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Abstract. Generating functions of Box and Ball System (BBS) are defined and

studied. When the number of balls is finite, we show that the generating function

is a rational function. When there are infinitely many balls, we conjecture that the

generating function is rational if and only if the BBS is semi-periodic. We prove the

conjecture in a special case. We also study the generating function of the BBS with

a limited cart, including semi-periodic cases.

1. Introduction

In 1990, Takahashi-Satsuma [6] introduced a discrete soliton system called

box and ball system (BBS). This is a kind of cellular automaton obtained by

the ultra-discrete Lotka-Voltera equation [2]. A state of the BBS consists of

an infinite sequence of boxes, and each box can accommodate one ball at

most. BBS has been studied and generalized from variety of aspects; ultra-

discretization of soliton equation [9], crystal base [1] [3], inverse scattering

method [4], and so on.

In this paper, we define a generating function of BBS, and ask if they are

rational functions.

In the classical BBS with finite balls, the generating function is always

rational, which essentially follows from the result of Takahashi-Satsuma [6] and

Tokihiro-Nagai-Satsuma [8]. By writing the generating function as a rational

function, we can describe the whole behavior of the BBS by finite words. The

rationality of the generating function reflects the fact that BBS is an integr-

able system. In spite of its highly nonlinear behavior, the rationality of the

generating function implies the predictability of the system. We extend the

rationality result to a limited cart case. We also consider the BBS with infinite

balls. A necessary condition for a rationality is semi-periodicity, which is a

generalization of periodic BBS [10]. We conjecture that this is actually

su‰cient condition also, and prove rationality in a special case.
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2. Generating functions of BBS

The goal of this section is to define the generating function FBðz; tÞ of a

BBS B, and prove that FBðz; tÞ is a rational function when B is a classical BBS.

We start by quickly reviewing their definition.

Definition 1. A state of a BBS is a one dimensional array of boxes as

picture below, with some boxes filled by balls bounded on the left side, but

unbounded on the right side. Each box contains at most one ball. We

denote a vacant box by 0 and a filled box by 1.

So,

is denoted by

ð011110010001100000000000000 . . .Þ:

The time evolution rule from time step t to tþ 1 is described as follows.

Assume that the state of the BBS at time t is ðat
0; a

t
1; a

t
2; . . .Þ, then atþ1

i is defined

inductively on i as

atþ1
i ¼ 1 ðif at

i ¼ 0 and
P i�1

j¼0 a
t
j >

P i�1
j¼0 a

tþ1
j Þ

0 ðotherwiseÞ

(

(see [6]).

To give an alternative explanation, one can imagine a carrier, moving from

the left to the right. On the way at each box, the carrier moves the balls

according to the following rules.

(i) If there is a ball in the box, the carrier picks up the ball into his cart

(and move on to the next box).

(ii) If there is no ball in the box and the carrier has at least one ball, then

he puts a ball into the empty box (and move on to the next box).

(iii) If there is no ball in the box and the carrier has no ball, then he does

nothing (and move on to the next box).

When the carrier finishes all the boxes, one time-evolution step finishes.

For example, the time-evolution of the example in Definition 1 proceeds

like

t ¼ 0

t ¼ 1

t ¼ 2

t ¼ 3
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Remark 1. First, we explain the movement of the balls in the time

evolution from time t ¼ 0 to t ¼ 1. Let the most left box be the 0-th box.

Then, from the 1st box to the 4-th box, a carrier picks up the balls in the boxes

and puts into the cart by rule (i). From 5-th box to 6-th box which are empty,

he puts the balls into the empty boxes by rule (ii). In 7-th box, he picks up the

ball, and he puts into the balls from 8-the box to 10-the box. In 11-th and 12-th

box, he picks up the balls and puts the balls in 13-th and 14-th box. From 15-th

box, there is no ball in the box and he has no ball in the cart, then he does

nothing by rule (iii) and one time-evolution finishes. The time-evolution after

t ¼ 1 proceeds same as the above.

From t ¼ 0 to t ¼ 3, clusters of the balls (we call the cluster soliton) collides

and the size of the clusters change, but the number of the clusters does not

change.

From t ¼ 3 to t ¼ 4 (to be precise, after t ¼ 3), the clusters of the balls have

no collides and move in proportion to the size of the clusters of the balls.

Definition 2. We say that BBS is finite if the initial state has only a finite

number of balls.

Definition 3. Let B ¼ B0 be the initial state of BBS, and Bj ¼
ða j

0; a
j
1; a

j
2; . . .Þ be the state of BBS at time j. Then we define its generating

function FBðz; tÞ to be the following.

FBðz; tÞ :¼
Xy
j¼0

Xy
i¼0

a
j
i z

it j:

We also define fBj
ðzÞ ¼

Py
i¼0 a

j
i z

i. Hence, FBðz; tÞ ¼
Py

j¼0 fBj
ðzÞt j. Here, we

let the leftmost box be the 0th box, and the initial time be t ¼ 0.

The following is the main theorem of this section.

Theorem 1. The generating function of a finite BBS is a rational function

of z and t.

