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ABSTRACT. We give a method for studying of asymptotic behavior of solutions
to periodic continuous linear systems and discrete linear systems. It is based on a
representation of solutions given in the paper, which is a reformation of the variation
of constants formula into the sum of a z-periodic function and an exponential-like
function. By using such representations, the set of initial values is completely classified
according to the asymptotic behavior of the solutions to the continuous system. In
particular, the set of initial values of bounded solutions is precisely determined. To
give the representation for the continuous system, we will establish translation formulae
by comparing two representations of solutions to a discrete linear system. These two
representations are deeply related to the binomial coefficients, the Bernoulli numbers and
the Stirling numbers.

1. Introduction

Let C be the set of all complex numbers and R the set of all real numbers.
We set N={1,2,...}, No={0}UN and Z = {0,+1,+2,...}.

We consider periodic linear inhomogeneous differential equations of the
form

d
Ex(t) = A(t)x(t) + f(1), x(0) = w, (1)

and linear difference equations of the form

X1 = Bx, + b, Xo =W, n € Ny, (2)
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where A() is a periodic continuous p x p matrix function with period 7 > 0,
f:R — C? a r-periodic continuous function, B a complex p x p matrix and
beC”’.

Criteria on the existence of 7-periodic solutions and bounded solutions
to the equation (1) have been considered in the literature, e.g., [3, 4, 6, 7, 13,
17, 19, 20, 24]. Among them, a fundamental result on the existence of a t-
periodic solution of (1) is Massera’s theorem: the equation (1) has a bounded
solution on Ry := [0, c0) if and only if it has a z-periodic solution. Massera’s
theorem is rephrased in terms of sets of initial values as follows: IB # J if
and only if IP # ¢, where IB and IP, respectively, are the sets of initial values
at =0 for all bounded solutions on R, and for all z-periodic solutions. A
more important problem, as we believe, is to explicitly determine the sets IB
and IP; however, this problem has not been throughly resolved. We empha-
size that it is generally not so easy to describe the set IB. This is a motivation
of the present article.

As a special case, if A(f) = A, a constant matrix, in the equation (1), the
above problem was studied for the first time and was completely solved by
Kato, Naito and Shin [13]. Their approach is based on a new representation
(Lemma 16) of solutions to the equation (1) with A(¢#) = 4, in which the
solutions are expressed as the sum of a z-periodic function and an exponential-
like function. Such a representation of solutions is obtained by transforming a
new representation of solutions of the discrete linear system

Xnp1 = €™, + b, Xo =W, neNy (3)

into the continuous linear system (1).

The purpose of the present paper is to give a method for investigating the
asymptotic behavior of solutions to the periodic continuous linear system (1),
following the lines of arguments in [13]. It is based on a representation of
solutions, which is a reformulation of the variation of constants formula into
the sum of a 7-periodic function and an exponential-like function. By using
the representation, the sets of initial values are completely classified according
to the asymptotic behavior of the corresponding solutions to the continuous
system (1). In particular, the set IB of the initial values of bounded solutions
is precisely characterized.

Firstly, we give the representation (Theorem 6) of solutions to the discrete
linear equation (2) by introducing characteristic quantities described by the
initial value w, the inhomogeneous term b and the projection from C” to the
generalized eigenspace of B. It has a form different from a result (Theorem 9)
in [13] for the case where B = e™.

Secondly, we establish translation formulae. As mentioned above, there
are two different representations of solutions to the equation (2) for the case
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where B = ¢™; one (Theorem 9) is based on A and the other (Theorem 6) is
based on B. They describe the same solution, but they are of different forms
in appearance. Therefore it is very important to investigate the mathematical
mechanism of translation from the representation in terms of B into the one in
terms of A, and vice versa. By comparing the two representations of solutions,
we establish translation formulae (Theorem 11), which are deeply related to the
binomial coefficients, the Bernoulli numbers and the Stirling numbers. The
translation formulae play an essential role in the proof of our representation
theorem of solutions for the periodic continuous linear system (1).

