (that f is good in their terminology), and stated that one can expect
the goodness if f is exact. Note that the last condition that f is exact is
always satisfied when S is the standard log point.

In this paper, we prove the following.

THEOREM 1.1 (= THEOREM 2.7). A projective log deformation over the
standard log point is good.

That is, f is indeed good if S is the standard log point and if P is a
projective log deformation which means that P is projective and is locally
isomorphic to the special fiber of a semistable family with the natural log
structure (this usage of ‘“log deformation” was introduced by J. H. M.
Steenbrink in [21]). Accordingly, the theory of [10] can be applied to such
an f so that we now have for such an f the log Picard variety and the log
Albanese variety, and so on.

For readers’ convenience, we include here a vague but more understand-
able statement.

COROLLARY 1.2. Let f: P— S be a log deformation over the standard log
point.  Then the triple

(RU1¥Z, (RUf.0p)5, F), 1)

is a log Hodge structure of weight q for every integer q, where f'°% : (P°¢, @}gg)
— (Slog,@?g) is the associated morphism of ringed spaces, Wp/s denotes the
relative log de Rham complex, F the decreasing filtration induced by the stupid

filtration on s, and 1: Rifloez, — @g’g@R"ﬂwk/S the natural morphism
,,log

induced by the canonical morphism 7. — C“fg — 0p g

In Section 2, we review the definition of polarized log Hodge structure and
the definition of the goodness and state our main theorem 2.7. In Section 3,
we review the paper [5] which shows that a projective log deformation yields
nilpotent orbits. Since a nilpotent orbit is an equivalent notion of a polarized
log Hodge structure, this result in [5] already associates polarized log Hodge
structures to a projective log deformation. However, the construction in [5]
heavily depends on the various double complex constructions a la Steenbrink,
and quite far from the definition of the goodness in [10] (which does not use
any double complex). Thus, as is explained in Section 4, our task is to show
that the two constructions in [5] and in [10] coincide. To see this, we introduce
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an intermediate one, and compare it with each of two one by one. In Section
5, we prove the coincidence of the construction of [5] including double
complexes with the intermediate one. There, after recalling several definitions
and results in [5], we prove the commutativity of the diagram as expected.
In Section 6, we give several isomorphisms concerning log Riemann—Hilbert
correspondences, which is essentially a part of the theory in [7]. In Section 7,
we prove the coincidence of the construction of [10] with the intermediate
one. A key is a comparison between the relative log de Rham complex and
the absolute one. In Section 8, by using the results obtained so far, we
complete the proof of the main theorem. Finally, in Section 9, we apply the
geometric machinery of [10], and define the log Picard and log Albanese
varieties for a projective log deformation and state some results.

We note that it is well-known that the answer to the original question is
affirmative for the non-log case, that is, the case of usual analytic spaces. This
is classical but we could not find an appropriate reference, so we include a
sketch of the proof as an appendix.

NoOTATION AND TERMINOLOGY. For the basic notions on log geometry, see
[15]. Here we review some of them. A monoid means a commutative
semigroup. For an analytic space S, we denote by (/s the sheaf of holo-
morphic functions over S. A log structure on S is a pair of a sheaf of monoids
M and a homomorphism o : M — (Og of sheaves of monoids such that the
induced homomorphism «~!(0%) — @7 is an isomorphism ([15] 2.1.1). Here
we regard (s as a sheaf of monoids by multiplication. Let P be a monoid.
Then PP is an abelian group that represents the functor 4 — Hom(P, 4) (the
set of the homomorphisms from P to an abelian group 4 as monoids). A
monoid P is said to be f5 (fine and saturated) if it is finitely generated, if the
canonical homomorphism P — P#®P is injective and if for any a € PP, a belongs
to the image of P whenever there is an n > | such that a” belongs to the image
of P ([15] 2.1.4). A log structure M on an analytic space S is fs if, locally
on S, there exist an fs monoid P and a homomorphism f : Ps — (s of sheaves
of monoids such that the pushout of Ps «— f~'(0%) — % endowed with the
induced homomorphism to (s is isomorphic to M as a log structure ([15]
2.1.5). An fs log analytic space is a pair of an analytic space and an fs log
structure on it ([15] 2.1.5). For an fs log analytic space S, we denote by Mg
the log structure on it. A morphism of fs log analytic spaces is called proper
(resp. separated) if its underlying continuous map of topological spaces is so
(cf. [15] 0.7.5). See 2.1.11 of [15] for the definition of log smoothness of
a morphism of fs log analytic spaces. There is a natural functor from the
category of fs log analytic spaces to that of ringed spaces: S +— (Slog,(ﬁlsog).
See [15] 2.2.3-2.2.4.
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Throughout the paper, we fix a standard log point
0 := (Spec C,N @ C*),

which is an fs log analytic space. Here the structural homomorphism
My=N@®C* — O sends the generator 1 of N to zero. This I as a section
of My is denoted by 7. The topological space 0'°¢ is canonically identified with
the unit circle {o& € C|od = 1} by definition. Let log ¢ be a section of the sheaf
of logarithms %, = @éog such that exp(log ¢) = re M{’, which is determined
modulo 27iZ. We often identify a sheaf of abelian groups on 0 with the
module of the global sections of it.

For simplicity, we often denote the pullback of a sheaf on a space by the
same symbol as that for the original sheaf.

Sometimes, we omit the dot in the symbol A" for a complex. For
example, wy/y denotes the relative log de Rham complex wj, 10

2. Main theorem

In this section, we state our main theorem 2.7. For this, we recall the
definition of polarized log Hodge structure and the definition of the goodness
only in the case where the base is the standard log point 0, which are enough
for our purpose. See [9, 2.3], [15, 2.4], and [10] for the general theories.

2.1. Let g be an integer. A log Hodge structure of weight g over the
standard log point 0 is a triple (Hyz,Ho,1), where Hy is a locally free sheaf
of finitely generated Z-modules over 0°¢, H, is a C-vector space regarded as
a sheaf of (Uj)-modules endowed with a decreasing filtration F°, and ! is an
isomorphism

lo ~ mlo
ll(ﬂog®zHZ = (ﬁwog@(ﬂoH@

of OF%-modules satisfying the following conditions (i)—(iii). Let z be the
point of 0°¢ corresponding to 1, where we identify the set 0°¢ with the set
{aeClaa =1}.

(i) For any sufficiently shifted specialization a : @(l)f’f — C (which means
that exp(a(log ¢)) is sufficiently near to 0 € C), the specialization C ®@(1)0%1 gives
a Hodge structure of weight ¢ in the usual sense. -

(i) Any specialization C®@[1)o%l together with the monodromy filtration
W(N)[—q], where N is the monodromy, is a mixed Hodge structure in the
usual sense.

(iii) Griffiths transversality is satisfied, that is,

V(F?) < o) ®q, F'™!
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for all peZ, where V:H¢— w}®, He is induced from d: @(l)og —
1 log
wy g, Oy~
We explain that the general definition is equivalent to the above definition
in this case. Since we consider only the pure log Hodge structure, the admis-
sibility ([9, 2.3.5 (i)]) is an empty condition. As for the condition [9, 2.3.5 (ii)],
the monodromy cone (denoted by “C(s)” there) is isomorphic to Ry, and has
two faces. The part of [9, 2.3.5 (ii)] where “o” there is trivial is equivalent
to the above condition (i). The part of [9, 2.3.5 (ii)] where “¢” is the whole
monodromy cone is equivalent to the above condition (ii) because for any
two specializations a, b, the data z®@(1)o%7uC with W(N)[—¢] is a mixed Hodge
structure if and only if the data 1 ®.: , C with W(N)[—¢] is a mixed Hodge

0,z
structure (hence, (ii) is even equivalent to the condition that “There is a
specialization...”). Finally, the condition [9, 2.3.5 (iii)] is equivalent to the

above condition (iii).

