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Abstract. For d an m-tuple of analytic functions, we define an algebra

Hy
d; gen, contained in the bounded analytic functions on the analytic polyhedron

fkd lðzÞk < 1; 1a lamg, and prove a representation formula for it. We give con-

ditions whereby every function that is analytic on a neighborhood of fkd lðzÞka 1;

1a lamg is actually in Hy
d; gen. We use this to give a proof of the Oka extension

theorem with bounds. We define an Hy
d; gen functional calculus for operators.

1. Introduction

In [4] a new proof of the Oka Extension Theorem for p-polyhedra was

given using operator-theoretic methods. While the proof used both the func-

tional calculus for commuting operator-tuples and the Oka-Weil approximation

theorem for analytic functions defined on a neighborhood of p-polyhedra, it

had the novel feature that it revealed norms for which extensions were obtained

with precise bounds.

In this paper we shall improve upon the results from [4] in a number of

ways. First, we shall eliminate our reliance on the functional calculus for

general operator-tuples developed by J. Taylor, and in its place, use a simple

functional calculus for commuting diagonalizable matrix-tuples together with

a technical axiom described in Section 3 of the paper. Secondly, we shall not

require the Oka-Weil approximation theorem. Rather, using our technical

axiom we shall give an original proof of the stronger Oka Extension Theorem

[10] that is entirely elementary in nature. Finally, rather than working on

p-polyhedra, we shall work with analytic polyhedra defined in general domains

of holomorphy.

Once the program described in the above paragraph is carried out, the

door is opened for generalization of Oka and Cartan like results in several

complex variables that involve the existence of extensions of holomorphic
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functions. We illustrate this point by giving a proof of a special case of

the Cartan Extension Theorem for holomorphic functions defined on analytic

varieties in domains of holomorphy.

Here is a prototypical example.

Example 1. Let A ¼ HyðD2Þ, the algebra of all bounded analytic

functions on D2. It was shown in [1] that a function f is in HyðD2Þ and

has norm less than or equal to 1 if and only if there is a graded Hilbert space

L ¼ L1 lL2 and a unitary operator V : ClL ! ClL, which can be

written in block form as

V ¼

C L

C A B

L C D

� �
;

so that, writing P1 for the projection from L onto L1 and P2 for the

projection from L onto L2, we have

fðzÞ ¼ Aþ Bðz1P1 þ z2P2Þ½IL � ðz1P1 þ z2P2ÞD��1
C: ð1:1Þ

If now T ¼ ðT 1;T 2Þ is a pair of commuting operators on a Hilbert space H,

one can modify (1.1) to

fðTÞ ¼ IH nAþ IH nBðT 1 nP1 þ T 2 nP2Þ

½IHnL � ðT 1 nP1 þ T 2 nP2ÞIH nD��1
IH nC: ð1:2Þ

Formula (1.2) makes sense as long as the spectrum of the operator

ðT 1 nP1 þ T 2 nP2ÞIH nD

does not contain the point 1. This will be guaranteed if T 1 and T 2 both have

spectrum in the open disk D. If, in addition, one assumes that they are both

strict contractions (i.e. have norm less than one), then it can be shown that the

formula (1.2) gives a contractive HyðD2Þ functional calculus for T . Indeed,

the contractivity follows from calculating I � fðTÞ�fðTÞ and observing that it

is positve; the fact that the map is an algebra homomorphism follows from

observing that in both (1.1) and (1.2), if one expands the inverse in a Neumann

series, one gets an absolutely convergent series of polynomials, provided kzk
(respectively, kTk) is less than one.

In [4], Example 1 was generalized to polynomial polyhedra as follows.

Let d ¼ ðd1; . . . ; dmÞ be a polynomial mapping, which we think of as a map

into Cm with the ly-norm. Let
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Gd ¼ fz A Cd : kdðzÞk < 1g;

Kd ¼ fz A Cd : kdðzÞka 1g;

and for any domain WHCd let OðWÞ denote the algebra of holomorphic

functions on W. Let us use CLðHÞd to denote the set of all commuting

d-tuples of bounded linear operators on the Hilbert space H. Define the

family of operators Fd by

Fd ¼ fT A CLðHÞd : kdðTÞka 1g: ð1:3Þ

Then define an algebra Hy
d of holomorphic functions on Gd by

Hy
d ¼ ff A OðGdÞ : supfkfðTÞk : T A Fd and sðTÞHGdg < yg: ð1:4Þ

There is a representation formula for functions in Hy
d very similar to (1.1); this

generalizes to operators just as in (1.2). It was shown in [4] that this leads not

only to a new proof of the Oka extension theorem [10], but that it gives sharp

bounds for the norms of the extensions, which the function theory approaches

do not yield.

1.1. Main results. The definition of Hy
d , and also of Fd if d is allowed to

be a holomorphic mapping on some domain, has the drawback that it requires

knowledge of the Taylor spectra of the tuples T . In Section 2 we define

versions of these objects in a more direct and elementary way that avoids

Taylor’s theory. This goal is accomplished through restricting our use of

operators in defining norms to the diagonalizable, finite dimensional case.

For commuting diagonalizable matrices there is no mystery to the functional

calculus: one simply chooses a basis of eigenvectors, and applies the function to

the joint eigenvalue.

In Section 2, we describe a set of matrices Fd;gen WFd, and algebras

Hy
d;gen, and a localized version Hy

d;genðEÞ, that are substitutes for Hy
d;gen. In

Section 3 we prove a representation theorem for Hy
d;gen and Hy

d;genðEÞ.
If U is a domain of holomorphy, and d A OðUÞm is no longer assumed

to be polynomial, the formal calculations work just as before, leading to an

algebra Hy
d;gen of functions on Gd ¼ fz A U : kdðzÞka 1g. To be useful, we

would like to know what functions are in Hy
d;gen. In particular, we define d to

be utile (Definition 4 below) if every function holomorphic on a neighborhood

of Kd is in Hy
d;gen.

In Section 4, we prove two theorems that give conditions for d to be utile

in terms of operator theoretic properties of the set Fd;gen. These conditions

are not always satisfied. However, we show in Section 5 that one can add

more functions to the set d to get a new family g so that Kg ¼ Kd, and hence
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the function theory is unchanged, but so that g is utile, and therefore one can

attack function theory problems using these operator theory tools.

To illustrate the use of these ideas, in Section 6 we prove refinements of

the Oka extension theorem and the Oka-Weil theorem. In Section 7 we prove

a special case of the Cartan extension theorem.

1.2. Functional calculus. If A is a topological algebra that contains the

polynomials C½z1; . . . ; zd �, and if T ¼ ðT 1; . . . ;T dÞ is a d-tuple of commuting

operators on a Banach space X, an A-functional calculus for T is a continuous

homomorphism p from A to BðXÞ, the bounded linear operators on X, such

that pðzlÞ ¼ T l for each 1a la d.