Essentially, Theorem 1 is a corollary to Theorem 2, the result by Takahashi-

Satsuma and Tokihiro-Nagai-Satsuma. Let us introduce the necessary notation.

Definition 4. When B is a state of a BBS, we define N A Zb0, E0 A Zb0,

Qi, Ei A Z>0 ði ¼ 1; 2; . . . ;NÞ by

B ¼ ð0 . . . 0
zfflffl}|fflffl{E0

1 . . . 1
zfflffl}|fflffl{Q1

0 . . . 0
zfflffl}|fflffl{E1

. . . 0 . . . 0
zfflffl}|fflffl{EN�1

1 . . . 1
zfflffl}|fflffl{QN

00 . . .Þ:

We also write as Et
i and Qt

i when we would like to specify the time t.

Notice that the data (Et
0;Q

t
1;E

t
1; . . . ;E

t
N�1;Q

t
N ) recover the state of BBS. We
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define a soliton to be one of Qi consecutive boxes filled with balls (namely Qi

consecutive 1’s), and we define Qi to be the size of the soliton.

When Bt is

Bt ¼ ð0 . . . 0
zfflffl}|fflffl{E t

0

1 . . . 1
zfflffl}|fflffl{Qt

1

0 . . . 0
zfflffl}|fflffl{E t

1

. . . 0 . . . 0
zfflffl}|fflffl{E t

N�1

1 . . . 1
zfflffl}|fflffl{Qt

N

00 . . .Þ;

there are N solitons at time t, with sizes Qt
1;Q

t
2; . . . ;Q

t
N from the left to the right.

Definition 5. In a BBS with the data (Et
0;Q

t
1;E

t
1; . . . ;E

t
N�1;Q

t
N ), we

say that the collision occurs at time t if and only if Qt
i > Et

i for some i A
f1; 2; . . . ;N � 1g.

Namely the collision occurs in the BBS if the carrier has at least one ball at the

beginning of some soliton.

The following Theorem is due to Takahashi-Satsuma [6], proved carefully

in [8] (Theorem 1).

Theorem 2. For any finite BBS, there exists some time T such that for any

tbT, writing the state of BBS as ðEt
0;Q

t
1;E

t
1; . . . ;E

t
N�1;Q

t
NÞ, the conditions

ð1Þ QT
1 aQT

2 a � � �aQT
N

ð2Þ QT
1 aET

1 ; . . . ;Q
T
N�1 aET

N�1

�
hold. r

Proof. (of Theorem 1)

By Theorem 2, there exists time T , and balls are divided into solitons in

non-decreasing order and have no collision at tbT .

The number of the balls which belong to each soliton from the left are

QT
1 ;Q

T
2 ; . . . ;Q

T
N (QT

1 aQT
2 a � � �aQT

N ) at t ¼ T , and these data do not

change at tbT . At t ¼ T ,

fBT
ðzÞ ¼ zS

T
1 ð1þ zþ � � � þ zQ

T
1
�1Þ þ zS

T
2 ð1þ zþ � � � þ zQ

T
2
�1Þ

þ � � � þ zS
T
N ð1þ zþ � � � þ zQ

T
N
�1Þ

¼ 1� zQ
T
1

1� z
� zST

1 þ 1� zQ
T
2

1� z
� zST

2 þ � � � þ 1� zQ
T
N

1� z
� zST

N

where ST
i :¼ ET

0 þ ð
P i�1

k¼1 E
T
k þQT

k Þ.
Each soliton has no collision at tbT , hence we have

fBTþk
ðzÞ ¼ 1� zQ

T
1

1� z
� zST

1 � zk�QT
1 þ 1� zQ

T
2

1� z
� zST

2 � zk�QT
2

þ � � � þ 1� zQ
T
N

1� z
� zST

N � zk�QT
N :
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Therefore,

Xy
j¼T

fBj
ðzÞ � t j ¼

XN
i¼1

1� zQ
T
i

1� z
� zS

T
i � tT

1� zQ
T
i � t

:

Hence this is a rational function.

Consequently,

FBðz; tÞ ¼
XT�1

j¼0

fBj
ðzÞ � t j

 !
þ

Xy
j¼T

fBj
ðzÞ � t j

 !

is a sum of a polynomial and a rational function, hence is a rational function.

3. Generating functions of infinite-BBS

Definition 6. We say that a BBS is infinite if the initial state has an

infinite number of balls.

In this section, we consider the rationality of the generating function

FBðz; tÞ of an infinite BBS for which the rationality of FBðz; 0Þ is a necessary

condition. We need the following definition to test the rationality of FBðz; tÞ.

Definition 7. A state of BBS Bt ¼ ðat
0; a

t
1; a

t
2; . . .Þ is semi-periodic at time

t if there exist Sb 1 and k > 0 such that at
i ¼ at

iþk for all ibS. A BBS is

called semi-periodic if it is semi-periodic at any time t.

In Proposition 3:3, we will show that FBðz; 0Þ is rational if and only if the

BBS is semi-periodic at time t ¼ 0. In Proposition 3:5, we will show that the

BBS is semi-periodic at time t ¼ 0, then it is semi-periodic at any time t.

