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ABSTRACT. This article is concerned with general singularly perturbed second order
semilinear elliptic equations on bounded domains 2 < R” with nonlinear natural
boundary conditions. The equations are not necessarily of variational type. We
describe an algorithm to construct sequences of approximate spike solutions, prove
existence and local uniqueness of exact spike solutions close to the approximate ones
(using an Implicit Function Theorem type result), and estimate the distance between
the approximate and the exact solutions. Here spike solution means that there exists
a point in Q such that the solution has a spike-like shape in a vicinity of such point
and that the solution is approximately zero away from this point. The spike shape is
not radially symmetric in general and may change sign.

1. Introduction

The aim of this paper is to study the existence, local uniqueness and
asymptotic behaviour for ¢ — 0 of spike solutions to singularly perturbed
elliptic boundary value problems of the type

e > 0 (ay(x)ogu) + zn:b[(x)ax[u = f(x,u,e), xe®,
=1 i=1
(1.1)
i aU(x)vi(x)a-Yju = g(xvuag)a x € 0%.

i,j=1

Here & > 0 is a small parameter, 2 < R" is a bounded domain with sufficiently
smooth boundary 0Q, and v; are the components of the unit outer normal
at 0Q. The coefficients a;,b; : @ — R, and the right-hand sides f : Q x R x
[0,1] = R and g: Q2 x R x [0,1] — R are supposed to be sufficiently smooth.
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Further, the differential operator in (1.1) is supposed to be uniformly elliptic,
ie. a; = a; and there exists a constant ¢y > 0 such that

n

Z a;(x)yiy; = coly|*  for all (x,y)eQ x R".

i,j=1

Roughly speaking, below we prove the existence, local uniqueness and
asymptotic behaviour for ¢ — 0 of solutions u, to (1.1) with the following
properties:

(I) There exists a point &, € 2 such that u, has a spike-like behavior in a
vicinity of &, that is to say, |u.(x)| has a local maximum at &, € Q such that
& — & and |u,(&,)| remains uniformly bounded away from 0 as ¢ — 0.

(II) In all remaining points x € Q\{&,} we have u,(x)~0 as ¢ — 0.
Such solutions turn out to exist under a series of natural assumptions. The
assumption, mainly implying property (II), is the following:

(A1) f(x,0,0) =0 and 9,f(x,0,0) >0 for all xe Q.

The rest three assumptions implying mainly property (I) we formulate as
follows:

(A2) There exist a subdomain = Q and a smooth map (r,¢&) € [0, o) x
Q— ¢:(r) € R such that for every fixed & € Q the function ¢ = ¢ solves the
one-dimensional boundary value problem

{¢”<r> +21g/(r) = £(E,4(r),0), 0<r< o0,
¢'(0) =0, ¢(c0)=0, ¢(0) 0.

(A3) There exists a non-degenerate solution & € Q to the algebraic
system

(1.2)

AN(ED(E) + Ve log( det 4(&) J: ¢g(r)2r"*1 dr> =0, (1.3)

where
AC) = lay(O)]i,.,  and  b(&) = B (1.4)

Each function ¢; from assumption (A1) corresponds, via @¢(y) := ¢:(||),
to a radially symmetric solution v = @ of the following n-dimensional bound-
ary value problem

{AyU(J’) = f(&v(»),0), yeR", (1.5)

v(y) — 0 for |y| — oo.

In the scope of our consideration, such symmetric solutions @¢ will be used to
describe a scaled profile of the spike which may appear at point £. It is easy
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to show (see Remark 1.2) that the functions v = 0,,®¢, are solutions of the
linearized problem

{ Ay0(y) = 0uf (S0, Pe (1), 0)u(y), yeR”,
v(y) — 0 for |y| — 0.

(1.6)

Our last assumption concerns the following non-degeneracy property:

(A4) For any solution v to (1.6) it holds v e span{d, ®¢, : j=1,...,n}.

Our main result is of the following type: k

For small ¢>0 and m=0,1,... we will construct smooth functions
Weom: Q — R which have the properties (I) and (II) and which satisfy (1.1)
approximately. Moreover, we will prove that for small ¢ > 0 there exists an
exact solution u =u, to (1.1) such that for any o € (0,1) and any m it holds

||Z/l3 - WS-WIHZJrac.s;Q = O(Sm-H) fOI' &— Oa

where

2
D*u(x) — D"
Nullyi e = Zﬁk sup sup |D*u| + e sup sup | DFu(x) “u(y)|
- k=0 lul=k € =2 x,y;.Q‘, |X — y|
£y

is an e-dependent norm in the Hélder space C>**(Q). Finally, we will prove a
local uniqueness assertion for u,: If ¢ > 0 is small and « is a solution to (1.1)
which is close to #; (in a sense to be made precise) then u = u,.

In order to describe our results more exactly, let us consider the lowest
approximation order case m = 0. Define

We(x) = g, (Te(x)).

Here T.(x) are stretched coordinates defined as follows:
T:(x) := éA(éO—kexl)*l/z(x—éo—axl) for x e Q.

Further A(f)fl/ % is the inverse square root of the positive definite matrix
A(&) (see notation (1.4)), and x; is the correction term of the first order to the
spike’s position determined from Eq. (3.57). Now our result for m = 0 reads
as follows:

THEOREM 1.1.  Suppose that assumptions (Al)—(A4) are fulfilled.

Then for any o € (0,1) there exist e, >0, 0, >0 and c, > 0 such that the
following is true:

(i) For all ¢€(0,¢,) there exists a solution u=u, to (1.1) such that

||uf - %”24—%[);9 < Cué.
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(i) If u is a solution to (1.1) with ¢€(0,&,) and
”u - %||2+1,8;Q < 50‘827

then u = u,.

Existence and multiplicity results for problem (1.1) have been objects of
systematic investigation during last decades. This interest is, in particular,
motivated by the study of standing waves in the nonlinear Schrédinger equa-
tion which leads typically to the consideration of concentrating solutions (so
called bound states) of the following elliptic boundary value problem

{ Edu=Vxu—ul, xeQ,
oyu=0, X €09,

where ¢ > 1, and V' : Q — R is a smooth positive potential (we recall, among
many others, [50, 15, 32, 38, 45, 35, 1, 3, 5, 9]). Another source of applica-
tions for problem (1.1) is concerned with the study of pattern formation in
chemical reaction-diffusion systems, including well-known Gierer-Meinchardt
and FitzHugh-Nagumo models [27, 46], where under certain circumstances
problem (1.1) plays the role of so-called shadow system.

One can distinguish two main approaches used systematically in this field.
A first one, initiated by Floer and Weinstein [15], relies on a finite dimensional
Lyapunov-Schmidt reduction (see also [31, 20, 46] for other applications of this
technique in the singular perturbation theory). A second approach is based on
variational methods jointly with a penalization technique (see [38, 45, 34, 35] to
name a few and the monograph [1] for further references).

Our study differs from the above in several points. First, our elliptic
equation does not have a divergence form, what makes impossible application
of variational methods used, for example, for similar equations with b;(x) =0,
see e.g. [41, 36]. Second, for arbitrary space dimension n we obtain a sequence
of approximate solutions with pointwise asymptotic estimates in the L*-norm
up to any power of &. Note that in contrary to most of the previous studies
concerned with (1.1), our approximate solutions may comprise non-zero outer
expansion parts. This fact makes the formulas for the inner expansions of
the spike and boundary layers more complicated, but simultaneously shows the
universality of our approach. Third, the spike shapes are allowed to change
sign. And finally, to prove our Theorem 5.2 we do not need eigenvalue
estimates for the linearized (in the approximate solution) problem. Instead
we use a lemma of R. Magnus [24, Lemma 1.3] which helps to verify the
assumptions of a quite general implicit function theorem (see our Section 3).

RemaARK 1.1.  Various sufficient conditions for the existence of radially
symmetric solutions of problem (1.5) can be found in literature (see, for example,
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[7, 8, 16, 43, 11, 12]). Some of them [, 8] were obtained with the help of
variational methods, when instead of the solution to problem (1.5) one looks for
a critical point of the energy functional

o) = [ (39000 Pey+ F(E0(),0) )b (1)

where

v

F(& v,¢) := Jo f(& u,&)du.

An important role in this analysis is played by the Pohozaev’s identity (see [7,
Section 2])

"] Wy =] (.00 (18)

which is valid, in particular, for any radially symmetric solution ve WH2(R") of
problem (1.5).  Remark, the identity (1.8) implies that for any radially symmetric
solution of problem (1.5) holds

s:0) = [ Wonlay (1.9

Another method for proving the existence of radially symmetric solutions of
problem (1.5) is to analyse directly the corresponding one-dimensional problem
(1.2). It was used, in particular, in [16, 43, 11, 12].

REMARK 1.2. For the solution ¢ to problem (1.2), one can easily show (see
[7, Lemma 4]) that

tim %0 _ i L) = % 1(&,4:(0),0). (1.10)

r—0 r r—0

Since above we have assumed that $:(0) # 0, limits (1.10) immediately imply
that

f(&,9:(0),0) # 0. (1.11)
Further, every solution ¢ = ¢: to problem (1.2) corresponds to a solution
0= (¢5,¢é)T of the linear system

0

0'(r) = :(r)0(r), where Il1:(r) = fol Ouf (&, 14.(r), 0)dt _},; .
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Hence, taking into account assumption (Al) and applying classical results of
exponential dichotomy theory [10, Chapter 6, Proposition 1], we come to the
conclusion that for every &€ Q and every k € (0,1/0,f(&,0,0)) it holds

G ()], [82(r)|, 9 (r)| < C(&,k)e™  for all rel0,0), (1.12)

where C(& 1) > 0 is a certain constant.  Alternatively, one can get exponential
estimates (1.12) from the determining system (1.5) for @z (see [37]).

Moreover, it is easy to show that for each &€ Q the partial derivatives
0e.9:(r), j=1,...,n, exist, that the corresponding functions 0¢ ¢ satisfy the
linear inhomogeneous differential equation

a§/¢g +$aéj¢é - auf(éa ¢g’(r)’0)a§/¢f = ag/,f(f,¢é(}’),0)7 0<r<oo,

and, hence, that they satisfy estimates analogous to (1.12).

REMARK 1.3.  Note that subdomain Q in assumption (A2) plays a technical
role only. In particular, if at the very beginning we know a point &y € Q and
a corresponding solution ¢, of problem (1.2), then a straightforward application
of the Implicit Function Theorem guarantees the existence of a subdomain Q
containing & and the existence of a smooth map (r,&) € [0, 0) x Q — $:(r) eR
such that (1.2) is satisfied for all & e Q and that $o = P¢,-

ReMARK 1.4. Since functions ®; are assumed to be radially symmetric,
a standard way to verify assumption (A4) is to find all bounded solutions of
the problem (1.6) by the method of separation of variables. This scheme was
previously used to demonstrate that assumption (A4) is fulfilled for any posi-
tive, radially symmetric solution of the problem (1.5) with the right-hand side
S(xyue) =V(x)u—ut, g>1, and V(x) >0 (see [50, Appendix A] and [22]).
Further generalizations of this result can be found in [30].

Besides, assumption (A4) is always fulfilled in the case n=1. This fact
follows from assumption (A1) and well-known results on the exponential dichot-
omy [10, Chapter 6, Proposition 1].

REMARK 1.5. Below we prove existence of spike solutions to (1.1), where
the spike shapes are approximately radially symmetric, but may change sign.
Remark that, if the solution to (1.5), which approximately determines the spike
shape, is positive, then it is necessarily radially symmetric (by the famous Gidas-
Ni-Nirenberg theorem [19]).

REMARK 1.6. Our results can be easily generalized for the case of
solution to problem (1.1) with a finite number of distinct spike’s. They are
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also applicable to a broader class of singularly perturbed elliptic equations of
the type

& Z Ox; (ajj(x)0xu) = f(x,u,e) + &f1(x,u, &V yu,e).
ij=1

The construction procedure and the technique of proof remain almost the same in
this case.

Furthermore, the proposed asymptotic analysis can be used to generalize some
known results about boundary spike solutions (see [29, 30, 18, 47, 48, 49, 6]) and
interior transition layers (see [13, 25]) in singularly perturbed problems of the

type (1.1).

Our paper is organized as follows:

Section 2 contains a particular example illustrating Theorem 1.1. Then,
in Section 3 we describe the algorithm of the construction of our approxi-
mate solutions. In Section 4 we formulate and prove a generalized Implicit
Function Theorem, and in Section 5 we derive from this existence, local
uniqueness and estimates of exact solutions to (1.1) close to the approximate
ones. Finally, some needed technical estimates are provided in Appendix.

2. Example
Let us consider problem (1.1) with a right-hand side of the type
f(x,u,e) = Vi(x)u — Va(x)ud, where ¢ > 1 and Vi(x), V>2(x) > 0.

