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Abstract. We give a lower bound on the Walsh figure of merit (WAFOM), which

estimates the integration error for quasi-Monte Carlo (QMC) integration by a point

set called a digital net. The logarithm of this lower bound is optimal up to a con-

stant multiple, because the existence of point sets attaining the order was proved in

[K. Suzuki, An explicit construction of point sets with large minimum Dick weight, to

appear in J. Complexity].

1. Introduction

We explain the relation between quasi-Monte Carlo (QMC) integration

and the Walsh figure of merit (WAFOM) (see [3] for details). QMC inte-

gration is one of the methods for numerical integration (see [2], [5] and [7] for

details). Let Q be a point set in the s-dimensional cube ½0; 1Þs with finite

cardinality aðQÞ ¼ N, and f : ½0; 1Þs ! R be a Riemann integrable function.

The QMC integration by Q is the approximation of Ið f Þ :¼
Ð
½0;1Þ s f ðxÞdx by

the average IQð f Þ :¼ 1
aðQÞ

P
x AQ f ðxÞ.

WAFOM bounds the error of QMC integration for a certain class of

functions by a point set P called a digital net, which is defined by the follow-

ing identification (see [3] and [5] for details): Let P be a subspace of s� n

matrices over the finite field F2 of order two. We define the function

j : P C X ¼ ðxi; jÞ 7! x ¼ ð
Pn

j¼1 xi; j � 2�jÞsi¼1 A Rs; where xi; j is considered to

be 0 or 1 in Z and the sum is taken in R. The digital net P in ½0; 1Þs is

defined by jðPÞ. We identify the digital net P with a linear space P. If P is

an m-dimensional space, the cardinality of P is 2m.

Let f be a function whose mixed partial derivatives up to order ab 1 in

each variable are square integrable (see [1] and [3] for details). We say that

such a function f is an a-smooth function or the smoothness of a function f is

a here. By using ‘n-digit discretization fn’ (see [3] for details), we approximate

Ið f Þ by IPð fnÞ :¼ 1
aðPÞ

P
x AP fnðxÞ for an n-smooth function f , that is, we can
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evaluate the integration error by the following Koksma-Hlawka type inequality

of WAFOM:

jIð f Þ � IPð fnÞjaCs;nk f kn �WAFOMðPÞ;

where k f kn is the norm of f defined in [1] and Cs;n is a constant independent

of f and P. If the di¤erence between IPð fnÞ and IPð f Þ is negligibly small,

we see that jIð f Þ � IPð f ÞjaCs;nk f kn �WAFOMðPÞ approximately holds

(see [3] for details). In [4], we proved that there is a digital net P of size

2m with WAFOMðPÞ < 2�Cm2=s for su‰ciently large m by a probabilistic

argument. (Suzuki [8] gave a constructive proof.) In this paper, we prove

that WAFOMðPÞ > 2�C 0m2=s holds for large m and any digital net P with

aðPÞ ¼ 2m (see Theorem 3.1 for a precise statement, which is formulated for a

linear subspace P, instead of a digital net P). Thus, the order m2=s of the

logarithm of this lower bound is optimal.

This paper is organized as follows: We introduce some definitions in

Section 2. We prove a lower bound on WAFOM in Section 3.

2. Definition and notation

In this section, we introduce WAFOM and the minimum weight which will

be needed later on.

Let s and n be positive integers. Ms;nðF2Þ denotes the set of s� n

matrices over the finite field F2 of order 2. We regard Ms;nðF2Þ as an sn-

dimensional inner product space under the inner product A � B ¼ ðai; jÞ � ðbi; jÞ ¼P
i; j ai; jbi; j A F2.

WAFOM is defined using a Dick weight in [3].

Definition 2.1. Let X ¼ ðxi; jÞ be an element of Ms;nðF2Þ. The Dick

weight of X is defined by

mðX Þ :¼
X

1aias;1a jan

j � xi; j;

where we regard xi; j A f0; 1g as the element of Z and take the sum in Z, not

in F2.

Definition 2.2. Let P be a subspace of Ms;nðF2Þ. WAFOM of P is

defined by

WAFOMðPÞ :¼
X

X AP?nfOg
2�mðXÞ; ð1Þ

where P? denotes the orthogonal space to P in Ms;nðF2Þ and O denotes the

zero matrix.
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In order to estimate a lower bound on WAFOM, we use the minimum

weight introduced in [4].

Definition 2.3. Let P be a proper subspace of Ms;nðF2Þ. The minimum

weight of P? is defined by

dP? :¼ min
X AP?nfOg

mðXÞ: ð2Þ

3. A lower bound on WAFOM

Now we state a lower bound on WAFOM. The theorem is mentioned for

a linear subspace identified with a digital net (see Section 1).