Moreover, when the BBS is semi-periodic, we will show that its periodic part

behaves exactly like the classical periodic BBS (see [10]), hence our semi-

periodic BBS is a generalization of the classical periodic BBS.

Proposition 1. When Bt ¼ ðat
0; a

t
1; a

t
2; . . .Þ is a state of BBS at time t,

FBðz; 0Þ ¼
Py

t¼0 a
0
i z

i is a rational function if and only if B0 is semi-periodic.

Proof ([7]). We will write ai instead of a0i .

We start by showing necessary condition. By Gauss Lemma, we can write

FBðz; 0Þ � PðzÞ ¼ QðzÞ with QðzÞ;PðzÞ A Z½z�. Writing PðzÞ ¼
Pm

n¼0 pn � zn, we

have p0 � an þ p1 � an�1 þ � � � þ pm � an�m ¼ 0 for ng 0. Hence, an is determined

by ðan�1; . . . ; an�mÞ which has only 2m possibilities. Therefore, it is periodic.

Next, we prove su‰cient condition. Assume that there exist Sg 0, k > 0

such that aiþk ¼ ai if Sa i.
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Then, we get

Xy
i¼0

ai � zi ¼ ða0 � z0 þ � � � þ aS�1 � zS�1Þ þ ðaS � zS þ � � � þ aSþk�1 � zSþk�1Þ

þ ðaSþk � zSþk þ � � � þ aSþ2k�1 � zSþ2k�1Þ þ � � �

¼ ða0 þ � � � þ aS�1 � zS�1Þ þ aS � zSð1þ zk þ z2k þ � � �Þ

þ � � � þ aSþk�1 � zSþk�1ð1þ zk þ z2k þ � � �Þ

¼ ða0 � z0 þ � � � þ aS�1 � zS�1Þ þ aS � zS þ � � � þ aSþk�1 � zSþk�1

1� zk
:

Proposition 2. If a state of BBS at time t ¼ 0 is semi-periodic with the

period N, then it stays to be periodic at any time t > 0 with the same period N.

Moreover, the periodic pattern at time t is determined by the pattern at time

t ¼ 0, and is independent of the non-periodic part.

Proof. It is enough to show that the BBS is semi-periodic at time tþ 1

assuming that it is semi-periodic at time t.

Let i1ðtÞ be the index of the box where the periodic part starts at time t,

and N be the length of the period. Then at
q ¼ at

qþN for all qb i1ðtÞ, and M

be the number of the balls in each period. We write ikðtÞ :¼ i1ðtÞ þ ðk � 1ÞN,

the index of the box where the k-th period starts at time t. Let pkðtÞ be the

number of the balls the carrier has at the ikðtÞ-th box at time t.

Let ðb1; b2; . . . ; bNÞ be the state of the periodic part. We define the

function f by setting fðlÞ to be the number of the balls that the carrier has at

the end of periodic part when he has l balls at the beginning of the periodic

part. We separate the cases depending on N < 2M, N ¼ 2M; and N > 2M.

(a) The case N < 2M:

We have fðlÞ > l when N < 2M, because the carrier has to pick up all M

balls, and there are only empty N �Mð< MÞ boxes. Hence, he picks up more

balls than he drops.

Moreover, if lbN �M, the state of periodic part after at time tþ 1 will

be ð1� b1; 1� b2; . . . ; 1� bNÞ since the carrier drops balls to all empty boxes

and picks up all balls when he passed the periodic part.

Therefore, if N < 2M at time t, the state of BBS at time tþ 1 is also

periodic from ikðtÞ-th box where kg 1, with the period ð1� b1; 1� b2; . . . ;

1� bNÞ. In particular, we have N > 2M at time tþ 1.

(b) The case N > 2M:

Assume that fð0Þ ¼ p. That means, if the carrier enters the periodic part

with 0 balls, he picks up M balls and drops ðM � pÞ balls out of N �M empty
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boxes, hence he passed by ðN �MÞ � ðM � pÞ ¼ N � 2M þ p empty boxes

without balls.

(b.i) The case laN � 2M þ p:

If the carrier has l balls at the beginning of the periodic part with

laN � 2M þ p, he drops l extra balls out of N � 2M þ p boxes where the

carrier who has no balls at the beginning (we call the carrier ‘‘l ¼ 0 carrier’’)

passes by, then his status (no balls) is the exactly same as the l ¼ 0 carrier, and

the result is fðlÞ ¼ fð0Þ ¼ p. Thus, fðlÞ ¼ p.

(b.ii) The case l > N � 2M þ pð> pÞ:
If the carrier has more than N � 2M þ p balls, then he drops balls at all

N �M empty boxes. He picks up M balls, so at the end of the period, his

balls is reduced by N � 2M, hence fðlÞ ¼ l� ðN � 2MÞ.
Therefore, if N > 2M at time t, the state of BBS at time tþ 1 is also

periodic from ikðtÞ-th box where kg 1, then pkðtÞ ¼ p ¼ fðpÞ. We have the

same period N with the same number of balls M.

(c) The case N ¼ 2M:

Assume that fð0Þ ¼ p. Then, there are empty N �M ¼ M boxes at time

t in each period, and the carrier picks up all M balls and drops ðM � pÞ balls

in time evilution when the carrier enters the period part with 0 balls, hence he

passed by M � ðM � pÞ ¼ p empty boxes without balls.