This nonlinearity obviously satisfies assumption (Al). Moreover, Remark 1.2
and Remark 1.4 point out the way how to verify assumptions (A2) and (A4).
Thus, to employ Theorem 1.1 it only remains to find a suitable position of
spike from Eq. (1.3). To do this, we remark that every solution v = @; to
problem (1.5) corresponds, via the substitution

1/(g=1)
v =(73) VW@,

to a radially symmetric solution U of equation AU = U — U7 which decays to
zero at infinity and does not depend on ¢, This implies

wamw@=m@%WWWWW@WWWQMW”W%

where the integral in the right-hand side also does not depend on . Taking
into account that @¢(y) = ¢:(|y|), we substitute this into Eq. (1.3) and obtain

A7V (E)b(E) + Ve log(y/det A(E) V(&) D/ la=D=n2y, (5y=2/la=Dy — o (2.1)
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Formula (2.1) generalizes all known equations of such kind. As particular
cases it comprises equations of spike positions obtained via variational methods
in [36] (for the case b =0, V, =1) and in [5] (for the case » =0 and A4 being
the identity matrix). On the other hand, it includes a new non-variational
term b. If b =0, then (2.1) is the Euler-Lagrange equation corresponding to
the functional

Ee Qs log(\/mVl (f)(fl+1)/(li—l)—"/2 Vz(i)—ﬂ(q—l)) eR.

Hence, using variational techniques one can formulate sufficient conditions for
solvability of (2.1) as well as algorithms to calculate approximate solutions. If
b # 0, then those variational techniques are not applicable anymore, and, in
general, the Newton iteration procedure is the only way to calculate approx-
imate solutions.

3. Construction of the approximate solutions

In this section, we construct approximate solutions to problem (1.1). For
this, we assume that the conditions (Al)—(A4) are satisfied and that the
function f and the coefficients a; and b; are sufficiently smooth to allow
their representation via Taylor’s formula with necessary number of terms.

Following standard scheme of singular perturbation theory [26, 44, 28],
we look for approximate solutions of the type

Wem(X) = e i (X) + Vg (X) + We,m(x), (3.1)

which consist of three different parts: the outer expansion u,,(x) (which is
defined by the property #; ,(x) — u,m(x) =0 for all x away from the spike
center and from 0€2), the inner expansion v, ,(x) of the spike (which is defined
by the property #; m(x) — vem(x) & u: »(x) for all x close to the spike center)
and the inner expansion w; ,(x) of the boundary layer (which is defined by the
property #; m(X) — e m(X) & u,, m(x) for all x close to 022). The ansatz for the
outer expansion and the inner expansion of the spike is

u&,m(x) = kz:;skuk(x), and U&;;z(x) = éﬁkvk(Tgﬁm(X)), (32)

where T, , is a stretching transformation near the spike, given by
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and Q(x) := A(x)"/? (cf. notation (1.4)). The ansatz for the inner expansion
of the boundary layer is

267" dist(x,0Q)) 3" ebwi(S,(x)) if dist(x, 02) < 20,
=0 (3.4)

We.m (X) =
0 otherwise,

where y:[0,00) — R is a non-increasing smooth cut-off function such that
x(r)=1for 0<r<1 and y(r) =0 for r >2. Further, 6 > 0 is a parameter,
S; is a stretching transformation near the boundary given by

S71(z,0) = ¢ —ezv(0) with {€0Q and 0 <z < 2?5, (3.5)
and v({) is the unit normal vector of 02 at { € 0Q pointing out of 2. We
fix 0 sufficiently small such that the map (z,{) — { — ezv({) is bijective from
(0,20/¢) x 02 onto the set of all x € Q with dist(x,0Q) < 20, and, hence, the
definitions (3.4) and (3.5) are correct.

In the ansatz (3.1)-(3.4) the functions u;:Q — R, v;:R"” — R and
wi : [0,00) x 02 — R as well as the vectors x; € R” are unknown and have
to be determined by the algorithm described below.

For the sake of simplicity, in what follows we will use the notation

Eu:= &2 (Z ax,‘(aij(x)ax/u) + Zbi(x)axiu>
Q=1 =1

for the elliptic differential operator in problem (1.1).
Roughly speaking, the algorithm is as follows: First we determine the
functions u; such that the equation

Esue,m - f(X, Ug m, 8) =0 (36)

is satisfied up to an error of order O(¢”*!), this will be done in Subsection
3.1. Then we determine the functions v, and the vectors x; such that the
system

{ Evem — (X, U m + Vems &) + f(X, g, €) =0, (3.7)

Vx(us,m + Us,m)(xs,m) =0

is satisfied up to an error of order O(¢”*!), this will be done in Subsection 3.2.
The requirement V,(u.,; + vem)(Xem) =0 means that the extremum of the
approximate spike u,, + v, is located in the point x.,, i.e. that x;, is
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approximately the extremum point of the exact spike. And finally we deter-
mine the functions wy such that the boundary value problem

ans,m - f(xy Ue.m + We,m, 8) + f(x7 Us m,s 8) = 07 X € Q7

n (3.8)
> ai(X)vi(x) Oy, (the, m A We,m) — 9(X, U + Wemy€) =0, x €02
ij=1

is satisfied up to an error of order O(¢”*!), this will be done in Subsection 3.3.
In summary, we are going to prove the following theorem.

THEOREM 3.1. Suppose that assumptions (Al)—(A4) are fulfilled.

Then, following the algorithm described in Subsections 3.1-3.3 one can
construct for any ¢ € (0, c0) and for any nonnegative integer m a smooth function
Wom: Q — R such that for any o€ (0,1) it holds

HEa"fVa,m - f(, %,ms)\|x,s;g = 0(£ﬂ7+1)’ (3.9)

n

Z aij’(')vi(')ax/%,m - g('a %,ma‘g)

i,j=1

= 0(e™). (3.10)

I4o,¢60Q

Moreover, the functions W, have structure (3.1)—(3.5) with smooth functions
u: Q2 — R, v :R" = R and wy 1 [0,0) x 0Q — R.
Finally, for any k€ (0,k) and » € (0,3%9) with

ko= /S (&,0,0)  and  x:= min — 0uf(£,0,0) (3.11)
R IRTGIIGHE
i,j=
there exists ¢ >0 such that for any k=1,...,m and |u| <2 it holds
|D ()| < ce™Pl for all yeR”, (3.12)
[ D wi(z,0)| < ce™ Sor all (z,{) € [0,00) x 0Q. (3.13)

3.1. Outer expansion. We substitute the ansatz (3.2) for u;, into (3.6).
Then we expand the left hand side of the resulting equation in the e-power
series. Equating to zero the coefficients of each power of & we obtain an
array of algebraic equations. The lowest order equation is

f(x,u0(x),0) =0.

According to (Al), we choose uy(x) = 0. Then the equations for uy, k > 1 are
given by
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0uf (x,0,0)u1 (x) + 0./ (x,0,0) = 0,
(3.14)
0uf(x,0,0)ui(x) + (function depending on ug, ..., u;—1) =0, k>2.

Thanks to condition (Al) each u; is uniquely determined successively for
k=1,2,...,m. Moreover, we have

||Eeua,m - f(-7u67m’g)||cx(§) _ O(Sm'H)_

3.2. Inner expansion of the spike. Instead of variable x we will work with the
stretched variable y given by (cf. (3.3))

1 _
y="T,m(x) = EQ(xs,m)(x — Xe,m),s or X = Ts.:?lq(y> = Xe,m + €0(Xe,m) ly-

Obviously, for any smooth function v: R” — R we have

1
Vx(v o Tz;,m) = E Q(xzz,m)vyv o Tz:,m-

As usual, for vector functions z: 2 — R” we denote by z -V, := szaxj the
J=1

first order differential operator, generated by z, and by V.-z:=} 0,z the
divergence of z. =1

Now we substitute the ansatz (3.2) for v;,, and the ansatz (3.3) for x;,

into (3.7). Further, we use that for any smooth function v: R” — R it holds

E,(vo T&m)(Til ) = 82(Vx “AV (Vo Tym) + (b-Vy)(vo T&m))(T*l (»)

= Ay”()’) + Q(xx,m)vy : (A(xx,m + SQ(xs,m)ilY)
— A(xe,m)) Q(Xe,m)Vy0()
+ e(b(xem + SQ(XC,I71)71J’) : Q(xa.,n1)vyv(y))~ (3.15)
This way we get

(Eeve?.m - f(a ua,m + Ua,m,‘g) +f(',us,ma£)) o ngnl1

m

= Ayvo = f(x0,00,0) + Y & (Ayvr = 0uf (x0, v0, 0)k

k=1
— Fk(y, X0y« Xk, U0y et ,l)k,l)) + 0(8m+l), (316)
where the right hand sides Fy(y, xo, ..., Xk, Vo, - - ., Ux—1) depend on the functions
vo,--.,Uk_1 via the values in the point y of those functions and their first and

second derivatives only. Moreover,

F(y,x0,...,%,0,...,0)=0.
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Similarly, we get

N

U

Vx(ue,m + Us,m)(xs,m) = gk_l (Q(xe,m)vyvk(o) + gvxuk(xe,m))
0

~
Il

sk’IQ(xC‘m)(Vyvk(O) — di(x0, ..., Xk—2)) + O(e™),

I
NgE

T
(=]

where dy = d; = 0. Moreover, all the next right hand sides dj (xo, ..., xx—2) do
not depend on xj;_; since for the outer expansion we have assumed that
up(x) =0 (see Section 3.1).

We determine the functions v; and the vectors x; in the following order:
In the step number zero we solve the problem

Ayv0(y) — f (x0,v0(¥),0) =0,
V,00(0) =0, (3.17)
vo(y) — 0 for |y| — o

with respect to vg. In this step x is still unknown, i.e. the solution vy depends
on Xxop.
In the step number one we solve the problem

Ay01(y) — 0uf (x0,00(»), 0)v1(y) = Fi(y, X0, X1, 00),
V,01(0) =0, (3.18)
v1(y) — 0 for |y| —

with respect to v;. Because the differential equation is linear inhomogeneous

and because of assumption (A4), the right hand side F;(y,xo,x1,v9) has to be

orthogonal to an n-dimensional subspace. This orthogonality condition gives

a system of n nonlinear algebraic equations to be solved with respect to xp.

Thus, after this step v; and x( are determined, but x; is still unknown. More-

over, we show that xy does not depend on x;, and v; depends on x; affinely.
In the step number two we solve the problem

A, 02(y) — 0uf (X0, 00(1), 0)v2(y) = Fa(y, X0, X1, X2, Vo, V1),
V,02(0) = da(x0), (3.19)

v(y) — 0 for |y| — o

with respect to v,. For that the right hand side F>(y, xo,x1,x2,09,01) has to
be orthogonal to the n-dimensional subspace, again. Although the dependence
of F>(y,x0,x1,X2,00,01) on x; is not affine, the corresponding orthogonality
condition produces a system of n inhomogeneous algebraic equations which
are affine with respect to x; and can be uniquely solved with respect to Xx;.
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Thus, after this step v, and x; are determined, but x, is still unknown, x; is
independent on x,, and v, depends affinely on x;.
The next steps are as step number two: We have to solve

A0 (y) = 0uf (x0,00(¥), 0)or(¥) = Fi( ¥, X0, -+ s Xy 0y - - -5 Vk—1),
Vyl)k(()) = dk(Xm .o ,xkfz), (3.20)
k(y) — 0 for |y| —

with respect to v, (linearly depending on xj, which is still unknown) and to
Xx—1 (which does not depend on x;). Remark that we have to work up to step
number m + 2 in order to determine all unknowns vy, ..., v, and xo,..., X1

Straightforward calculations give the following representations for the right
hand sides

Fi(y, X0, x1,v0) = (x1 - Vi) f(x0,00(»),0) + G(y, x0,v0(y)) — I(y, x0,v0) (3.21)
and
Fi (¥, X0,y Xby U0y -+ -5 Uk—1)
= (xk - V) [ (x0,00(3),0) + (X1 - V) (G(y, X0, v0(y)) — I(y, X0, v0))
+ 0uG(y, x0,v0(¥))vk—1(y) — 1(y, Xo, V1)

2-0
n 2%k

(k=1 Vi) + 01 (9) ) (31 - Vo) + 01(3)0u) S (%0, 00(), 0)
4 RV, X0 Xk2y00s s 0pa)  for K =2, (3.22)
where
1(y,x,0) i= Q(X)V, - [(Q(x) 'y - V) A(X) Q(x)Vy0(3)] + b(x) - Q(x)V (),
and
G(y,x,1) = (Q(x) "y - V) (x,0,0) + duf (x,0, 0)uus (x) + 0.1 (x,u, 0)

and each Ry is a certain function depending on y and x; and v; with j <k —2
only. Remark that for k > 1 function Fj depends affinely on x;. Moreover,
for k >3 it depends also affinely on x;_; and vt_1, but F» does not depend
affinely on x; and v, in general.

Now let us show that all the steps of the algorithm can be done rigorously.
Besides assumptions (Al)-(A4) we will need some properties of the linear
operator

L’fo = Ay - auf(ém djéo(y)ao)a

which are formulated in the next two lemmas.
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LemMA 3.1. For any o€ (0,1) the operator Lg, : C***(R") — C*(R") is
Fredholm of index zero.

