
Hiroshima Math. J.

44 (2014), 223–234

Complete classification of genus-1 simplified

broken Lefschetz fibrations

Kenta Hayano

(Received January 7, 2013)

(Revised February 17, 2014)

Abstract. We complete the classification of smooth 4-manifolds which admit genus-1

simplified broken Lefschetz fibrations.

1. Introduction

Broken Lefschetz fibrations are smooth maps from oriented 4-manifolds to

oriented 2-manifolds which are allowed to have two specific types of critical

points, namely indefinite folds and Lefschetz critical points. Auroux, Donald-

son and Katzarkov [2] introduced broken Lefschetz fibrations as generaliza-

tions of Lefschetz fibrations in order to understand near-symplectic structures

on 4-manifolds. They proved that the total space of a broken Lefschetz

fibration such that every component of any fiber represents a non-trivial

homology class admits a near-symplectic structure. Afterwards, Perutz [16,

17] gave a new invariant, which is a candidate for a geometric interpretation of

the Seiberg–Witten invariant, using broken Lefschetz fibrations together with

near-symplectic structures.

On the other hand, there exist broken Lefschetz fibrations whose total

spaces would not admit near-symplectic structures. Indeed, it turns out that

for any smooth map f from a 4-manifold X to the 2-sphere there exists

a broken Lefschetz fibration homotopic to f such that f has connected set

of indefinite folds which are embedded into S2 by f , every fiber of f is

connected and all the Lefschetz critical points are contained in fibers with the

highest genera. Such a broken Lefschetz fibration is called a simplified broken

Lefschetz fibration1. It was introduced by Baykur [4] and he further gave a

combinatorial description of simplified broken Lefschetz fibrations via mapping
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class groups of surfaces. This description is a generalization of monodromy

factorizations of Lefschetz fibrations.

In this paper, we discuss the classification problem of simplified broken

Lefschetz fibrations with small fiber genera. The genus of a simplified broken

Lefschetz fibration is defined to be a genus of a fiber with the highest genus.

Kas [11] and Moishezon [14] classified genus-1 Lefschetz fibrations over the 2-

sphere. They proved that a 4-manifold X admits a genus-1 Lefschetz fibration

over S2 (with critical points) if and only if X is di¤eomorphic to an elliptic

surface EðnÞ or a manifold obtained by blowing up EðnÞ. Baykur, Kamada

[6] and the author [9, 10] also studied the classification problem. Baykur and

Kamada classified total spaces of genus-1 simplified broken Lefschetz fibra-

tions up to blow-ups, while the author provided a classification of the total

spaces of genus-1 simplified broken Lefschetz fibrations with small number of

Lefschetz critical points or spin structures. The main result of this paper gives

the complete classification of total spaces of genus-1 simplified broken Lefschetz

fibrations:

Theorem 1. Let f : X ! S2 be a genus-1 simplified broken Lefschetz

fibration. Suppose that f has an indefinite fold and l Lefschetz critical points

(l is possibly equal to 0). Then the total space X of f is di¤eomorphic to one

of the following 4-manifolds:

� akCP2aðl � kÞCP2, where 0a ka l � 1;
� S4a l

2S
2 � S2 (this manifold appears only if l is even);

� S1 � S3aSalCP2, where S is an S2-bundle over S2;
� LalCP2, where L is either of the manifolds Ln or L 0

n (nb 2) which is

defined by Pao [15].

The total spaces of genus-1 simplified broken Lefschetz fibrations without

Lefschetz critical points have already been classified by Baykur and Kamada [6]

and independently the author [9]. Note that Theorem 1 gives the a‰rmative

answer to [9, Conjecture 5.3] and the negative answer to [5, Problem 24].

Unlike the arguments in [6] and [9], instead of attempting to completely

classify monodromies, we modify a given genus-1 simplified broken Lefschetz

fibration using homotopies and surgeries, which allows us to induct on the

number of Lefschetz critical points. In particular, the author does not classify

the monodromies, but only classifies the di¤eomorphism types of the total

spaces of genus-1 simplified broken Lefschetz fibrations.