In the ground-breaking papers [15, 16], J. L. Taylor developed a func-

tional calculus for the algebras OðUÞ, where OðUÞ denotes the algebra of all

holomorphic functions on the open set U JCd . This was a multi-variable

version of the Riesz-Dunford calculus in one variable. He also defined a

spectrum for commuting d-tuples, now called the Taylor spectrum, and showed

that for any commuting d-tuple T , there is an OðUÞ functional calculus for T if

and only if the Taylor spectrum of T lies in U .

A drawback to Taylor’s approach is that it is often di‰cult to deter-

mine what the spectrum of T is, and the formulas defining fðTÞ can be too

complicated to handle. (We shall routinely write fðTÞ for pðfÞ.)
In Section 8 we propose a di¤erent approach. The key idea is that we

choose some basic functions d l , and then define an Hy
d;gen functional calculus

by writing down a relatively simple formula for fðTÞ in terms of dðTÞ, that

gives a well-defined operator whenever kdðTÞk < 1.

The formula (a modification of (1.2)) can be thought of as a multi-

variable version of the Sz.-Nagy-Foiaş functional calculus, which is an

HyðDÞ functional calculus for (single) Hilbert space contractions that

have spectrum in the open unit disk D, or, more generally, have no unitary

summand [14]. Our approach generalizes ideas of C.-G. Ambrozie and D.

Timotin [5], of J. A. Ball and V. Bolotnikov [6], and of the authors and

N. J. Young [4].

Our approach leads in Section 8 to a functional calculus for any

p-polyhedron (a set of the form Kd), or, more generally, any rationally

convex set. The rational Oka-Weil theorem asserts that any holomorphic

function on a neighborhood of a rationally convex set is a limit of rational

functions, so at first blush the existence of the functional calculus is un-

remarkable. However, our functional calculus comes with a norm control, and

this is its key property. In Theorem 10, we show there is no ambiguity: when

fðTÞ is defined both by our definition and by Taylor’s, the two definitions

coincide.
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2. Hy
d;genðEÞ

Let U be a domain of holomorphy in Cd , fixed throughout the paper.

We will take d ¼ ðd1; . . . ; dmÞ A OðUÞm to be an m-tuple of non-constant

holomorphic functions on U and think of it as a map into Cm with the

ly-norm. (More generally, one can consider d as a map into the r-by-s

matrices. This is natural if one wishes to define a functional calculus not

for d-tuples T of commuting contractions, but defined by other inequalities, for

example if T is a row-contraction, defined by T 1T 1� þ � � � þ T dT d� a I . For

convenience we will not do our calculations in this generality.

We define two analytic polyhedra in U by Gd ¼ d�1ðDmÞ and Kd ¼
d�1ðDmÞ. We shall always assume that Kd is compact. If T is a d-tuple

of pairwise commuting operators acting on an N-dimensional Hilbert space,

we say that T is generic if there exist N linearly independent joint eigen-

vectors whose corresponding joint eigenvalues are distinct (equivalently, T is

diagonalizable and sðTÞ has cardinality N). If L ¼ fl1; . . . ; lNg is a set

consisting of exactly N distinct points in Cd , we let GL denote the set of

generic d-tuples of pairwise commuting operators T acting on CN with

sðTÞ ¼ L. We shall let superscripts identify components of d-tuples and sub-

scripts identify components of N-tuples. Thus, if T ¼ ðT 1; . . . ;T dÞ A GL, then

there exist N vectors k1; . . . ; kN A CN such that

T rkj ¼ l r
j kj

for 1a ra d and 1a jaN. If T A GL and f is holomorphic on a neigh-

borhood of sðTÞ, then we define f ðTÞ to be the unique operator on CN that

satisfies

f ðTÞkj ¼ f ðljÞkj; 1a jaN: ð2:1Þ

We now define generic and local versions of the sets Fd, H
y
d and the norm

k � kd from [4]. Fix a set EJGd and let EC denote the space of complex

valued functions on E. For finite LHGd, let Fd;L be the set in GL defined by

Fd;L ¼ fT A GL j kdlðTÞka 1; l ¼ 1; . . . ;mg: ð2:2Þ

We then define a collection of generic operators, Fd;gen, by setting

Fd;gen ¼ 6
L finite
LHGd

Fd;L: ð2:3Þ

For f A EC, define k f kd;gen by the formula,

k f kd;gen ¼ sup
T AFd; gen

sðTÞJE

k f ðTÞk: ð2:4Þ
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Note that the notation, k f kd;gen sees E due to the fact that E ¼ dom f .

Finally, we define Hy
d;genðEÞ to consist of all f A EC such that k f kd;gen is

finite.

Before continuing, we remark that the space Hy
d;genðEÞ, as just defined,

refines the space Hd considered in [4] in two ways. First, by taking supremum

over generic operators rather than operators with spectrum in Gd, use of the

Taylor functional calculus is avoided (though a priori it may be the case that

k � kd;gen 0 k � kd). Secondly, we have localized the definition of Hy
d through

the introduction of the set E. This represents a considerably more general

scheme than considered in [4]. In particular, our work here will make it

clear that many of the proofs in [4] do not require that the elements of Hy
d

be holomorphic. However, when E ¼ Gd and f ¼ f is holomorphic on Gd it

turns out that k f kd;gen ¼ kfkd—see Theorem 1.

The following proposition is a straightforward analog of [4, Proposition

2.4]. For E a set, we let lyðEÞ denote the Banach algebra of bounded

complex valued functions f on E equipped with the norm,

k f ky ¼ sup
e AE

j f ðeÞj:

Proposition 1. Hy
d;genðEÞ equipped with k � kd;gen is a Banach algebra.

Furthermore, Hy
d;genðEÞJ lyðEÞ and k f ky a k f kd;gen for all f A Hy

d;genðEÞ.

Proof. The only assertion that is not immediately obvious is that

Hy
d;genðEÞ is complete. Let fn be a Cauchy sequence in Hy

d;genðEÞ. It con-

verges in lyðEÞ to a function f . For any T in Fd;gen with sðTÞJE, we have

fnðTÞ ! f ðTÞ. Therefore

k f ðTÞka sup
n

k fnðTÞka sup
n

k fnkd;gen;

so f is in Hy
d;genðEÞ as required. r

Further useful regularity of the elements of Hy
d;genðEÞ is revealed in the

following proposition. For a1; a2 A D, we recall that the Carathéodory pseudo-

metric, d, is defined on D by the formula,

dða1; a2Þ ¼
a2 � a1

1� a1a2

����
����; a1; a2 A D:

For any Banach space X, we shall let ball X denote the closed unit ball of X.

Proposition 2. If f A ball Hy
d;gen and l1; l2 A E, then

dð f ðl1Þ;Fðl2ÞÞa max
1alam

dðdlðl1Þ; dlðl2ÞÞ: ð2:5Þ
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Proof. Fix l1; l2 A E with l1 0 l2 and set L ¼ fl1; l2g. For T A GL, let

yT denote the angle between the eigenspaces of T . By the remark following

(2.7) in [2], elements of GL are determined uniquely by this angle between their

eigenspaces. Furthermore, by the calculations immediately following (2.13) in

[2], if g is a function defined on L and T A GL, then

kgðTÞka 1 , sin yT b dðgðl1Þ; gðl2ÞÞ: ð2:6Þ

Recalling (2.2), we see that (2.8) implies that if T A GL, then

T A Fd;L , sin yT b max
1alam

dðdlðl1Þ; dlðl2ÞÞ:

In particular, there exists T A Fd;L such that

sin yT ¼ max
1alam

dðdlðl1Þ; dlðl2ÞÞ:

As k f ðTÞka 1 for this T , we deduce from (2.6) that (2.5) holds. r

Corollary 1. If f A Hy
d;genðEÞ, then f is continuous on E.