Proor. The operator L¢, is Fredholm of index zero because it can be
represented as a sum of invertible and compact operators

Lﬁo :Ay_ﬁuf(éOaOaO)'i_M(y)v (323)
where M(y) := 0./ (&y, Pe,(¥),0) — 0uf(&,0,0). Indeed, since 0,/ (&,0,0) >
0 (see assumption (Al)), the operator 4, — d,f(&,0,0) acting from C>+*(R")
to C*(R") is invertible (see for example [21, Theorem 3.4.3]). On the other
hand, the fact that the multiplication by M is a compact operator from
C***(R") to C*(R") can be verified as follows.

Let y:[0,00) — R be a non-increasing smooth cut-off function such that
x(r)=1 for 0<r<1 and yx(r)=0 for r>2. Then for each R>0 the
function yg(y) := x( y|2/R2) is smooth and has compact support. Hence
the multiplication by yzM is a compact operator from C>*™*(R") to C*(R").
Now taking into account exponential estimates (1.12) for @, we easily see that
the operator yxM tends to M in the operator norm of L(C*"*(R"); C*(R"))
when R — oo. However, the space of compact operators is closed in the
operator norm, therefore the operator M is compact. O

Because of assumption (A4) we have
Ker Lg, = span{0, ®¢, : j=1,...,n}.

Hence, Lemma 3.1 implies that

Ran L, {Fe C*(R") :J F(y)0,,®@¢,(y)dy =0 for all j= 1,...,n},
R

and the restriction of L, is an isomorphism from C>***(R"”)NRan L;, onto
Ran Ls,. The following lemma shows that the inverse of this isomorphism
maps exponentially decaying functions onto exponentially decaying functions.
To formulate our statement, let us define the family of exponentially decaying
functions

p(y) == e Vv D with y e R, (3.24)
and recall the notation xy = 1/0,f(&y,0,0) from Theorem 3.1.

Lemma 3.2, Suppose that o€ (0,1), ke (0,x9), FeRan L, such that
p'F e C*(R"), and ve C***(R") such that Leyv=F. Then, it holds p lve
CH(R"),
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Proor. First, we take use of formula (3.23) and rewrite the equation
Leyv=F in the following form

40— 0,/ (£.0,0)0 = F(y) := M(y)o+ F(y) € C*(R").

Here due to the exponential estimates (1.12) for @, we have p_'M e C*(R"),
and this together with the assumption p_!F e C*(R") implies p, 'F e C*(R").
Now we write function v as the Bessel potential (see [42, Chapter V, §3])

o) =[Gl - DFCIE, (32)

where G, is the Bessel kernel
Ga(x) = (27) " Ky (e x| 72

and K, is the modified Bessel function of the third kind. Regarding kernel G,
we know that it is an analytic function of |x|, except at x = 0. Moreover, for
x — 0 and for |x| — oo one can write explicit asymptotic formulas describing
the behaviour of kernel G, and of all its derivatives (see, for example, [4,
Chapter II, §4]). In particular, for all j,k=1,...,n it holds

G2l 1 (rmy < 90, [0k G2l L1 (rmy < 90, (3.26)
|0k0;G2(x)| < const|x| " for |x| — 0, (3.27)
|G2(X)|, |0k G2(x)], |0x0;Ga(x)| < conste ™  for |x| — oo,  (3.28)

where 0xGa(x) denotes the first partial derivative of Ga(x) with respect to xy,
and 0,0;G»(x) is the analogous notation for the second partial derivative with
respect to x; and x;.

From (3.25) it follows

P o] < w52 llp Fll e e JR" |Ga(ko(y = 2)) I (W)pi(2)dz. (3.29)

Let us show that the right-hand part of (3.29) is uniformly bounded for all
yeR", ie. that

prlve L*(R"). (3.30)

Indeed, because of (3.26) the integrand in (3.29) is integrable over any compact
region including those which contain point z = y. Hence, we need to consider
the integrand’s behaviour for |y — z| — oo only. Taking into account that for

every x € R” it holds 0 < /14 |x|*— |x| <1 we easily obtain

P (V)p,(2) < eFe =13 for all yeR” and zeR".
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Then using asymptotic formula (3.28) we get
|Ga(ko(y = 2))lp (9)pil2)
< e E Gy — 2))
< const e K== ~t0-Rr=2 for |} — 2| - oo,

Now the triangle inequality |y| < |y —z| + |z| and the assumption x € (0, o)
imply the boundedness of the right-hand part in (3.29). Hence, estimate (3.30)
is true.

Next, we consider the partial derivatives 0,,v. Because of the properties
of Bessel potentials, they are given by integrals

Oy 0(y) = —x§! JR” xGr(ko(y — 2))F(z)dz,  k=1,...,n. (3.31)

Since each 0,G> obeys estimates (3.26) and (3.28), we apply arguments as
above and obtain

pilove LR for all k=1,...,n. (3.32)

To show that p'0,,d,ve C*(R") we need a more delicate analysis, since
the corresponding derivatives are determined by the improper integral

0y 0y 0(y) = —rg lim J 010;Ga(rc0(y — 2))F(2)dz, (3.33)
1=t 0 Sy
which is not absolutely convergent (see asymptotics (3.27)). Nevertheless,
according to the classical results of potential theory [42, Chapter V, §4] it
is known that for every F e C*(R") the singular integral (3.33) determines a
function from C*(R").
On the other hand, from (3.33) it follows

PK_I (y)ayka){;v(J’)

— —x! lim J N (0)0k0,Ga(o (v — 2))F(2)dz
#2402y =

= G(y) —«x§ lim 0x0;Ga(c0(y — 2))p (2)F(2)dz, (3.34)
=40 Sy 2 p "

where
aw:—%nmj e (pe() — 1)
10 Sy >

x 0k0;Ga(i50(z — ¥))p ' (2)F (2)dz. (3.35)
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In (3.35), the difference in parentheses can be rewritten as follows
02 12
Pt (D) = 1 = e VHDTVIFED 4 — iz — y) - 0(z - y, p),
where @ : R” x R” — R" is given by
Ox,y):= J _yrne VI =T yd) gy (3.36)

O\ /14|y +ox]?

1

This identity together with estimates (3.27) and (3.28) implies that the improper
integral (3.35) converges absolutely and it holds

Gly) = [ (6 03 )18y Gl v+ 3)F(x + )

Now we can show that the right-hand part of (3.34) belongs to C*(R").
Indeed, since p_'F e C*(R"), the rightmost integral in (3.34) determines a
C*(R")-function (compare with formula (3.33)). Further, from (3.27), (3.28)
and (3.36) we get the estimate

10(x, y) — O(x,2)]
ly —z|*

|0k 0; G2 (r0x)| <|@(x, »+ ) < const |x| e~ o)
valid for all x, y,ze R". Then, using p;lﬁ'e C*(R") again, we easily verify
that G e C*(R"). O

After this preparation we are ready to formulate the construction algorithm.

Case k=0. The problem to determine the leading term vy is (3.17).
Due to assumption (A2), this problem is solved by vy(y) = @,,(»). Remember
that at this step the value of x; is unknown, and we have obtained actually
an xg-parametric family of functions vy. If we apply a differential operator
(1 -Ve) with any ¢; € R” to the differential equation in (1.5) we obtain

A}’[(cl : Vﬁ)djxo] = auf(xoa ¢X070)[(Cl : Vf)éxo} + (Cl . Vx)f(X(), ¢x050)7 (337)

which implies
|, (@ Vot 00, 00,0,dy =0, j=lin (39

Now, we demonstrate that the problems (3.18), (3.19) and (3.20) determine
recursively all unknown functions v; and all unknown vectors x;.

Case k =1. Obviously, a necessary condition for solvability of problem
(3.18) is

Ji(x0) := J ) Fi(y,x0,x1, ®y,)0,, Py, (y)dy = 0, j=1...,n. (339
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Notice that because of (3.21) and (3.38) this system of equations does not
depend on the vector x;. More precisely, we have

Jj(xo) = J (G(y7 X0, ¢x0) - I(y’ X0, ¢xu))a}y¢xo(y)dy~

n

Our next step is to rewrite the system J(xp) = 0 in terms of the data A4, b, f
and the spike’s profile @ only. For this, we use a series of relations collected
in the lemma below.

LEmMA 3.3. We have

J h(y)0,,@:(y)dy =0  for any radially symmetric h e L™ (R"),
R”

O
|, @ ocm@dmn =] W0 a
6'(
B 20000, sy = =05 (| WPy

1
R ys(ayk a}’/gbf(y))(a}’/cpf(y))dy = E ((Sklésj - 51(551]' - 5/(]'531) JR" |Vy¢é(y)|2dy-

Proor. 1) All the derivatives 0, ®:(y) decay exponentially for |y| — oo
(see Remark 1.2), hence for any heL*(R") it holds hd,®:e L'(R").
Moreover, because of ®:(y) = ¢:(|y|) we have

y
Oy De(y) = ﬁ (D), (3.40)

and this implies the claimed identity.
2) Similarly because of (3.40) we obtain

ViV Ok
J (0y,Pe())(0y, Pe(y))dy :J 22 gL(|y)) dy = LAJ V, @ dy.  (3.41)
R" R" |y| n Jre

3) Again, because of (3.40) we have

Tui= | 3ot (€000, 040y

De(y)
= ./kJ ylayl J ax,f(f,u,())du dy.
R/7 0

Then, integrating the latter expression by parts with respect to y; and taking
into account the exponential decay property of @: (see Remark 1.2), we obtain

De(y)

Jikt = — ij dyJ Ox, f (&, u,0)du.
R Jo
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On the other hand, due to the definition (1.7) we have

D:(y)
04 [F(£, (1), 0)] = J 0 f (&0, 0)du + f(, De(1),0)0 ().

0

Moreover, since @: solves problem (1.5) and decays exponentially at infinity
together with its first derivatives (see Remark 1.2), the following identity holds

|, reodmom et = | 40000
[ v e

1
—5 0% J IV, ®:(y) | dy.
.

Thus, collecting together the latter three formulas and applying identity (1.9),
we finally obtain

1 0;
St = —b}‘kaélj <2|Vy¢3<|2 +F(f,¢é,0)>dy = —Lk%J V, ®c| dy.
R” n R”
4) Differentiating formula (3.40) with respect to y;,, we obtain

) d (¢
0y, 0y, Pe(y) = |M|¢f(| v+ JT;J‘/I bl <¢é|()|}}|;)> (3.42)

This identity together with formulas (3.40) and (3.41) implies that

1
JR” Y50y, 0y, Pe(¥)0y, @ (y)dy = 251{15;/ Ln \Vyd)g(y)|2dy

YkVIYsYi d (9:(y)
o S "d|y|< N )dy

On the other hand, differentiating the left-hand side of previous relation by
parts with respect to y;, we obtain

JR" J’saykay/¢éayj Dy dy = —0s JR” a}’1¢éaJ’j¢é dy — JR” J’saykay/(piaym D dy
1
=~ (G0 + Gig) J V, @ |*dy
RTI

[ sy d (
JR” | | ¢5 ‘ |>d|y|

Sy
K )dy
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Now, comparing the latter two formulas with each other, we easily find

ey d <¢é(|y))d
I, oE g ()Y

=— Z (Okigj + Ors0y + Okjosr) JR" |Vy¢¢(y)|2dy.

Hence,
1
JR” Y50y, 0y, P () 0y, @i (y)dy = n (Oridgj — OrsOyj — Ox0s1) JR” V()| dy.

That ends the proof. O

Applying Lemma 3.3 we rewrite the system (3.39) as follows

( Z qjk XO s xO)axkars X0 +Zb X0 CIr/(Xo)>

k,r,s=1 r=1
X JRH V@5, 2dy + g (x0)e, JR” V.| dy =0,
k=1

j=1....n (3.43)

Here we denote by ar’sl(xo) and q; '(x9) the components of the matrices
A(xo) " (cf. (1.4)) and Q(x0) " = A(x )1/2 (cf. (3.3)), respectively. Next, trans-
forming the first term in the parenthesis with the help of Jacobi’s formula

0y, (det A) = tr(4710,, 4),

we write equations (3.43) in the matrix form

(5000) 17l det () + Qb)) [ 17,2y

+00n) Ve |V, () dy o

Multiplying the latter equation by the non-degenerate matrix Q(xy) and taking
into account that Q(xo)? = A(xo) ", and

2 e [T 2
\V,@:(p)|"dy = ¢5(”) r"dr,
R” nJo
where X,_; is the surface area of the n-dimensional unit ball, we obtain (1.3)
which, thus, is equivalent to the system (3.39). Hence, by assumption (A3) we
can choose

X0 = 607 1e. Vg = ‘pg .