(c.i) The case la p:

Similarly to the case (b.i), we have fðlÞ ¼ p.

(c.ii) The case l > p:

Similarly to the case (b.ii), the carrier drops balls to all empty M boxes,

hence fðlÞ ¼ lþM �M ¼ l.

Therefore if N ¼ 2M at time t, the state of BBS at time tþ 1 is also semi-

periodic from i2ðtÞ-th box, and the state of the periodic part is ð1� b1;

1� b2; . . . ; 1� bNÞ.

Therefore, when Nb 2M, the number of the balls M in each period and

the length of the periodic part N are unchanged, and the pattern of periodic

part at time tþ 1 only depends only on the pattern at time t.

The classical periodic BBS is built up so that fðlÞ ¼ l, hence behaves

exactly in the same way as our periodic part.

Conjecture. We conjecture that the generating function Fðz; tÞ is ratio-

nal for all semi-periodic BBS.

In Theorem 3, we will prove the conjecture in some special case.

Rationality in some other cases, l� ðlþ 1Þ BBS which is a semi-perioic BBS

with the period 1 . . . 1
zfflffl}|fflffl{l

0 . . . 0
zfflffl}|fflffl{lþ1

, will appear elsewhere.
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Definition 8. We define l-l BBS to be a semi-periodic BBS with the

period

asþi ¼
1 ð0a i < lÞ
0 ðla i < 2lÞ

�

for some sg 0, of length 2l at time t ¼ 0. Hence the period looks like

11 . . . 1
zfflfflffl}|fflfflffl{l

00 . . . 0
zfflfflffl}|fflfflffl{l

.

We denote the initial state of BBS as below.

B ¼ ð0 . . . 0
zfflffl}|fflffl{E 0

0

1 . . . 1
zfflffl}|fflffl{Q0

1

0 . . . 0
zfflffl}|fflffl{E 0

1

. . . 1 . . . 1
zfflffl}|fflffl{Q0

M

0 . . . 0
zfflffl}|fflffl{E 0

M

11 . . . 1
zfflfflffl}|fflfflffl{l

00 . . . 0
zfflfflffl}|fflfflffl{l

. . .

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{y

Þ:

Define Lt to be

Lt ¼
XM
i¼0

Q0
i þ E0

i

 !
þ t � l:

Then, at any time t, the state of l-l BBS, starting from the Lt-th box, is

periodic with the period 11 . . . 1
zfflfflffl}|fflfflffl{l

00 . . . 0
zfflfflffl}|fflfflffl{l

.

Also, define Mt to be the number of the solitons in the non-periodic part

at time t, and Nt to be the number of the balls in the non-periodic part at

time t.

Definition 9. We say that in a semi-periodic BBS, P-collision occurs at

time t in getting Btþ1 from Bt if the carrier has at least one ball at the

beginning of the periodic part.

Lemma 1. (1) If no P-collision occurs at time t, Nt ¼ Ntþ1.

(2) If no P-collision occurs at time t, time evolutions in the non-periodic

part and the periodic part are independent.

(3) If a P-collision occurs at time t, Ntþ1 < Nt.

Proof. (1) The carrier passes through Lt with no balls, so the number of

balls in the non-periodic part does not change.

(2) The carrier passes through Lt with no balls, so no interaction between

the non-periodic part and the periodic part occurs.

(3) As the P-collision occurs, the carrier carries d ð> 0Þ balls at Lt-th box

which balls disappear to the infinity, hence Ntþ1 ¼ Nt � d.

Theorem 3. In the case of l-l BBS, Fðz; tÞ is a rational function of z and t.
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Proof. Since the balls in the non-periodic part are finite, the number of

the P-collision is also finite. Let T 0 � 1 be the time of the last P-collision, then

time evolutions in the non-periodic part and the periodic part at tbT 0 are

independent.

By Theorem 2, there exists time T such that the collisions of solitions in

non-periodic part are over. Then, the state of the l-l semi-periodic BBS looks

like the following at tbT .

Qt
1 aQt

2 a � � �aQt
MT 0 a l

MT 0 ¼ MT 0þ1 ¼ � � �
Qt

i aEt
i ði ¼ 1; 2; . . . ;MT 0 Þ

8><
>:

B ¼ ð0 . . . 0
zfflffl}|fflffl{E t

0

1 . . . 1
zfflffl}|fflffl{Qt

1

0 . . . 0
zfflffl}|fflffl{E t

1

. . . 1 . . . 1
zfflffl}|fflffl{Qt

M
T 0

0 . . . 0
zfflffl}|fflffl{E t

M
T 0

11 . . . 1
zfflfflffl}|fflfflffl{l

00 . . . 0
zfflfflffl}|fflfflffl{l

. . .

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{y

Þ

Then,

F ðz; tÞ ¼
XT�1

j¼0

fBj
t j þ

XMT 0

i¼1

zS
T
i ð1þ � � � þ zQ

T
i �1Þ � tT

1� zQ
T
i � t

þ z
ST
M
T 0 þQT

M
T 0 þET

M
T 0 ð1þ � � � þ zl�1Þ � tT

ð1� z2lÞð1� zl � tÞ

where ST
i :¼ ET

0 þ ð
P i�1

k¼1 E
T
k þQT

k Þ.