Theorem 3.1. Let n, s and m be positive integers such that m < ns,

and let C 0 be an arbitrary real number greater than 1=2. If m=sb

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 0 þ 1=16

p
þ 3=4Þ=ðC 0 � 1=2Þ, then for any m-dimensional subspace P of

Ms;nðF2Þ we have

WAFOMðPÞb 2�C 0m2=s:

Proof. Let n, s, m and C 0 be defined as above. The following inequality

immediately results from (1), (2) in Section 2:

WAFOMðPÞ ¼
X

X AP?nfOg
2�mðX Þ

b 2�dP? : ð3Þ

By an upper bound on dP? in Lemma 3.1 (b) below and the inequality (3),

for any m-dimensional subspace P of Ms;nðF2Þ, we have

WAFOMðPÞ ¼
X

X AP?nfOg
2�mðXÞ

b 2�dP? b 2�C 0m2=s:

Thus Theorem 3.1 follows.

We prove an upper bound on the minimum weight dP? to complete the

proof of Theorem 3.1.

Lemma 3.1. Let n, s and m be positive integers such that m < ns. Then

we have the following statements:

(a) Let q and r be non-negative integers satisfying q ¼ ðm� rÞ=s and

r < s. Then we obtain

dP? a
sqðqþ 1Þ

2
þ ðqþ 1Þðrþ 1Þ

for any m-dimensional subspace P of Ms;nðF2Þ.
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(b) Let C 0 be an arbitrary positive real number greater than 1=2. If

m=sb ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 0 þ 1=16

p
þ 3=4Þ=ðC 0 � 1=2Þ, then we have

dP? aC 0m2=s

for any m-dimensional subspace P of Ms;nðF2Þ.

Proof. (a) If there exists a subspace W of Ms;nðF2Þ such that for any

m-dimensional subspace P of Ms;nðF2Þ we have P? VW 0 fOg, then dP? a

maxX AW mðX Þ holds. Therefore in order to obtain a sharp upper bound on

dP? , we need a subspace W with maxX AW mðXÞ small. We can construct W

as follows:

W :¼ X ¼ ðxi; jÞ A Ms;nðF2Þ
����� xi; j ¼ 0

ðia rþ 1 and qþ 2a jÞ
or

ðrþ 2a i and qþ 1a jÞ

8<
:

9=
;;

that is, W consists of the following type of matrices:

X ¼

x1;1 � � � x1;q x1;qþ1 0 � � � 0

..

. ..
. ..

. ..
.

0 � � � 0

xrþ1;1 � � � xrþ1;q xrþ1;qþ1 0 � � � 0

xrþ2;1 � � � xrþ2;q 0 0 � � � 0

..

. ..
. ..

. ..
.

0 � � � 0

xs;1 � � � xs;q 0 0 � � � 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ðxi; j A F2Þ: ð4Þ

The subspace W satisfies P? VW 0 fOg for any m-dimensional subspace P

of Ms;nðF2Þ. Indeed we can see that

dimðP? VWÞb dim P? þ dim W � dim Ms;nðF2Þ

¼ ðsn�mÞ þ ðsqþ rþ 1Þ � sn ¼ 1:

Hence there exists a non-zero matrix XP A W VP?. This yields

dP? ¼ min
X AP?nfOg

mðX Þa mðXPÞa max
X AW

mðX Þ:

Let us estimate maxX AW mðX Þ of W . Let Xmax of W be a matrix whose

entries xi; j in (4) are all 1. The function m attains its maximum at Xmax in

W . Thus it follows that

max
X AW

mðXÞ ¼ mðXmaxÞ ¼
sqðqþ 1Þ

2
þ ðqþ 1Þðrþ 1Þ:
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We obtain that

dP? ¼ min
X AP?nfOg

mðX Þa mðXPÞa max
X AW

mðX Þ ¼ sqðqþ 1Þ
2

þ ðqþ 1Þðrþ 1Þ;

where P is an arbitrary m-dimensional subspace of Ms;nðF2Þ.
(b) Let C 0 be a real number greater than 1=2 and assume m=sb

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 0 þ 1=16

p
þ 3=4Þ=ðC 0 � 1=2Þ. By combining rþ 1a s, qam=s and the

assertion (a), we have

dP? a
m

2

m

s
þ 1

� �
þ m

s
þ 1

� �
� s ¼ m2

s

1

2
þ 3s

2m
þ s2

m2

� �
aC 0 m

2

s
;

where the last inequality follows from the assumption by completing the square

with respect to s=m.

Remark 3.1. This remark is to clarify relations between the above result

and existing results. Fix a, and consider the space of a-smooth functions.

For this (and even a larger) function class, Dick [1, Corollary 5.5 and the

comment after its proof ] gave digital nets for which the QMC integration

error is bounded from above by the order of 2�ammasþ1. This is optimal, since

for any point set of size 2m, Sharygin [6] constructed an a-smooth function

whose QMC integration error is at least of this order.

Since WAFOM gives only an upper bound of the QMC integration error,

our lower bound 2�C 0m2=s on WAFOM in Theorem 3.1 implies nothing on the

lower bound of the integration error.

A merit of WAFOM is that the value depends only on the point set,

not on the smoothness a such as [1]. On the other hand, WAFOM depends

on the degree n of discretization. Thus, it seems not easy to compare

directly the upper bound on the integration error given in [1] and that by

WAFOM. However, we might consider that our lower bound 2�C 0m2=s, which

is independent of n and a, shows a kind of limitation of the method in

bounding the integration error in [1] in the limit a ! y.
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