ReMarRk 2.2. The authors learned from K. Kato that (i) in the above
definition is in fact a consequence of the other conditions. (Though we do not
use this fact, we note that it makes the last sentence of 8.2 in the proof of the
main theorem unnecessary.) We sketch the proof here. It is enough to prove
the following:

Let N be a nilpotent endomorphism on a finite dimensional R-vector space
H and let F be a decreasing filtration on H¢. Let (W(N)[—q],F) be the
mixed Hodge structure. Then, exp(iyN)F is a Hodge structure of weight ¢ for
any sufficiently large y > 0.

To see this, let F be the R-split mixed Hodge structure associated with
(W(N)[—q], F) of Cattani—Kaplan—Schmid [2] (cf. [15, 6.1.2]). Let v be the
splitting of F. Then we have Ad(v())N =t2N for any teR., and
v(t)F - F (t— o) ([15, Lemma 6.1.11 (ii)]) so that v(y/7) exp(iyN)F —
exp(iN)F (y — o). Since exp(iN)F is a Hodge structure by [2, Lemma
3.12], v(\/y) exp(iyN)F is a Hodge structure for any sufficiently large y > 0.
This implies that exp(iyN)F is a Hodge structure for any sufficiently large
y>0.

Next we review the definition of the goodness based on [10, Section 7].
Here we adopt a simplified description. Later in 9.2 and 9.3, we discuss the
equivalence of the definition here and that in [10, Section 7]. Let f: Y — 0 be
a proper, separated and log smooth fs log analytic space over 0. Assume that
for any ye Y, the cokernel of Z = M§"/0f — My’ /0y |, is torsion-free.

DeFINITION 2.3, Let ¢ > 0. We say that Y /0 is good for #? if the
following conditions (i)—(iii) are satisfied. We say that Y /0 is good if it is
good for #Y for any q.
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(i) The three homomorphisms
(Qéog ®7 Rq]r*logZ - (Q(l)og ®c T*(@(l)og ®y qu*logZ)
— O @c TR0y — 0 ®c Rif.oy o,

where the first homomorphism is induced by the adjoint map, the second one
is by the natural map f IOg”@‘éOg — w}l/oog, and the third one is induced by the

composite
1 - 1o, Slog ~ .
T*qu;oga)},/og — qu*Rr*wy/ég ad qu*”y/o»

are isomorphisms.

Here, ) /0 is the relative analytic log de Rham complex.

(i) For any integer r, the natural map R‘ff*a)'YZ/(’) — Rif.wy , is injective,
and the natural map R‘ff*a)';—/g — R‘lf*w’)’,/O is surjective.

(iii) The isomorphisms in (i) together with the filtration induced by the
injections in (ii) give a log Hodge structure of weight g.

2.4. We discuss the relationship with [10, Section 7).

First, note that there is a mistake in [10, 7.1]: The first arrow in the
last line of ibid. p. 164 should be converted. Hence, the condition (i) there
should be the same form of the above condition 2.3 (i), i.e., “The three
homomorphisms. ...”

Assume that we made this modification on [10, 7.1]. Then, our definition
of goodness 2.3 is precisely equivalent to the goodness of [10, 7.1], and also
equivalent to another goodness of [10, 7.2] (note that our f is always exact
because the log of the base 0 is just N). We prove these equivalences in the
last section.

More strongly, for ¥ — 0 as above, the condition 2.3 (i) always holds,
which we will prove in 6.1. Similarly, both the condition [10, 7.1 (i)] and the
modified (i) in [10, 7.2] also always hold. Further, these two isomorphisms in
the derived category coincide, as we will see in the last section (9.3).

2.5. We summarize the current situation of the problem of the goodness.
See [10, Section 9] for details. Let f: P — S be a proper, separated, vertical
and log smooth morphism of fs log analytic spaces. Assume that for any
p € P, the cokernel of M /05 () — Mp,/0p , is torsion-free.

Then, we can expect that, under some Kéhler type conditions, f is good
either if S is log smooth or if f is exact. For the former case, there is a
satisfactory result by Kato—Matsubara—Nakayama ([13]). On the other hand,
there have not been known any nontrivial example if S is not log smooth.
The main theorem 2.7 in this paper provides such examples for the first time.
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2.6. A morphism f:Y — 0 of fs log analytic spaces is called a log
deformation ([21]) if Y is locally isomorphic to an open subspace of

Spec(Clt1, ... taxa]/(t -+ tas1))  (d =0)

endowed with the log structure defined by N¢*! sending e; to t; and endowed
with the structure morphism sending 1 €N to #;---f441. Here (¢));_; 4y 18
the canonical basis of N1, (Equivalently, f is a log deformation if and only
if Y is locally isomorphic to the log special fiber of a semistable family over a
log pointed disk endowed with the natural log structure.)

A log deformation is said to be projective if the underlying space of Y is
projective.

THEOREM 2.7. A projective log deformation [ :Y — 0 is good.

3. Review of [5]
In this section, we briefly review [5].

31. Let f:Y — 0 be a projective log deformation. We describe the
irreducible decomposition of Y by Y = U req Yio We set

Y,=Y,nY,N---NY,

for a subset A= {9, 41,..., 4} <A (for A=, we set Yz =7Y) as in [5,
3.2]. The inclusion Y; — Y is denoted by a;. In what follows, we often omit
the symbol (a,), for short. A log structure on Y; is induced by a; : ¥, — Y.
Thus an augmented cubical log analytic space a: Y, — Y is obtained. The
relative log de Rham complex wy, o for 4 = A defines a co-cubical complex

wy,;o on Y. On Y;, a morphism of complexes
dlogin : wy, — wy,[1]

is given by

p p+1
wyiadelogtAxewYZ

for every p. Then a complex Clu|® wy,, where u is an indeterminate, is
obtained by the differential

. ad

id®d+ (2nvV—1) 1@ ®dlog in: Clu) @ wf, — Clu] ® wf"!
for every p. We denote it by wy,[u] for short. In particular, we have a
complex wy[u] on Y as the case of A= . Thus we obtain a co-cubical
complex wy,[u] on Y.
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3.2. As in [5, 5.5], we set
Kc = €(wy. [u]),

where % denotes the Cech complex of the co-cubical complex (see e.g. [5, 2.5)).
We define the complex Kq similarly by replacing wy, with the Koszul complex
on Y,. The increasing filtrations W on Ko and K¢, and the decreasing
filtration F on K¢ are defined in [5, 5.5]. Moreover the morphism K¢ — Kc is
also defined in [5, 5.5]. Theorem 5.9 of [5] states that these data yield a mixed
Hodge structure
(H(Y,Kq), Wlql, H(Y,Kc), F)

for every gq.

3.3. The morphism

d _ .
y ®id: Clu] ® oy, — Clu] ® oy,

induces an endomorphism of the co-cubical complex wy,[u]. Then a morphism
of complexes

d
— ®id : K¢ — K¢
du
is induced. We obtain a morphism
H‘f(Y,di ®id>  HY(Y,K¢) — HY(Y,Kc)
u

for every ¢, denoted by Nk in [5, 5.16]. Similarly, we obtain a morphism of
complexes Ko — Ko and a morphism HY(Y,Kq) — HY(Y,Kq) for every gq.
The latter is also denoted by Nk in [5, 5.16]. These morphisms are compatible
with the morphism Ko — K¢ above. Theorem 8.16, the main result of [5],
claims the following.

THEOREM 3.4.  For every q, there exists a bilinear form S, on H(Y,Kq)
such that
(Hq(Ya KQ)’ W[q]7 Hq(Yv KC)7F5 Nk, Sq)

is a polarized mixed Hodge structure in the sense of Cattani—Kaplan—Schmid
[2, Definition (2.26)].

4. Q-structures

The main step of our proof of Theorem 2.7 is to show the compatibility
of the two Q-structures: that in 2.3 and that by [5] reviewed in Section 3.
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To prove this compatibility, we introduce an intermediate Q-structure in this
section, and later, in Sections 5 and 7, we prove that this intermediate
Q-structure coincides with each Q-structure of two, respectively.