4. Generating functions of BBS with a limited cart

4.1. Finite BBS with a limited cart. BS with a limited cart is another type of

BBS proposed by Takahashi-Matsukidaira [5]. In this section, we consider a

finite BBS with a carrier who has a limited cart. Assume that the carrier can

carry at most k ð> 0Þ balls.

Definition 10. We call this k as the capacity of the BBS.

The time evolution rule from time step t to tþ 1 is described as follows.

Assume that the state of the BBS with a limited cart at time t is ða0; a1; a2; . . .Þ.
Then, ai is defined inductively on i as

atþ1
i ¼ min 1� at

i ;
Xi�1

j¼0

at
j �

Xi�1

j¼0

atþ1
j

 !
þmax 0;

Xi

j¼0

at
j �

Xi�1

j¼0

atþ1
j � k

 !

(see [5]).
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The time evolution above can be reinterpreted as the following rule from

time t to tþ 1 in terms of the cart and the carrier, moving from the left to the

right, as in Definition 1.

(1) If there is a ball in the box, the carrier picks up the ball into his cart,

unless the cart has k balls. If the cart has k balls, then he does nothing. (He

moves on to the next box.)

(2), (3) If there is no ball in the box, the carrier behaves like in the

classical BBS, as described in Definition 1.

When the carrier finishes all the boxes, one time-evolution step finishes.

Definition 11. In a BBS, we define the marking as follows: when the

carrier drops a ball into a box, we assume that he always drops the newest ball,

namely he behaves like a last-in first-out stack memory in computer program.

Then each carried ball moves from one box to another, and we mark the move

by connecting the two boxes by lines as below. The following example is the

case of k ¼ 3.

1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 . . .

When the ball is on the i-th waiting list at most in the cart, then we say

that the corresponding marking as depth i. We denote the number of depth i

markings at time t by piðtÞ.
For each depth i marking, either it has a unique depth i þ 1 ball waiting

behind it, or it does not have such a ball. It determines a surjection from

some of the depth i balls to all of the depth i þ 1 balls, hence piðtÞb piþ1ðtÞ.
Therefore we obtain a non-increasing sequence of positive integers p1ðtÞb
p2ðtÞb . . .b pkðtÞb 0.

Definition 12. We define the 10 pair to be two boxes which look like

d

(so using the notation of Definition 1, it is 10Þ. We also define 01 pair

similarly:

d

Definition 13. Let B be a BBS with the capacity k, we mark B, and

we define the elimination of depth 1 markings of B to be the BBS with the

capacity k � 1, with all balls and boxes of the markings of depth 1 (in and out)

eliminated. For example,
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0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 . . . ��������!Elimination of
depth 1 marking

0 1 1 1 0 1 0 1 0 0 0 0 . . .

Similarly, we also define the elimination of 10 (or 01) pairs of B to be the BBS

with the capacity k � 1, with all 10 (or 01) pairs eliminated.

0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 . . . �������!Elimination of
10 pairs

0 1 1 1 0 1 0 1 0 0 0 0 . . .

0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 . . . �������!Elimination of
01 pairs

1 1 1 0 1 0 1 0 0 0 0 0 . . .

Note that the movement of the balls is not a¤ected by the elimination of

depth 1 markings, and that all the depths of the markings are reduced by 1.

Proposition 3. The elimination of depth 1 markings and the time evolution

commute modulo numberings of the boxes. To be precise, if you eliminate the

depth 1 markings and let the time evolve by 1 with the capacity k � 1, the state

of the BBS is the same as when you let the time evolve by 1 with the capacity k,

eliminate the depth 1 markings and eliminate the box numbered 0 (so, all boxes

will have 1 less numbers).

1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 . . . ��������!Elimination of
depth 1 marking

1 1 1 0 1 0 1 0 0 0 0 . . .????yTime evolution
with capacity k¼3

????yTime evolution
with capacity k�1¼2

0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 . . . ��������!Elimination of
depth 1 marking

0 0 0 1 1 0 1 0 1 1 0 0 . . .

Proof. Assume that the state of BBS is given at time t is as follows:

B ¼ ð0 . . . 0
zfflffl}|fflffl{E t

0

1 . . . 1
zfflffl}|fflffl{Qt

1

0 . . . 0
zfflffl}|fflffl{E t

1

1 . . . 1
zfflffl}|fflffl{Qt

2

. . . 0 . . . 0
zfflffl}|fflffl{E t

N�1

1 . . . 1
zfflffl}|fflffl{Qt

N

00 . . .
zfflffl}|fflffl{E t

N
¼y

Þ

Notice that the left most empty boxes of Et
1;E

t
2; . . . ;E

t
N are marked with depth

1, connected with some balled box in Qt
1; . . . ;Q

t
N , hence the depth 1 markings

look as follows:

ðA1Þ 1 ðC1Þ 0 ðA2Þ 1 ðC2Þ 0 . . . ðANÞ 1 ðCNÞ 0 0 . . .

where

Ai : 0 . . . 0
zfflffl}|fflffl{ai

1 . . . 1
zfflffl}|fflffl{bi

ðai b 0; bi b 0Þ

Ci : 1 . . . 1
zfflffl}|fflffl{gi

ðgi b 0Þ:

8>><
>>:
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We denote the state of BBS at time tþ 1 as below.

