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ABSTRACT. We give a lower bound on the Walsh figure of merit (WAFOM), which
estimates the integration error for quasi-Monte Carlo (QMC) integration by a point
set called a digital net. The logarithm of this lower bound is optimal up to a con-
stant multiple, because the existence of point sets attaining the order was proved in
[K. Suzuki, An explicit construction of point sets with large minimum Dick weight, to
appear in J. Complexity].

1. Introduction

We explain the relation between quasi-Monte Carlo (QMC) integration
and the Walsh figure of merit (WAFOM) (see [3] for details). QMC inte-
gration is one of the methods for numerical integration (see [2], [5] and [7] for
details). Let Q be a point set in the s-dimensional cube [0,1)" with finite
cardinality #(Q) = N, and f :[0,1)" — R be a Riemann integrable function.
The QMC integration by Q is the approximation of I(f) := J][Oﬁl)s f(x)dx by
the average Ip(f) := @ngﬂx)-

WAFOM bounds the error of QMC integration for a certain class of
functions by a point set P called a digital net, which is defined by the follow-
ing identification (see [3] and [5] for details): Let 2 be a subspace of s x n
matrices over the finite field F, of order two. We define the function
p:P3X =(x;;)—x= (3 %, 27), R’ where x;; is considered to
be 0 or 1 in Z and the sum is taken in R. The digital net P in [0,1)" is
defined by ¢(#). We identify the digital net P with a linear space 2. If 2 is
an m-dimensional space, the cardinality of P is 2.

Let f be a function whose mixed partial derivatives up to order o > 1 in
each variable are square integrable (see [1] and [3] for details). We say that
such a function f is an a-smooth function or the smoothness of a function f is
o here. By using ‘n-digit discretization f,’ (see [3] for details), we approximate
I(f) by Ip(fy) == ﬁeran(x) for an n-smooth function f, that is, we can
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evaluate the integration error by the following Koksma-Hlawka type inequality
of WAFOM:

() = Ip(f)] < Conll f1l, x WAFOM(P),

where || f]|,, is the norm of f defined in [1] and C;, is a constant independent
of f and P. If the difference between Ip(f,) and Ip(f) is negligibly small,
we see that |I(f)—Ip(f)| < Csullfll, X WAFOM(P) approximately holds
(see [3] for details). In [4], we proved that there is a digital net P of size
2™ with WAFOM(P) < 2-Cm*/s for sufficiently large m by a probabilistic
argument. (Suzuki [8] gave a constructive proof.) In this paper, we prove
that WAFOM(P) > 2-C""/s holds for large m and any digital net P with
#(P) = 2" (see Theorem 3.1 for a precise statement, which is formulated for a
linear subspace 2, instead of a digital net P). Thus, the order m?/s of the
logarithm of this lower bound is optimal.

This paper is organized as follows: We introduce some definitions in
Section 2. We prove a lower bound on WAFOM in Section 3.

2. Definition and notation

In this section, we introduce WAFOM and the minimum weight which will
be needed later on.

Let s and n be positive integers. M, ,(F,) denotes the set of sxn
matrices over the finite field F, of order 2. We regard M; ,(F,) as an sn-
dimensional inner product space under the inner product 4 - B = (a; ;) - (b; ;) =
Zi,j a,yjb,»’j € Fz.

WAFOM is defined using a Dick weight in [3].

DeFINITION 2.1. Let X = (x;;) be an element of M, ,(F,). The Dick
weight of X is defined by

wX) = Z I Xijs

1<i<s, 1<j<n

where we regard x; ; € {0,1} as the element of Z and take the sum in Z, not
in Fz.

DEFINITION 2.2. Let 2 be a subspace of M, ,(F.). WAFOM of 2 is
defined by

WAFOM(2) := 27+, (1)
XG:WL\{O}

where 21 denotes the orthogonal space to 2 in M ,(F,) and O denotes the
zero matrix.
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In order to estimate a lower bound on WAFOM, we use the minimum
weight introduced in [4].

DErFINITION 2.3.  Let 2 be a proper subspace of M; ,(F2). The minimum
weight of 2+ is defined by

Opr = min u(X). (2)
Xez'\{0}

3. A lower bound on WAFOM

Now we state a lower bound on WAFOM. The theorem is mentioned for
a linear subspace identified with a digital net (see Section 1).