4.1. Fix an integer g. Let Hq = RIf1°2Q. Let Ho = HI1(Y, 0y ).
We will prove in 6.1 that we have the quasi-isomorphisms

0y ® Ho < Op* @ 7.(0® ® Ho) = Oy @ T.RY o}/ & 07* @ He (1)

as in 2.3 (i).
Let z be the point of 0'°¢ corresponding to 1. Taking the stalk at z of (1)

C .. . . . 1
and specializing it by the ring homomorphism ¢ = C [Igiit} - C; lgii’ — 0, we
have an isomorphism

C®HQ‘_7§H@. (2)
Then, the main part of the proof of Theorem 2.7 is the following statement.

4.1.1. The Q-structure defined by (2) coincides with the Q-structure
defined by the isomorphism
C@Hq(Y,KQ)qu(Y,Kc)gH@ (3)
constructed in [5, Theorem 5.9].

4.2. To prove 4.1.1, we introduce an intermediate Q-structure.
Consider the following commutative diagram of ringed spaces:
i

V] T

yloe Yye y'loe Y
R
{0p — R T Qe T, 0

where the bottom 7 is the map R 37— > e {a|ag = 1} = 0% and the left
two squares are cartesian.
Consider the composite of quasi-isomorphisms

R(t),C = R(tn),n ' w3 & wy[u] = 0y 4)

on Y, where the first quasi-isomorphism is by log Poincaré lemma ([14,
Theorem (3.8)]), the second is by [6, Lemma 3.3], and the last one is by
[14, Remark (4.10)] and sends the indeterminate u to O.
Consider its R4f, on O:
C®HI(Y* Q) =H(Y;® C) = Ho. (5)

Then, the statement 4.1.1 reduces to the following two statements:
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4.2.1. The Q-structure defined by (3) coincides with the Q-structure
defined by (5).

4.2.2. The Q-structure defined by (2) coincides with the Q-structure
defined by (5).
We will prove 4.2.1 in Section 5, and 4.2.2 in Section 7.

5. Double complexes

5.1. In this section, we prove 4.2.1. The strategy is as follows. Just as
Steenbrink uses the commutativity of the diagram

Q-nearby cycle Ag

| |

C-nearby cycle —— Qy/s(log ¥Y) ® Oy —— Ac

in the proof of [20, Theorem (4.19)] (notation be as there), we construct the
commutative diagram

R(tn),Q Ko
R(zm),C Sl Wy /o Kc.

Then, by taking RIf., we have 4.2.1.
To this end, we recall several definitions in [6] and correct small mistakes
on the sign of the differentials.

DEerFINITION 5.2 Let (K, W) be a family of complexes equipped with an
increasing filtration W for every non-negative integer n, and 0, : K, — K, 1[l],
n >0, a morphism of complexes, such that the conditions (1.4.1)—(1.4.5) in
[6, Definition 1.4] are satisfied. Then we set

o DPi= Kq”‘/“/Wq for p,qeZg

e d':DP4 — DPtl4 is the morphism induced by —dg,, where dg, denotes

the differential of the complex K,

e d":Dri— Dratl s induced by the morphism —0, : K, — K;41[1]
for every p,qe€Z-o. Then we can easily see the equality d'd” +d"d = 0.
Thus we obtain a double complex D = D(K,, W,0,). The associated single
complex is denoted by sD(K,, W,0,) and called the Steenbrink complex of
{(Ky, W),0,}. The Steenbrink complex sD(K,, W,0,) is equipped with the
increasing filtration L defined in [6, Definition 1.4] and with the decreasing
filtration F defined in [6, Remark 1.6].
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For the case where there exist K and 0: K — K[1] such that (K,, W) =
(K, W) and 0, = 0 for all n, sD(K,, W,0,) is simply denoted by sD(K, W,0) in
this article.

REMARK 5.3. Compared with Definition 1.4 in [6], we change the signs of
d’ and d”. By the definition above, we obtain the formula

grk sD(K,, W,0,) = P grnlfjrzq+1 K, (1]

q=0
q=—m

for every m.

REMARK 5.4. As described in [6, Remark 1.7], the construction of the
Steenbrink complex satisfies the natural functoriality. In particular, we have
the following functoriality:

Let {(K,, W),0,} be as above, K’ a complex, and f : K’ — Kp[l] a mor-
phism of complexes satisfying the condition 6yf = 0. Then the morphism

(K")? — D(Kn, W,0,)"° = K'Y YW,y

induced by f defines a morphism of complexes K’ — sD(K,, W,6,).

DEeFINITION 5.5. Let 0: K — K(—1) be a morphism of complexes. A
complex p(K,d) is defined by p(K,5)” = K? @ KP~'(—1) with the differential
d: p(K,0)" — p(K,0)""" defined by d(x,y) = (dx,—dy +d(x)) for (x,y)e
K? ® KP7'(~1) = p(K,56)”. The morphisms of complexes 60:p(K,5) —
p(K,0)(1)[1] and u: K — p(K,0)(1)[1] are defined by

0(x, y) = (0,x) € K" (1) @ K = p(K,0)"" (1)
for (x,y) e K? ® K"~'(=1) = p(K,5)” and
u(x) = (0,x) € KP71(1) @ K? = p(K, )" (1)

for xe K”. It is easy to check that they actually define morphisms of
complexes.

For K, =p(K,0)(n+1) with the canonical filtration W =17 and 0, =
O(n+ 1), the Steenbrink complex sD(K,, W,6,) is denoted by SZ(K,J) and
called the Steenbrink—Zucker complex for (K,0). Then we obtain a morphism
of complexes

1K — SZ(K,0) (6)

by Remark 5.4 because we have Gou = 0(1)u = 0 by definition.
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REMARK 5.6. The definition of the morphism y is different from that in
[6, Remark 1.13] because the sign of differential of the Steenbrink complex in
Definition 5.2 is changed.

57. Let f:Y — 0 be a log deformation. We fix an injective resolu-
tion Qyuwe — I of Qyu.. Then we have the monodromy automorphism
T: (trn),n ' — (tn),n 1. A subcomplex B(I) of (tn),z~'I is defined by

B(I) = |J (Ker(T —id)""") < (zn),n "1
m>0
in [6, (3.4.1)]. The inclusion B(I) — (tr),x ' is a quasi-isomorphism by
[6, Lemma 3.5]. Moreover, log T is well-defined on B(I) by definition.

5.8. We consider the commutative diagram

O —° . 1!

1

n gp
Oy — M}

of abelian sheaves on Y which appeared in [6, (5.1.1)], where L° and L' are
torsion-free abelian sheaves and the morphism e: ¢y — M{" is defined by
e(f) = exp(2nv/—1f) for f € Oy. Asin [6, (5.1.2)], we assume that there exists
an element of I'(Y,L') whose image by v; is te I'(Y,My). We denote this
element by te I'(Y,L') by abuse of the notation.

We obtain the Koszul complexes Kos"(¢) and Kos”(e) by

P
Kos"(e)? = [ ,(L") @ A L'

P
Kos"(e)” = I_(0y) ® /\ ME"

as in [21, Section 1]. (For the details, see [21], [5], [6]). An increasing
filtration W on Kos”(¢) is defined in [21, (2.8)]. Similarly, an increasing
filtration W is defined on Kos"(e) (see also [5, 3.15]). Moreover, the
morphism

p p
Lip(0) @ A\ MP3x®@ y = 1@ ye M, (0r) ® A\ MY
defines a morphism of complexes Kos”(e) — Kos""!(e) as [5, (3.11.2)]. Thus

we obtain an inductive system
.- — Kos"(e) — Kos"!(e) — - -
and set
Kosy(My) = lim Kos"(e)
n
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as in [5, 3.11]. The increasing filtration W is obtained by

W, Kosy(My) = lim W, Kos"(e)

for every m.
The morphism

)4 p+l
L py(LYONL' 5x®@y—>x®@tayel (L") ® N\ L'

defines a morphism of complexes
Kos"(g) — Kos""!(&)[1]
denoted by zA for short. Similarly, we obtain a morphism of complexes
(A = Kos"(e) — Kos™(e)[1].
Moreover, the morphism
A : Kosy(My) — Kosy(My)

is similarly defined in [5, (3.13.1)].
From the commutative diagram (7), the morphism of complexes

Kos"(e) — Kos"(e)
is obtained for every n. On the other hand, we have the canonical morphism

Kos"(e) — Kosy(My) = lim Kos"(e)

n

for every n. These morphisms preserve the filtrations W by definition. The
morphism of complexes  : Kosy(My) — wy is defined as in [5, (3.11.3)],
which preserves the filtration W on the both sides. Then we have the
following commutative diagram:

Kos"(g) —2~— Kos"!(g)[1]
Kos"(e) —2=— Kos"!(e)[1]

Kosy(My) —2— Kosy(My)[1]

W ¥

oy wy[1],

(2nv/=1)""'d log A
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where the commutativity of the bottom square is proved in [5, (3.13.2)]. The
composite Kos”(¢) — wy of the vertical arrows coincides with the morphism ¢
defined in [6, (5.1.4)].