2. Preliminaries

2.1. Simplified broken Lefschetz fibrations. Let X and B be oriented, com-

pact, smooth manifolds of dimension 4 and 2, respectively, and f : X ! B a
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smooth map. Assume that f satisfies the condition f �1ðqBÞ ¼ qX . Denote

the set of critical points of f by Critð f ÞHX . A point p A Critð f Þ is called

an indefinite fold if there exist a real coordinate neighborhood ðU ; j : U ! R4Þ
of X centered at p and a real coordinate neighborhood ðV ;c : V ! R2Þ of B

centered at f ðpÞ such that these coordinates satisfy the following condition:

c � f � j�1ðt; x; y; zÞ ¼ ðt; x2 þ y2 � z2Þ:

By the definition, the set of indefinite folds of f is a 1-dimensional submani-

fold of X . We denote this submanifold by Zf . A point p A Critð f Þ is called

a Lefschetz critical point if there exist a complex coordinate neighborhood

ðU ; j : U ! C2Þ of X centered at p and a complex coordinate neighborhood

ðV ;c : V ! CÞ of B centered at f ðpÞ such that these coordinates are com-

patible with the orientations of X and B, respectively, and satisfy the following

condition:

c � f � j�1ðz;wÞ ¼ z2 þ w2:

The set of Lefschetz critical points of f is a discrete set. We denote this set

by Cf .

Definition 1. A map f is called a broken Lefschetz fibration if the set

Critð f ÞHX consists of indefinite folds and Lefschetz critical points. We will

refer to broken Lefschetz fibrations as BLFs for short. A BLF f : X ! B is

said to be relatively minimal if no fibers of f contain a sphere with self-

intersection �1 (in other words, no vanishing cycles of Lefschetz critical points

of f are null-homotopic in a fiber).

We define other critical points. For a smooth map f : X 4 ! B2, a point

p A Critð f Þ is called an indefinite cusp if there exist a real coordinate neigh-

borhood ðU ; j : U ! R4Þ of X centered at p and a real coordinate neighbor-

hood ðV ;c : V ! R2Þ of B centered at f ðpÞ such that these coordinates satisfy

the following condition:

c � f � j�1ðt; x; y; zÞ ¼ ðt; x3 þ 3txþ y2 � z2Þ:

In this paper, we will call this critical point a cusp for short. In the coordinate

neighborhood ðU ; jÞ the set of critical points is a 1-dimensional submanifold.

It is known that all the critical points except for the origin are indefinite

folds. Thus, there always exist indefinite folds around a cusp point. A point

p A Critð f Þ is called an achiral Lefschetz critical point if there exist a complex

coordinate neighborhood ðU ; j : U ! C2Þ of X centered at p and a complex

coordinate neighborhood ðV ;c : V ! CÞ of B centered at f ðpÞ such that these
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coordinates are compatible with the orientations of X and B, respectively, and

satisfy the following condition:

c � f � j�1ðz;wÞ ¼ z2 þ w2:

Although a BLF does not have these critical points, they are still important

when we consider homotopies involving indefinite folds and Lefschetz critical

points (see Subsection 2.3).

Let f : X ! S2 be a BLF over the 2-sphere. Suppose f satisfies the

following conditions:

(a) the set Zf is connected, that is, Zf is either the empty set or an embedded

circle in X ;

(b) the restriction f jCritð f Þ is injective;

(c) every fiber of f is connected.

If Zf is the empty set, f is nothing but a Lefschetz fibration over S2. If Zf is

not empty, the image f ðZf Þ is an embedded circle in S2. Thus, S2nnf ðZf Þ
consists of two open disks D1;D2 A S2, where nf ðZf Þ is a regular neighborhood

of f ðZf Þ. By the definition of indefinite folds, the genus of a regular fiber of

the fibration f jf �1ðD1Þ : f
�1ðD1Þ ! D1 di¤ers by 1 from that of the fibration

f jf �1ðD2Þ : f
�1ðD2Þ ! D2. We call the preimage f �1ðD1Þ the higher side of f

and f �1ðD2Þ the lower side of f .

Definition 2. A BLF f : X ! S2 is said to be simplified if f satisfies the

above conditions (a), (b) and (c) and the following condition:

(d) the set Cf is contained in the higher side of f .

In this paper we will refer to simplified BLFs as SBLFs for short. The genus

of an SBLF is defined to be the genus of a regular fiber in the higher side if Zf

is non-empty, and the genus of any fiber if Zf is empty.