Proof. If f 0 0 in Hy
d;genðEÞ, then Proposition 1 implies that k f k�1

d;gen f is

continuous. r

The equivalence of conditions (a), (b), and (c) in the next proposition is an

exact analog of from [4, Proposition 2.7].

Proposition 3. Let EHGd be finite. The following are equivalent.

(a) Hy
d:genðEÞ ¼ lyðEÞ:

(b) l rjE A Hy
d;genðEÞ for r ¼ 1; . . . ; d:

(c) Fd;E is bounded.

(d) djE is one-to-one.

Proof. It is obvious that (a) implies (b) and that (b) implies (c).

ðcÞ ) ðdÞ: Let E ¼ fe1; . . . ; eNg, and assume that dðe1Þ ¼ dðe2Þ. Choose

vectors k1; . . . ; kN so that fk2; . . . ; kNg are orthonormal, and k1 is orthogonal to

fk3; . . . ; kNg, but at angle y to k2. Then T defined by T rkj ¼ erj kj is in Fd;E ,

but the norm of T will tend to infinity as y tends to 0.

ðdÞ ) ðaÞ: It is su‰cient to prove that for each 1a jaN, the function

fj defined by

fjðeiÞ ¼ 0; i0 j; fjðejÞ ¼ 1

is in Hy
d;genðEÞ. Since d is one-to-one, there exists some function gj : dðEÞ ! C

such that gj � d ¼ fj. To prove that fj is in Hy
d;genðEÞ, it su‰ces to prove that

gj is bounded on m-tuples of commuting generic contractions. This latter

assertion follows from Lemma 1, below. r
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Lemma 1. Let L ¼ fl1; . . . ; lNg be a set of N distinct points in Dm. The

function gj, defined on L by gjðliÞ ¼ dij , is bounded on m-tuples of commuting

contractions.

Proof. For each i0 j, choose ri so that lri
j 0 l ri

i . Define h by

hðlÞ ¼
Y
i0j

lri � lri
i

1� lri
i l

ri
:

By von Neumann’s inequality, each factor in hðTÞ has norm at most one if T is

an m-tuple of commuting contractions. Let gj ¼
1

hðljÞ
h. r

3. Representing elements of Hy
d;genðEÞ

In this section we shall derive three conditions that are necessary and

su‰cient for a given f A EC to be an element of ball Hy
d;genðEÞ. These con-

ditions, which are summarized in Theorem 1 below, represent the appropriate

extension of [4, Theorem 4.5] to the Hy
d;genðEÞ setting. To state the theorem

will require a number of definitions.

Definition 1. Let f be a function on E. We say a 4-tuple ða; b; g;DÞ is

a ðd;EÞ-realization for f if a A C and there exists a decomposed Hilbert space,

M ¼ 0m

l¼1
Ml , such that

( i ) the 2� 2 matrix

V ¼ a 1n b

gn 1 D

� �
;

acts isometrically on ClM,

( ii ) for each l A E, dðlÞ acts on M via the formula,

dðlÞð0m

l¼1
xlÞ ¼ 0m

l¼1
dlðlÞxl ; ð3:1Þ

(iii) for each l A E,

f ðlÞ ¼ aþ hdðlÞð1�DdðlÞÞ�1g; bi: ð3:2Þ

Definition 2. For EJGd, we let CdðEÞ denote the collection of func-

tions h defined on E � E that have the form

hðl; mÞ ¼
Xm
l¼1

ð1� dlðmÞdlðlÞÞalðl; mÞ; l; m A E;

where for l ¼ 1; . . . ;m, alðl; mÞ is positive definite on E.
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Lemma 2. If EHGd is finite and f A ball Hy
d;genðEÞ, then 1� f ðmÞ f ðlÞ A

CdðEÞ.

Proof. This follows from a Hahn-Banach separation argument, as in

[3, Section 11.1]. In brief, let R be the set of functions on E � E. One needs

to show that every real linear functional L on R that is non-negative on the

cone CdðEÞ is non-negative on the function 1� f ðmÞ f ðlÞ. Let V denote the

functions on E, and use L to define a sesqui-linear form on functions on E by

hf;ciL ¼ 1

2
LðcðmÞfðlÞ þ fðmÞcðlÞÞ þ i

2
LðiðfðmÞcðlÞ � cðmÞfðlÞÞÞ:

By a normal families argument, one can show that CdðEÞ is closed, so

fðmÞfðlÞ ¼
Xy
k¼0

fðmÞd1ðmÞkd1ðlÞkfðlÞ½1� d1ðmÞd1ðlÞ� A CdðEÞ:

Therefore the form h� ; �iL is actually positive semi-definite, so after modding

out by a null-space if necessary, one gets an inner product on V. The fact

that L is non-negative on CdðEÞ means that multiplication by each dl is a

contraction on V. Since f is in ball Hy
d;genðEÞ, multiplication by f is also a

contraction, and applying it to the function that is constantly 1, one gets that

0a h1; 1iL � h f ; f iL ¼ Lð1� f ðmÞ f ðlÞÞ;

as desired. r

Definition 3. Let m be a positive integer and H a separable infinite

dimensional Hilbert space. We let Fm denote the collection of pairwise

commuting m-tuples of contractions acting on H. If F A OðDmÞ, we define

kFkm by

kFkm ¼ sup
T AFm

sðTÞHDm

kF ðTÞk: ð3:3Þ

For now, by FðTÞ we shall mean the Taylor functional calculus as defined

in [15]; though we shall see in Section 8 that we can use a much simpler

definition. We let Hy
m denote the set of all F A OðDmÞ such that kFkm < y.

Proposition 4. Hy
m equipped with k � km is a Banach algebra. Further-

more, Hy
m JHyðDmÞ and if F A Hy

m , then supz ADm jFðzÞja kFkm.

Proof. This is proved for example in [4, Proposition 2.4]. r

Lemma 3. If fFng is a sequence in ball Hy
m , F A OðDmÞ and Fn ! F in

OðDmÞ, then F A ball Hy
m .
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Proof. If Fn ! F and sðTÞHDm, then FnðTÞ ! FðTÞ in operator norm,

by continuity of the Taylor functional calculus [15]. Hence, if T A Fm and

sðTÞHDm,

kF ðTÞk ¼ lim
n!y

kFnðTÞka 1:

Therefore kFkm a 1. r

Lemma 4. If F A ball Hy
m , then there exist m positive definite functions on

Dm, A1; . . . ;Am, such that

1� F ðwÞFðzÞ ¼
Xm
l¼1

ð1� wlzlÞAlðz;wÞ

for all z;w A Dm.