DErFINITION 5.9. In the situation above, we set
Ag = sD(Kosy(My), W,tA), Ac = sD(wy, W,d log tA)

as in [5, (5.17)].
On the other hand, we set

K, = Kos™ ™" (e)(n+1),  0,=Q2avV-1)trn: K, — K, 1[1],

where np = dim Y + 1. Thus we obtain the Steenbrink complex sD(K,,, W, 6,).
We have the following commutative diagram:

Kos™ 1 (e)(n+ 1) Z2% Kos™ #42(e) (n + 2)1]

@zv/=1)"""id @rv/=1)"2id

Kosno+n+1(8) % Kosno+n+2(8>[1]

In

KOSY(My) KOSy<My)[1]
(27‘[\/*_1)/”1!// (27:\/3)"“!//
Dy a)y[l],

d log tr

where the both composites of the vertical arrows coincide with ¢. Therefore
we obtain the commutative diagram

sD(K,, W,0,) —— Ag

]

of the Steenbrink complexes. The vertical arrows sD(K,, W,6,) — Ac and
Ag — Ac are denoted by sD(¢) and o respectively.

ReMARK 5.10. The triple ((4q,L),(Ac,L,F),o) above coincides with
(A, W,F) defined in [5, Definition 5.18]. On the other hand, the triple

((SD(KI’H w, 971)7 L), (Ac, L, F)a SD(¢))

coincides with (5.1.5) in [6] except the sign of the differentials.
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5.11. As in [6, (3.4)] and the proof of [6, Lemma (3.5)], we have the
commutative diagram

R(tn),Q —— (wn),n'1 «——— B(I)
R(tn),C —— (tn),n 'Ic «—— B(I)¢ «——— wy[ul

whose horizontal arrows are quasi-isomorphisms. The diagram

L

is commutative as stated in [6, (3.6)]. We set 6 = —(2nv/—1) " log T on B(I)

and 6 = —(Zm/—l)_l% on wylu] for the simplicity of notation.

The morphism of complexes

coincides with the natural morphism induced by the base extension Q — C.
Moreover, we obtain the morphism of complexes

SZ(wylu],0) = SZ(B(I),9)

by the commutative diagram (9). It turns out that this is a (filtered) quasi-
isomorphism by [6, Lemma 3.7].
On the other hand, the morphism

¢ : ployu],0)” — of
is defined by
o(x,y) =x0+dlogtnA yy

for (x, y) € @’ [u] ® w¥ '[u], where x = doxi(w/ /) and y =37 v(u/ /jY). Ttis
easy to check that this defines a morphism of complexes ¢ : p(wy[u],d) — wy.
(This morphism is denoted by v in [6, (3.9.1)].) Moreover, we can easily check
that the diagram

ploylu,5) —— ploy[u],6)1]

| |

_ 1
@y d log tn a)y[ ]
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is commutative. Thus the morphism of complexes
SZ(wylu],0) = sD(p(wy[u],0),7,0) — sD(wy, W,d log tA) = Ac
is obtained by the functoriality of the Steenbrink complexes. The diagram
SZ(B(I)¢,0) — SZ(wylu],0) — Ac (10)
defines a morphism
a:SZ(B(I)¢,0) — Ac
in the (filtered) derived category.
THEOREM 5.12.  The data

((AQ7L)7(AC7L7F)3(X)7 (11)
((SZ(B(I)a(S)vL)v(AC7L7F)7OC)7 (12)
((sD(Ky, W, 04),L), (Ac, L, F),sD(¢)) (13)

are cohomological mixed Hodge complexes on Y.

Proor. For ((Aq,L),(Ac,L,F),o), Theorem 5.21 of [5] implies the
conclusion. For the other two, the same proofs as those for Theorem 3.12
in [6] and for (5.4) in [21] work.

5.13. In order to relate (12) and (13), the commutative diagram in the
derived category

SZ(B(I),8) «— SZ(Kos"(&),0) —— sD(Ky, W,0,)

T o

is constructed in the paragraph before Proposition 5.5 and in the proof
of Proposition 5.7 in [6], where ((SZ(Kos™(¢),9),L),(Ac,L,F)) together with
the middle vertical morphism is a cohomological mixed Hodge complex in
[6, Proposition 5.5].

5.14. The comparison morphisms
AQ —>KQ, AC —)KC (15)

defined in Definition 5.26 and Definition 5.24 in [5] give us the commutative
diagram
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Aqg —— Ko
J J (16)
Ac —— K¢

by [5, Lemma 5.27].
Combining the commutative diagrams (8), (14) and (16), we obtain the
commutative diagram

SZ(B(I),8) —— SZ(Kos™(£),0) — sD(Kn, W,0,) —— Aq —— Ko

| | | |

in the derived category.

5.15. Now it suffices to construct a commutative diagram

R(t7),Q SZ(B(1),9)

l |

R(Tﬂ.’)*C &) Ct)y/o _— AC

in the derived category.
Because we have an isomorphism

B(I) — R(t),Q
in the derived category, the diagram
R(tn),Q < B(I) * SZ(B(I).9) (17)

defines a morphism R(t7),Q — SZ(B(I),0) in the derived category, where u
denotes the morphism defined in (6).
On the other hand, the morphism

dlogtn:wy — wyll]
induces a morphism wy — A¢ as in Remark 5.4. Then we obtain a morphism
a)y/() — AC (18)

because the morphism wy — A¢ clearly factors through the morphism
Wy — Wy /0-
What we have to prove is the following:
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PROPOSITION 5.16.  The morphisms (17) and (18) make the diagram (5.15)
commutative.

Proor. It is sufficient to prove that the diagram

R(tn),Q «—— B(I) —X— SZ(B(I),9)

R(tn),C «—— B(I)e —— SZ(B(I),0)c
! ! (19)

a)y[u] L’ SZ(wY[u]vé)

a)y/o —_— AC
is commutative because the morphism (4) is represented by
R(tn),C ~ (tn),n 'Ic &= B(I)¢c < wyu] — oy

in the derived category and because the morphism «: SZ(B(I),0) — Ac is
represented as the composite of the right vertical arrows in (19) in the derived
category. The squares except the bottom are trivially commutative by
definition.

The diagram

1
o) —————— b’
d log A

1S commutative because we have

p(u(x)) = 9(0,x) = d log 1 A xo

for x =3 x;(u//j!) € o} [u]. Then we can easily check the commutativity of
the bottom square in the diagram (19).

5.17. Now we prove the coincidence of the morphisms Nx on HY(Y, Kq)
and the logarithm of the monodromy automorphism on Hq . under the iden-
tification above.