Remark 1. Every 4-manifold which appears in Theorem 1 admits a genus-1

SBLF. Indeed, the author [9] constructed a genus-1 SBLF for each manifold

explicitly. (Also see [5, 6].)

2.2. Vanishing cycles. For an SBLF f : X ! S2, we put f ðCf Þ ¼ fp1; . . . ; plg.
We take a regular value p0 in the image of the higher side of f . We also take

paths g; g1; . . . ; gl so that g connects p0 to a point on the image of indefinite

folds, while gi connects p0 to pi, and that these paths are mutually disjoint

except on the point p0. Suppose that the indices of the paths are given so

that g; g1; . . . ; gl appear in this order when we go around p0 counterclockwise.

These paths determine vanishing cycles of Lefschetz critical points and indef-

inite folds of f (the reader can refer to [8] or [9], for example, for details of

vanishing cycles). We denote these vanishing cycles by c; c1; . . . ; cl H f �1ðp0Þ.
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We identify the fiber f �1ðp0Þ with the standard closed surface Sg and regard

vanishing cycles as simple closed curves in Sg. We call a sequence Wf ¼
ðc; c1; . . . ; clÞ a Hurwitz cycle system of f .

We denote the mapping class group of Sg, that is, the set of isotopy classes

of orientation-preserving self-di¤eomorphisms of Sg by ModðSgÞ. In order to

make the notation coincide with those in the author’s previous papers [9, 10],

we define the multiplication in ModðSgÞ as the opposite of that induced by

the composition as maps, that is, if an element fi A ModðSgÞ is represented

by a di¤eomorphism Ti : Sg ! Sg, the product f1 � f2 is defined as follows:

f1 � f2 ¼ ½T2 � T1�:

For a simple closed curve cHSg, we define a subgroup ModðSgÞðcÞ of

ModðSgÞ as follows:

ModðSgÞðcÞ ¼ f½T � A ModðSgÞ jT : Sg !G Sg;TðcÞ ¼ cg:

Proposition 1 ([2]). Let f : X ! S2 be a genus-g SBLF and Wf ¼
ðc; c1; . . . ; clÞ its Hurwitz cycle system. Then, the following holds:

tc1 � � � � � tcl A ModðSgÞðcÞ;

where tci A ModðSgÞ is the right-handed Dehn twist along ci (for the definition of

the Dehn twist, see [8, Definition 8.2.3]).

Remark 2. It is known that the product tc1 � � � � � tcl is contained in the

kernel of some homomorphism defined on ModðSgÞðcÞ. The reader can refer

to [4] for details on this homomorphism.

We will introduce two modifications of Hurwitz cycle systems. The first

one is called an elementary transformation, which changes a Hurwitz cycle

system as follows:

ðc; c1; . . . ; ci; ciþ1; . . . ; clÞ 7! ðc; c1; . . . ; ciþ1; tciþ1
ðciÞ; . . . ; clÞ:

It is known that this modification can be realized by replacing paths g and gi
(for details, see [8]). The second one is called a simultaneous conjugation by an

element f A ModðSgÞ, which changes a Hurwitz cycle system as follows:

ðc; c1; . . . ; clÞ 7! ðfðcÞ; fðc1Þ; . . . ; fðclÞÞ:

This modification can be realized by replacing an identification of f �1ðp0Þ with
Sg. Two sequences ðc; c1; . . . ; clÞ and ðd; d1; . . . ; dlÞ of simple closed curves in

Sg are said to be Hurwitz equivalent if one can be obtained from the other by
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successive application of simultaneous conjugations, elementary transformations

and their inverse. Note that for a given SBLF f , any sequence W which is

Hurwitz equivalent to Wf can be realized as a Hurwitz cycle system of f by

replacing reference paths and an identification f �1ðp0ÞGSg.

2.3. Homotopies. In this subsection we will give a quick review for several

homotopies involving indefinite folds and Lefschetz critical points which will be

used in the proof of Theorem 1. The reader can refer to [12], for example, for

details of the homotopies in this subsection.

Merging: We define a homotopy Fs : R
4 ! R2 (s A ½�1; 1�) as follows:

Fsðt; x; y; zÞ ¼ ðt; x3 þ 3ðs� t2Þxþ y2 � z2Þ:

This homotopy is called a fold merge and the inverse of this homotopy F�s is

called a cusp merge. The critical point set CritðFsÞ is equal to fðt; x; 0; 0Þ A R4 j
x2 � t2 þ s ¼ 0g. For s < 0, the set CritðFsÞ consists of indefinite folds and

the set of critical values are two parallel arcs (see the left side of Figure 1).

