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ABSTRACT. Asymptotic expansions of the null distribution of the MANOVA test
statistics including the likelihood ratio, Lawley-Hotelling and Bartlett-Nanda-Pillai
tests are obtained when both the sample size and the dimension tend to infinity
with assuming the ratio of the dimension and the sample size tends to a positive
constant smaller than one. Cornish-Fisher expansions of the upper percent points are
also obtained. In order to study the accuracy of the approximation formulas, some
numerical experiments are done, with comparing to the classical expansions when only
the sample size tends to infinity.

1. Introduction

This paper is concerned with the multivariate linear model:
X =0B+6, (1)
where X is the N x p observation matrix, Q is the N x k design matrix, B is

the k x p matrix of regression coefficients, and, & is the N X p error matrix
distributed as Ny, ,(0,Iy ® 2). Consider testing the hypothesis

Hy: CB =0, (2)

where C is a g x k known matrix of rank ¢. Under a certain group of
transformations, the testing problem is invariant, and invariant tests depend on
the non-zero eigenvalues of S,S, I where

S, =B'C’'(C(0'0)"'c")'cB and  S.=(X - 0B) (X — OB)

with B=(0'0)"'0'X (see [4, Theorem 10.2.1]). Among famous invariant
tests, we consider the three statistics

. S, .. -
(i) 4= ﬁ, (i) T2 =tr S8, ", and (i) V' = tr Sy(S, + ;) ",
e h
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which are the likelihood ratio test statistics, Lawley-Hotelling’s generalized T2
statistics, and Bartlett-Nanda-Pillai’s test statistics, respectively.

Since the exact distributions of these statistics are complicated and not easy
to treat, we need some method to approximate the distributions. One of the
method is to use the asymptotic expansions of the distribution functions when
the sample size N is large (see [1], [4], or [5]). However, it is known that the
approximations are bad when the dimension p is large relative to N.

Tonda and Fujikoshi [6] derived an asymptotic expansion of the null
distribution function for the LR test under the framework:

q:ﬁxed,n—>oo,p—>oo,§—>ce(0,1), (3)

where n = N — k is the degree of freedom of the Wishart distribution of S..
Their derivation depends on property of Wilks’s lambda distribution:

q
Ap(q,n) = A4(p,n— p+q) = [ [ Beta((n— p+ g —j+1)/2,p/2).
j=1
In their paper, the problems of deriving the asymptotic expansions of the null
distributions for (it), (iii), and the non-null distributions for the three statistics
were left for future work. In this paper, we derive the asymptotic expansions
of the null distributions for the three statistics under a similar framework (6) as
(3) in an unified way. The results was first presented in [7] as a preprint.

2. Preliminaries

In this section we prepare some lemmas.
By transforming the variables and parameters, the model (1) can be
represented as
X7
X5
where X[, X," and X; are independent random matrices, and
XI*NN‘IXP(M17III®2)7 XZ*NN(k—q)Xp(MLkaq@ZL

X7 ~ Ny p(0,1, ® X),

[
<

where n =N —k. The null hypothesis (2) is equivalent with H : M,
The basic statistics S, and S, can be represented as

Se = (X;)/X;, and Sh = (Xl*)/Xl*'

Here A’ denotes the transpose of A4 for arbitrary matrix A. See [4] for details.
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Let
Z=Xx;2V A=37'28,5712  and M=MmzZ'2 (4

Then Z and A are independent, Z ~ N,y ,(M,I, ® I,), A ~ W,(n,1,) and the
joint distribution of the non-zero eigenvalues of S;'S, is equal to the joint
distribution of the eigenvalues (/,...,l,) of ZA™1Z'.

The following lemma enables us to derive the valid asymptotic expansions
of the null distributions of the three test statistics.

LEMMA 1. Let
B=27Z'  and W =B'"?*(z47'z)'B'

Then B and W are independently distributed as the noncentral and central
Wishart distributions, W,(p,1,,Q) and W,(m,1,), respectively, where Q is the
noncentrality matrix given by

Q=MM =M "M, (5)
and m=n—p+gq.

Proor. It is obvious about the distribution of B. For given Z, the
conditional distribution of (Z4~'Z)™" is W,(n—p+q, (2Z")7") (see [4,
Theorem 3.2.11]). Therefore the conditional distribution of W is W,(m,I,),
which proves the independence. O

The non-zero eigenvalues of ZA~'Z’ are equal to the ones of BW !
Both B and W can be represented as sums of independent random matrices of
size ¢ X q. Therefore, the distribution of the smooth and symmetric function
of li,...,1,, which is the smooth function of BW !, has the valid asymptotic
expansions (see [2]). In particular, the three statistic can be represented as

|S| 4

i = y
() ‘Se‘f'Shl |W+B|

(i) tr(SpS, ) = te(BW ),

(iii)  tr(Sy(Se +Si) ") = te(B(W + B) ).