S0

(3.44)
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Now, we show that the problem (3.18) with xy and vy determined by
(3.44) has, for any given x; € R”, a unique solution v;, and for any o € (0,1)
we have

p vy e CPHR™) for all ke (0,xp). (3.45)

Indeed, due to equation (3.37) and the linear superposition principle any
solution of problem (3.18) can be written in the following form

Ul(y) :El(y)+(x1 'Vf)¢fo(y)v (346)

where #; solves the problem

Ay01(y) = 0uf (Lo, P, (1), 0)01 () = F1(y, &0, 0, D¢, )
= G(ya éOa djio(y)) - I(y7 507 ¢§0)7

V,5(0) =0, (3.47)

t1(y) =0 for |y] — 0.

But, the latter problem does have a unique solution. To see this notice first
that Lemma 3.2 implies the existence of a unique #; € C>**(R") NRan L¢, such
that Le o1 = Fi(»,&,0,®¢,). This means that general solution of problem
(3.47) reads

0(y) =01(y) +(e1-V))Ps(y),  aeR, (3.48)

where ¢; € R" is a free parameter. Then, substituting representation (3.48) into
condition V,7;(0) =0, we obtain

V,51(0) +V,(c1 - V,) @z, (0) = 0. (3.49)

This relation determines an n-dimensional linear system with respect to the
unknown vector cj. Since @ is a radially symmetric solution of problem
(3.17), direct calculation with the help of formulas (1.10) and (3.42) yields

o
a))j a}’k qjéo (0) = %f(é()a (péo (0)7 O)a (350)

where f(&y, D¢, (0),0) # 0 due to (1.11). Formula (3.50) says that the matrix
of n-dimensional linear system (3.49) is non-degenerate, hence (3.49) has a
unique solution cj.

Now, let us prove (3.45): From (1.12) it follows that p_'®: e C***(R")
for all x € (0,k9). Therefore, from assumption (A1) and from (3.14) we obtain
ptG(y, &, Dg,) € C*(R™) for all k € (0,x0). Similarly taking into account that
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for any j=1,...,n and any x € (0,xy) it holds y;p,.(y) € C*(R"), we easily get
that p '1(y, &, Pe,) € C*(R") for all ke (0,x0). Hence, (3.21) yields

P Fi(p, &, x1, @) € C*(R")  for all « € (0,xqp). (3.51)

Therefore Lemma 3.2 implies (3.45).
Similarly to (3.51) one can show that, for any given functions vy, ..., v €
C?**(R") such that p_lvg,...,p vy € C***(R") for all x e (0,x0), we have

p;le(y,éo,xl, oo X, Dgy, 01, ., k) € CH(RY) for all x e (0,xq).

Case k =2. We continue to construct the inner expansion of the spike
and consider now the problem (3.20) with k =2. First, we need to reveal
exactly the dependence of the right-hand side F> on the unknown vector Xx;.
With this aim in view we substitute v; from (3.46) into the formula (3.22) for
k =2 and obtain

FZ(.V? évah X2, Qfov v + (Xl ! V§)¢§0)
1 _
= (22 Vi) f (&0, gy (), 0) + (x1 - ¥ () + 59 (v, x1,31) + F2(y), - (3.52)
where ¥ : R" — R” and ¢ : R” x R” x R” — R are functions defined by

(c1 - ¥(»)) = (c1 - Vi)(G(y, S0, Py (¥) — 1(1, &0, D))
+ auG(ya éOv @fo(y))[(cl ’ Vf)éio] - I(yv éOv (Cl ’ Vf)@fo)
+ ((e1 - V)ouf (o, @50,0)

+ aif(éOa @50, 0)[(61 : Vf.)ééo])l_)lv (353)
Y(y e 02) = ((c1- Vi) + [(c1 - Ve) g, | 0u)
x ((c2- Vi) + [(c2-Ve)PgJ0u) [ (&0, Dy, 0), (3.54)

and F,(y) is a function which depends neither on x; nor on x,. Note that
according to definitions (3.22), (3.52)—(3.54) and exponential estimates (3.12),
for any x € (0,x) it holds

[(er - ()] < e(w)]er]e™,
(s c1,e2) < c)lei|[eale™, yeR”, (3.55)
|F2(y)| < c(x)e™1 for all yeR”,

where c(x) is a certain positive constant independent of ¢;, ¢; and y.
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Formula (3.52) shows that the dependence of the right-hand side F, on the
vector x; is not affine. However, if we apply the operator (c¢;-Ve)(cy-Ve)
with arbitrary constant coefficients ¢; € R” and ¢, € R” to the differential equa-
tion in (1.5) and write a consistency condition by analogy with (3.38) then
we get

J’R”lp(yv 01762)6}'/¢§0(y)dy:07 ]: 17"'7”‘ (356)

Hence, the necessary condition for solvability of problem (3.19) assumes the
following form

0= J Fz(y, 607x1ax27 @é“,l_)l + (Xl 'Vf)gpfo)@}’/d)fo dy
R)l

:J (xl.yf(y))ay/aséodyjtj Fr(0)0y e dy,  j=1,.cm,  (3.57)
n R”

where the dependence on x; as well as the non-affine dependence on x; have
been cancelled due to identities (3.38) and (3.56), respectively.

Below we are going to demonstrate that system (3.57) can be rewritten as
follows

(x1 - V)Ji(x0) = (terms independent of xi). (3.58)

For this, we apply the partial derivative operator d,, to both sides of (3.37) and
after simple transformations get the identity

A}’[(Xl : Vf)a}fiquo] - 5uf(fo, ¢fov 0)[()(?1 ! Vf)a}y¢fo]
= ((x1 - V)0uf (S0, P, 0) + 05 (&, Pey, 0)[(x1 - Vi) D, )0y, Pe, - (3.59)

Then, multiplying both sides of (3.59) by 7;, integrating obtained equation by
parts and taking into account the differential equation in (3.47), we obtain

J n((XI . Vx)&tf(éOy @50,0) + aif(é()v @50,0)[()61 : Vf)ééo])ﬁlayjééo dy

= R (A}’[(xl 'VCf)aJ’j¢'fo] - auf(é()v @fO,O)[(Xl 'Vé)an¢io])61 dy

= Rn(Ayﬁl - auf(éO,Qfovo)El)[(xl 'Vf)ay/¢fo]dy

= | (60 60.05,00) — 10320, @)1 V)2, @5 . (3.60)
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Combining (3.60) with (3.53), we get

[ G w05 dr = -V (3.61)

Hence, solvability condition (3.57) does have the form (3.58).
Since due to assumption (A3) the Jacobian matrix

H(&) = {axk‘]j(fo)};kzl (3.62)

is non-degenerate, system (3.57) determines x| in a unique way. Knowing x;
we proceed further as in the case k = 1. Taking into account definition (3.22)
and estimates (3.12) we recall that p_'F>(y, &y, x1,0, D¢, v1) € C*(R") for any
k€ (0,k9). Hence, Lemma 3.2 implies that the reduced problem (3.20), i.e.
that with k = 2 and x, = 0, has a unique solution #, such that p_'5, € C*>**(R")
for all x € (0,r9). Therefore full problem (3.20) with k = 2 and nonvanishing
x; has an x;-dependent family of solutions

va(y) = 02(¥) + (x2- Vi) Pg, (1), (3.63)

and p_lv; e CH*(R") for all x e (0,x0).
Case k > 3. By analogy with (3.46) and (3.63), we know at this step that

Uk-1(3) = 0k-1(3) + (X1 - Vo) De, (1), (3.64)

where the function 7;_; does not depend on xj_;. Substituting this into the
definition of F; (see (3.22)) we again separate the terms depending on x; and
xr—1 as follows

Fio(3,E0, X1, o Xoey, @y, U1y - Tt + (g1 - Vi) D)
= Fi(y) + (X V) (&, ey, 0) + (i1 - Vi) (G (3, o, P, (1)) — 19, €0, Pey))
+ 0uG(y, S0, Py (¥))[(3k—1 - Ve ) Pe, |
—1(y, o, [(xk—1 - V) Pe,]) + Y (y, Xi—1,x1)
+ (a1 - V)ouf (G0, Pey, 0) + 05 f (&0, Py, 0) (k1 - Ve )P )or,  (3.65)

where Fi(y) is a function collecting all the rest terms which are independent
of x4 and x;. Now, arguing in a similar way as in (3.60), we obtain

J (k1 - V) 8uf (S0, Py, 0) + 00 f (&0, Dy, 0)[(xi—1 - Vi) D, | 510y, D, dy

= JR"<G(y7 607 ¢fo<y)) - I(y7 60’ djéo))[(xk*l : Vf)ay/gbéo]dy'
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Using this identity and relations (3.56), we write a necessary condition for
solvability of problem (3.20) in the following form

0= J F}c(ya é()axla ey Xy (pfoa % PRI l_]kfl + (Xk,1 : Vé)éfo)ay,dséo dy
R”

= (Xk,1 . Vi)‘]](fO) + JR" Fk(y)a}’/gbfo dy.
Hence, due to assumption (A3) the latter system determines a unique value of
Xk—1. Then solving problem (3.20) we obtain an xi-dependent family of func-
tions v, which also can be written in the form (3.64), and p_'v; € C***(R") for
any x € (0,xp).
It follows immediately from the above construction procedure that the
inner expansion v, satisfies

||E1;Ua‘m - f(’»ua,m + Ua,mag) +f(a uﬁ»m’g)”C"(T,;‘m(é)) = O(Eerl)'

3.3. Inner expansion for the boundary layer. The outer expansion u,, does
not necessarily satisfy the boundary condition on Q2. In order to compensate
this discrepancy, we correct our asymptotics adding to it a boundary layer
term we .

Recall that above (see (3.5)) we have introduced a local coordinate system
near the boundary 6Q. In this way every point x € Q with dist(x, Q) < 20 is
parameterized by the stretched distance to the boundary z = ¢! dist(x, 6Q2) and
the corresponding point { € 022 for which this distance is attained, i.e. dist(x, 02)
= dist(x,{). Thus, substituting the ansatz (3.2) for u., and the ansatz (3.4)
for w,, into (3.8), and moving into the local coordinate system, we get

(Eswa,m - f(7 ua,m + We,m>6) + f(7 u&‘,my 8)) o S;1

= N(Q)d2wo — f(&wo,0) + > e (N(©)Pwi — uf (£, wo, 0)wi

k=1

— Hi(z,, w0, ..., wi—1)) + O™, (3.66)
where
N@©) =Y a(QwiQy(0),
ij=1
and the right hand sides Hy(z,{,wo,...,wr_1), k = 0 depend on the functions
wo, ..., Wr_1 via the values in the point (z,{) of those functions and their first

and second derivatives. Moreover,

Hi(z,0,0,...,0) =0.



60 Oleh OMEL’CHENKO and Lutz RECKE

Similarly we rewrite the boundary condition of problem (1.1) in the local
coordinates (z,{) and obtain

(Z ajj(X)vi(x) O, (the, m + We,m) — (X, U, m + We,m, s)) o S;l

i,j=1

m
== YN Wi (0,0) 4+ gi(C wos - -, wi—1)) + O(e™). (3.67)
k=0
Here gy = 0 and the rest right hand sides gx(, wo,...,wk—1), kK > 1 depend on
the functions wy,...,w,_1 via the values in the point (0,{) of those functions
and their first derivatives.

Now, we proceed as follows. First, we solve the problem

N(C)aEWO(Z, C) - f(Ca WO(Zv 6)70) =0,
0-wp(0,0) =0, (3.68)
wo(z,{) = 0 for z — oo,

which is actually a one dimensional boundary value problem with respect to z,
with variable { playing the role of parameter only. Due to assumption (Al),
we can choose

wo(z,{) = 0.

Remark that problem (3.68) may have other, nonzero solutions. Those other
solutions to (3.68) would produce other approximate solutions and, via the
procedure of Section 5, other exact solutions to (1.1). Note that those exact
solutions to (1.1) would not belong to the domains of local uniqueness,
described by Theorems 1.1 and 5.1, of course.

After wy has been fixed, we solve in the next steps the linear boundary
value problems which determine the functions wy:

N(C)afwk(z7 C) - auf(§7 07 O)MJk = Hk(Z, é‘v Wo, .-y Wk71)7
N(0)o-wi(0,0) = —gi (L, w0, - -, Wi—1), (3.69)
wi(z,{) = 0 for z — oo.

Since the coefficients of corresponding homogeneous differential equation do
not depend on z and because of assumption (Al), one can easily construct
Green’s function G(z,z’,{) and write the unique solution to problem (3.69) in
the following integral form

wi(z,0) = N ul©) " gi(C wo, -« oy wi_y )eHO?

+ JOC G(z,z', Q) Hy(+)dz', (3.70)
0
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where

[ON©)] e O cosh(u(¢)z) for 0 <z <2,

G(z,2',0) ::{ O N

—[RON(E)]" cosh(u(0)=)e MO for ' < z,
and u(¢) == [0,/(£,0,0)/N()]"/2. With the help of formula (3.70) we easily
derive the exponential estimates (3.13). Indeed, due to assumption (Al) we
have H;(z,{,0) =0. Hence, formula (3.70) for k =1 determines w; which
obviously satisfies estimate (3.13). Now, we proceed by induction. Suppose
that all functions w;, j =0,...,k — 1, satisfy estimate (3.13). Then expansions
(3.66) and (3.67) imply that for all » € (0,x) there exists a constant ¢ > 0 such
that

|Hi(2,8,0,. .., wie—1)| < ce™ for all (z,{) €[0,00) x 0Q.