However, when s is equal to 0, another kind of critical point (which is called

beak-to-beak) appears at the origin and the critical value set consists of two arcs

which are tangent to each other at the origin (see the middle figure in Figure 1).

For s > 0, two cusp points appear at ðG
ffiffi
s

p
; 0; 0; 0Þ and the critical value set

consists of two cusped arcs (the right side of Figure 1).

Let f : X ! B be a smooth map from a 4-manifold to a 2-manifold.

Suppose that f has arcs of indefinite folds whose images are two parallel arcs

as shown in the left side of Figure 1. It is known that we can apply a fold

merge to these two indefinite folds if and only if the middle region in the figure

(the region with the dot) is the higher-genus side of both of the indefinite folds

and two vanishing cycles of the indefinite folds (vanishing cycles derived from

two dotted arcs in Figure 1) intersect at one point transversely.

Wrinkling: We define a homotopy Hs : R
4 ! R2 (s A ½0; 1�) as follows:

Hsðt; x; y; zÞ ¼ ðt2 � x2 þ y2 � z2 þ st; 2txþ 2yzÞ:

Fig. 1. The critical value sets of the map Fs.
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This homotopy is called a wrinkle. We give complex coordinates of R4 and

R2 by the maps ðt; x; y; zÞ 7! ðtþ
ffiffiffiffiffiffiffi
�1

p
x; yþ

ffiffiffiffiffiffiffi
�1

p
zÞ and ðu; vÞ 7! uþ

ffiffiffiffiffiffiffi
�1

p
v,

respectively. In these coordinates, Hs has the following description:

Hsðz;wÞ ¼ z2 þ w2 þ s ReðzÞ:

In particular, H0 has only one critical point at the origin which is a (possibly

achiral) Lefschetz critical point. For s > 0, the set CritðHsÞ is a circle which

consists of indefinite folds and three cusps and this circle is mapped to a

triangle whose corners are the images of cusps (see the right side of Figure 2).

For a smooth map f : X 4 ! B2, we can always apply a wrinkle to any

Lefschetz critical points of f . Suppose that f has a circle consisting of

indefinite folds with three cusps such that it is mapped to a triangle as shown in

the right side of Figure 2. We further assume that a regular fiber of f inside

the triangle is a torus. Then it is not hard to see that we can always apply the

inverse of a wrinkle which changes the circle into a (possibly achiral) Lefschetz

critical point.

Sinking: There is a homotopy which changes a Lefschetz critical point

near fold arcs into a cusp point (see Figure 3). This homotopy is called a sink

and the inverse of a sink is called an unsink. This homotopy was introduced

in [12] and named in [18]. A sink is a sequence of several homotopies (see

[12, Figure 8]) and we can apply this homotopy if a vanishing cycle of the

Lefschetz critical point intersects that of indefinite folds at one point trans-

versely. We can apply an unsink to any cusp point of a map f : X 4 ! B2.

Fig. 2. The critical value set of Hs. The square dot describes the image of a Lefschetz critical

point.

Fig. 3. Sink (left to right) and unsink (right to left).
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3. The classification of genus-1 simplified broken Lefschetz fibrations

In this section we give the proof of Theorem 1. We begin by reviewing

basic properties of Hurwitz cycle systems of genus-1 SBLFs. We take elements

a; bHH1ðT 2;ZÞ so that the algebraic intersection a � b is 1. Since a primitive

element in H1ðT 2;ZÞ uniquely determines the isotopy class of an oriented

simple closed curve in T 2, we represent the isotopy class of an oriented simple

closed curve by its homology class.

Lemma 1 ([9, Theorem 3.11]). Let f : X ! S2 be a relatively minimal

genus-1 SBLF. A Hurwitz cycle system Wf is Hurwitz equivalent to the

following sequence:

ða;SrTðn1; . . . ; nsÞÞ;

where Tðn1; . . . ; nsÞ ¼ ðb þ n1a; . . . ; b þ nsaÞ and Sr ¼ ða; . . . ; aÞ (r a’s are con-

tained in this sequence).

Lemma 2 ([9, Theorem 4.6]). Let f : X ! S2 be a relatively minimal

genus-1 SBLF.