It is known that the monodromy automorphism on the stalk Hgq . is
induced from the monodromy automorphism on I'(R,n"'Hg) ~ (tn),z 'Hg
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(see e.g. Iversen [8, IV Theorem 9.7]). Thus the monodromy automorphism is
induced by

T:(tn),n ' — (tn), 21
because
(tn),n ' Ho =~ (tn), 7' RY1°*Q =~ (tn) RY(/.).Q
~ R(ftr),Q ~ R.(tn),n "1 ~ HY (Y, B(I))

by the base change.
Therefore, it is sufficient to prove that log 7 on HY(Y,B(I)) coincides
with Ng on HY(Y,Kc) under the identification induced by the morphism

B(I)¢ « oylu] — oy — Ac — Kc

in the derived category. We already know that log T on B(I). is identified
with < on wy[u] as in [6]. On the other hand, the canonical morphism

du
a: Y, — Y induces the morphism
*

a*:wylu] — Kc

by definition. It is easy to see that the diagram

is commutative. Therefore the following lemma implies the conclusion.

LemMmA 5.18. The morphism

HYY,a"): H(Y,owy[u]) — H{(Y,Kc)
coincides with the isomorphism induced by the morphisms
oyu] — vy — Ac — Kc

above for any q.

Proor. The canonical morphism «: Y, — Y induces the morphism

a’:wyy — €(wy,))

as in [5, 5.7], where % denotes the Cech complex of the co-cubical complex
wy, /o as in 3.2 (see e.g. [5, 2.5]). Similarly to the morphism wyu] — wy/
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in (4), we have a morphism of complexes
wyé[u] — @y, /0

for every A = A. They form a morphism of co-cubical complexes wy,[u] —
wy,s. Thus the morphism of complexes

Kc — 6(wy, )

is obtained in [5, 5.5]. As in the proof of Theorem 5.29 in [5], we can easily
check that the diagram

coy[u} _— a)y/o _— AC
a*J{ a*l J
Kc —— %(wy,0) —— Kc

is commutative. Therefore we obtain the conclusion because the morphism
Kc — %(wy,)0) above induces the isomorphism

H(Y,Kc) = HI(Y, % (wy,0))

for any ¢ by Theorem 5.9 in [5].

6. Log Riemann-Hilbert correspondences

In this section, we prove that the condition of 2.3 (i) is in fact always
satisfied. This is essentially a part of [7]. In the course of the proof, we also
prove some facts which will be used to prove 4.2.2.

ProposITION 6.1. Let f: Y — 0 be a proper, separated and log smooth fs
log analytic space over 0. Assume that for any y e Y, the cokernel of 1 =
MP/0F — M,g,l?y/@;y is torsion-free. Then, Y — O satisfies the condition (i)
in 2.3.

For a later use, we prove the following generalized statement.

ProposITION 6.2. Let f: P — S be a proper, separated, exact and log
smooth morphism of fs log analytic spaces. Assume that for any p e P, the
cokernel of Mgg,(p)/(ﬁ)g’f(p) — M;g;’pp/@;ﬁp is torsion-free. Let ¢ > 0. Then the
following hold.

(i) The three homomorphisms
@?g Ry qu*logZ - @?g ®c T*(@?g ®y qu*logz)

log log .-, log log .
- @S ®(ﬂ‘s T*qu* ng/S - @S ®CWS qu*COP/S7
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where the first homomorphism is induced by the adjoint map, the second one is by
the natural map f "’g_l@?g — wP}%g together with the projection formula, and the

third one is induced by the composite
Sl Llog ~ .
T*Rqﬂlogwp/‘:gg — R‘%Ruwp/(;g pad R‘ff*a)P/S,

are isomorphisms.
(i) Two homomorphisms

log lo, log .-, log log .
65 ®Z qu* $7 — qu* ng/S — (QS ®(V‘S qu*wP/S7

where the first homomorphism is induced by the projection formula and the
natural map f~1og—1@lsog — a);,}(;g and the second one is by the projection formula,
are isomorphisms. Further the composite of these two coincides with the com-

posite of three in (i).

6.3. We prepare for the proof of the above proposition.
First we show the following vanishing results.

RPTRIf20E =0 (p>0). (20)
R'T, R0y ¥ =0 (p>0). (21)

As for (20), we note that, by [7, Theorem (6.3)], R4/ is isomorphic
to (ﬁ’?g ®eg V1 for some Ogs-module V9. Then, [7, Proposition (3.7) (3)]
implies the desired vanishing (20).

As for (21), we use the following proposition.

Recall that a morphism f: P — S is said to be log injective if for any
p € P, the homomorphism Mg r(,)/Cg ;(,) — Mp,,/Up , is injective (cf. [18,
Definition (5.5.1)]).

ProproOSITION 6.4. Let f: P — S be a proper, separated and log injective
morphism of fs log analytic spaces. Assume that for any p € P, the cokernel
of Mg,/ 05 sy = Mply/Op , is torsion-free. Let F be an Up-module.  Then
the natural homomorphism

O5® @, RIF — RF(05* @10, 7 'F)
is a quasi-isomorphism.

We remark that the case where f is exact and F = (p of this proposition
is explained in [10, 8.13]. The proof below is essentially the same.

Proor. Factor f into P — P’ ’.S such that the underlying morphism
of v is the identity and that f” is strict. Note that both v and f' are proper,
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separated and log injective. Then, we have
O ®c, F = RV (OFE @, F), (22)

1.e., 6.4 holds for v. This is a generalization of [16, Lemma 4.5], and proved
at stalks as follows. Let se P'°¢. Let s’ € P'°¢ and p € P be its images. Let
B:=F, Let K:=Hom(C,Z), where C is the cokernel of M /(O;_’f(p) —
My" /Op . Then, K acts on the stalk (O ®q, F), = O ®o,, B and we can
see that the cohomology HY(K (6’ log ®e, F),) is zero for ¢ > 0 and is naturally
isomorphic to ¢ py ®c,, B=(Op) PE ®q, F), for ¢ =0 (cf. the case where n = 1
of [7, Lemma (8.6.3.1) (1)]). Here we use the assumption of torsion-freeness
and log injectiveness. Hence, we have (22) and

Rf/E(03F ®q, F) = Rf 201 @, F).
The rest is to show that
0% @, RI'F > RIMH(OE @, F),

i.e., that 6. 4 holds also for f'. Since O = 0% ®,, Op ([7, Lemma (3.6) (1)),
we have 0% P ®@ F = (Olog ®g, F. Further, since P’10g = §'°¢ x ¢ P, the proper
base change theorem and the projection formula imply the desired result.

By 6.4, we have
0% ®cy RYs0pys = RIf 20 8. (23)
Hence, by [7, Proposition (3.7) (3)], we get (21).

6.5. We prove the proposition 6.2 (i). First, by [7, Theorem (6.3)] and
its proof, we know that the composite

@?g ®Z Rf:klOgZ (: (ngg ®(95 _L_*((ngg ®Z RﬁlOgZ) — (E};g ®(FS RT*Rﬂlog(ggog
— Ogog ®g R Rf*logw;} ;= log Qo Rf- RT*wP/ S (24)

(: @}gog ®((;S Rﬁwp/s

is an isomorphism in the derived category.

Here, by (20), the second map is a quasi-isomorphism. Hence, the third
one is also a quasi-isomorphism. Taking the ¢g-th cohomology #°¢, we have
the commutative diagram

T*%q(f*(RﬁIOg@?g)) i T*RqT*Rf*log@_lgog il *qu*RT*wP/S Pad ‘L'*qu*w}a/g

| | J

log lo adj lo 10g lo log
0s° @z R °°L P B TRIRO° — 7T, RYf, ga)P/
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Here, 7*(—) means @‘1S°g ®t7'(=). By (20) and (21), the middle vertical arrow
and the right vertical arrow are quasi-isomorphisms, respectively. Hence the

bottom arrows are also quasi-isomorphisms. This completes the proof of
6.2 (i).