This means, in particular, that the integral formula (3.70) correctly deter-
mines a solution wy to problem (3.69), and the exponential estimate (3.13)
holds.

Now, we obtain immediately from the above construction procedure that
the inner expansion w, ,, satisfies

||E5W5,m - f(7 Ug m + Ws,mag) +f('aua,mz£)‘ C*(8,(2)) = O(8m+l)a (371)

n

Z aij(')vi(')ax_,-(us.m + We,m) - g('7 Ug i + We,m, 8)
Q=1

= 0(e™).
C1+4(S,(2))

Indeed, in the J-vicinity of boundary 0Q the relation (3.71) is fulfilled because
of the determining problems (3.68) and (3.69). In the rest of domain € this
relation is satisfied since exponential estimates (3.13) hold.

4. A generalized implicit function theorem

In this section we formulate and prove an implicit function theorem
with minimal assumptions concerning continuity with respect to the control
parameter.

Our implicit function theorem is very close to those of P. C. FiFe and
W. M. GreencEg [13, Theorem 4.2] and of R. MaGnus [24, Theorem 1.2].
For other implicit function theorems with weak assumptions concerning con-
tinuity with respect to the control parameter see also [2, Theorem 7] and
[14, Theorem 3.4]. For applications of our implicit function theorem to other
singularly perturbed problems see [39, 33].
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THEOREM 4.1.  Let for any ¢ € (0,&) be given Banach spaces U, and V, and
maps F, e C'(U,, V;) such that

| F:(0)|| — 0 for ¢ — +0, (4.1)
|F}(u) = F/(O)| =0  for |e] + ||lul| — O (4.2)
and

there exist ¢ € (0,&)] and ¢ > 0 such that for all ¢ (0,¢) 43)
the operators F!(0) are invertible and |F!(0)™'|| < c. ’

Then there exist ¢ € (0,&1) and 6 > 0 such that for all ¢ € (0,&) there exists
exactly one u=u, with ||ul| <J and F,(u) =0. Moreover,

4] < 2¢][ E(O)]]- (44)
Proor. For e€(0,¢e) we have F,(u) =0 if and only if
G,(u) == u— F/(0) 'F,(u) = u. (4.5)

Moreover, for such ¢ and all u,v e U, we have

Go() — Gy(v) = Jol G (st + (1 — )0)(u — v)ds

= FO)" | (FO) - Flout (1= 90— v)ds

Hence, assumptions (4.2) and (4.3) imply that there exist & € (0,¢;) and é > 0
such that for all ¢ e (0,¢)

|G:(u) — Go(v)]| < %Hu - for all u,ve K2 :={we U, :|w| <d}.
Using this and (4.3) again, for all ¢ € (0,&) we get
1
1G()ll < 11Ge(u) = Ge(O)]| + | GeO)]] < S [Juall + | (O] (4.6)

Hence, assumption (4.1) yields that G, maps K¢ into K? for all ¢ € (0,¢), if &
is chosen sufficiently small. Now, Banach’s fixed point theorem gives a unique
in K2 solution u=u, to (4.5) for all ¢€(0,e). Moreover, inequality (4.6)
yields [[us|| < 1/2Jus[| 4 c[|F:(0)]|, ie. (4.4). O

The following lemma is [24, Lemma 1.3], translated to our setting. It
gives a criterion how to verify the key assumption (4.3) of Theorem 4.1:
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LemMma 4.1.  Let F)(0) be Fredholm of index zero for all ¢ € (0,¢). Sup-
pose that there do not exist sequences &1, ... € (0,&) and uy € Uy ,up € U, ...
with |lug|| = 1 for all k e N and |ex| + ||F,} (0)ux|| — 0 for k — oo.  Then (4.3) is
satisfied.

ProOOF. Suppose that proposition (4.3) is not true. Then there exists a
sequence &1,é2 ... € (0,69) with g — 0 for k — oo such that either F, (0) is
not invertible or it is but ||F (0)™"|| = k for all keN. In the first case there
exist ux € Uy, with [Jux]| =1 and F, (0)ux =0 (because F, (0) is Fredholm of
index zero). In the second case there exist vy eV, with || =1 and
IFL(0) o]l > &, ie.

1 ) "(0) 'y
|1, (0)ur]| < — with u, = —8"'( )71 K
k [1£,(0) ]|
But this contradicts to the assumptions of the lemma. O

5. Existence and local uniqueness of exact solutions

In Section 3, we have constructed a sequence of formal approximate
solutions #; ,, to problem (1.1). Now we are going to prove the existence of
a locally unique exact solution u, to problem (1.1) such that #7;,, is close to
u, for small e. It will be shown that all #;, approximate the same exact
solution u,, and the larger is m the closer is #;, to u,. In order to obtain
such results we rewrite problem (1.1) in abstract form and then apply our
generalized Implicit Function Theorem. As a result we obtain

THEOREM 5.1.  Suppose that assumptions (Al1)—(A4) are fulfilled. Then for
any m >0 and any o€ (0,1) there exist ey >0, Oy >0 and cy o >0 such
that the following is true:

(1) For all e€(0,¢y,) there exists a solution u=u, to (1.1) such that

s = Womlly g s0 < Cmoo™ " (5.1)
(i) If u is a solution to (1.1) with &€ (0,&y, ) and
u€ By, ={ue C*(Q) : |lu— Wemllpiy eo < Om. 282},

then u = u,.

We postpone the proof of Theorem 5.1 to the end of this section, since it is
based on Theorem 5.2 to be formulated below.

REMARK 5.1. Theorem 1.1 is just Theorem 5.1 in the special case m = 0.
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REMARK 5.2. Suppose that the Holder constant o is fixed. Then applying
Theorem 5.1 with different m =0, ...,k we obtain an array of solutions u]" to
problem (1.1), each of which is unique in the corresponding ball B, ,. Since
glirll Om,« >0 and it holds

||Af/e,m - Wé,l71+l ||2+o(,g;Q = 0(8m+1> fO}’ & — Oa (52)

one can choose ¢y > 0 such that for every ¢ € (0,&) all the solutions u" coincide.
In other words, for sufficiently small e, Theorem 5.1 provides different asymptotics
Jor the same solution to problem (1.1) which is unique in Um:O B, ,.

In the rest of this section, we assume that the Holder constant o € (0,1) is
a fixed number. Our main purpose is to reveal the e-dependence of solution
to problem (1.1). Therefore writing any estimate we will not monitor whether
constants appearing there depend on «, although such a dependence is typically
present.

Auxiliary family of approximate solutions %, ,, ,. In Section 3, we have
constructed a sequence of approximate solutions #; ,(x) consisting of three
different parts: the outer expansion u, ,(x), the inner expansion w, ,(x) of the
boundary layer and the inner expansion v ,(x) of the spike. Recall that the
inner expansion of the spike is determined as the sum (3.2) of exponentially
decaying functions v, depending on the stretched variable T, ,(x), and the
latter is given by formula (3.3) which contains the approximate spike’s position
Xz m a8 a parameter.

Keeping the outer expansion u,, and the inner expansion w,, of the
boundary layer unchanged, we define the o-parametric family of functions

Ue,m,o(X) = e, m(X) + We,m(X) + Vg m,o(X), (5.3)

where

Ve,m,o(X) :=&(0 - Vé)¢§o(Ta,l71ﬂ(x)) + ngvk(Tx,m,ﬂ(x))v
k=0

Teom o(X) == %Q(xe,m +¢e0)(x — Xp.m — €0), (5.4)

and o € R” is a parameter. Compared with the approximate solution ¥ ,,, we
performed the following modifications. In the definition of 7 ,,, we shifted the
approximate spike’s position x; , in the direction of vector e and obtain a new
stretched coordinates T ,, ,. Respectively, we replaced v, with v, ,, -, where
all the terms vy are identical to those in definition of v, (cf. (3.2)), but the
stretched coordinates 7, ,, were replaced with 7, ,, ,. Finally, in the definition
of v, m - we introduced new term &(o - Ve)@¢, (T, m,o(x)) which guarantees that
the resulting function %, , satisfies the differential equation of problem (1.1)
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with a discrepancy of order O(?) for all ¢ on compact sets. Indeed, follow-
ing the construction algorithm described in Subsection 3.2 (see, in particular,
formulas (3.16), (3.21), (3.22) and (3.52)), we get

(E{IUL‘JH,H - f(a Us m + Ua,rmmg) + f('7u£‘ma8)) © ngnlug(y)

— (o P03+ 390+ o +0) - 300

+83r(y,a, €), (5.5)

where the functions ¥ and ¢ are defined in (3.53) and (3.54), and r: R" x
R” x R — R is the remainder term in the corresponding Taylor formula.
Taking into account exponential estimates (3.12) we easily verify that for any
k€ (0,x0) and any multi-indices |g;| <2 and || <1 it holds

|Dy Dr(y,0,¢)| < ek, 00, &)e "1 for all yeR", (5.6)
where ¢(x, 9, &) is a positive constant independent of y, 6| < gy and ¢ € (0, &).
REMARK 5.3.  According to definition (6.6) from Appendix, for every non-

negative integer k and every € (0,1) we have |lull;; .o = lluo TJIHC“Z(T(Q))'

e

Since

(Tsvm,a o T;;_l)(Y) = Q(xsvm +¢0) <y - X.gg,m - 0') Sfor all ye Ts,m,a(§)7

and uo T, ' = (uo T, ) Yo (TomeoT, "), it is easy to verify that there exist

&
two positive constants ¢, and c¢; such that for any e € (0,¢), any |o| < gy and

all ue C***(Q) it holds

—1 -1
cl”“ ° Tc‘m,ﬂ”C’*H(TS_,,,_{,(,{})) = ||u||k+i,a;.Q = CZHu ° TS‘me”Ck“(Tg_m_ﬂ(.é))'

This means that norms |ull,; .o and |luo Ta,_rlz,a||c/<+/‘-(rm (@) are equivalent
uniformly with respect to ¢ and o.

Estimates for approximate solutions %, ,, ,. Below we are going to derive
some estimates for approximate solutions %, ,. Our main tool will be the
differentiation formula presented in the following

REMARK 5.4.  For every smooth function v(y,o) : R" x R" — R and every
a e R" it holds

(G-Vs)(v(-,0) 0 T mq) © Tsjnlua(y)
= (5 . VJ)U(y, 0) - (5 : Q(xa,m + SO')Vy)U(y, 0)

+&((6 - Vi) O(Xe,m + 0) Q(Xem + 80)71y Vy)u(y, o). (5.7)
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According to definition of %, ,, , we have V%, n.c = VsVemo. Applying
here formula (5.7) and taking into account exponential estimates (3.12) we see
that for any x € (0,xp) and any multi-index |u| <3 it holds

|lel<aaj@l"7>ma5 °© Ts,inll,a(y))‘ < C(K7 00780)67“-‘},' for all Y€ Rn? ] = 17 R
where c(xc,00,¢) > 0 is a constant independent of y, |o] < gy and ¢ € (0,¢&).
The latter pointwise estimate implies two corollaries formulated in terms of

the e-dependent Holder norms. Namely, for every m > 0 and every ¢ € (0, &),
lo| < g¢ it holds

mjax Haﬂj%&'ﬂ-ﬁ'”2+a,a;9 = 00(80’ 0-0)7 (58)
mjax |‘agj%g,mg||2+“’a; 0 < co(&o, ao)e—f‘(eo,ao)/e, (5.9)

where c¢y(g,00) and c(ey,09) are positive constants independent of ¢, o and Q.
Moreover, applying the mean value theorem and formulas (5.8) we get

%, m, 0 — Ue,m,0ll 1.0 < €0(0,00)|0] for all |g| < ay. (5.10)

Remark also that in a similar way we obtain the estimate for the second
derivative

n}a}x||6(71.6(,j%,’m7(,||2+“;9 < const (5.11)

for all ¢€(0,&) and all |g| < gy.
Finally we prove that

||3_2(6 ) Va)(Eegle,m,a - f(; Wla,m,mg)) + g - YI(Te,m,a)
Y (Temo, X1 +0,6) |0 < (00, 20)|6](|o] + [e]), (5.12)
where c(a,¢) is a constant independent of || < gy and ¢ € (0,&). For this,

we differentiate formula (5.5) with the help of identity (5.7). Then, taking into
account estimates (3.55), (5.6) and the identity

(@ -V (y,x1+0,x1 +0) =2¢(y, x| + 0,5)

following from definition (3.54), we obtain (5.12).
Reformulation of problem (1.1). For every ¢ € (0, o0) let us define the pair
of Banach spaces

Up = (CQ), || a4n0) X (R [-])
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and
Ve i= (C*(Q), | lee0) ¥ (CT02), | - 111 00) X R, [-]),

where |-| denotes Euclidian norm in R”.
Now, instead of the original boundary value problem (1.1) we consider the
following abstract equation

F.(v,0) =0, (5.13)
where the operator F,: U, — V, reads

8_2(Ee(8217 + %a,m,a) - f( ) 8217 + J?/S,I?LO" 8))

n

Fi(v,0) == e ( 2 a{,(-)v,»(~)6x/(8217 + U m,o) — g(-, e+ %67'""7’8)> ’
ij=1

e! (Vx(gzu + Wls,m,a))(xs,m + 80')
and where solution u to problem (1.1) was represented via the following ansatz
u=¢ev+ U, ;. with (v,0) € U,. (5.14)

In what follows we shall assume that m > 2. This restriction as well as
the appearance of additional factors &2 and ¢~2 in the definition of operator F,
reflects, roughly speaking, the fact that to determine parameter o during the
construction of approximate solution one needs to consider the second order
approximation equation (3.19) of the algorithm described in Section 3.