Proof. This was proved in [1]. r

Theorem 1. Let EJGd and let f A EC. The following conditions are

equivalent.

(a) f A ball Hy
d;genðEÞ:

(b) ½1� f ðmÞ f ðlÞ� A CdðEÞ:
(c) f has a ðd;EÞ-realization.
(d) bF A ball Hy

m ; El A E f ðlÞ ¼ F ðdðlÞÞ:

Proof. That (b) implies (c) follows from a Lurking Isometry argument.

Indeed, suppose

½1� f ðmÞ f ðlÞ� ¼
Xm
l¼1

ð1� dlðmÞdlðlÞÞalðl; mÞ; ð3:4Þ

where for l ¼ 1; . . . ;m, alðl; mÞ is positive definite on E. For each 1a lam,

find Hilbert space valued functions ul such that

alðl; mÞ ¼ hulðlÞ; ulðmÞi:

Then (3.4) can be interpreted as saying that the map

V :
1

dðlÞð0 ulðlÞÞ

� �
7!

f ðlÞ
ð0 ulðlÞÞ

� �

is an isometry, and this gives the ðd;EÞ-realization.
To see that (c) implies (d), let ða; b; g;DÞ be a realization for f as in

Definition 1. If we define F by the formula,

F ðZÞ ¼ aþ hZð1�DZÞ�1g; bi; ð3:5Þ
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then F A ball Hy
m by [5], and f ¼ F � djE. To see that (d) implies (a), fix

F A ball Hy
m and assume that f ¼ F � djE. If L is a finite subset of E and

T A Fd;L, then dðTÞ A Fm. Hence,

k f ðTÞk ¼ kFðdðTÞÞka 1:

We now turn to the task of proving that (a) implies (b). Assume that

f A ball Hy
d;genðEÞ. Let flkg be a dense sequence in E, and for nb 1, set

Ln ¼ fl1; . . . ; lng. Fix n. As f A ball Hy
d;genðEÞ, f A ball Hy

d;genðLnÞ. Hence,

by Lemma 2, ½1� f ðmÞ f ðlÞ� A CdðLnÞ. As (b) implies (c) and (c) implies (d),

there exists Fn A ball Hy
m such that f jLn ¼ ðFn � dÞjLn.

By Proposition 4, fFng is uniformly bounded on Dm. Hence, there exist

F A OðDmÞ and a subsequence fFnig such that fFnig ! F as i ! y in OðDmÞ.
By Lemma 3, F A ball Hy

m . Furthermore, as f jLn ¼ ðFn � dÞjLn for each

n, f ðlkÞ ¼ F ðdðlkÞÞ for all k. But flkg is dense in E, so that, by Corollary

1, f ðlÞ ¼ F ðdðlÞÞ for all l A E. Consequently, if A1; . . . ;Am are as in

Lemma 4,

1� f ðmÞ f ðlÞ ¼ 1� F ðdðmÞÞFðdðlÞÞ ¼
Xm
l¼1

ð1� dlðmÞdlðlÞÞAlðdðlÞ; dðmÞÞ:

As the functions, alðl; mÞ ¼ AlðdðlÞ; dðmÞÞ, are positive definite on E, this proves

via Definition 2 that 1� f ðmÞ f ðlÞ A CdðEÞ. r

4. Utility

A fundamental fact, which allows for the purely operator theoretic con-

struction in Section 2 to have significance for several complex variables, is that

the elements of Hy
d;genðGdÞ are holomorphic functions on Gd. We adopt the

abbreviated notation, Hy
d;gen, for Hy

d;genðGdÞ.

Proposition 5. Hy
d;gen equipped with k � kd;gen is a Banach algebra. Fur-

thermore, if HyðGdÞ denotes the space of bounded holomorphic functions on Gd

equipped with the sup norm, k � ky, then Hy
d;gen JHyðGdÞ and kfky a kfkd;gen

for all f A Hy
d;gen.

Proof. That Hy
d;gen is a Banach algebra, Hy

d;gen JLyðGdÞ, and

kfky a kfkd;gen whenever f A Hy
d;gen all follow from Proposition 1. That

Hy
d;gen JOðDmÞ, follows from (a) implies (d) in Theorem 1. r

We now come to one of the central points of the paper. Our goal is to

use the operator theoretic construction of Section 2 and the representation

result Theorem 1 to study holomorphic functions on domains of holomorphy.
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If this program is to be carried out, then there must be an ample supply of

holomorphic functions in Hy
d;gen. Thus, the following definition is germane.

Definition 4. Let d A OðUÞm. We say that d is utile if f A Hy
d;gen when-

ever f is holomorphic on a neighborhood of Kd.

4.1. An operator-theoretic characterization of utility. Theorem 2 below gives

a characterization for when a tuple d is utile in terms of the following natural

operator theoretic notions.

Definition 5. Let us agree to say that d is bounding if Fd;gen is bounded,

i.e., for each r ¼ 1; . . . ; d,

sup
T AFd; gen

kT rk < y:

Note that if d is bounding and fTng is a sequence in Fd;gen, then 0y
n¼1

Tn

is a well defined bounded operator.

Definition 6. We say that d is spectrally determining if d is bounding

and if sð0y
n¼1

TnÞHKd for every sequence fTng in Fd;gen.

As we have adopted the strategy of studying holomorphic functions

defined on a neighborhood of Kd, the following technical modification of

the notions of bounding and spectrally determining will prove useful.

Definition 7. We say that d is strictly bounding (resp. strictly spectrally

determining) if there exists t < 1 such that td is bounding (resp. spectrally

determining).

Note that if t < 1, then Fd;gen HFtd;gen so that if d is strictly bounding,

then d is bounding. Likewise, if d is strictly spectrally determining, then d

is spectrally determining. To prove this, assume td is spectrally determining

and let fTng be a sequence in Fd;gen. As Fd;gen HFtd;gen, T ¼ 0
n
Tn is a

well defined operator with sðTÞJKtd HU . Hence, the operators, dlðTÞ,
l ¼ 1; . . . ;m make sense by the Taylor functional calculus. Furthermore, as

Tn A Fd;gen, for each l ¼ 1; . . . ;m,

kdlðTÞk ¼ kdlð0n
TnÞk ¼ k0

n
dlðTnÞka 1:

Hence, by the spectral mapping theorem, sðTÞJKd, as was to be shown.

We used the fact that dlð0n
TnÞ ¼ 0

n
dlðTnÞ. This follows from

Lemma 5.

Lemma 5. Let Hn be a sequence of Hilbert spaces, and let Tn be in

CLðHnÞd . Assume that T :¼ 0
n
Tn is bounded, and its spectrum lies inside

U. Let g A OðUÞ. Then gð0
n
TnÞ ¼ 0

n
gðTnÞ.
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Proof. This result follows from Vasilescu’s construction of the Taylor

functional calculus as an integral of an operator-valued Martinelli kernel (see

[17, Section III.11] or [8]. The integrand for T is the direct sum of the

integrands for each Tn. r

The authors have been unable to resolve fully the following issue.

Question: Does bounding imply spectrally determining?