ðB1Þ0ðC1Þ1ðB2Þ0ðC2Þ1 . . . ðBNÞ0ðCNÞ1ðBNþ1Þ00 . . .

where Bi : 1 . . . 1
zfflffl}|fflffl{di

0 . . . 0
zfflffl}|fflffl{ei

ðdi b 0; d1 ¼ 0; ei b 0Þ:

Remark 2. (1) One can observe that the in-boxes of depth 1 marking at

time t are exactly the 0-boxes of the 10 pairs at time t. The out-boxes of depth

1 markings at time t are exactly the 0-boxes of the 01 pairs at time tþ 1.

(2) Each Ci consists of 1’s, and the carrier does not move these balls at

time t, because his cart is full.

(3) Thus the elimination of depth 1 markings has exactly the same e¤ect as

elimination of 10 pairs.

We prove that mr, the number of balls in k � 1 limited cart at the end of

ðA1ÞðC1ÞðA2ÞðC2Þ . . . ðArÞ, equals to nr, the number of balls in k limited cart at

the end of ðA1Þ1ðC1Þ0ðA2Þ1ðC2Þ0 . . . ðArÞ1ðCrÞ0, by induction on r.

When r ¼ 0, m0 ¼ n0 ¼ 0. Hence, the equality holds.

Assume that mr�1 ¼ nr�1. Along the boxes ðArÞ, we claim that the number

of the balls in the cart is less than k � 1 (hence the same behavior for the

capacities k � 1 and k).

As Ar ¼ 0 . . . 0
zfflffl}|fflffl{ar

1 . . . 1
zfflffl}|fflffl{br

, first the carrier drops minðar; mr�1Þ balls, and start

picking the balls.

If ðCrÞ is not empty, then in the capacity k case, the ball before ðCrÞ is

the k-th ball in the cart. This k-th ball is not included in ðArÞ, so the carrier

has exactly k � 1 balls (in both capacities) at the end of ðArÞ. In this case,

mr ¼ k � 1 ¼ nr.

If ðCrÞ is empty, then in the capacity k case, even with the extra ball after

ðArÞ, he is within the k-th limit. Hence, in ðArÞ, his balls are less than or

equal to k � 1. Thus, both carriers have maxðmr�1 � ar; 0Þ þ br a k � 1 balls

at the end of ðArÞ. Hence mr ¼ maxðmr�1 � ar; 0Þ þ br ¼ nr.

Thus one can observe that after the time evolution with the capacity k � 1,

the BBS looks like

ðB1ÞðC1ÞðB2ÞðC2Þ . . . ðBNÞðCNÞðBNþ1Þ00 . . . :

By Remark 2 ð1Þ, this is exactly the result of 01-elimination of the original

BBS with capacity k at time tþ 1, which is same as 10-elimination together

with the elimination of the 0-th box.

Proposition 4. The number of depth i markings in the sequence is

preserved, namely piðtÞ ¼ piðtþ 1Þ.
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Proof. Remark that the number of 10 pairs and the number of 01 pairs

are the number of the solitons, hence are equal. Also by Remark 2ð1Þ, the

number of 10 pair at time t is same as the number of the depth 1 markings,

which is same as the number of 01 pairs at time tþ 1.

Then,

The number of solitons at time t

¼ The number of 10 pairs at time t ð¼ p1ðtÞÞ

¼ The number of 01 pairs at time tþ 1

¼ The number of solitons at time tþ 1

¼ The number of 10 pairs at time tþ 1 ¼ p1ðtþ 1Þ:

Hence, p1ðtÞ is preserved in time.

By Proposition 3, eliminating depth 1 markings commutes with the time

evolution, modulo numbering, hence eliminating depth 1 markings ði � 1Þ times

also commutes with the time evolution, which implies piðtÞ ¼ piðtþ 1Þ.

Similarly to the classical BBS, in Theorem 4 below, we will show that in

the case of finite BBS with a limited cart, there exists finite time T such that the

solitons are in correct order and no collision occurs at tbT .

Definition 14. For a state of BBS Bt ¼ ðEt
0;Q

t
1;E

t
1;Q

t
2; . . .Þ, we define an

operation ðEt
l; aÞ with 0 < aaEt

l, which inserts 10 pair into Bt by changing

Et
l ¼ 0 . . . 0

zfflffl}|fflffl{E t
l

to 0 . . . 0
zfflffl}|fflffl{a

10 0 . . . 0
zfflffl}|fflffl{E t

l
�a

. We also define an operation ðQt
l; aÞ with

0 < a < Qt
l, which inserts 10 pair into Bt by changing Qt

l ¼ 1 . . . 1
zfflffl}|fflffl{Qt

l

to

1 . . . 1
zfflffl}|fflffl{a

10 1 . . . 1
zfflffl}|fflffl{Qt

l
�a

.