(1) Suppose that a Hurwitz cycle system Wf of f is equal to

ða;SrTðn1; . . . ; nsÞÞ. Then, there exists a genus-1 SBLF h : X 0 ! S2

with a Hurwitz cycle system ða;Tðn1; . . . ; nsÞÞ such that X is di¤eomorphic

to X 0arCP2.

(2) Suppose that a Hurwitz cycle system Wf of f is equal to

ða;Tðn; n� 2ÞTðn1; . . . ; nsÞÞ. Then, there exists a genus-1 SBLF

h : X 0 ! S2 with a Hurwitz cycle system ða;Tðn1; . . . ; nsÞÞ such that X

is di¤eomorphic to X 0aS, where S is an S2-bundle over S2.

The group H1ðT 2;ZÞ admits a right action of ModðT 2Þ. It is known that

the isomorphism H1ðT 2;ZÞGZ2 given by the generator ða; bÞ induces an

isomorphism ModðT 2ÞG SLð2;ZÞ. This isomorphism maps elements ta and

tb to matrices X1 ¼ 1 0
1 1

� �
and X2 ¼ 1 �1

0 1

� �
, respectively.

Lemma 3. Let f : X ! S2 be a relatively minimal genus-1 SBLF and

Wf ¼ ða;SrTðn1; . . . ; nsÞÞ its Hurwitz cycle system. Then the following equality

holds in PSLð2;ZÞ ¼ SLð2;ZÞ=fG1g for some integer n A Z:

xr
1 � ðx

�n1
1 x2x

n1
1 Þ � � � � � ðx�ns

1 x2x
ns
1 Þ ¼ xn

1 ;

where xi is the element in PSLð2;ZÞ represented by Xi.

Proof. Under the identification ModðT 2ÞG SLð2;ZÞ, the image of the

subgroup ModðT 2ÞðaÞ under the quotient map SLð2;ZÞ ! PSLð2;ZÞ is equal

to the set fxn
1 A PSLð2;ZÞ j n A Zg. Lemma 3 immediately follows from this

observation and Proposition 1. r
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Lemma 4. Let f : X ! S2 be a relatively minimal genus-1 SBLF and

Wf ¼ ða;SrTðn1; . . . ; nsÞÞ its Hurwitz cycle system. Assume that s is not equal to

0. Then, s is greater than 1 and ni � niþ1 ¼ 1; 2 or 3 for some i A f1; . . . ; s� 1g.

Proof. We put A ¼ 0 �1
1 1

� �
and B ¼ 1 2

�1 �1

� �
. Then the following rela-

tions hold:

X1 ¼ ABA; X2 ¼ BA2:

Denote the elements in PSLð2;ZÞ represented by A and B by a and b,

respectively. The group PSLð2;ZÞ has the following presentation:

PSLð2;ZÞ ¼ ha; b j a3; b2i:

The sequence ðw1; . . . ;wnÞ of elements in PSLð2;ZÞ is said to be reduced

if the set fwi;wiþ1g is equal to either of the sets fa; bg or fa2; bg for

each i A f1; . . . ; n� 1g. Since PSLð2;ZÞ is isomorphic to the free product

Z=3Z � Z=2Z generated by a and b, for any element g A PSLð2;ZÞ there

uniquely exists a reduced sequence ðw1; . . . ;wnÞ such that the product

w1 � � � � � wn is equal to g ([13, Theorem 4.1]).

Suppose that s is equal to 1. By Lemma 3 the following relation holds for

some integer n:

xr
1 � x

�n1
1 x2x

n1
1 ¼ xn

1

, x2 ¼ xn�r
1

, ba2 ¼ ðabaÞn�r:

This contradicts the uniqueness of a factorization by a reduced sequence.

Thus s would not be equal to 1.

Suppose that ni � niþ1 is not equal to 1, 2 or 3 for any i A f1; . . . ; s� 1g.
By Lemma 3 the following relation holds for some integer n:

xr
1 � ðx

�n1
1 x2x

n1
1 Þ � � � � � ðx�ns

1 x2x
ns
1 Þ ¼ xn

1

, x2x
n1�n2
1 x2 � � � � � xns�1�ns

1 x2 ¼ xm
1 ; ð1Þ

where we put m ¼ n� rþ n1 � ns. The following lemma can be proved by

the same argument as that in the proof of [10, Lemma 5.8]2.