However, we show in Theorem 2 that utile and spectrally determining are

equivalent, and in Theorem 5 that strictly bounding implies utile.

In some cases Question can be answered.

Proposition 6. Let Kd be a p-polyhedron, i.e. U ¼ Cd , and d1; . . . ; dm are

polynomials. If d is bounding, then d is spectrally determining.

Proof. Fix a sequence fTng in Fd;gen. As d is bounding, T ¼ 0y
n¼1

Tn

is a well defined bounded operator. Furthermore, if p is a polynomial, pðTÞ ¼
0y

n¼1
pðTnÞ. Thus, if 1a lam,

kdlðTÞk ¼ k0y
n¼1

dlðTnÞka 1;

so that sðdðTÞÞJ ðD�Þm. Hence, by the spectral mapping theorem for

polynomials, dðsðTÞÞ ¼ sðdðTÞÞJ ðD�Þm. Thus, sðTÞJ d�1ððD�ÞmÞ ¼ Kd.

r

We now can state our characterization of utility in operator terms.

Theorem 2. Let d A OðUÞm. Then d is utile if and only if d is spectrally

determining.

The proof of Theorem 2 will be presented in Subsection 4.3. The proof

of su‰ciency will be a straightforward operator-theoretic proof that relies on

the Taylor functional calculus while the proof of necessity will rely on some

nontrivial function theory which we discuss in the next subsection. We record

the following simple corollary of Proposition 6 and Theorem 2 for future

reference.

Proposition 7. Let Kd be a p-polyhedron. If d is bounding, then d is

utile.

4.2. Some function theory on domains of holomorphy. In this section we

record some results from function theory on domains of holomorphy that will

be used in the sequel. Recall that OðUÞ is naturally a Fréchet space when

endowed with the topology of uniform convergence on compact subsets of U .

A basic fact which we shall require is the following ‘‘baby’’ Corona Theorem.
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The result is well-known, though we cannot find a reference where it is

explicitly stated. It can be proved by the observation that if a is not in

U�, then the functions Rr
aðlÞ can be chosen to be continuous, because the

maximal ideal space of AðU�Þ is U� (see e.g. [12]). If a A qU , take a

sequence of points an tending to a from outside U� and use a normal families

argument.

Theorem 3. If a A CdnU, then there exist R1
a ; . . . ;R

d
a A OðUÞ such

that

1 ¼
Xd
r¼1

Rr
aðlÞðl

r � arÞ ð4:1Þ

for all l A U.

Recall that if A is an algebra, then a complex homomorphism of A is a

homomorphism defined on A whose target algebra is C. The following result

is also well-known.

Theorem 4. w is a continuous complex homomorphism of OðUÞ if and only

if there exists a A U such that wð f Þ ¼ f ðaÞ for all f A OðUÞ.

Proof. Su‰ciency is obvious. To prove necessity, let lr be the r-th

coordinate function, and define ar ¼ wðl rÞ. If a B U , then applying w to both

sides of (4.1) would yield a contradiction.

If a A U , then by [11, Thm. VII.4.1], for every f in OðUÞ, there are, for

1a ra d, functions Qr in OðUÞ satisfying

f ðlÞ � f ðaÞ ¼
Xd
r¼1

ðlr � arÞQrðlÞ:

Applying w to both sides, we get that wð f Þ ¼ f ðaÞ. r

4.3. The proof of the utility theorem. This subsection is devoted to a

proof of Theorem 2. First assume that d is spectrally determining. Fix f ,

holomorphic on a neighborhood of Kd. We need to show that f A Hy
d;gen. To

that end, fix a sequence, fTng in Fd;gen. As fTng in Fd;gen and d is spectrally

determining, if we set T ¼ 0
n
Tn, then T is a well defined bounded operator

with sðTÞJKd. Hence, as f is holomorphic on a neighborhood of Kd,

f ðTÞ, as defined by the Taylor functional calculus, is a well defined bounded

operator. But f ðTÞ ¼ 0
n
f ðTnÞ by Lemma 5, so k f ðTnÞka k f ðTÞk for all n.

Summarizing, we have shown that if fTng is a sequence in Fd;gen, then

supnk f ðTnÞk < y. Thus, k f kd;gen < y and f A Hy
d;gen.
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Now assume that d is utile. We first show that d is bounding. As

f ðlÞ ¼ lr is holomorphic on a neighborhood of Kd and d is utile, f A Hy
d;gen.

Hence,

sup
T AFd; gen

kT rk ¼ sup
T AFd; gen

k f ðTÞk ¼ k f kd;gen < y:

This proves that d is bounding.

To complete the proof that d is spectrally determining, fix a sequence, fTng
in Fd;gen. As d is bounding, T ¼ 0

n
Tn is a well defined bounded operator.

For definiteness, we assume T is in CLðHÞd . We need to show that

sðTÞJKd.

Since d is utile, OðUÞHHy
d;gen. It follows that the formula

tð f Þ ¼ 0
n
f ðTnÞ; f A OðUÞ

defines an algebra homomorphism, t : OðUÞ ! LðHÞ, with the property that

tð1Þ ¼ 1, and which the closed graph theorem implies is continuous. Let A

be the operator norm closed algebra generated by ran t. Evidently, A is a

commutative Banach algebra with unit, containing the components of T .

We let sAðTÞ denote the algebraic spectrum of T in this algebra A. It

is well known that sðTÞJ sAðTÞ (see, e.g., [8]). Also, by Gelfand Theory,

if X denotes the space of complex homomorphisms of A, then sAðTÞ ¼
fwðTÞ j w A Xg. Thus, the proof of Theorem 2 will be complete if we can

prove the following claim.

Claim 1. If w A X , then wðTÞ A Kd.

To prove this claim we shall require the following simple lemma.

Lemma 6. If d is utile and W is a neighborhood of Kd, then there exists a

positive constant, c, such that

k f kd;gen a c sup
l AW

j f ðlÞj

for all f A HyðWÞ.

Proof. The utility of d guarantees that the formula Lð f Þ ¼ f jGd defines a

linear transformation L : HyðWÞ ! Hy
d;gen. The closed graph theorem implies

that L is bounded. r

We now turn to the proof of Claim 1.

Let w A X and set a ¼ wðTÞ. As w � t is a continuous complex homo-

morphism of OðUÞ, it follows from Theorem 4 that

a ¼ wðTÞ ¼ wðtðlÞÞ ¼ ðw � tÞðlÞ A U :
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To see that a is in Kd, we argue by contradiction. If a B Kd, then there exists

t < 1 such that Kd HGtd and a B Ktd. As Ktd is OðUÞ-convex and a A UnKtd,

there exists a sequence f fkg in OðUÞ such that

sup
l AKtd

j fkðlÞja 1 ð4:2Þ

and

j fkðaÞj ! y: ð4:3Þ

Evidently, (4.2) implies via an application of Lemma 6 that there exists a

constant c such that k fkkd;gen a c. But then,

j fkðaÞj ¼ jwðtð fkÞÞja ktð fkÞka k fkkd;gen a c

for all k, contradicting (4.3). This completes the proof of Claim 1. r

4.4. Strictly bounding implies utile.

Theorem 5. If d is strictly bounding and f is holomorphic on a neigh-

borhood of Kd, then there exists F A Hy
d;gen such that F ¼ f on Gd.