3. Null distributions

In this section we derive the asymptotic expansions of the test statistics
under the null hypothesis. By virtue of lemma 1, we can obtain the asymptotic
expansions following the usual methods: perturbation expansion of statistics,
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expanding the characteristic functions, and inverting the resultant characteristic
functions.

3.1. Perturbation expansion. In what follows we assume that

q : fixed, p — o0, m — oo, and both n% and % are bounded (6)

instead of (3), since the convergence of the ratio p/n is not necessary.
Let U and V be defined by

1 1 1 1
—-B=1,+—U —Ww=1L+—V. 7
q+\/]3 i m q+\/% ()

Then U and V' are asymptotically normal. Let
D= ﬁ(%BWI —Iq)‘ 8)

Then D = O,(1) and the three statistics can be expanded in terms of D as
follows:

4

log WL = —log|l, + BW |
2 r3 2
=—qglog(l+r) —713 tr(D) +5 tr(D”)
— 3;\23/13 tr(D’) + O, (112)
tr(BW ') =r tr(lq +LD> =rq +L tr(D),
VP v

tr[B(W +B)™'| = t[BW (I, + BW )]
1 ) 13
=g+l — rz){_ tr(D) — = tr(D?) + —2= tr(D3)}

VP p v/
o)

where
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Let

m |Se| P
Tir=—vo(1+2)11 log(1+£
= (1 e g g (1 7)

T = Vo{ ™ w(515.1) - a}.
Tenp = \/17(1 +%> { (1 +%) tr[Su(S. + Si) '] — 4}-

Then the expansion of T (G= LR, H, or BNP) is given by

T = (D) + %Cl tr(D?) +%Cz (D) + 0, (ﬁ) (9)

with (c1,62) = (=1 (2),1 (-2)%), (0,0) and (2%, (-2)°) for G=LR, H

m+p m+p m+p’ \m+p
and BNP, respectively. Using (7) and (8), (9) can be expanded as

Te = tr(U — /rV) +%{c1 tr[(U — V)] = Vi tt[(U = ViV V]}

+%{02 (U = ViV)) = 207 (U = ViV)* V] 4+ rel(U — i) 12

o (is)

3.2. The characteristic function. The characteristic function Cr(f) of T¢ is
given by

Cr(t) = Elexp{itT}] = E[exp{it(tr U — \/r tr V))}g(U, V)]

where
G(U, V) =1 +%{c1 (U = V)] = Vi ul(U — Vi) V]
+%{cz tr[(U — V)] = 2e13/r (U — VrV) V]
+rte[(U — V) V)

L0 U~ VY — VR — )V 4 O (L>
2p "\pvp
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Let Y be a ¢ x m random matrix distributed as Nyx,,(0, I, ® I,,) and Z be

the ¢ x p random matrix given by (4). Then
1 1
U=—27"—./pl and V=—YY —\ml, 10
\/p— \/1_)q \/m q ( )
and the characteristic function is represented as
Cr(1) = (2m) ~9rtm)/2 ” etr{— Ly it(izz’ — VI ) }
2 N/ 1
1 ) 1
X etr{—i YY, — lt\/;<\/—’% YY, — ﬁ]q)}
1 1
xg(—2z7' - p1,—YY’—\/rZ1> dZ)(dY).
(G522 = vt ) @z)(av)
Let
a = 2it and b = =2it\/r.
Considering transformations
a 12 b \V2
Z=(1—— Z and Y=(1—-— Y, 11
(1-%) (1-7%) (
we obtain
—qp/2 b\ "am/2
Cr(t) = (2n ‘1<"+"’>/2<1 ‘ > (1 - )
x“ e Lzz lyy
2 2
‘g i{l_i}lzz Jpl L{l i}lw_mz
VA T "
x (dZ)(dY)
Since
L<1 —i>122’—\/131 _ (1 _ @ 1{(L22f_\/,31)+a1}
AN/ ! N VP ‘ ¢
LY v v = (-2 (v v, ) o
m m T Vm vm K 7
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we obtain

cr = (1- 717)/ (1- %)qm/zls[gw, 7) (12)

where

U= <1 —%>_1(U+alq), V= (1 %)_l(vwl,,).

Here U and V' has the same distributions given by (10).
The Jacobian of the transformation (11) is expanded as

(-5

— exp[(i)q(1 + 1)]

(it)* 4 2, (in)* 3 (it)°
X{Hﬁgq(l—r )+TZQ(1+F )+7

Basic formulas of the normalized Wishart statistics U and V' are given as
follows:

O | oo

q2<1—r2>2+---}.