Thirdly, we give novel representations (Theorem 1) of solutions to the
equation (1). It is well-known that the solution of the equation (1) is given
as

t

X(tw, f) = U1, 0)w+J Ut,s)f(s)ds  (teR), @)
0

by using the variation of constants formula, where U(¢,s) stands for the
solution operator of the associated homogeneous equation

Ex(l) = A(1)x(1). (5)

To investigate asymptotic behavior of solutions for equations (1), we have to
analyze the integral term in the right side of (4). However the analysis is not
easy. Moreover, it seems that the periodicity of the equation is not explicitly
reflected in the representation (4). We therefore transform (4) into the sum of
a t-periodic function and an exponential-like function.

The idea of our proof is stated as follows. By Floquet’s theorem it is
well-known that the equation (1) is reduced to the equation of the form
Y'(t) = Ay(t) + g(¢). For this equation, a representation of solutions has been
already obtained in [13]. As a result, a representation of solutions to the
equation (1) is immediately obtained, which depends on the characteristic
exponents. However, it is not easy to obtain a representation of solutions in
terms of the characteristic multipliers. To get over this difficult, we will utilize
translation formulae as mentioned earlier.

Finally, as applications of the precceding results, we completely charac-
terize the asymptotic behavior of solutions of (1). The set C” of initial values
of the solutions is completely classified according to the asymptotic behavior
of solutions to the equation (1). In particular, the set IB for (1) is exactly
determined in the concrete fashion (see Theorem 4).

We give the main results in the first half (section 2) and their proofs in the
latter half (sections 3, 4, and 5) of the present paper.
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2. Main results

In this section we give main results together with some terminologies
and notations. First, we give representations of solutions of the equation (1).
Next, we systematically and completely characterize asymptotic behavior,
boundedness and periodicity of solutions to the equation (1).

2.1. Representations of solutions. For a complex p x p matrix H we denote
by o(H) the set of all eigenvalues of H, and by hy(#n) the index of 5 € o(H).
Let Gy(n) = N((H — yE)"™™) be the generalized eigenspace corresponding to
neo(H), where E is the unit matrix. Let Q, = Q,(H) : C" — Gy(n) be the
projection corresponding to the direct sum decomposition

Cp: 6—) GH(i’])

nea(H)

In particular, let H be related by H = ¢™, 1> 0. Then by the spectral
mapping theorem we see that o(H) = ¢®“) and

ou(4) = {rea(d)|u=e"} # &
for every uea(H). Moreover, the following relations hold:
h(w) = max{hy(4) |1 € 0,(A4)},
Gu(p) = @ Ga(4) (6)

reayu(A)

and

HQ;(A) = Q:(H,  Qu= Y 0i4),

J€a,(4)

0i(A)0u = 0i(4) (e 0,(4)). (7)

The k-th derivative a®)(z) of the function a(z) = (z — 1)" (z # 1) is given
by

a®(z) = —kI(1 —z)7F 1, (8)
For any ue€o(H) with u # 1, a matrix Z,(H) is defined by

i (p)—1 a<k)(,u) . i (p)—1 1 .
Z,(H) = T (H —pE)" = — Z ﬁ(H—ﬂE) (1 #1).
k=0 : i (1—w)

Now we will introduce characteristic quantities: for x € o(H) and w,b e C?,

y,u(w?b; H) = Quw+Z,(H)Oub (u#1),
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and
o(w,b;H) = (H —E)O1w+ Qb (p=1).
The solution operator U(z,s): C” — C?, t,s € R is defined by
U(t,s)w = u(t;s,w),