Lemma 5. The product x2x
n1�n2
1 x2 � � � � � xns�1�ns

1 x2 is equal to bS or

a2ba2bS, where S ¼ w1 � � � � � wk and ðw1; . . . ;wkÞ is a reduced sequence with

w1 A fa; a2g.

2 In Lemma 5.8 of [10], ni � niþ1 is further assumed to be even, but the proof still works under

the assumption ni � niþ1 0 1; 2; 3.
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Since x1 is equal to aba, the relation (1) contradicts the uniqueness of

a factorization by a reduced sequence. This completes the proof of Lemma 4.

r

We are now ready to prove our main theorem.

Proof (of Theorem 1). Since SBLFs which are not relatively minimal can

be obtained by blowing up relatively minimal SBLFs (see [8, Exercises 8.1.8.

(a)], for example), we can assume f is relatively minimal without loss of

generality. We will prove Theorem 1 by induction on l ¼aCf . The state-

ment for the case l ¼ 0 was proved in [6] and also in [9]. Thus, we assume l

is greater than 0. By Lemma 1, we can further assume that Wf is equal to

ða;SrTðn1; . . . ; nsÞÞ.
We first consider the case X is not simply connected. In this case, it is

easy to verify that s is equal to 0. By Lemma 2, there exists a genus-1 SBLF

f : X 0 ! S2 without Lefschetz critical points such that X is di¤eomorphic to

X 0arCP2. Thus, we can deduce the conclusion from the induction hypothesis.

We next consider the case X is simply connected. If r is not equal to 0,

we can reduce the number of Lefschetz critical points using Lemma 2 and

the conclusion holds by the induction hypothesis. Assume that r is equal to 0

and s ¼ l. By Lemma 4, there exists a number i A f1; . . . ; l � 1g such that

ni � niþ1 is equal to 1; 2 or 3.

If ni � niþ1 is equal to 1, then Wf is Hurwitz equivalent to the following

sequence:

ða;S1Tðn1 þ 1; . . . ; ni�1 þ 1; ni; niþ2 . . . ; nlÞÞ

since the sequence Tðni; niþ1Þ is Hurwitz equivalent to S1TðniÞ. Thus, the

conclusion holds by the induction hypothesis.

If ni � niþ1 is equal to 2, then Wf is Hurwitz equivalent to the following

sequence:

ða;Tðni; niþ1ÞTðn1 � 4; . . . ; ni�1 � 4; niþ2 . . . ; nlÞÞ

since the composition tb�niþ1a � tb�nia is equal to ðtatbÞ3t�4
a . By Lemma 2, there

exists a genus-1 SBLF f 0 : X 0 ! S2 with l � 2 Lefschetz critical points such

that X is di¤eomorphic to X 0aS, where S is an S2-bundle over S2. Thus,

the conclusion holds by the induction hypothesis.

If ni � niþ1 is equal to 3, then Wf is Hurwitz equivalent to ða;Tð0;�3ÞWÞ,
where W is some sequence which consists of l � 2 simple closed curves. We

take a regular value q0 A S2 of f and paths g1 and g2 from q0 to the images

of Lefschetz critical points so that the corresponding vanishing cycles are equal

to b and b � 3a, respectively (see the far left of Figure 4). It is not hard to
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see that two vanishing cycles of indefinite folds determined by the dashed arcs

in the far left of Figure 4 are a and 5a� b, respectively. In particular, these

vanishing cycles intersect at one point transversely. Thus, we can apply a fold

merge to f along the dashed arcs. The critical value set is changed as

described in the second figure in Figure 4. We can further apply an unsink to

the cusp in the right side of the figure and sinks twice to the two Lefschetz

critical points, resulting the critical value set described in the third figure in

Figure 4. Since the genus of a regular fiber in the preimage of the triangle is

1, we can further apply a wrinkle so that the critical point set on the triangle is

changed into an achiral Lefschetz critical points with null-homotopic vanish-

ing cycle. Eventually, we can obtain a genus-1 SBLF f 0 : X 0 ! S2 with l � 1

Lefschetz critical points so that X is di¤eomorphic to X 0aCP2. Thus, the

conclusion holds by the induction hypothesis. This completes the proof of

Theorem 1. r
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