In the BBS B with the condition ð�Þ (with s; tbT), we say that

ðEs
l ; aÞa ðEt

m; bÞ if ½l < m� or ½l ¼ m and a < b�, that ðQs
l; aÞa ðQt

m; bÞ if

½l < m� or ½l ¼ m and a < b�, that ðEs
l ; aÞa ðQt

m; bÞ if l < m, and that

ðQs
l; aÞa ðEt

m; bÞ if lam. In a word, ð�s
l; aÞa ðat

m; bÞ when ð�s
l; aÞ is

more left than ðat
m; bÞ with �;aA fE;Qg.

Proposition 5. Let Ck be the time-evolution operator of capacity k

(i.e. CkðBtÞ ¼ Btþ1). Then, for any ð� t
l; aÞ, there exists ðatþ1

l 0 ; a 0Þ such that

Ckðð� t
l; aÞðBtÞÞ ¼ ðatþ1

l 0 ; a 0ÞðCkðBtÞÞÞ. Moreover, if the inserting operation is

ðQl; aÞ or if the inserting operation is ðEl; aÞ with Ql b 2 after the evolution,

we insert 10 pair more left to the original operation.
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Proof. A figure below is an example of ðEl; aÞ.

. . .

Qt
l

1 . . . 1

E t
l

0 . . . 0

Qt
lþ1

1 . . . 1 . . . ����!ðE t
l
;aÞ

. . .

Qt
l

1 . . . 1

a

0 . . . 0 1

1

0 . . . 0

Qt
lþ1

1 . . . 1 . . .????yTime evolution
with the capacity kb2

????yTime evolution
with the capacity kb2

. . .

Qtþ1
l

¼Qt
l

1 . . . 1

E tþ1
l

0 . . . 0

Qtþ1
lþ1

1 . . . 1 . . .

1 ¼ ðEt
l � aþ 1Þ

2 ¼ ðEtþ1
l ; a�minðk;Qt

lÞ þ 1Þ
3 ¼ ðQtþ1

l ;Qtþ1
l �minðk;Qt

lÞ þ aÞ
4 ¼ a�minðk;Qt

lÞ þ 1

5 ¼ Etþ1
l � aþminðk;Qt

lþ1Þ � 2

6 ¼ Qtþ1
l �minðk;Qt

lÞ þ a

7 ¼ minðk;Qt
lÞ � aþ 1

ðif abminðk;QlÞÞ

. . .

Qtþ1
l

1 . . . 1

4

0 . . . 0 0 1

5

0 . . . 0

Qtþ1
lþ1

1 . . . 1 . . .

ðif a < minðk;Qt
lÞÞ

. . .

6

1 . . . 1 0

7

1 . . . 1

E tþ1
l

0 . . . 0

Qtþ1
lþ1

1 . . . 1 . . .
3

3

2

3

The figure above shows that

CkððEt
l; aÞðBtÞÞ ¼

ðEtþ1
l ; a�minðk;Qt

lÞ þ 1ÞðCkðBtÞÞ if ðabminðk;Qt
lÞÞ

ðQtþ1
l ;Qtþ1

l �minðk;Qt
lÞ þ aÞðCkðBtÞÞ ðotherwiseÞ;

�

which are more left to the original operation as far as Ql b 2.

Similarly,

CkððQt
l; aÞðBtÞÞ

¼ ðQtþ1
l ; aþ 1� kÞðCkðBtÞÞ if ðaþ 1 > kÞ

ðEtþ1
l�1;E

tþ1
l�1 �minðk � a;Ql � aÞ þ 1ÞðCkðBtÞÞ ðotherwiseÞ;

(

which are always more left to the original operation. Proposition 5 is proved.

Theorem 4. Assume that the number of the balls is finite in a BBS with M

solitons and a limited cart. We denote the state of BBS at time t as below.

B ¼ ð0 . . . 0
zfflffl}|fflffl{E t

0

1 . . . 1
zfflffl}|fflffl{Qt

1

0 . . . 0
zfflffl}|fflffl{E t

1

. . . 0 . . . 0
zfflffl}|fflffl{E t

M�1

1 . . . 1
zfflffl}|fflffl{Qt

M

000 . . .
zfflfflffl}|fflfflffl{y

Þ:

Then, there exists time T such that for tbT, we have

ð�Þ

ð1Þ There exists r with 0a raM; and Qt
1 aQt

2 a � � �aQt
r < k

ð2Þ Qt
i aEt

i if 1a ia r

ð3Þ Qt
i b k if i > r

ð4Þ kaEt
i if i > r

8>>><
>>>:
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Hence, when tbT, each soliton has time evolution at constant speed and no

collision occurs between them.

Proof. We proceed by induction on k. When k ¼ 1, the condition ð�Þ
obviously holds for T ¼ 0 with r ¼ 0. In this case, each soliton proceeds at

speed 1 with Qt
i and Et

i ð1a raMÞ unchanged and Et
i ¼ ET

0 þ ðt� TÞ.