where u(;s,w) is the unique solution of the equation (5) with the initial
condition u(s) = w e C?. Since U(t,0) is a nonsingular matrix, we can take a
matrix 4 such that U(z,0) = e™. Define P(f) = U(¢,0)e=™4. Then it is easy
to see that P(¢t+ 1) = P(¢). Thus we have the Floquet representation U(z,0)
= P(t)e't. The period map V(¢), teR is defined by V(¢)=U(t,t—1) =
U(t+ t,t), from which it follows that V(¢+ 1) = V(t), te R and V(1) U(t,s) =
U(t,s)V(s), t,seR. Note that o(V(¢)) = (¥ (0)) holds (see Lemma 13).
For pe a(V(0)) the projection Q,(7) = Q,(V(?)) : C* — Gy(;(n) has the prop-
erty Q,(1)U(t,s) = U(t,5)Qu(s). Set
by = J U(z,s)f(s)ds
0

in the equation (1). Then characteristic quantities are defined by
y,u(w7 bf) = Vﬂ(W, b/"y V(O))7 6(W7 bf) = 5(W7 bf7 V(O))

The eigenvalues of V' (0) =e™ and A are called the characteristic multiplier
and the characteristic exponent of U(t,s), respectively. Now we introduce a
matrix S,(¢) to change e” for 1€ ag,(4) to a form of we a(V(0)). For any
characteristic multiplier xe€ a(V(0)) we take a characteristic exponent p,
(-7 < S(tp) < m) such that gy =e™. Define u' by u' =e"™ and set

Su(t) = ,Uit/r Z e[)'Pﬂ»
leay,(A)

where P, = Q;(A4), 2€a(A). Then S,(t) is t-periodic. In fact, by choosing a
p (—n < 3(tp) < m) such that u=e” for Aeo,(4) we get

eri _ e(t/‘r)fi _ e(t/r)rpe(t/r)(rifrp) _ lut/re(t/r)(r/lffp)7

which implies that

Z EMP)L _ ﬂt/‘r Z e(t/r)(r}.fr/))Pi.

J€,(A) Jeay(A)

Hence we obtain

S = 3 elwmp,
Area,(A)
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Since e =e™ =y, there is an integer n(4) such that i —tp = 2n(d)7i.
Therefore S,(f) is t-periodic.
Put R,(f) = P(1)S,(f). Then R,(t) is also t-periodic.

Now we state a representation theorem of solutions to the equation (1).

THEOREM 1. Let puea(V(0)). The component Q,(t)x(t) of solutions x(t)
of the equation (1) satisfying the initial condition x(0) =w is expressed as
follows:

1) Let u#1. Then Q,(t)x(t) is expressed as

0u(1x(1) = U(1,0)7,00.b) + (s, /) (1€ R) ©)
hy ) (1)—1
= iz n_L — uE)Y%y (w. b,
RO (1) e (VO) s, )
+ h(t, f) (teR), (10)

and h,(t, f) is a t-periodic solution of the equation (1) in Gy (u), where
t

) = ~ULOZV 00,0 + | U905 s

0

2) Let w=1 Then Q,(t)x(t) is expressed as

o)1, | .
0 =R Y (1) (VO - Bty

+R(DQOW+ (1, f)  (1€R) (11)

and h(t, f) is a t-periodic continuous function, where

hy (o) (1)—1
mes) == Y. (8 0 - B0

=0\

+ Jl U(t,$)01(s)f(s)ds.

0

We give a simple example of Theorem 1. Consider the one dimensional
periodic linear differential equation of the type

d
G0 = alix + /(1) (12

where a(f) and f(¢) are t-periodic and continuous real-valued functions.
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Set

I3
a(t,s) = J a(r)dr (t,s€R) and a(t) = a(t,0).
S

The solution operator U(t,s) of the homogeneous equation associated with the
equation (12) is given by U(t,s) = e*"¥). Since a(t+1,1) = a(t), the period
map V() has the property V(f) = V(0) =¢*® for all 1€ R, and hence Q,(t)
= 0,(0) = 1. Obviously, a(V(0)) = {u}, u=e*?. It is easy to verify that
hy)(u) = 1. Setting m(a) = @, we have that V(0) = e™@. Thus its char-
acteristic exponent A is given by A =m(a), and P, =1. Hence u'/" = ™,
By Floquet’s Theorem U(z,0) is expressed as U(t,0) = P(¢)e™@. Therefore
S.(f) and R,(f) are given as