Definition of operator F; contains three components: the first and the
second components coincide with the differential equation and boundary
condition of problem (1.1), while the third component means that the point
X, m + €0 is an extremum of solution u. Hence, it is easy to see that every
solution (v,0) of augmented equation (5.13) determines via formula (5.14) a
solution to problem (1.1). Further every |- |,,, .o-vicinity of #;, is nat-
urally projected onto the vicinity of origin in ' U,, therefore proving the
following theorem we simultaneously justify Theorem 5.1.

THEOREM 5.2. Suppose that assumptions (A1)—(A4) are fulfilled.

Then there exist & >0, 0 >0 and ¢ > 0 such that for all ¢ € (0,&) there
exists exactly one solution (v;,0.) of equation F,(v,0) =0 with ||(v,,0.)|y, <0.
Moreover,

1(ve, 02) |5, < 2¢[|F(0,0) ][,

ProOF. We are going to apply Theorem 4.1, therefore we verify its
assumptions.
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Verification of assumption (4.1). The construction of function %, .
implies that %, ;.0 = "em and T, 0= T.n. Hence, we get

giz(Ee"fVa,m - f(a nﬂ/e,mv 3))

F(0,0)= | & (zl (Y)W — g(«,mm,@) S G1)
=
e (VW om) (Xem)
Now estimates (3.9) and (3.10) from Theorem 3.1 imply that for ¢ — 0 it holds
|F.(0,0)]|,, < conste™ . (5.16)

In particular, ||F;(0,0), — 0 for ¢ — 0 provided m > 2.
Verification of assumption (4.2). We calculate the derivative operator

Its first component reads as follows
[F!(v,0)(0,6)], = E.0 — Ouf (-, 6%+ Ue, m, s+ €)0
+& 26 Vo) (Elsmo — [ Uemo,€))
+ 672G V), Uemor€) — £, 6%0 + Uy .o €)).
Similarly we calculate the second component

[F!(v,0)(0,5)], = 8(2”: ajj(-)vi(+)0x,0 — aug(-,ezv + %,m,g,s)ﬁ>

i,j=1

n
+ 8_1 (6 : VJ) <Z aij(')vi(')ax/%e,m,a - g('7 %s.m,m 3))
i, j=1
+ 871 (6 : Vo')(g(', Wl&,m,m 8) - CI( ) 821) + qla,mdfv 8))
Finally, applying definition (5.3) we get

(ngla,m,a) (xa',m + 80-) = (qu.s,m)(x.s,m + 80)

+ &1 Q(x,m + 0) (3(0 VeV, @:,(0) + zm: akVyvk(O)> ,
k=0
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and this together with the fact that (o-Ve)V,®¢ (0) =0 results in
[F,(v,0) (2, 0)]5 = &(Vx8) (%o, m + &0)

+ 82((5 . VX)VXU) (Xgﬁn'[ + 30') + ((6 : Vx)que,m)(xa,m + 80-)

+((6-Vy)O(xsm + €0)) (Zal‘ 1Vvk )

Using obtained formulas for components of the derivative operator F, (v, o)
we shall verify that ||F/(v,0)(?,5) — F/(0,0)(7,5)|;, — 0 for &+ ||(v,0)|y, — 0,
uniformly with respect to ||(7,5)[|,, = 1. In particular, for the first component
we write the inequality

IF, (0,0)(5,0)), — [F/(0,0)(,8)] |0
< N@uf 80+ Umrs &) = D - Uin0 )l g
N2 V) EHlomo — £\ Woim0r8) — Ellymo + £\ Um0,
162G VS 60+ T ) — S Mmore) (5.17)

and estimate separately each term in the right-hand part of (5.17). First,
employing the identity

6uf(xa 320 + gllx,mﬁma) - 6uf(x, 01/&,m.078)
J 6 f(x & lU + l%g m,o =+ (1 — t) &,m,05 )dl . (820"‘%8,771.(7 - %67”1,0)
0

and inequalities (5.10), (6.9) and (6.11), we get the following estimate

||(6uf('7821] + %s.m,o» ) - uf( &,m,0 ))E”o«.‘l:;Q
< const|[d, .. - 120 + Uy, m.s — Ue,m,0l,: 0
gl

< ConSt”E”a,e;Q ’ {8 U“a,e;Q + |0|}

In a similar way we consider the third term in the right-hand part of (5.17) and
conclude that it obeys the inequality

H872(6 : VJ)(J[('»SZU + Um0, €) _f('a%a,m,mg))uu,s;g

1
(G-V,) (J Ouf (- 1%V + Uy . o, 8)dl> v
0

< const|a] - [[v]l, ..o
o, & Q
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Finally, we apply formula (5.12) to estimate the second term in the right-hand
part of (5.17), and considering the difference y(y, x| + o,5) — ¥(y, x1,G) with
the help of definition (3.54) and inequalities (3.55) we obtain

||8_2(6'VU)(ES%E,W.G'_f('7%87m,0'7 ) E7/e mO+f( smOa ))”a’g;Q

< const|d|(|o] + |¢])-

The estimate for ||[F(v,0)(7,5)], — [F](0,0)(?,5)]]l| 1400 1s €ven simpler
to obtain, since the approximate solution %, , , and all its partial derivatives
in the definition of [F/(v,0)(7,G)], are exponentially small near the boundary
0Q (see inequalities (5.9)).

Finally, we analyze the third component of the derivative operator F) (v, o).
According to the construction procedure described in Section 3, we know that
up =0, V,00(0) =V,v1(0) =0. Then taking into account definition (6.6), we
easily obtain

I[F (v, 0)(8,8)]5 — [F;(0,0)(z, 5)]3]

Hence, we have shown that assumption (4.2) is also satisfied.
Verification of assumption (4.3). We are going to apply Lemma 4.1. For
this we first write operator F/(0,0) in the matrix form

g < const(|o] 18]]5, 0 + [0ll24s,0 + &)

N

Fnv  F12o
F/(0,0)(5,6) = | #ab Ind |,
T30 F30
where
z: - uf( (m’ )E
T "
Il | = 8<Z aif(')Vi(')axil_) —dug(-, %7171’8)1_))
F310 bl
S(Vxl_))(xg,m)
and
_2(0 % )( & Emo'_f('a%&m,o'78))|o:0
F12G _ =
T | = 871(0 )<zz—:l alj( vi(+)@ x/%z:,m,a —9(, Wls,m,ﬂﬁ)) Y
TG

(6 V)V sttm) () + (8- V) ) (kzo e“vyvkw))
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According to classical results on boundary value problems for linear
elliptic equations (see for example [23]), the operator

(3711?)) : C?M(Q) — C*(Q) x C*(0Q)

is a Fredholm operator of index zero. On the other hand all the rest
components

Ty 0 CH(Q) — R, T R" = CHQ),
Ty : R" — C1H(0Q), F3:R" = R"

are operators with finite-dimensional ranges. Hence, the operator F/(0,0) is a
Fredholm operator of index zero from U, to V., and to apply Lemma 4.1 we
yet need to verify its second assumption only.

We perform this verification by contradiction. For this we suppose that
er € (0,00) and (ug,0%) € U, are two sequences with

a0, = el + e = 1 (5.18)
and
e + ||Fe/k(070)<”k7‘7k)||1/,;k —0  for k — 0. (5.19)

Then our strategy will be to demonstrate that assumptions (5.18) and (5.19)
lead to the limit ||(”ka‘7k)||ng — 0 for k — oo, which obviously contradicts to
(5.18).

Before we proceed further, let us write explicitely the meaning of limit
(5.19) for each component of the operator F; (0,0)(ux,0x). To simplify the
resulting formulas we neglect in each of them all the terms that vanish for
¢ — 0. Notice that because of (5.18) without loss of generality we may assume
that there exists o, € R” such that

Ox — Oy in R"” for k — oo.

To this end, we consider the first component of operator F, (0,0)(ux, ox)
which reads

[Fz/k (07 O) (ukv ak)]l = Esk”k - auf('y %kﬂu 3k>uk
+ 8/;2(0'1( : VJ)(Ezzk%ak,m,o‘ - f(v %f:k,m.m 8k))|g':0'

Then taking into account assumptions (5.18) and (5.19), and simplifying the
last term with the help of estimate (5.12), we get

||E3kuk - auf('v /Wa‘/m'”’ak)uk — Ox - Yj(Telnm) - lp(TSk,m’xlao-*)Hx,sk;Q — 0. (520)
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For the second component [F; (0,0)(ux, 0)],, we take use of the fact that
function %, and all its partial derivatives are exponentially small near
boundary 02 (see inequality (5.9)). Combining this with assumption (5.18)
and neglecting in the limit

|| [FS//\ (Oa O)(uka O-k)]ZH 4o, 0Q 0
all the terms vanishing for ¢ — 0, we obtain
n

€k Z aij(-)vi(-) O, i

i,j=1

~0. (5.21)

140, & 0Q

Finally, we consider the meaning of limit (5.19) for the third component
[F, (0,0)(u,0k)];. Here, since the outer expansion u,,, starts with a term of
order O(e) and because of identities V,v9(0) = V,v1(0) =0 (see construction
procedure in Section 3), we easily get

||5/C(quk)(xé:k-,m)|

e — 0. (5.22)

In the rest of proof we will show that as a consequence of assumptions
(5.18) and (5.19) we have two limits

or — 0 (5.23)
and

e Y Ox(ay(-)oxuk) — 0uf(-,0,0)u

ij=1

0. (5.24)

o, &3 2

Regarding the latter limit, we remark that in contrary to (5.20) it contains
the positive coefficient d,f(x,0,0) (see assumption (Al)) instead of the sign-
changing coefficient 0,f(x, #;.m,¢). Therefore, as soon as we prove (5.24)
we can apply the e-dependent Schauder-type estimates from Appendix to
conclude that |uklly;y .0 — 0 for kK — oo. Then this limit together with
(5.23) will constitute the necessary contradiction ||(”kvak)‘|ugk — 0 for k — 0.
For the sake of clearness we divide further argumentation into few steps.
Step 1. Operator P, ;. For every s € (0,x¢), where xq is given by (3.11),
we define an operator
P.y: C*(@) — C*(R™ N LA(RY),

)

by

PS,Su = ((XO”) o Ts.iiiz)ps' (525)
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Here

po(y) = eV 1+1*-1) with y e R”

is the exponentially decaying function defined previously in (3.24), and
%o : 2 — R is a smooth cut-off function such that

2o(x) =1 if [x—=&| <6, xo(x) =0 if [x—¢of> 20,
1
where 0 = 1 dist(&y, 092).

Note, in definition (5.25) we assume that the product y,u is extended by zero on
the whole R". Then the argument of resulting function is stretched according
to the transformation 7,-! and the obtained function is finally multiplied by the
factor p,. ’

Taking into account Remark 5.3 and inequalities (6.8), (6.9) from Ap-
pendix, we easily verify that for any & > 0 there exists co(g) > 0 such that
for all ¢e (0,&) and ue C*(Q) it holds

1Cou) © Tl corry < coleo)llully, (5.26)

and

1

[ Pe,sttll cxrmy < 1Psllcxry | Gowt) © T ll cxrry < co(eo) 1psll comny Nl o 00

Moreover, since the definition of operator P, contains the exponentially
decaying factor p, e L*>(R") the estimate (5.26) implies

1P sttll 2wy < 1l 2y 1 Crott) © Tl e vy < coe0) 123l oy [l - (5:27)
Hence, for all ¢e (0,&) and all ue C*(Q) we have P, ue C*(R")NL*R"),
provided s > 0.

Similarly we show that for any s > 0 and & > 0 there exists ¢;(s,&) > 0
such that for all ¢ (0,¢) and ue C***(Q) it holds

| Pe,sttll coenmery + | Pestal[ 22wy < c1(s,0)[|ullysg, 4 0- (5.28)

Hence, the operator P, also maps C***(Q) into C*™*(R")N W>2(R").
Now let us define the sequence

ﬁk = Pek“,suk-

In fact each o, depends also on s. But later on we will fix s independently of
k, therefore we do not mention the s-dependence in the notation of #; for the
sake of simplicity.
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Because of (5.18) and (5.28) the sequence ¢y is bounded in the Hilbert
space W22(R"). Without loss of generality we may assume that there exists
v, € W22(R") such that

O — 0 in W*2(R") for k — oo. (5.29)
Step 2. Derivation of equation for v, and o.. From (3.15) it follows

|(Eotc) (T, (3) = Ay 0 T, L, ) (9)] < comst e (1 + [ y) k|40 (5:30)

for all y e T, ,»(22). Further, according to the definitions of y, and T, for
any ¢ > 0 there exists 0 =0d(g) > 0 such that

20T L) =1 for all e (0,6)) and |y| <d/e.