E[(tr(V))’] = E[(w(V))*] = 2¢,  E[w(U?)] = E[r(V)] = g(g + 1)

E[(tr(U%))’] % E[(w(V))’] 2 qlg + 1)(¢* + ¢ +4),
E[(tr(UV))*] = 24(g + 1),

where ~ means the difference between the left and right sides is O(ﬁ). By

using the above formulas, the expectation in (12) can be expanded as
o 1 3
Elg(U, V)| =1+ —{ita) + (it) as
[9(U, V)] \/ﬁ{ (ir)"as}

+%{(n)2a2 + (it)*ag + (it)%ag} + 0(%\/]3),

where
ar ={c(l1+7r)+riqlqg+1),
az =4 (L+r) +r}(l +1)g,
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1
ay = 6er(1+ 1)+ 1) + 5 (1+1)7q(q + 1)(g* + g +4)

1
+e1(1+r)glg+ D{d+r(g> +q+12)} + 5q(q + Dr{6 +r(¢* + q+8)},
ag = 8cr(1+1)qg+ 430+ q(> +q+4)

+8c1q(1+ 1) {2+ r(g* + g+ 4)} +4(1 + r)rq{3 + r(¢* + ¢ +2)},

1
de :§a32

Multiplying by the Jacobian, the characteristic function is expanded as
Cr(6) = explg(1 + )(it)?]

x |1+ \/ip {ithy + (i)’ b3} + % {(it)*by + (it)*bs + (z‘z)%é}] + 0(%13)

where

4
by = ay, b3:a3+§(1—r2)q,

4
by = ay, b4:§a1(1 —r2)q+a4+2(1+r3)q, b6:—b32.

3.3. Expansions of the null distributions. Inverting the characteristic functions
we obtain the asymptotic expansion of the distribution function of 7 as in the
following theorem.

THEOREM 1.
P lT< —fD()—qﬁ()le—&-ibh()
rag_Z—Z Z\/[_)0_10_3322
1 (1 1 1 1
+; pb2h1(2)+Fb4h3(2)+gb6h5(2) +0 P—\/l_i‘ 5
where

a=+2q(1+7r),

bi’s are given above, and h;(z)’s are the Hermite polynomials given by
h(z) =z, ha(z) =22 — 1, hs(z) = 2% — 3z,

hy(z) = z* — 6% 4 3, hs(z) = z° — 102 + 15z,



Expansions for MANOVA test with large dimension 255

By using the above theorem, we obtain the Cornish-Fisher expansion of
the upper percent point of the distribution as in the following corollary.

COROLLARY 1.  Let z, be the upper 100a % point of the standard normal
distribution, and let

1 (b, . b3} L[ 1 (b\* b
ZCF(OC):Za"‘ﬁ{;“'(zy_1)g}+;{—52a<;> +Za;

2
— z(22 - 3)% — z4(222 - 5) <%> + zy(22 — 3)% }

Then

el o) <1 o vo L)

4. Numerical experiment

We study a comparison of the accuracy of asymptotic expansions in
Theorem 1 with the other approximations based on asymptotic expansions
when the sample size tend to infinity, while the dimension is a constant. For
the latter asymptotic expansions, we used the approximations up to terms of
the second order with respect to n~!. The formulas of these asymptotic
expansions can be found in [4, chapter 10].

Our comparison was done for the approximated upper 5 percent points
given by Corollary 1, and the Cornish-Fisher expansions based on the large
sample asymptotic expansions. The values of p, n and ¢ were chosen as
follows:

4:2,4,8,
(p,n); (10,40), (20,40), (30,40), (10, 80), (40,80), (70, 80).

Table 1 shows the estimated upper 5 percent points based on Monte Carlo
simulation, and the approximated upper 5 percent points base on our (New)
method and the (Old) method.

Table 2 shows the actual error probabilities of the first kind by using the
approximated percent points given by Table 1.

Figures 1, 2, and 3 show the actual error probabilities of the first kind of
the two methods for the likelihood ratio, Lawley-Hotelling’s test and Bartlett-
Nanda-Pillai’s test, respectively. In these figures the plotting symbols “[]”” and
“X” correspond to our new method and the classical method, respectively.
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Table 1. Cornish-Fisher expansions
Likelihood Ratio Lawley-Hotelling Bartlett-Nanda-Pillai

g n p | Simu New Old Simu New Oold Simu  New Old

2 40 10| 0960 0.890 0.888 1.280 1.16 1.14 | 0.74  0.70 0.53

2 40 20| 1091 1.90 1.861 | 3.44 3.329 3.31 .20 1.199 —0.55

2 40 30| 3.36 3.607  3.27 9.98  10.80 8.655 [ 1.59  1.638 —5.539
2 80 10 | 0457 042 0.416 | 0.52 0.471 0.471 | 040  0.37 0.349
2 80 40| 1.720 1.76 1.71 2.84 2.888 3.877 | 1.14  1.15 —1.337
2 80 70| 4.763 505 4.024 | 21.841 24.39 20.777 | 1.79  1.823  —16.988
4 40 10| 1.627 1.531 1.530 | 2.212  2.005 1.85 | 1.261 1.200 0.20