Su(t) = u et p, = emm@emia) —

and

respectively. If o) #0, then u# 1 and

1 1
Z,(V(0)) = a1 Yu(w, br) = ‘”Jrﬁbf-
If a(z) =0, then =1 and hyg(1) = 1. Thus R(t) = e and 6(w, br) = by.
By Theorem 1, the solution x(z;w,f) of the equation (12) is given as
follows.

ProPoOSITION 1.

1) Let u+#1. Then the solution x(t;w,f) of the equation (12) is ex-
pressed by

1
X([; va) = ea(t) (W +/J — lbf> + h;l([af)
1
— )= (/1)a(r) J(t/D)a(z) [y 4~ p
e e <w+’u_1b_;)+h,,(l,f)

and h,(t,f) is a t-periodic solution to the equation (12), where

L

. eo:(t) t ' o(t) pttt .
h(t, f) = = Iubf + Jo e*f (5)ds = = ﬂJ T (5)ds.
t




82 Jong SonN SHIN and Toshiki Narto

2) Let u=1. Then the solution x(t;w,f) of the equation (12) is ex-
pressed by

Z‘efx(t)

T

x(t;w, f) = bf—l—e“<’)w+h1(t,f)

and h\(t, f) is a t-periodic function, where

i ¢ (1) t i
h(t, f)=— ¢ by —I—J e“(”s)f(s)ds.

T 0
As a special case of Theorem 1, we consider the case where |y| # 1,
wea(V(0)). Set
ar(V(0) ={ullul > 1} and o (V(0)) = {u|lul <1}
Then o(V(0)) = . (V(0))Ua_(V(0)).
THEOREM 2. Let uea(V(0)).
1) If nea(V(0)), then

2,(V(0))0,(0)by = j: U(0.5)0,() (s)ds,

o0

Ou(1)x(1) = U(1,0)y,(w, by) *J U(t,5)Qu(s)f (s)ds, (13)
t
and the integral term with minus sign in (13) is a continuous t-periodic solution
of the equation (1) in Gy ().
2) If uea_(V(0)), then

0
Z,(VO)Q.0b = - | V0.9, ()ds,

O0u(t)x(t) = U(t,0)y,(w,br) + Ji | Ul(t,5)0.u(s)f (s)ds, (14)

where the integral term in (14) is a continuous t-periodic solution of the equation
(1) in Gy (u).

2.2. Asymptotic behavior. As applications of Theorem 1 and Theorem 2, we
characterize asymptotic behavior, boundedness and periodicity of solutions to
the equation (1).

First, we shall state general results on asymptotic behavior of solutions to
the equation (1). To do so, we introduce the following concept: an index d(u),
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uea(V(0)), of growth order for the component Q,w of the initial value w to
the equation (1) is defined as follows:

If 4 # 1, then d(u) = 0 in the case that y,(w,bs) = 0; otherwise, d(u) is a
positive integer such that

(V(0) = kE)™ "y, (w,by) # 0, (V(0) = uE) "y, (w,by) = 0.

If =1, then d(1) =0 in the case that d(w,bs) = 0; otherwise, d(1) is a
positive integer such that

(V(0) — E)* V750w, b7) £0,  (V(0) = E)*Do(w, by) = 0.

If 6(V(0)) = {4, -, 14}, then we denote by (d(x),d(t),...,d(x,)) the
index of growth order for initial value w to the equation (1). Clearly, d(u) <

hV(O)(ﬂ)-
Asymptotic behavior of solutions to the equation (1) is quickly derived in
the following theorem.

THEOREM 3. Let pea(V(0)) and let Q,(t)x(t) be the component of the
solution x(t) .= x(t;w, f) of the equation (1).
1) The case where |u| > 1.
(1) If d(u) =0, then Q,(t)x(t) is t-periodic:

03 = = [ Ult.9)0,(5) (5.