6.6. We prove 6.2 (ii). It is enough to show that the composite of quasi-
isomorphisms in (24) coincides with the composite

OF% @ Rf\*Z — Rf\ 0¥ & 05 ®q, Rf-0p)s, (25)

where the latter morphism is a quasi-isomorphism by (23).
First we have the commutative diagram

(Qlog ® Rz, flogwplog _ @log ® Rf RT*wP/S = @?g ® Rf*wp/s

.| | | e

Rflogwplog adj RflOg(Olog ® RT*wP/S ) Rflog(Olog ® wP/S)’

where the top row is nothing but the second and the third lines in (24) and the

composite of the right vertical arrow and the bottom horizontal arrows

coincides with the latter morphism in (25). Since the latter morphism in (25)

is a quasi-isomorphism, the left vertical arrow in (26) is a quasi-isomorphism.
Second we have another commutative diagram

@?g ® T*((f‘};g ® Rf*logZ) il @;Og ® RT*Rf*lOg@?g ~ alog ® RT*RfIngPIOg

.| [ |- (27)

@?g ®Rf*l°gZ . Olog ®Rfl°gZ Rflogwp}(;g,
where the left vertical arrow and the top row are the ones which appeared
n (24), the right vertical arrow is the same as the left vertical one in (26),
and the bottom horizontal arrow is the former morphism in (25). This implies
the desired compatibility and that the former morphism in (25) is a quasi-
isomorphism, which completes the proof of 6.2.

7. Log de Rham complexes: absolute and relative
In this section, we prove 4.2.2. Let the notation be as in Section 4.

7.1.  We define a homomorphism s(Y) : f'¢~1¢[*® — Rz,C as the adjoint

of the homomorphlsm of the constant sheaves 7~/ log 1(91°g C{l"i.’} — C on

2ni
Ylog

/16 0. Note that s(¥) is the pullback of s(0) in the sense that
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s(Y) coincides with f'oe~10°¢ reo) flo¢" 1 Rn,C —=— Rn,C, where the
last quasi-isomorphism is by the facts that Y'°¢ is a topological manifold and
that 7: Y18 — ylg is locally trivial with discrete fibers. Note that we also
have Rz.C = 7,C on Y2 by the same reason.

We will reduce 4.2.2 to the following:

PropoOSITION 7.2. The composite

Re,f 57105 — Re.oy% & oy (28)

log -, log

induced by the natural homomorphism f'°%~ 1o, — Oy, coincides with the

composzte

Re, flog~! (ﬁ(l)og —>RL(S(Y)) R(tn),C ———— R(rn)*n_lw}log 29)

wylu] Wy o

of the morphism Rt.(s(Y)) and the morphism (4) in 4.2.

7.3. We prove 7.2 in several steps.

First, we introduce an extended log de Rham complex. Let u be an
indeterminate. Consider the complex w}log[u] on Y™¢ whose component of
degree p is @%'®* ®cClu], where Clu] is the constant sheaf, and whose
derivation is defined by ur— 2% 8 Let e: £t 101 — 07 °%u] be

the morphism sending ‘%! to %8/ — 4. Then, the composite

Jog—1 /1 e -1 u—0 it
floe 1@oog > @y % u] — COy/oog

1 -1
g _, S w” 0g

is nothing but the natural map f'°¢~1¢ ¥ /0

7.4. Next, we define a morphism of complexes

w: n’la)')’,log[u] — n’la)',’,log
on Y€ by sending u to lgg[ € 0. The well-definedness is shown as follows.
For any p, let u"nen la)l’Y’k""'[u], where 7 e n-'w?'¢. Then,
dlog t
d(umﬂ> = mu™ 1 27-5 n+ u™ dl7

m
On the other hand, w(u™#) (1(2),%,-’) 1, and

log ¢ og 1\" 'd log log r\"
d((27‘[i> ) ( ) 2ni i 2ni i

Hence, wd(u"n) = dw(uy).
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The diagram

-1
n.flflog—l(p(l)‘)g n(e) 2 3% ]

|l

C —> . n'lwy™
where the left vertical arrow is the morphism defined by 13% — 0, and the
bottom quasi-isomorphism is by the log Poincaré lemma ([14, Theorem (3.8)]),
is commutative. This is seen by w((nfl(e)) (l‘z’ii’)) =w (% - u) =hel_ I
=0.

By taking the adjoint, we have a commutative diagram

flogfl (/n(l)og ¢ w-},}log [u}

o

Rn,C —~— Rrm.z 'w;' .

Wy
7.5. The last commutativity implies that the morphism (29) in 7.2
coincides with

Rr*flog’165é°g Rele) Rt %% u] —— R(m)*nflco}log ~— wylu] —

a)'Y/O.

Hence the composite of the morphism (29) and the natural homomorphism

. ~ -, log . .
Wy = Rt /0 coincides with

Rz, . . ~
Re, o 0 B Re, 8] —— R(m)n 03— oy lul

-, log

—— Rr.wy %yl 420 Re,wi)®

@Dy -
On the other hand, 7.3 implies that the first morphism

—1 ] 51
Re.f'¢' 0 — Re.oy

in 7.2 coincides with the composite

_1 . log Rt.(e) 1 u—0 -1
Rz 87108 2 Rt u] == R0} 5.

Therefore, 7.2 reduces to the statement that the composite

Rz, [u] — R(tn),n ' w}"®

= wyu] — Rr*w'{,log [u]
is the identity.

7.6. We prove the last statement. By [7, Proposition (3.7) (3)], wy[u] —
Rr*w',’,log [u] is a quasi-isomorphism. Hence, this statement is equivalent to that
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the composite

1 log ~

oyl = Re.03% ] — R(m), 7' 0y & oy lu
is the identity. To see this, we consider the morphisms of complexes and
the statement is deduced from the following two properties of the quasi-
isomorphism wy[u] = R(z7), 7'} by [6, Lemma 3.3].

(i) It sends the indeterminate u to ‘&' e ¢'2.

(i) The composite wy — wy[u] — R(tx),n'w;°¢ is the one induced by
the adjoint map.

This completes the proof of 7.2.

ProposITION 7.7.  We have the following.
(i) The homomorphism

Rf.Rt.f8 105 — Rf.Rr, 07

is a quasi-isomorphism.
(i) The homomorphism

Rf.Rz.(s(Y)) : Rf.Rz.f"¢ 10\ — Rf.R(zn),C
is a quasi-isomorphism.
Proor. (i) By 6.2 (ii), we have

log rlog—1 plog ~ -log .-, log
RESE1571 0% = RS2y,

By sending this by Rrz,, we obtain (i).

(i) By (i), the image by Rf. of the morphism (28) in 7.2 is a quasi-
isomorphism. Hence, by 7.2, the image by Rf. of the morphism (29) in 7.2 is
also a quasi-isomorphism. This implies (ii).

7.8. We prove 4.2.2 by the above proposition 7.2.
First, we prove that the homomorphism induced from

@(l)og ® Rf*lOgC -~ Rf*logflog—l(o(l)og (ﬂ TflRT*Rf*logflogfla(l)og (30)
_ T—lRf*RT*flog—laj(l)og -~ r_lRf;Rr*a)}l/oog Pl T_lRf*w'Y/o
by taking #?, taking the stalk at z and specializing by l‘z’—iit — 0 coincides with
(2). Here the first arrow in the second line of (30) is a quasi-isomorphism by
7.7 (1).
By (20) and (21), the composite of the three quasi-isomorphisms in 2.3 (i)
coincides with the #¢ of the homomorphism
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Oy @ RfEC < O @ Rr. (0 ® Rf)*C) = 07 ® Re.Rf 0wy

(31)
= (Q(I)Og ® RﬂRT*w}l/o(f pad @/(l)og ® Rf.wy .
Hence, (2) coincides with the homomorphism induced from
log log log log
the stalk of (0y*° ® Rf,°*C) — Rt.(0y* ® Rf,°¢C)
(32)

= Re.Rfgfloe1loe = RT*Rfjogw;‘/"og = Rf;Rr*w;/"(;c’ & Rf.oy ),

by taking /¢ and specializing by k;—il.' — 0. Since it is clear that (30) and (32)
are compatible, we see that the homomorphism induced from (30) and (2)
coincide, as desired.