Proof. Suppose that d is strictly bounding and f is holomorphic on a

neighborhood of Kd. Choose t < 1 so that Ftd;gen is bounded, but su‰ciently

large so that in addition, f is holomorphic on Gtd.

We first construct a mapping from t�1Dm into Cd that serves as a left

inverse for d. Fix r. As kl rktd;gen < y, an application of the equivalence of

(a) and (d) in Theorem 1 (with E ¼ Gtd and z ¼ lr) yields Fr A Hy
m with

lr ¼ FrðtdðlÞÞ; l A Gtd: ð4:4Þ

Define C r A Oðt�1DmÞ by setting C rðzÞ ¼ FrðtzÞ for z A t�1Dm. Finally,

amalgamate the functions C r, r ¼ 1; . . . ; d into a mapping, C : t�1Dm ! Cd .

Now, d : Gtd ! t�1Dm and C : t�1Dm ! Cd . Furthermore, (4.4) implies

that C � d ¼ idGtd
. Hence, d is one-to-one, proper, and unramified. As a

consequence, not only does d embed Gtd as an analytic submanifold of t�1Dm,

but V ¼ dðGtdÞ is an analytic variety and o : V ! C is holomorphic on V if

and only if o � d is holomorphic on Gtd. As f is holomorphic on Gtd, it

follows that,

oðdðlÞÞ ¼ f ðlÞ; l A Gtd; ð4:5Þ

defines a holomorphic function, o, on V . By the Cartan extension theorem,

there exists H A Oðt�1DmÞ such that

HðzÞ ¼ oðzÞ; z A V : ð4:6Þ

24 Jim Agler and John E. M
c
Carthy



Comparing (4.5) and (4.6) we see that f ðlÞ ¼ HðdðlÞÞ whenever l A Gtd.

As H A Oðt�1DmÞ implies that H A Hy
m (this follows from Proposition 6 and

Theorem 2), it follows that Condition (d) in Theorem 1 holds. Hence, applying

the equivalence of (a) and (d) in that theorem a second time, we deduce that

f A Hy
d;gen, as was to be shown. r

5. Subordination and utility

If d A OðUÞm and g A OðUÞn are both tuples of non-constant functions,

we say that g is an extension of d if nbm and gl ¼ dl for 1a lam. If g

is an extension of d and in addition, Kg ¼ Kd, we say that g is subordinate

to d. Note that if g is subordinate to d, then Gg ¼ Gd, Fg;gen JFd;gen,

k � kg;gen a k � kd;gen and Hy
d;gen JHy

g;gen.

We now describe a procedure from [4] that is very e¤ective for using

Hy
d;gen to do function theory. Suppose one is given a p-polyhedron, Kd and a

function, f , holomorphic on a neighborhood of Kd. As Kd is a p-polyhedron,

Proposition 7 will imply that f A Hy
d;gen provided d is bounding. While d may

not be bounding, there nevertheless exists a bounding subordinate extension g

of d. As Kg ¼ Kd, the classical function theory has not changed, but now, as

f A Hy
g;gen, the structure theory from Sections 2 and 3 of the paper can be

applied to f . A particularly simple way to construct a bounding subordinate

extension g of d is to set

g ¼ ðd1; . . . ; dm; el1; . . . ; eldÞ ð5:1Þ

where e is chosen su‰ciently small that for each r ¼ 1; . . . ; d, jelrja 1 for all

l A Kd (recall that d is such that Kd is always compact). Note that if one

assumes that Kd HDm (as Oka did), then one can choose e ¼ 1.

In [4] the idea in the previous paragraph was used to give a new proof

of Oka’s Extension Theorem. We give another proof in Section 6 below.

One novel feature of this new argument is that it is valid not only when g

is defined by (5.1), but rather, it merely requires that g is bounding.

Another interesting feature of the argument is that it provides bounds for

the extension.

When one passes from p-polyhedra to the more general case of analytic

polyhedra defined in domains of holomorphy, as in light of Question, the

situation is more complicated. To imitate the argument for p-polyhedra one

now needs to know that there are extensions of d that are spectrally

determining.

Theorem 6. If d A OðUÞm is non-constant, then there exist nbm and

g A OðUÞn such that g is subordinate to d and g is spectrally determining.
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Proof. Without loss of generality, we may assume that d is bounding

and klrkd;gen a 1 for each r. Note that this implies that if T A Fd;gen, then

kT rka 1 for r ¼ 1; . . . ; d. Consequently,

if fTng is a sequence in Fd;gen; then sð0y
n¼1

TnÞJ ðD�Þd : ð5:2Þ

We now define g. Let E ¼ ðD�ÞdnU . (The set E may be empty, in

which case we let g ¼ d, and skip to the last paragraph of the proof ). By

Theorem 3, for each a A E there exist functions R1
a ; . . . ;R

d
a A OðUÞ such that

Xd
r¼1

Rr
aðlÞðl

r � a rÞ ¼ 1 ð5:3Þ

for all l A U . We set

Mr
a ¼ max

l AKd

jRr
aðlÞj ð5:4Þ

and let Ma ¼ ðM 1
a ; . . . ;M

d
a Þ so that kMak, the Euclidean norm of Ma, is given

by

kMak ¼
Xd
r¼1

jMr
a j

2

 !1=2
: ð5:5Þ

We let BaðeÞ denote the Euclidean ball in Cd centered at a and fix positive

s < 1. As E is compact and Ba
s

kMak

� � ��� a A E

� �
is an open cover of E,

there exist a1; . . . ; an A E such that

EH 6
n

i¼1

Bai

s

kMaik

� �
: ð5:6Þ

For r ¼ 1; . . . ; d and i ¼ 1; . . . ; n we define functions rr
i A OðUÞ by the

formulas,

rr
i ¼

1

Mr
ai

Rr
ai
: ð5:7Þ

Finally, define an extension g of d by setting

g ¼ ðd1; d2; . . . ; dm; r11 ; r21 ; . . . ; rd
1 ; . . . . . . ; r

1
n ; r

2
n ; . . . ; r

d
n Þ: ð5:8Þ

Note that (5.4) and (5.7) imply that for each r and i, maxKd
jrr

i ja 1 so that g is

subordinate to d.

We now show that g, as constructed above, is spectrally determining.

Accordingly, fix a sequence fTng in Fg;gen and set T ¼ 0Tn. We need to

show that sðTÞJKd.
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Claim 2. sðTÞHU .