4 40 20| 3.288  3.340 3258 | 5963 573 6.875 | 2.130 2.150 —7.95

4 40 30| 598 6.266 5.65 | 1832 17.345 2459 | 296 3.026 —38.47

4 8 10| 0.82 0.73 0.73 0.950  0.829 0.81 | 0.72  0.65 0.52

4 80 40| 3216 3219 312 5279 5222 11.323 | 2.144 2.15 —12.31

4 8 70| 8560 9.061 7.118 | 40.61  39.37 84.792 | 3.439 3.508 —107.53

8 40 10| 2913 2.63 2.649 | 4.190  3.495 0.765 | 2.205 2.03 —2.730
8 40 20| 5971 5783 571 11.28 9.77 5485 | 383 3762  —44.962
8 40 30| 10.507 10.575 9.81 | 34.11 26.48 4820 | 5.330 5411 —193.69

8 80 10| 1.467 1295 1.30 1.741  1.50 1.157 | 1.262  1.13 0.532
8 80 40| 5929 589 5.729 | 10.034  9.530  28.59 | 398 3969  —65.05

8 80 70| 15520 1591 12.88 | 73.602 60.347 294.221 | 6.520 6.62  —519.40

Table 2. Actual error probabilities of the first kind when the nominal level is 0.05.

Likelihood Ratio Lawley-Hotelling Bartlett-Nanda-Pillai
q n P New Old New Old New Old
2 40 10 0.089 0.089 0.092 0.103 0.092 0.453
2 40 20 0.053 0.065 0.061 0.064 0.050 1.000
2 40 30 0.017 0.065 0.032 0.089 0.019 1.000
2 80 10 0.109 0.109 0.112 0.111 0.110 0.155
2 80 40 0.042 0.056 0.043 0.003 0.039 1.000
2 80 70 0.014 0.327 0.032 0.064 0.013 1.000
4 40 10 0.107 0.107 0.112 0.219 0.111 1.000
4 40 20 0.041 0.057 0.075 0.013 0.036 1.000
4 40 30 0.024 0.109 0.068 0.007 0.022 1.000
4 80 10 0.147 0.146 0.149 0.166 0.154 0.586
4 80 40 0.048 0.084 0.055 0.000 0.047 1.000
4 80 70 0.011 0.644 0.061 0.000 0.011 1.000
8 40 10 0.184 0.172 0.222 1.000 0.187 1.000
8 40 20 0.094 0.119 0.184 0.986 0.086 1.000
8 40 30 0.045 0.178 0.233 0.002 0.017 1.000
8 80 10 0.235 0.223 0.239 0.814 0.247 1.000
8 80 40 0.063 0.136 0.110 0.000 0.059 1.000
8 80 70 0.017 0.890 0.197 0.000 0.010 1.000
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Fig. 1. Actual error probabilities of the first kind for LR test
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Fig. 2. Actual error probabilities of the first kind for Lawley-Hotelling’s test
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Fig. 3. Actual error probabilities of the first kind for Bartlett-Nanda-Pillai’s test

It can be seen that our new method performs better than the old one in
most of the cases. Three figures reveal same tendency of the accuracy of our
method:

» If the ratio p/n is small, Cornish-Fisher expansion of the percent point
is under estimate. (Actual error probabilities are larger than the nom-
inal level.)

o If the ratio p/n is equal to %, our method performs very good.

e If the ratio p/n is large, Cornish-Fisher expansion gives over estimate
approximation.

It is seen that when ¢ becomes large, the accuracy becomes bad as we can
expect. This suggests that asymptotic expansion formulas are needed when
¢, as well as p and n, tends to infinity. Wakaki [8] derived an Edgeworth
expansion for Wilks’ lambda distribution in such case. Ulyanov, Wakaki and
Fujikoshi [9] obtained a Berry—Esseen type bound for Wilks’ lambda distri-
bution. The problems of deriving asymptotic expansion formulas and their
error bounds for the other test statistics in the case that p, ¢ and n become
large are left for future. The detailed discussion of asymptotic expansions for
MANOVA tests for large sample and high-dimensional frameworks could be
found in [10, Chapter 6].
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