Since the stalk of Rf, of the composite R(tz),C = R(tn),n 'w};t &
wyu] l>w‘Y/0 in (29) in 7.2 coincides with (5), 7.2 reduces 4.2.2 to the

following claim.

CrLAamM. The quasi-isomorphism
Rf.Rz.(s(Y)) : Rf.R(xm),C & Rf.Rr.f'¢ 0

in 7.7 (ii) is compatible with the stalk of the homomorphism O”(l)og ® RfleC =
Rf*logflogfl(g(l)og ﬂ TflRT*Rf*logflogfl(Q(l)Og _ TflRﬁFRT*flogfl(p(l)Og’
To prove this claim, we use the following lemma.

LemMA 7.9. The diagram

log—1 /]
flog l@OOg 77.'*C

| J

(mi), (i)~ floE 1 0% —— (i), C

is commutative, where the upper arrow is induced by the homomorphism s(Y) in
7.1, the vertical arrows are the adjoint morphisms, and the bottom arrow is (i),
of the morphism of constant sheaves (ni)_l f log—l@(l)og — (ni),C on Y, defined by
sending logt 44 0.

2mi

Proor. By taking the adjoint, the commutativity is reduced to that of

log t
— — 1 T
T lflog 1 (9008 C

N

. 1 rloo— 1 .
Lilnlfloe 0 —— i
og ¢
LT
2ni
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7.10. To prove the above claim, we consider the following commutative
diagram:

adj ~
Rﬂlogflog—l (Dé()g <—J T—IRT*Rf*Iogflog—l @(l)og - T—IRT*Rf*Iogn*C

Rf18 (i) ()10 0% &% 7 Re R 9% (i), (i) 05O — v R, RY % (i) C.

where the right square is induced from the commutative diagram in 7.9. By
taking the stalk at z of this diagram, we get the following commutative
diagram:

RF(YQO%,CF‘Z’%D S RF(Ylog,C[%D > . RI(YYE Q)

| | |

Rr(viE,c[s]) < rr(vi2 cls]) — RO(rL0).

LG

This implies the claim and completes the proof of 4.2.2.
REMARK 7.11. It is plausible that the natural homomorphism
SR = oy
in 7.2 is a quasi-isomorphism, or more generally, that

flog_l@“?g — w}‘,}%‘g

in 6.2 is a quasi-isomorphism. If this is the case, it makes proofs in Sections
6-7 considerably simpler.

8. Proof of main theorem
In this section, we prove the main theorem 2.7.
81. Let f:Y —0 be as in 2.7. We claim that the data
(Ho,W(N),H¢,F,N), (33)

where F is the Hodge filtration and N is the monodromy logarithm on Hgq, are
isomorphic to

(H'(Y,Kq), Wlql, H(Y,Kc), F, Ni) (34)
in Theorem 3.4. In fact, we have a filtered quasi-isomorphism (18)

(wY/OvF) = (Ach)7
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where F on the source is defined by w'YZ/(’), and the morphism A¢ — K¢ in (15)
such that Theorem 5.21 and Theorem 5.29 in [5] enable us to identify

(Ho,F) ~ (HY(Y,Ac),F) ~ (HYY,Kc), F) (35)

as filtered C-vector spaces. The Q-structures coincide by 4.1.1, which is now
proved by the results in Sections 5 and 7. The coincidence of N on Hg and
Nk on HY(Y,Kq) is proved in 5.17. Then the weight filtrations coincide
because they are the monodromy filtrations of the compatible operators N
and Ng.

8.2. Now we prove the goodness as follows. By 6.1, the first condition
(i) of the goodness is always satisfied. The second condition is by the
coincidence of the Hodge filtration (35) and the fact that (Ac,F) is a part
of a CMHC ([5, Theorem 5.21]). The third condition of the goodness, that is,
that the data form an LH, is proved as follows. The Griffiths transversality
(2.1 (iii)) holds because the construction in [5] satisfies the Griffiths trans-
versality (a part of the definition of polarized MHS in [2, Definition (2.26)]).
Condition 2.1 (ii) also holds because the construction in [5] is a MHS. Then,
[2, Corollary (3.13)] implies Condition 2.1 (i).

9. Log Picard varieties and log Albanese varieties

In this section, we apply the main result 2.7 to the theory of log Picard
and log Albanese varieties.

9.1. First we recall the definition of log Picard variety and log Albanese
variety briefly. See [10] for the details.

Let S be an fs log analytic space. Let .«/s be the category of log complex
tori over S and let # be the category of log Hodge structures H on S of
weight —1 satisfying F~'H, = Hy and F'H, =0. Then we have a category
equivalence

eyfs >~ MS.

Let P— S be as in 6.2. Assume that it is good for #! in the sense of
[10, 7.1].  Then the log Picard variety 4} /s is the log complex torus correspond-
ing to #'(P)(1) and the log Albanese variety Ap/s is the log complex torus
corresponding to the dual log Hodge structure of #°!(P). Here #'(P) is the
log Hodge structure underlain by R'f!°¢Z which is given by the definition of
the goodness.

9.2. We prove that a projective log deformation ¥ — 0 is good even
in the sense of [10, 7.1] so that there are well-defined log complex tori 475
and Ay .
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For this, we prove that our definition of goodness coincides with that in
[10]. Asin 2.3, let Y — 0 be a proper, separated and log smooth morphism
of fs log analytic spaces such that for any y e Y, the cokernel of M{¥/0; —
My /Oy, is torsion-free.

We do not recall the definition of the goodness in [10] here, but recall that
its main difference from the goodness in Section 2 of this paper lies in that, in
[10], the sheaves are all considered on the big sites.

Let f: P— S be asin 6.2. Then, any (fs) base change of f also satisfies
the assumption of 6.2 so that the conclusion of 6.2 is satisfied also for any base
changed morphism. This means that f satisfies the condition (i) in [10, 7.1].
(Actually, the modified one as explained in 2.4.)

Further, [11, Proposition 5.1] (the proper base change theorem in log Betti
cohomology) implies that the construction of R7f°2Z is compatible with any
base change. This means that the former part of the condition (iii) in [10, 7.1]
is satisfied.

Thus, in particular, ¥ — 0 as above always satisfies (i) and the former part
of (iii) in [10, 7.1].

Next, in order to see that the condition (ii) for ¥ — 0 in [10, 7.1] is
equivalent to our (ii) in 2.3, it is enough to show that the constructions of the
two maps in 2.3 (ii) are compatible with any base change. (Note that the
injection there is a split injection.) This is by the fact that the construction of
the relative differential sheaf is compatible with any (fs) base change (cf. [12,
1.7 and 3.12]) and by the usual flat base change theorem.

Finally, the latter part of the condition (iii) in [10, 7.1] is the same as our
2.3 (ii). This completes the proof of the equivalence of our definition of
goodness and that in [10, 7.1]. In particular, our main theorem 2.7 implies
that a projective log deformation Y — 0 is good even in the sense of [10, 7.1].

9.3. There is another definition of the goodness in [10, 7.2]. For an f as
in 6.2 (especially, for a projective log deformation), both goodness in [10, 7.1]
and in [10, 7.2] coincide and the quasi-isomorphisms given by the first condi-
tions in both definitions also coincide. This is a consequence of 6.2 (ii).

9.4. To discuss the applications, we further introduce notation.

Let (fs/S) be the category of fs log analytic spaces over S endowed with
the usual topology. Recall that a log complex torus over S is a sheaf of
abelian groups on (fs/S).

Let (fs/S)'°® be the site of pairs (U, T), where T e (fs/S) and U is an
open set of T'°¢, defined in [9, 3.1.6] (cf. [10, 3.2]). For a sheaf F on (fs/S)"%,
we denote by 7.F the sheaf on (fs/S) defined by (z.F)(T) = F((T"¢,T)) for
T e (fs/S).

Let Pe(fs/S) and g€ Z.
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For a sheaf F of abelian groups on (fs/P), let #9(P,F) be the
sheaf of abelian groups on (fs/S) whose restriction on any T e (fs/S) is
RU(PxsT — T),(Fpxsr). Here Fpyr is the restriction of F on the small site
of P Xs T.