To prove this claim, observe that (5.2) implies that it su‰ces to prove that

b A E ) b B sðTÞ: ð5:9Þ

To prove (5.9), fix b A E. By (5.6) there exists i such that

kb � aika
s

kMaik
: ð5:10Þ

If for S A Fg;gen, we define an operator XðSÞ by the formula,

X ðSÞ ¼
Xd
r¼1

Rr
ai
ðSÞðb r � ar

i Þ;

then (5.3) implies that

Xd
r¼1

Rr
ai
ðSÞðSr � b rÞ ¼

Xd
r¼1

Rr
ai
ðSÞðSr � ar

i Þ �
Xd
r¼1

Rr
ai
ðSÞðb r � ar

i Þ

¼ 1� XðSÞ: ð5:11Þ

Also, since by the construction of g and (5.7) we have that

kRr
ai
ðSÞkaMr

ai
; ð5:12Þ

we see via (5.5), (5.10) and (5.12) that

kXðSÞk ¼
Xd
r¼1

Rr
ai
ðSÞðb r � ar

i Þ
�����

�����
a
Xd
r¼1

kRr
ai
ðSÞk jb r � ar

i j

a
Xd
r¼1

Mr
ai
jb r � ar

i j

a
Xd
r¼1

jMr
ai
j2

 !1=2 Xd
r¼1

jb r � ar
i j

2

 !1=2

¼ kMaik kb � aik

a kMaik
s

kMaik

¼ s: ð5:13Þ
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We now let S ¼ Tn and direct sum. If we set

Y r ¼ 0y
n¼1

Rr
ai
ðTnÞ;

then (5.12) implies that Y r is a well defined bounded operator that commutes

with T . Likewise, if we set

X ¼ 0y
n¼1

X ðTnÞ;

then (5.13) implies that X is a well defined bounded operator that commutes

with T with the added property that

kXka s < 1: ð5:14Þ

Finally, observe that by (5.11),

Xd
r¼1

Y rðT r � b rÞ ¼ 1� X : ð5:15Þ

As (5.14) and (5.15) imply that
Pd

r¼1 Y
rðT r � b rÞ is invertible, it follows that

b B sðTÞ. This completes the proof of (5.9) which establishes Claim 2.

To complete the proof of Theorem 6 we need to show that sðTÞJKd.

As sðTÞHU and the functions dl are in OðUÞ, it follows from the Taylor

functional calculus that the operators dlðTÞ are well defined. Furthermore, by

the spectral mapping theorem for analytic functions, dðsðTÞÞ ¼ sðdðTÞÞ. But

kdlðTÞka 1 for each l, so that sðdðTÞÞJ ðD�Þm. Hence, sðTÞJ d�1ððD�ÞmÞ
¼ Kd. r

6. The Oka extension theorem on analytic polyhedrons

As discussed in [4], the following result, Theorem 7 below, represents a

refinement of a classical theorem of Oka. However, unlike in [4], we will not

use the Oka-Weil Theorem. We define

kFkHytm
¼ supfkFðTÞk : tT A Fm; sðtTÞHDmg:

Theorem 7. Let U be a domain of holomorphy and assume that d1; . . . ;

dm A OðUÞ with d strictly bounding. If f is holomorphic on a neighborhood

of Kd, then there exists F holomorphic on a neighborhood of ðDmÞ� such that

fðlÞ ¼ F � dðlÞ for all l A Gd. Moreover, F can be chosen so that Et < 1 and

su‰ciently close to 1, we have

kFkHytm
¼ kfkHy

d; gen
:

Proof. Let f be holomorphic on a neighborhood of Kd. Choose

t 0 < t < 1 such that Ft 0d;gen is bounded and f is holomorphic on a neighbor-
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hood of Kt 0d. By Theorem 5, f A Hy
td;gen. Hence, by Theorem 1, there exists

C A Hy
m such that fðlÞ ¼ CðtdðlÞÞ for all l A Gtd, and with kCkHy

m
¼ kfkHy

td; gen
.

If we define F by FðzÞ ¼ CðtzÞ, then F is holomorphic on a neighborhood

of ðDmÞ� and fðlÞ ¼ F � dðlÞ for all l A Gd. Moreover, kFkHytm
¼ kCkHy

m
¼

kfkHy
td; gen

. r

We also get a generalization of the Oka-Weil theorem.

Theorem 8. Let U be a domain of holomorphy and assume that d1; . . . ;

dm A OðUÞ with Kd compact in Cd . If f is holomorphic on a neighborhood of

Kd, then f can be uniformly approximated on Kd by holomorphic functions on U.

Proof. By Theorem 6, we can choose g A OðUÞn such that gl ¼ dl for

1a lam, Kg ¼ Kd, and g is spectrally determining. By Theorem 2, g is utile,

so f A Hy
g;gen. By Theorem 1, there is a function F in Hy

n such that f ¼ F � g.
The partial sums of the Taylor series of F, composed with g, give a sequence

of polynomials in g that converge uniformly to f on Kd.

7. A Cartan extension theorem

In this section U is a domain of holomorphy in Cd . We assume that V is

an analytic set in U with the special presentation: there exists h ¼ ðh1; . . . ; hnÞ A
OðUÞn such that

V ¼ fl A U : hðlÞ ¼ 0g: ð7:1Þ

Any domain of holomorphy U can be exhausted by a sequence Gdk HKdk H
Gdkþ1 HU of analytic polyhedra, by [11, Cor. II.3.11]. Choose such a

sequence. We make a second assumption about V :

Ee > 0; Ekb 1; ½F A Hy
dkþ1;gen

�5½F jVVG
dkþ1

¼ 0�

) bfr A Hy
dk ;gen

; F �
Xn
r¼1

hrfr

�����
�����
Hy

dk ; gen

a e: ð7:2Þ

Inequality (7.2) will hold, for example, (once we augment each dk to make

it utile as we can by Theorem 6) if there is some compact set LHU with

the property that whenever W is an open set with LHWHU and F A OðWÞ
vanishes on V VW, then F is in the ideal in OðWÞ generated by h.

In this section we wish to prove a special case of the Cartan extension

theorem, first proved in [7]; see [9, Thm. I.5] for a more recent treatment. It

can be argued that the logic is circular, as we use Theorem 5, whose proof used

the Cartan extension theorem. However, whenever the answer to Question is
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known to be yes, such as for a p-polyhedron by Proposition 6, one does not

need Theorem 5.

Theorem 9. Let V JU satisfy (7.1) and (7.2). Suppose f is holomorphic

on a neighborhood W of V. Then f has a holomorphic extension to U.

Proof. By Theorem 6, one can assume that each dk ¼ ðdk1 ; . . . ; d
k
nk
Þ is

spectrally determining, and therefore bounding. Moreover, by multiplying dk

by a number slightly greater than one (and so slightly shrinking Gdk ), one can

assume that each dk is strictly bounding.

For each k, there exists a positive number Mk such that

bk :¼ ðdk1 ; . . . ; d
k
nk
;Mkh1; . . . ;M

khnÞ

will satisfy Kb k HHWVGdkþ1 . As bk is an extension of dk, it is a fortiori

strictly bounding, so by Theorem 5 it is utile. Therefore by Theorem 1, we

can find a function C k in Hy
nkþn such that C k � bk is a holomorphic function

on Gb k that equals the extension of f to WVGdk .

Now let

Fkðl1; . . . ; lnk Þ ¼ C kðl1; . . . ; lnk ; 0; . . . ; 0Þ:

Then Fk � dk is holomorphic on Gdk , and agrees with f on V VGdk . Define

hkðl1; . . . ; ldÞ ¼ FkðdkðlÞÞ:

Each hk is in Hy
dk ;gen

and provides an extension of f to Gdk ; we would like to

get an extension on all of U at once.