Suppose that ð�Þ holds for k � 1. By Proposition 3, the elimination of

depth 1 markings commutes with time evolution if we reduce the capacity by 1

after the elimination, modulo numbering the boxes (or ignoring Et
0). The

condition ð�Þ is not related to Et
0, so we can ignore Et

0.

By inductive assumption, there exists T such that when tbT , if we

eliminate the depth 1 markings, the condition ð�Þ holds. If the elimination

does not reduce the number of solitons, the Qt
i ’s become Qt

i � 1 and Et
i ’s

become Et
i � 1 for 1a iaM by Remark 2ð3Þ, so one can see that the

condition ð�Þ holds before elimination.

Let us denote the state of original BBS at time T by B. We eliminate the

depth 1 markings from B, and we denote the state by B 0. By inductive

assumption, we assume that B 0 satisfies the condition ð�Þ.
We first treat the case when the number of the solitons on B 0 is 1 less

than B.

Assume B 0 ¼ ð0 . . . 0 1 . . . 1
zfflffl}|fflffl{q1

0 . . . 0
zfflffl}|fflffl{e1

. . . 0 . . . 0
zfflffl}|fflffl{eM�2

1 . . . 1
zfflffl}|fflffl{qM�1

000 . . .
zfflfflffl}|fflfflffl{y¼eM�1

Þ, and we define B

to be B ¼ ð0 . . . 0 1 . . . 1
zfflffl}|fflffl{q1þ1

0 . . . 0
zfflffl}|fflffl{e1þ1

. . . 0 . . . 0
zfflffl}|fflffl{eM�2þ1

1 . . . 1
zfflffl}|fflffl{qM�1þ1

000 . . .
zfflfflffl}|fflfflffl{y¼eM�1

Þ, namely placing back 10

pairs after all solitons of B 0. Then B is obtained by placing back one 10 pair

to B, either in some 1 . . . 1
zfflffl}|fflffl{qiþ1

or in some 0 . . . 0
zfflffl}|fflffl{eiþ1

.

Notice that if the 10 insertion point keeps moving to the left, like in

Proposition 4.1, eventually we insert the 10 pair at ðEl; aÞ with Ql ¼ 1 which

means that at this point, the condition ð�Þ is satisfied. One can easily see that

we can place back 10 pairs one by one, hence the induction on k completes.

Now, Theorem 4 is proved.

Corollary 1. The generating functions of finite BBS with a limited cart,

Fðz; tÞ, is a rational function of z and t.

Essentially, Corollary 1 follows from Theorem 4.

Proof. By Theorem 4, there exists time T such that each soliton of finite

BBS evolves at constant speed and no collision occurs between them. Namely,

the state of BBS at time T satisfies the condition ð�Þ of Theorem 4.

B ¼ ð0 . . . 0
zfflffl}|fflffl{ET

0

1 . . . 1
zfflffl}|fflffl{QT

1

0 . . . 0
zfflffl}|fflffl{ET

1

. . . 1 . . . 1
zfflffl}|fflffl{QT

r�1

0 . . . 0
zfflffl}|fflffl{ET

r�1

1 . . . 1
zfflffl}|fflffl{QT

r

0 . . . 0
zfflffl}|fflffl{ET

r

. . . 0 . . . 0
zfflffl}|fflffl{ET

M�1

1 . . . 1
zfflffl}|fflffl{QT

M

00 . . .
zfflffl}|fflffl{y

Þ
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Then,

Fðz; tÞ ¼
XT�1

j¼0

fBj
ðzÞ � t j þ

Xr�1

i¼1

zS
T
i ð1þ zþ � � � zQT

i �1Þ � tT

1� zQ
T
i � t

þ
XM
i¼r

zS
T
i ð1þ zþ � � � zQT

i �1Þ � tT
1� zk � t

where ST
i :¼ ET

0 þ ð
P i�1

k¼1 E
T
k þQT

k Þ.

4.2. Infinite BBS with a limited cart. Now, consider the case of l-l BBS with

a limited cart. Assume that there exists M solitons in the non-periodic part,

and we denote the state of BBS as below.

B ¼ ð0 . . . 0
zfflffl}|fflffl{E t

0

1 . . . 1
zfflffl}|fflffl{Qt

1

0 . . . 0
zfflffl}|fflffl{E t

1

. . . 1 . . . 1
zfflffl}|fflffl{Qt

M

0 . . . 0
zfflffl}|fflffl{E t

M

11 . . . 1
zfflfflffl}|fflfflffl{l

00 . . . 0
zfflfflffl}|fflfflffl{l

. . .

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{y

Þ

Theorem 5. In the case of l-l BBS with a limited cart, Fðz; tÞ is a rational

function of z and t.

Proof. When l < k, the proof is similar to Theorem 3. When lb k,

if P-collision occurs, the balls are not moved away but remain in front

of the periodic part, and we define the extended periodic part to be

1 . . . 1
zfflffl}|fflffl{extended

1 . . . 1
zfflffl}|fflffl{l

0 . . . 0
zfflffl}|fflffl{l

. . .

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{y

. Then, the collision between the non-periodic part and

the extended periodic part occurs only finitely many times, and the rest is

similar.

Conjecture. The generating function of any semi-periodic BBS with a

limited cart is a rational function of z and t.
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