Hence, assumption (5.18) implies for all # € L>(R")
J . (PSA»,S(EEkuk) - psAy(uk ° Tg;,lm))ﬂ dy — 0,
ly[=<d/ex

provided s > 0. Because of w0 T, ! = p-'o; this yields

tym
J}<5/ (Pyy s(Equr) — Ab — 2(pVp - Vir) — prdp,)n dy — 0. (5.31)
1 <8/e
But assumption (5.18) and the inequalities (6.8), (6.9) from the Appendix imply
HE,,kuka(;Q < const,
whereas the definition of p, results in the inequalities
195005 ey <85 11psAps I o vy < s(s+ 20— 1).
Hence, in (5.31) the limits of integration may be extended to R" and we get
JRH(P(«,,C,AY(E@,( up) — Av = 2(pVp; - Vir) — pyiwdpy i dy — 0. (5.32)
In other words, we have
P, J(Equ) — Ay — 2(pVp. ' - Vi) — pindp, — 0 in L*(R"). (5.33)
Similarly we show that

Poy s(0uf (s Wapmy &i)tse) — Ouf (Eg, Py, 0)Bf — O in L2(R"). (5.34)
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Indeed, as above we can replace the integrals over R” by integrals over
|| <J/er. This reduction is possible since the integrals over |y| > d/¢ vanish
for k — oo because of the inequality

10uf (s Wegmyx) © T,y — 0uf (S0, Py, 0)] < comst e (1+y]), v e Ty m(2)

Ef,M
that follows from the structure of formal asymptotics #; ,,.
Finally, we need to verify the last weak limit in L?(R")
Pﬂk-ﬁ[a* ’ T(Tﬂk‘m) + lp(Tf?k,maxl’U*)} - (U* ¥+ lﬂ(',xl,O'*)),DS - 07 (5'35)

where the functions ¥ and s are defined in (3.53) and (3.54), respectively. But
this limit holds true since the left hand side of (5.35) vanishes for |y| <d/¢.

Collecting together the limits (5.33)—(5.35) and using (5.20) and (5.27) we
get

A +2(p V- Vi) — (0uf (Eo, Pey, 0) — pydpi ik
- (0-* ¥+ w(’;xlaa*))ps —0 in Lz(R”)

This gives the desired equation for v, and o,

Dy, = Ao+ 2(pVpy - Vu.) = (uf (&, Pey (1), 0) — pydpy .
= (0. PV +Y(,x1,0.))ps for a. a. yeR". (5.36)

Step 3. Proof of the fact that o, =0. Assumption (Al) and estimate
(3.12) imply that f(&p, @¢,,0) € C*(R") and (0. - ¥+ Y(-,x1,0.))p, € C*(R"),
therefore every solution v, € W>2(R") to Eq. (5.36) belongs simultaneously to
C***(R"). Below we demonstrate that an appropriate choice of s guarantees
that o, =0 and v, e span{p,0,,P¢, : j=1,...,n}. To this end, we use the
following lemma.

LEMMA 5.1.  There exists sy > 0 such that for every s € [0,s) the operator
Dy (cf (5.36)) mapping C***(R") into C*(R") is a Fredholm operator with
dim Ker Dy = codim Ran Dy, = n.  Moreover,

Ker Dy = span{p0, ®@:, : j=1,...,n},

Ran D, = {ve C*R"): J U(y)ps_l(y)ﬁy,.@@(y)dy =0, j= 1,...,n}.

n

ProoF. Straightforward calculation yields

lim 120V 5" V) = pedp; Iz crosmeys cxmey) = 0- (5.37)
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Since small perturbations do not violate Fredholm property and do not increase
the dimension of kernel and the codimension of range (see, for example, [40,
Theorem 5.11]), estimate (5.37) together with Lemma 3.1 and assumption (A4)
imply that for sufficiently small s > 0 the operator D; is Fredholm of index zero
and dim Ker D; = codim Ran D < n.

Above we have assumed that se (0,x(), where the constant r is given
by (3.11). Therefore estimates (3.12) guarantee that p.d, @ € C*™*(R").
Moreover, according to assumption (A4) we know that p0, @ € Ker Dy.
Hence, the only remaining point regarding Ker Dy is to show that the functions
P50y, Ps,, j=1,...,n, are linearly independent, i.e. that dim Ker Dy =n. To
check this we write the Gram matrix %(s) with elements

[g(s)]jk = JR” psa}y’¢§opsay/< ¢50 dy'

It is clear that 4(0) is non-degenerate (see assumption (A4)). On the other
hand, simple calculation shows that the matrix derivative %’(0) with respect to
s is bounded. Therefore for sufficiently small s matrix %(s) is non-degenerate
too, hence, for such values s functions p0,®Ps, j=1,...,n, are linearly
independent.

Now let us prove the statement regarding Ran D,. For this we remark
that due to exponential estimates (3.12), for any s € (0, x9) and any v e C>**(R")
we can perform integration by parts in the following formula

J (A0(3) + 20, (1Vp, () - Vo()))py  (9) Pz, (3)dy
B J () A(p; ) (y) = 2V, (9) - Ve, (1)) = 2@, () 4p; ! (1)) dy

= | 010 01405, () - 02,0020, ()

With the help of this identity we easily see that for any se (0,x9) and any
ve C***(R") it holds

| Do 90,0500 =0 for all j= 1.

Moreover, in complete analogy with our consideration of functions p,d,, @,
(see the Gram matrix argument above) we can show that for all s > 0 small
enough functions p; la}yqﬁéo, j=1,...,n, are linearly independent. O

Let us assume that the parameter s of function p, satisfies the inequality
0 < s < min(xo,s). (Note that this is the only restriction that we impose on
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s in our proof!) Then regarding Eq. (5.36), Lemma 5.1 and the Fredholm
alternative imply that

J H(O'* -+ w(-,xl,a*))pxp;lay/d%o dy =0, j=1,...,n.  (5.38)

These equations have been already considered in Section 3, when we analysed
the system (3.57). Using identities (3.56) and (3.61) obtained there, we rewrite
system (5.38) as follows

H(fo)a* - O)

where H(&,) is the Jacobian matrix of system (1.3) at point &, (see definition
(3.62)). Due to assumption (A3) this matrix is non-degenerate. Hence, g, =0
and v, € Ker Dy, i.e.

n
N
Ux = E :C/pso}’jéiov
Jj=1

where C; € R are some constants.

Step 4. Proof of the fact that v. = 0. With the help of limit (5.22), below
we show that v, =0. To this end, we again define a non-increasing smooth
cut-off function y : [0, c0) — R such that y(r) =1 for 0 <r <1 and y(r) = 0 for
r>2. Then for every Re (0,00) we define the function yg(y) := x(|¥|*/R?)
that satisfies the inequality

x|l c2exrry < const  for all R> 1.

Since & — v, in W22(R"), for every R > 0 we also have ygbp — ygUs in
W?22(R"). Then the compact imbedding W?22(R") — L*(supp(yg)) implies

|20k — xRV 2Ry — O for k — oo. (5.39)
On the other hand, because of (5.18) and (5.28), for every R > 1 it holds
12 ROkl c242(rm) < comst. (5.40)
Hence, from (5.39) and (5.40) we easily get
1220k = 2RVl cteo(supp(re)) — O for k — oo. (5.41)

Indeed, suppose that (5.41) is not true. Then there exists ¢ > 0 and a subse-
quence ygby, Of ygix such that

X &0k — xRVl C1o(supp(ypy = ¢ for all j=1,2,.... (5.42)
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Due to the compact imbedding C>**(supp(yg)) — C'**(supp(xz)) and esti-
mate (5.40), this new sequence yr0i, contains a subsequence converging in
C*(supp(yz)) to a certain function wg and [jwg = XRUs || crvxgsupp(re)) = € (Cf
(5.42)). But this contradicts to the limit (5.39). Hence, the limit (5.41) holds
true.

Taking into account that p (0) = 1 and V,p (0) = 0, the limit (5.41) implies
that

V,61(0) = Vy0,(0) = > CV,0,,®¢,(0)  for k — oo, (5.43)
Jj=1

On the other hand, direct calculation with the help of definition (5.25) and limit
(5.22) yields

V,0(0) = Vy(uk(Tn;,lm(J’»ps(Y))|y:0 = ekQ(x«Sk,rn)71quk(xak-rn) -0,

where we used the facts that x,,, — & for ¢ — 0 and that Q(&) is a non-
degenerate matrix. Now comparing the latter limit with formula (5.43) we
obtain V,v,(0) = 0. Therefore considering the right-hand part of (5.43) as an
n-dimensional linear system with respect to C;, and taking into account that
the (n x n)-matrix 0,,0, ®¢,(0) is non-degenerate (see (3.50) and (1.11)) we
come to the conclusion that C; =--- = C, =0, and hence v, = 0.

The latter result has an important consequence: If we substitute v, =0
into limit (5.41) and apply definition (5.25), we easily get that for every fixed

R >1 it holds

-1
||XR(uk ° Tak,m)||C‘+"(supp(;{R))

< const||x gDl c1++( —0 for k — co. (5.44)

supp(xr))

This limit plays a crucial role in the next step.

Step 5. Construction of contradiction. Now we have all necessary ingre-
dients to demonstrate that assumptions (5.18) and (5.19) do result in limit
(5.24). In particular, above we have proved that o, = 0. Substituting this
into formula (5.20) we obtain

HEﬂ/c”k = 0uf (- nﬂ/r?k.,m’gk)ukHa,ak;Q —0 for k — oo.
The latter limit can be further reduced to limit (5.24) if we show that the

following two relations hold true

— 0 for k — oo, (5.45)

o, &3 2

813 Zbi(')éx‘uk
i=1

10t s Wemsei) = 0uf (50,0 )ukll, o0 — 0 for k — 00, (5.46)
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First limit (5.45) is trivial. It follows from the assumption (5.18) and the
estimate

Ek Z bi(')ax;uk
i=1

< const max ||3kaxf”k“x,sk;9 =< COHStHukHZJfom:k;Q

o, &3 2 '

that is a consequence of inequalities (6.8), (6.9) and (6.11) from Appendix.
To justify limit (5.46), we write the triangle inequality

1@t s Woms &) = 0uf (+50,0))uel], 4, 0
< M0uf o W ams ex) = 0uf (-5 Py © Ty my 0))ttelly 0
(0] @y © T 0) = 0uf (6,0, 0t (547)
Since the structure of formal asymptotics #; , (see Theorem 3.1) implies that
[ Hom = @, © Tomllyng = Ole)  for & — 0,
we easily get the estimate
10uf (s Wemy€) = 0uf (-, Pey © Teom, O)|, o0 = Ole)  for & — 0.

Hence, taking into account that [[u|l,, ..o <1, with the help of inequalities
(6.9) and (6.11), we find that the first term in the right-hand part of formula
(5.47) vanishes for k — oo.

For the last term in the right-hand part of formula (5.47), we write the
inequality

||(auf('7 ¢§o o T,%m,()) - auf('7070))uk”zx,gk;9

1
e H J (')5/’(, Z@go o Tg,“,n,O)dl(@éu (¢} Tek’m)uk
0

o, &y Q2

o < const||®¢, (o T, !

< COHS'[H(@{O © Tr?k-,m)uk” sk,m)HCi(T,‘.k‘,,,(Q))’

&, &k

where the norm || - ||, ., was estimated by |- || .7, (g according to Remark
5.3. Now employing the notation of the cut-off function y, (see above), we get

—1
1P, (i 0 T )l e, @)

< |||

-1
et m@n e o Tol)lloxr,, @)

+ (1 = xr)Pe, | CH(T, (@)

-1
C"(T(,k_m(g))”uk © Txk,m|
~1
< ||¢ﬁfo||C7(R”)|‘XR(uk ° Tz:k,m)”C“(supp(}(R))

F A = 2R)Pes Nl (supp1 -0 14k 1,0 05 (5.48)
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The sum in the right-hand part of (5.48) tends to zero for k — oo due to the
following argument. Because of the exponential decay of ®¢ (see Remark
1.2), for arbitrarily small y > 0 we can first take R sufficiently large such that
it holds

H(] _XR>¢€VU”C“(supp(lf}5R))Huk”a,ek;Q <7 for all k=1,2,....

Then fixing this R and applying relation (5.44), we can choose sufficiently large
k to obtain

||¢§o||C"(R”)||XR(uk ° Tsz,lm)HC"(supp(ZR)) =7

Thus we have justified limit (5.46).