Let us define new functions inductively. To start, we let g1 ¼ h1, g2 ¼ h2

and g3 ¼ h3.

Having defined gk in Hy
dk ;gen

with

gkjVVG
dk
¼ f jVVG

dk
;

observe that hkþ1 � gk is in Hy
d k ;gen

and vanishes on V VGdk . So by assump-

tion (7.2), hkþ1 � gk can be approximated in Hy
dk�1;gen

by functions of the formPn
r¼1 hrfr. By Theorem 1, each fr in turn can be uniformly approximated

on Kdk�2 by polynomials in dk�1, so in particular by functions holomorphic

on all of U . Therefore there is a function qkþ1 in OðUÞ such that qkþ1jV ¼ 0

and

khkþ1 � qkþ1 � gkkHyðG
dk�2 Þ a 2�k: ð7:3Þ

Define gkþ1 ¼ hkþ1 � qkþ1. By (7.3), the functions fgkg will be a Cauchy

sequence on every compact subset of U , so, by passing to a subsequence, one

can extract a limit that is holomorphic on U . Call this limit function F . As
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each gk agrees with f on V VGd k , we conclude that F is our desired extension

of f to U . r

8. Functional calculus

We shall use formula (3.2) to define a functional calculus for Hy
d;gen. For

M ¼ 0m

l¼1
Ml a graded Hilbert space, let Pl be the orthogonal projection onto

Ml . If S ¼ ðS1; . . . ;SmÞ is an m-tuple of operators on a Hilbert space H, we

shall let SP denote the operator on HnM given by

SP ¼
Xm
l¼1

S l nPl :

In this notation, dðlÞ from (3.1) becomes dðlÞP. For any vector x A M, define

Rx : H ! HnM; v 7! vn x:

Definition 8. As in Defintion 1, let f be a function on Gd with a

ðd;GdÞ-realization ða; b; g;DÞ. Let T A Fd be a d-tuple of commuting operators

on a Hilbert space H, and assume that sðTÞHGd. Then we define f ðTÞ by

f ðTÞ :¼ aIH þ R�
b dðTÞP½IH n IM � ðIH nDÞdðTÞP�

�1
Rg: ð8:1Þ

Some remarks are in order.

1. Let S ¼ ðd1ðTÞ; . . . ; dmðTÞÞ. The assertion sðTÞHGd seems to re-

quire the calculation of the Taylor spectrum of T . But by the spectral

mapping theorem, this becomes the much more innocuous assertion

that

sðS lÞHD; 1a Elam:

2. To use (8.1), we need to be able to define dlðTÞ for each 1a lam.

If dl is a polynomial or rational function, this is immediate; or if d

itself comes from a ðd 0;GdÞ-realization, we can define dðTÞ by the

analogous formula. For general dl , it is still possible to define dðTÞ
in some circumstances—for example if T is a multiplication operator

on a space of holomorphic functions. It is, however, essential to the

definition that we know how to define dðTÞ.
3. In order for the right-hand side of (8.1) to make sense, we need to

know that ½IH n IM � ðIH nDÞSP� is invertible. This follows from

Proposition 8 below.

4. To speak unambiguously of f ðTÞ, we need to know that the operator

defined by (8.1) and the one defined by the Taylor functional calculus

agree. This follows from Theorem 10 below.
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5. For our notion of functional calculus to be useful, we would like

to know that Hy
d;gen has a rich supply of functions. In Section 4 we

address the issue of when every function holomorphic on a neigh-

borhood of Kd is in Hy
d;gen.

Proposition 8. The operator IH n IM � ðIH nDÞdðTÞP is invertible

whenever the Taylor spectrum of T is in Gd.

Proof. It is su‰cient to prove that if sðSÞHDm, then s½ðIH nDÞSP�
HD. By Lemma 7, below, there is an invertible operator A so that if

R ¼ A�1SA, then each Rl is a strict contraction. Then

ðA�1 n IMÞ ðIH nDÞ
Xm
l¼1

S l nPl

 !" #
ðAn IMÞ

¼ ðIH nDÞ
Xm
l¼1

Rl nPl

 !
:

The latter expression is a product of a strict contraction with a contraction, so

its spectrum is in D. So as ðIH nDÞSP is similar to it, the spectrum is the

same. r

The following lemma is multivariable version of a well-known result of

G.-C. Rota [13].

Lemma 7. If sðSÞHDm, then there is an invertible operator A so that

kA�1S lAk < 1, 1a lam.

Proof. As each S l has spectral radius less than 1, choose N > 0 such

that kðSlÞNkaC < 1, 1a lam. Define a new norm on H by

jkvkj ¼ 1

Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p

kpðSÞvk2
s

;

where the sum is over all monomials p of degree at most N � 1 in each

variable. The norm jk � kj satisfies the parallelogram law, so is a Hilbert space

norm. Moreover, it is similar to the norm k � k, and

jkSlvkj2 � jkvkj2 ¼ 1

N 2m

X
q

kðS lÞNqðSÞvk2 � kqðSÞvk2

a
1

N 2m

X
q

ðC2 � 1ÞkqðSÞvk2

a
1

N 2m
ðC2 � 1Þkvk2
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where q ranges over monomials that have no positive powers of zl . So in the

jk � kj norm, each S l is a strict contraction. Let A be the similarity between the

Hilbert space with the jk � kj norm and the original k � k norm. r

Theorem 10. Assume f and T satisfy the hypotheses of Definition 8.

Then the operator f ðTÞ defined be the Taylor functional calculus equals the

operator defined by (8.1).

Proof. Let F A ball Hy
m be defined by (3.5), so F ðdðlÞÞ ¼ f ðlÞ. As the

Taylor functional calculus respects composition, it is enough to prove that FðSÞ
defined by the Taylor calculus and FðSÞ defined by

aIH þ R�
bSP½IH n IM � ðIH nDÞSP��1

Rg ð8:2Þ

agree. By the argument in the proof of Proposition 8, the contraction

ðIH nDÞSP has spectral radius less than 1, so the Neumann series expansion

of (8.2) converges absolutely. The partial sums form a sequence of poly-

nomials in S that converge to FðSÞ in norm, and by continuity they also

converge to FðSÞ defined by the Taylor functional calculus.
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[14] B. Szokefalvi-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, North

Holland, Amsterdam, 1970.

[15] J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math.

125 (1970), pp. 1–38.

[16] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970),

pp. 172–191.

[17] F. Vasilescu, Analytic functional calculus, Reidel, Dordrecht, 1982.

Jim Agler

Department of Mathematics, UC San Diego

9500 Gilman Drive 0112, La Jolla CA 92093, USA

E-mail: jagler@ucsd.edu

John E. McCarthy

Department of Mathematics, Washington University

Campus Box 1146 One Brookings Drive

St. Louis, MO 63130-4899, USA

E-mail: mccarthy@wustl.edu

34 Jim Agler and John E. M
c
Carthy