(2) If d(u) =1, then Q,(t)x(t) is unbounded on R.,:
Qu()X(1) = W/ R ()3, 0. by) + hult, f) = 00 (1 = +00),

and Q,(1)x(t) is asymptotically t-periodic on R_:

0u3(0) = = | U0 s +o1) (1= —c0).

13

(3) If d(u) > 1, then Q,(t)x(t) is unbounded on R.:
(f) d(ﬂ)*lﬂz/r

(@) =

+o(t! W) (1 o),

Qu(0)x(1) = Ry(1)

(V(0) — E)"“ 1y, (w, by)

and Q,(1)x(t) is asymptotically t-periodic on R_:

0,()x(t) = — JOC U(t,5)0u(s)f(s)ds + o(1) (t — —o0).

t
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The case where |u| < 1.
(1) If d(u) =0, then Q,(t)x(t) is t-periodic:

0,(1)x(1) = J, V) Q) S (s
(2) If d(u) =1, then Q,(t)x(t) is asymptotically t-periodic on R.:
Ou(t)x(1) = J_ U(t,5)Qu(s)f(s)ds +o(1) (1 — +c0),
and Q,(t)x(t) is unbounded on R_:
Qu()x(t) = p*Ry()y,(w,by) + hu(t, f) = 0 (t — —o0).
(3) If d(u) > 1, then Q,(t)x(t) is asymptotically t-periodic on R,:
0.(0x(0) = | V9@ s +o(1) (1 +0),
and Q,(t)x(t) is unbounded on R_:

(ﬁ) d(ﬂ)*lﬂz/r
() = DT
o1y (1 —oo),

(V(0) — E)"“ 1y, (w, by)

Qu(0)x(1) = Ry(1)

The case where |u| =1, u# 1.
(1) If d(u) =0, then Q,(t)x(t) is t-periodic:  Q,(t)x(t) = h,(t, f).
(2) If d(u) =1, then Q,(t)x(t) is bounded on R:

(z
(0)x(
Q,u( ) (Z) Rﬂ( ):ur/ry/z(w?bf) +h,u(la f)
(3) If d(u) > 1, then Q,(t)x(t) is unbounded on R, and R_:

t ()—1 t/t
0, (1)x(1) = Ru(1) (d(%)) — 1)!/’;{(”)71 (V(0) — uE) "1 (i, by)

+o(r™7h) - (Jt] — o0).

The case where u=1.
(1) If d(1) =0, then Q\(t)x(t) is t-periodic:

Q](l)x([) = R](I)Ql (O)W + hl(l,f).
(2) If d(1) =1, then Q\(t)x(t) is unbounded on Ry and R_:

01(Ox(1) =~ Ry (000w, by) + Ri(NQ O+ (1, f). (15)
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(3) If d(1) > 1, then Qi(t)x(t) is unbounded on R, and R_:

d(1)
01(0)x(t) = G) %le(z)(V(O) — E)"D7 5w, by)

+o(t!M)  (|t] = o).
Proor. The proof is easily derived from Theorem 1 and Theorem 2.

O

Next, using Theorem 3, we characterize by initial sets bounded solutions

and 7-periodic solutions for the equation (1). The proof immediately follows
from Theorem 3.

THEOREM 4. The following statements hold true.
1 The solution x(t;w, ) of the equation (1) is bounded on R if and only if
the following conditions hold:  For every ue a(V(0)),
1) if |ul > 1, then y,(w,by) =0;
2) if u#1 and |u| =1, then (V(0) — uE)y,(w,by) = 0;
3) if u=1, then o(w,bs) =0.
2 The solution x(t;w, f) of the equation (1) is bounded on R if and only
if the following conditions hold:  For every ue a(V(0)),
1) if [ul #1, then y,(w,br) =0;
2) if u#1 and |u| =1, then (V(0)— uE)y,(w,bs) =0;
3) if w=1, then o(w,bs) =0.
3 The solution x(t;w, f) of the equation (1) is t-periodic if and only if the
Jollowing conditions hold:  For every ue a(V(0)),
1) if u#1, then y,(w,bs) =0;
2) if p=1, then 6(w,bs) =0.