Recall that obtained limits (5.45) and (5.46) result in another limit (5.24).
Therefore we can apply Theorem 6.1 from Appendix to relations (5.21) and
(5.24).  As a result we get ||ukll,,, ..o — 0 and this together with another limit
or — 0 constitutes the necessary contradiction. Now, Lemma 4.1 provides us
with the required estimate for the inverse operator F) (0,0)71 and the claimed
assertion follows from our generalized Implicit Function Theorem. O

ProOF OF THEOREM 5.1. Translating the assertion of Theorem 5.2 into
original settings we obtain the solution to problem (1.1)

U, = {;‘zl)x -|- %{;,m,a},a
where |(v;, )|y, = ||Us||2+(x,8;.Q + o] = O(e™1) for & — 0 (see estimate (5.16)).

Then recalling that % ,, 0 = #: » and taking into account inequality (5.10) we
derive the estimate

|, — %,ﬂleJra,e;Q < 82||08||2+o¢,3;9 + e, m, 0, — %&m,onzw,s;g = O(Em_l)-

Note that the accuracy of difference %, ,, 5, — %.m,0 i1s dominating in the latter
expression. Now since m > 2, direct calculation with the help of relation (5.2)
yields

||1/l£ - %7m*2||2+1,s;9 < ||u8 - Wﬁam||2+x,s;9 + ||ng - W&m*2H2+x,£;Q = O(Sm_l)7

and this after reindexing m’ = m — 2 gives the claimed result (5.1).
The second assertion of theorem is trivial, since for every ¢ e (0, 00) and
every ue C***(Q) we have

(™2 = Hem), )y, = & 2l = Himllo o

That ends the proof. ]
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6. Appendix: Schauder type estimates in Holder spaces with e-dependent
norms

Let Q be a bounded domain in R” with smooth boundary 02 and ¢ a
scalar positive parameter. We consider the singularly perturbed linear elliptic
operator

L= ¢ Z O, (aj(x,€)0u) + c(x, e)u (6.1)

i,j=1

defined in 2, which is equipped with the natural boundary operator

Nou = ¢ z": ajj(x, &) vi(x)0yu (6.2)

i,j=1

defined on 0Q2, where v; are the components of the unit outer normal at 0Q.
Introducing weighted e¢-dependent norms in Holder spaces, we modify some
well-known results of the Schauder theory for the composite operator (%, .A4;)
in a way to produce the upper bound estimate for inverse operator (%, JVS)A,
which is uniform with respect to & — 0.

For this we recall that for any A€ (0,1) function u is called Holder
continuous with exponent A in £ if the seminorm

|u(x) — u(y)|
[U].0 = sup ————> (6.3)
5Q ny;yg |x — ¥

is finite. Respectively, for any integer k >0 we define the Holder space
C*(Q) as a subspace of C¥(Q) consisting of all functions u with the finite
norm

llissso = llullge + ‘S?I;([Dﬂu]i;97 (6.4)
=
where
k
[ully.o ==Y _ sup sup|[D*ul
e

and a standard notation for multi-index u was adopted.

If domain @ belongs to a class C** with k> 1 (see corresponding
definition in [17, Sec. 6.3]), then one can naturally define a Banach space
CM4(0Q) with the norm

H“Hk;ag = irll]fHU”k;Q? (6.5)
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where U denotes a C***(Q)-extention of function u on Q and the infimum
is taken over all possible extensions U. Since the set of such extensions U is
nonempty (see Lemma 6.38 in [17]), definition (6.5) is always correct.

To eliminate the singularity occurring for ¢ — 0 in operators %, and A%,
one might employ a simple coordinate transformation 7, :R" — R” defined
for all ¢ € (0, c0) with the formula T,x := x/¢. Indeed, in the new coordinates
these differential operators have regular coefficients and read as follows

=" 0y, (ay(ey,2)d,) + c(ey, )v,

ij=1

N = Z aij(ey, e)vi(ey)oyv.

However, the former acts now in the e-dependent domain Q/e:= T,(Q),
whereas the latter acts on the e-dependent surface 0Q/e:= T,(0Q2). Taking
this into account we define the new e-dependent norms

k
Hu||k+/lﬁs;_(2 = ||u o Tsil||k+:x;.Q/e Z’S] Sup Ssup |Dﬂu| + 6k+; sup [DI‘ ]A Q (66)
=0 lu=j 2 |ul=k
and
-1
H“||/c+;.,f.;,ag = [luoT, ||k+/l;69/m (6.7)

in Holder spaces C**4(Q) and C**(0Q), respectively. Such norms turn out
to be a natural setting for analysis of singularly perturbed composite oper-
ator (%, /). In particular, they satisfy a series of inequalities with a simple
explicit dependence on parameter ¢. We present these inequalities in the
following lemma.

LEmMA 6.1. Let k>0 be an integer and e (0,1). Then for any
€ (0,00) it holds:

min(1’3k+;')||“||k+i;g < ulliss e
< max(1L, e ull ;o Sfor all ue C*(Q), (6.8)
HuUH/L;::.Q =< Hu”ﬂ,e;Q”U”l,a;Q f()r all u,ve C)(‘(_Q) (69)

Moreover, if k=1 then it holds:
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min(lang)H”HkH;aQ < etlligs, e 00
< max(L,e"™)|ully 00 for all ue C*4(0Q), (6.10)
||u||k_1+l’£;9 < C(n,k, ’UH“”kH,g;Q for all ue Ck“'(é), (6.11)

where C(n,k,]) is a constant independent of ¢ and Q.

ProoF. Inequalities (6.8)—(6.10) follow directly from definitions (6.5)—(6.7).
To verify the inequality (6.11) we first write the estimate

8k71+i sup [Dﬂ”],l;g

|ul=k—1

, DH _ DH A
<& sup | sup (2|DHul)' sup| u(x) u()l

lp|=k—1 Q x,yeQ, \x — y|}~
X#Y
< sup <sup (23"1|D”u|)1_'1> sup <sup (nskD”u))V)
lul=k-1\ @ =k \ 2
< C*(n7ka/1)||u”k+/l,e;97

where C.(n,k,A) > 0 is a constant independent of ¢ and 2. Then taking into
account definition (6.6) and denoting C(n,k,1) =1+ C.(n,k,.) we obtain the
claimed inequality (6.11). O

Now we are ready to formulate and prove the main statement concerning
the upper bound estimate of inverse operator (;”{;,e/i/g)fl.

THEOREM 6.1. Let Q be a bounded domain in R" of class C*** with a
given o€ (0,1).  Suppose that the following assumptions hold:
(i) For every &> 0 it holds ay(-,¢) € C'**(Q) and c(-,¢) € C*(Q). Fur-
thermore, there exists a constant M > 0 such that

||al'j<'58)||1+a;97 ||C('78)||oc;.(2 <M fOV all ¢ e (Oa OO) (612)

(i) There exist constants k >0 and cy > 0 such that

n

> ay(x,e)éE = e for all (x,6,¢) € Qx (0,0) xR, (6.13)

i,j=1
and c¢(x,e) < —co  for all (x,¢) e 2 x (0, 00). (6.14)

Then there exist & >0 and Cy >0 such that for all ee(0,¢) and all
ue C***(Q) it holds

[Ull245,;0 < ColllZetl] 0 + [Nt 115,0:00)-
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ProoF. We base our proof on Lemma 4.1. First we remark that

inequality (6.8) implies the equivalence of norms |- |, .o and |-l .0
for any k> 0. Similarly, from inequality (6.10) follows the equivalence of
norms |- l41; .00 @nd |- |4 7.00 With kK >1. Hence, taking into account

classical results of the theory of linear elliptic operators (see Theorem 3.2 in
[23]), we easily see that the operator

(zv*/t/l) : (C2+‘1(§)7 ” : ||2+ac,1:;9) - (Ci(g)i H ! ”oc,z:;.Q) X (ClJrl(aQ)’ ” : HlJrQ(,II;@.Q)

is a Fredholm operator of index zero.
Let & € (0,00) and u; € C***(Q) be sequences with

k21,600 = 1 (6.15)
and
&k + 1 Lokl 0 + 1 Vet 0 000 = 0 for k=00 (6.16)
We are going to demonstrate that these two assumptions actually imply
||uk|\2+%£k29 -0 for k — o (6.17)

what is the necessary contradiction.
First we will show that assumption (6.16) together with properties (6.12)—
(6.14) results in the uniform estimate

llurellg.q — O for k — 0. (6.18)

Indeed, for each u; we can construct two functions of the following form

uki(x) = uk(x) t K(H%kuk”oc,sk;!) + ||‘/V8/cuk||l+oc,ek;6!2)

|
[l ) e~ . dis(,02) ).

where K is a positive constant to be chosen later, and y:[0,00) = R is a
smooth cut-off function such that

2(r)=1 for 0<r<d and y(r)=0 for r> 20,

with d > 0 being a fixed number, small enough to guarantee that for every
x € Q satisfying dist(x, 0Q) < 20 there exists the only point { € 0Q2 such that
dist(x,{) = dist(x, Q). Then simple calculation and estimate (6.13) yield

. . . 1 ¢
i‘/‘/ﬁkuki(x) = iJnguk(X) + H‘/‘/Skuk”l—»—ot,sk;ﬁ[); Z aﬁ(x’ S/C)Vi(x)vj(x) >0
=1
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for all xedQ. On the other hand, using assumption (6.12) we easily check
that for every ¢e€ (0,1) it holds

2 ; o, (a,,-(x7 £)dy, ( (%) exp (-i dist(x, a@) ))

Hence, assumption (6.14) allows us to choose K >0 such that for all suf-
ficiently large indices k& with g € (0,1) we have

< const.

0;Q

Lot (x) <0 and Zu (x) =0 for all xe Q.

Then Strong Maximum Principle for linear elliptic operators (see [17, Theorem
3.5]) implies

u(x) >0 and wu (x)<0  for all xeQ,

and this gives (6.18). The latter limit can be easily transformed into a stronger
one. Indeed, since the following inequality holds

' | . Juk () — i (y)|”
il 0 < of sup () ’ T =
X,yef2,
X#y

< 2lluxllo.0) " | nex sup sup D u |
lul=1

assumption (6.15) and limit (6.18) guarantee that
ltrell 5, 0.0 — O for k — oo. (6.19)

To proceed further we remark that for every ¢ e (0,1) estimates (6.8) and
(6.10) imply

EaHu”a;Q =< Hu”a,a:_() =< Hu”a;[) for all ue Ca(‘é)7
1 1
e +“Hu“1+a;89 =< ||qu+o:.,f:;(?.Q < Hu||l+oz;(7(2 for all ue C +x(69)7 (620)

respectively. Hence, assuming without loss of generality that ¢, <1, and
applying inequality (6.9), we get the limit

n

Z aij('78k)ax,axluk

i,j=1

240
&k

o; Q

n

2
& E @i+, &k ) Ox; O, U

i j=1

<

o, ;2



86 Oleh OMEL’CHENKO and Lutz RECKE

n
81% Z axiai/('v sk)ax/uk

ij=1

< ||$9kuk||1.sk;!2 +

o, &5 Q

F el el olluelly o — 0 for k— o, (6.21)

where all the terms in the right hand part of (6.21) vanish because of assump-
tions (6.12), (6.15) and limits (6.16), (6.19).

According to classical Schauder estimates for linear elliptic operators (see
for example Theorem 6.30 in [17]), there exists C; = Ci(n,o,x, M,2) >0
which is independent of ¢, such that for every u e C***(Q) it holds

n

Z aij(-,€)0x,0xu

ij=1

[ullz120 < Ci (
o Q

n

S ay(en()ogu

i,j=1

+

+ ||u||0:9>-
140500

Multiplying both sides of this inequality with &2** we get

n

Z ajj(-,&)0x,0xu

|50 < € (8”“
i, j=1

o Q

n

£ D ay(c ()

i,j=1

4 81+a

+ 32+“||”|0;Q>~ (6.22)
1405002

Hence, taking into account previously obtained estimate (6.21), assumptions
(6.15), (6.16) and inequality (6.20) we obtain from (6.22) that

& ukllpyo — 0 for k— oo. (6.23)
Now, the last step is to derive from limits (6.19) and (6.23) the necessary
contradiction (6.17). For this we employ the interpolation inequality (see
Lemma 6.3.1 in [21])
lullze < QP ully g + & + Dllull.q)
that holds true for all 0 <s <2+ o and ¢€ (0,00) with a positive constant
G, = Cy(n,a,5,Q) which is independent of &. Indeed, due to limits (6.19) and
(6.23) we easily get

éklluklly.o — 0 and s,§||uk|\2;9—>0 for k — oo.
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Thus, all terms in the definition of norm |luk|l,,, .o vanish when k — oo and
limit (6.17) does hold. This means that Lemma 4.1 works and this ends the
proof. ]

REMARK 6.1.  The prove of Theorem 6.1 can be easily modified to cover
the case of Dirichlet boundary conditions. In result we obtain the following
statement.

Suppose that all assumptions of Theorem 6.1 are fulfilled. Then there exist
g0 >0 and Cy >0 such that for all ¢ € (0,e) and all ue C**(Q) it holds

[ull212,60 < Colll ety .00 + [[Ull214, 0 00)-
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