For a sheaf F of abelian groups on (fs/P)"°%, let # (Pt F) (denoted
by #9(t '(P),F) in [10]) be the sheaf of abelian groups on (fs/S)"®
whose restriction on the small site of (7%, 7) for any T e (fs/S) is
RY(P XST—)T)iOg(F(PXST)Iog). Here Fp, e is the restriction of F on
the small site of (P xg T)".

Let G, (resp. Gy, 10g) be the sheaf of abelian groups on (fs/P) defined by
G(T) = I(T, ) (resp. Gpiog(T) = I(T, M) for T e (fs/P).

Now we apply Section 8 of [10] on log Picard varieties. Note that the
assumption 8.1 of [10] is satisfied (cf. the remark after it). Then, ibid. 8.2 and
8.3 imply the following.

THEOREM 9.5. Let Y — 0 be a projective log deformation.
(i) Let

#NY,G,), = Ker(#(Y,G,,) — #*(Y,Z1)),
HN Y, Gptog)y = Ket(# (Y, Gy 100) — 1.4V 7).
Then we have canonical embeddings
HNY,Gp)y = Ay g = A (Y, Glog)o-
(i) We have a canonical isomorphism
HNY, Gptog) /| K (Y, G tog)g = Hom(Z, #(Y)(1)).

Here #*(Y) is the log Hodge structure underlain by R*(Y'°2 — 0'°%) 7 which is
given by the definition of the goodness, and #Hom is the Hom for log Hodge
structures.

We remark that in (i), more precisely, [10, Theorem 8.2] describes the
groups #1(Y,Gp)y, (Y, Gplog)y, and the quotients A;/O/,}’KI(Y, G,,), and
%1(Y7Gm,10g)O/A;‘,/O in terms of the log Hodge structure #°!(Y)(1). We omit
here the details.

COROLLARY 9.6. We have an exact sequence
0 — éxt' (Ay/0, Gumtog) = H (Y, Gputog) — 1A (Y8, Z) — A*(Y, Oy).

Next, we apply Section 10 of [10] on log Albanese varieties.
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PropPOSITION 9.7. Let Y — 0 be a connected projective log deformation.
Then, for a log complex torus B over 0, the following sequence is exact.

0 — B(0) — B(Y) — Hom(A4y, B).
9.8. Finally we discuss some problems.

PrOBLEM 1. Prove that the last arrow B(Y)— Hom(Ay,B) is sur-
jective so that each section e of Y/0 induces the log Albanese map
l,bei Y — Ay/o.

29

To prove this, it is enough to show that the extension “i,(a)
Hodge structures in the page 177 of [10] is admissible.

of log

PrOBLEM 2 (cf. [10, Problem 10.6]). Prove the following: Let Y /0 be a
projective log deformation. Then we have the inclusion

A (P, Gy tog)g N Image(H (P, G) — H' (P, Gputog)) < Ay g

When this statement is valid, the inclusion map should be called the log
Abel-Jacobi map.
More generally, we can ask the following.

ProBLEM 3 (cf. [10, 10.7]). Define a log Abel-Jacobi map of degree r
whose target is the log intermediate Jacobian &xt'(Z, H*~'(Y)(r)) of degree r,
where &xt!' is taken in the category of log mixed Hodge structures.

Problem 1 should be the case of Problem 3 where » = dim Y, and Problem
2 is the case r=1.

Appendix

Because we could not find an appropriate reference, we give a sketch
of the proof of the following basic statement, though it is not used in the
text.

THEOREM A.l. Let f: X — S be a proper, separated, smooth and Kdihler
morphism of complex analytic spaces. Then the triple

(qu*Z, (qu*QX/S7 F)7 l)

is a variation of Hodge structures of weight q for every integer q, where Qx /s
denotes the relative de Rham complex, F the decreasing filtration induced by
the stupid filtration on Qy /s, and 1: RYf.Z — R, Qx5 the morphism induced
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by the canonical morphism Z. — Oy — Qy 5.  Moreover, the Hodge to de Rham
spectral sequence degenerates at E\-terms.

ProoF. By the result of Siebenmann [19, Corollary 6.14] (cf. [14, Prop-
osition 3.5, Remark 3.5.1]) RYf.Z is a locally constant abelian sheaf of finite
rank on S. By the relative Poincaré lemma [4, Théoréme 2.23 (ii)] and by the
projection formula, the morphism : induces an isomorphism (g ® RIf,Z —
RIf.Qy;s. Thus RIf.Qy,s is a locally free (s-module of finite rank and
compatible with any base change.

Now we take a point s € S and set 4 = (s , for a while. We denote by m
the maximal ideal of 4. By [1, Théoreme 4.1] (cf. [17, Section 5]), there exists
a complex K of Os modules satisfying the following:

* K is bounded from the above and the below.

e K" is a free 4-module of finite rank for every n.

e For a coherent (s-module %, we have a functorial isomorphism

RE(Q} s ® [*F) ~K®F,

in the derived category.
Therefore we have

L (R (R} ® A /"))
=Lyt (HI(K @ A/m"))
< ZA/m”*' (A/mn+1) dim Hq(K X® A/m)

= Ly /o (A/m™*") dim qu;(.Qf(/S ® A/m),

for every n >0 by the case k=0 of [3, Corollaire (3.4)], where /1 (—)
denotes the lengths of the finite modules over A/m"*!.
On the other hand, we have the isomorphism

Afm™ @ (RILZ), = RY(Qyys ® A/m"),

for every n, g by the relative Poincaré lemma and by the projection formula.
Thus we obtain

lA/m”“ (qu* (QX/S ® A/n1n+1)x) = lA/m’“rl (A/mn+l) dim qu* (QX/S ® A/HI)X

for every n, q. By considering the Hodge to de Rham spectral sequences for
A/m"! and 4/m, we conclude that the equality holds in (36) for every n, p, ¢
and that the Hodge to de Rham spectral sequences for A/m"*! and A4/m
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degenerate at E)-terms as in [3, Section 5]. By [3, Corollaire (3.4), Remarque
(3.3.3)] again, HY(K) is a free A-module and the canonical morphism
HYK)® M — HI(K® M) is an isomorphism for every A-module M and
for every ¢q. Therefore R1f.Q%, /s is a locally free (s-module of finite rank and
compatible with any base change for every p, g. Moreover the Hodge to de
Rham spectral sequence degenerates at Ej-terms by the local freeness and the
base change property of RIf,Q% /s and R7f.Qy/s, and by the E;-degeneration
of the Hodge to de Rham spectral sequence for 4/m. Once we know the base
change property above, it is easy to see that the pair

(RY.Z),, (RY.L2x)s, F) ® C(s))

equipped with the isomorphism induced by : is a Hodge structure of weight ¢.

What remains to check is the Griffiths transversality. For this purpose,
we consider Qy and Qg. We denote by G"Q% the image of the morphism
Qe ® QY " — QF induced by the wedge product. Then G defines a finite
decreasing filtration on Qy. On the other hand, the stupid filtration on Qg is
denoted by G for a while. By the smoothness of f, we have

grg Qx ~ Q6 ® Qy/s[—1] = fﬁlgg ® Qys[—7]

for every r. Therefore the canonical morphism f'Qg¢ — Qy is a filtered
quasi-isomorphism by the relative Poincaré lemma and by the flatness of Qf( /s
over f~'0g. Then we have

Q8 ® RY.C ~ RY,f ' Q8 ~ EP(Rf.f ' Qs, G)
~ Elp’q(Rf*.QX, G) ~ Qg ® qu*QX/S

by the projection formula and by the base change property of RIf.Qy/s.
Moreover, the morphism of Ej-terms

QY ® RY.Qx /s — Q0 @ RY.Qy /s
is identified with the morphism
d®id : Qf ® RY.C — Q2" ® Rf.C

under this identification. Thus we can check the Griffiths transversality in the
usual way.

REMARK A.2. Note that S is not necessarily reduced in the theorem
above.
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