As stated in Introduction, the sets IB and IP are characterized by using
Theorem 4. For the case where A(f) = A in Theorem 4, see [13].

If by = 0 in Theorem 4, then the following result immediately follows from
Theorem 4. Clearly, if /=0, then by = 0.

COROLLARY 1. Assume that by =0. The following statements hold true.

1 The solution x(t;w, f) of the equation (1) is bounded on R if and only
if the following conditions hold:  For every ue a(V(0)),

1) if |ul > 1, then Q,(0)w=0;
2) if |y =1, then Q,(0)weN(V(0)— uE).
2 The solution x(t;w, f) of the equation (1) is bounded on R if and only
if the following conditions hold:  For every ue a(V(0)),
1) if |ul #1, then Q,(0)w=0;
2) if |y =1, then Q,(0)weN(V(0)— uE).
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3 The solution x(t;w, f) of the equation (1) is t-periodic if and only if the
Sollowing conditions hold:  For every pe a(V(0)),
1) if pn#1, then Q,(0)w=0;
2) if pu=1, then Q,(0)weN(V(0)—E).

Theorem 4 does not imply the existence of bounded solutions or z-periodic
solutions to the equation (1). The following theorem is concerned with its
existence, which is a refined version of Massera’s theorem [17]. Its proof is
obvious from Theorems 4.

THEOREM 5. The following statements are equivalent.

1) The equation (1) has a bounded solution on R,.

2) 1ea(V(0)) and there is a Q1(0)w such that 6(w, bs) = 0; or 1 ¢ a(V(0)).
3) The equation (1) has a t-periodic solution.

COROLLARY 2. Let 1e€a(V(0)) in the equation (1). The following state-
ments are equivalent:

1) There is a Q\(0)w such that 6(w,by) = 0;

2 01(0)by € (V(0) — E)Gyyo)(1);

3) There is a we C? such that (E— V(0))w = by,

For other well-known conditions concerned with conditions in Corollary 2,
refer to [25, pp. 467-469], [19, Theorem 2.2 in Chapter 8] and [6, Theorem
2.3.1, Corollary 2.3.2].

Notice that the results corresponding to Theorem 3, Theorem 4 and
Theorem 5 are also proved for the difference equation (2) by using the same
argument as above. The descrete version of Theorem 1 is given in the next
section.

3. A representation of solutions of discrete linear systems

In this section we give a representation of solutions for the equation (2)
with characteristic quantities. To describe representations of solutions, we will
state briefly basic facts on the binomial theorem. Let x € R and k€ Ng. The
well-known factorial function (x), is defined by

1, (k=0)
(X)k:{x(x—1)(X—2)---(X—k+1) (k eN).

In particular, if x =n is a positive integer, then

(n) n n!
T!k_(k) ::m, (n),=0 (k>n).
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By the binomial theorem the relation

i=0

is easily shown. Moreover, we have

Si(;>:<k11> (neN). (16)

i=k

Indeed, applying the binomial theorem to the relation
n—1 n
; 1 -1
(1+x) = %,
5 X

=

and comparing the coefficients of the terms x*, we obtain the relation (16).

It is well-known that the solution x,(w,b) of the equation (2) with the
initial condition xy = w is given as

xn(w,b) = B"w+ S, (B)b, (17)

where

Noticing that
(B — E)x,(w,b) = B"[(B— E)w+b] — b,
we have that if 1 ¢ g(B), then
x,(w,b) = B"[w+ (B—E)"'b]— (B— E)'b.