THEOREM 3.1. Let n, s and m be positive integers such that m < ns,
and let C' be an arbitrary real number greater than 1/2. If m/s>

(VC'+1/16+3/4)/(C" —1/2), then for any m-dimensional subspace P of
M; ,(F2) we have

WAFOM(2) > 2-C""*/s,

PrOOF. Let n, s, m and C’ be defined as above. The following inequality
immediately results from (1), (2) in Section 2:

WAFOM(2) = > 27#0 > 27, (3)
Xerh\(0}
By an upper bound on d,: in Lemma 3.1 (b) below and the inequality (3),
for any m-dimensional subspace 2 of M; ,(F,), we have

WAFOM(@) = Z 2_ﬂ(X) > 2—(5,@ > 2—C’mz/s.
Xez+\{0}

Thus Theorem 3.1 follows.

We prove an upper bound on the minimum weight J,. to complete the
proof of Theorem 3.1.

LemMmaA 3.1. Let n, s and m be positive integers such that m < ns. Then
we have the following statements:
(@) Let q and r be non-negative integers satisfying q = (m—r)/s and
r<s. Then we obtain
9(g+1)

Oy < a 7 +(@+1)r+1)

Sor any m-dimensional subspace P of M ,(F»).
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(b) Let C' be an arbitrary positive real number greater than 1/2. If

m/s > (/C'+1/164+3/4)/(C" —1/2), then we have
Sy < C'm*/s

Sor any m-dimensional subspace P of M ,(F2).

ProOF. (a) If there exists a subspace W of M; ,(F,) such that for any
m-dimensional subspace 2 of M;,(F,) we have 2-NW # {0}, then 6,1 <
maxycw #(X) holds. Therefore in order to obtain a sharp upper bound on
041, we need a subspace W with maxycy u(X) small. We can construct W
as follows:

(i<r+1and ¢+2<))
W =<3 X =(x;;) € My ,(F2) |x;; =0 or ,
(r+2<iand ¢g+1<))

that is, W consists of the following type of matrices:

x1,] .. Xl,q xlA’q-Q—l 0 O

0 0

Xr+1,1 0 Xrt+l,g Xrt1,¢+1 0 0
X = x; i €Fy). 4
Xr42,1 0 Xrg2.g 0 0 0 ( L 2> ( )

0 0

Xs, 1 c Xs,q 0 0 0

The subspace W satisfies 2N W # {0} for any m-dimensional subspace 2
of M; ,(F;). Indeed we can see that

dim(2-N W) > dim 2+ + dim W — dim M, ,(F»)
=(n—m)+(sq+r+1)—sn=1.
Hence there exists a non-zero matrix X, € WN 2. This yields

d,. = min X) < u(Xp) < max u(X).
pe= ) uin HX) < u(Xp) < max u(X)
Let us estimate maxycy u(X) of W. Let Xyax of W be a matrix whose
entries x;; in (4) are all 1. The function yx attains its maximum at Xp,x in
W. Thus it follows that

sq(g +1)

max u(X) = u(Xmax) = ——5—+ (g + 1)(r+1).
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We obtain that
. sq(qg+1)
0,. = min X)<uXp) < max u(X)=——=+(¢g+ D(r+1),
2o = min L AX) = pXo) < max u(X) 3 (g+1)r+1)
where 2 is an arbitrary m-dimensional subspace of M; ,(F>).
(b) Let C' be a real number greater than 1/2 and assume m/s >
(/C'+1/1643/4)/(C"—1/2). By combining r+1<s, ¢ <m/s and the
assertion (a), we have

m(m m m? /1 3s 2 m?
Opr < —|—+1 4 l)es=— 24+ )< ' —
7 _2<s+ >+(s+ > ST <2+2m+m2>_c s’

where the last inequality follows from the assumption by completing the square
with respect to s/m.

RemaRrk 3.1. This remark is to clarify relations between the above result
and existing results. Fix o, and consider the space of a-smooth functions.
For this (and even a larger) function class, Dick [1, Corollary 5.5 and the
comment after its proof]| gave digital nets for which the QMC integration
error is bounded from above by the order of 2-*"m®*!. This is optimal, since
for any point set of size 2", Sharygin [6] constructed an o-smooth function
whose QMC integration error is at least of this order.

Since WAFOM gives only an upper bound of the QMC integration error,
our lower bound 2-¢"*/ on WAFOM in Theorem 3.1 implies nothing on the
lower bound of the integration error.

A merit of WAFOM is that the value depends only on the point set,
not on the smoothness « such as [1]. On the other hand, WAFOM depends
on the degree n of discretization. Thus, it seems not easy to compare
directly the upper bound on the integration error given in [1] and that by
WAFOM. However, we might consider that our lower bound 2-C'm?/ ¢ which
is independent of n and «, shows a kind of limitation of the method in
bounding the integration error in [1] in the limit o — oo.
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