The interesting problem is how to deal with the case where 1 € 6(B). We will
employ spectral decomposition methods for this problem. Set Q, = Q,(B) for
uea(B). Applying Q, to (17), we have

0, %, (w,b) = B"Quw + S,,(B) Qub. (18)

We will rearrange the right side of the representation (18) by collecting the
terms which are the same order with respect to n.
Now we are in a position to state the main theorem in this section.

THEOREM 6. Let u€o(B) and neNy. The component Q,x,(w,b) of the
solution x,(w,b) of the equation (2) is expressed as follows:
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1) If u#1, then
OuXn(w, b) = B"y,(w,b) — Z,,(B) Qub.
(1) If w0, then

hp(u)— 1(}’1)
Ouxn(w,b) = u" Z 71;( (B— ﬂE) Vu(W,b) = Z,(B) Qub.
=0
(2) If u=20, then
[ —Zo(B)Qob (n = hp(0))
Coxalnb) = { B'yo(w,b) = Zo(B)Qob (1 < hs(0) — 1).
2) If u=1, then

hy(1)—1
Q1x,(w, b) k“ (B — E)*6(w,b) + Ow.
=0

CorOLLARY 3. Let uea(B) and hg(p) =1. Then the component
0,x,(w,b), ne Ny of the solution x,(w,b) of the equation (2) is expressed as
follows:

1) If u#1, then

Quxn(w,b) = B"y,(w,b) — Z,,(B) Qub.
(1) If u#0, then
Quxn(w,b) = p"y,(w,b) — Z,(B) Qub.

(2) If u=0, then

[~ZyBYb (n=1)
Q()Xn(ﬂ), b) - { QOW (l’l — 0)
2) If u=1, then
O1x,(w,b) = nQ1b+ O1w. (19)

To prove Theorem 6, we will calculate the first term B”Q,w and the
second term S,(B)Q,b in the right side of (18). Notice that

(B—uE)" W10, #0 and (B—uE)""Q,=0  for uea(B).

First, the first term B"Q,w is given in the following lemma. Its proof is
easy.
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LemMA 1. Let ue o(B).
1) If u#0, then

hp(p)—1
n
B Q= u" —?u (B—uE)*Q,,  n=0,1,2,.... (20)
k=0

2) If u=0, then

O (n=hs(0))
B"Qq (l’l < hB(O) - 1)

Next, we will calculate the second term S,(B)Q,b.

B" Qo :{

LEmMA 2. Let ue o(B).
1) If p#1, then

SH(B)Qﬂ = BnZ#(B)Q,U - Zﬂ(B)Q,ll'
(1) If u#0, then

(2) If u=0, then

—Zy(B)Qo (n = hp(0))

Sn(B)QO = { BnZ()<B>QO _ ZO(B)Q() (I’l < /’13(0> — 1)

2) If u=1, then

hg(1)—1 "
&wml§j<kH)wEV@.

Proor. Set i = hp(p) and B, = B— uE. It follows from Lemma 1 that

n—1 n—1 h—1

S(B0=Y BO= Y > Py Bl @

First, we consider the case where u # 1, u # 0. Exchanging the order of
summation in (21), we have

gl Bl n=lroak .
Su(B)Qy = _,Z(l)k/‘l BOu=) {WZI] B, Oy
P L k| 4 —u
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Moreover, using the notation b(z) =z" — 1, we get

dk z"—1 k
Zk' {dzk z—l} #BMQ”

| [ 2
= pz<i>b“(u)a‘ (1BLQ,
k=0""i=0
h=1 h=1
1 k i —i
= —,(l.)b“(u)a(" (1) B O,
i=0 k=i
h—l /1—] 1

]
[=]
o
i

h-1
1 .
L 00t () Bh O
;l'(k—l)! "
h—1+i 1 ) i .
=2 gy W B,
k=i
= > b (1080,
j=0

Therefore we obtain

h—1
n). . . .
(l-,)lﬂn IB,I;ZH(B)Q# - Z;,(B)Q,,
i=0

= BnZﬂ(B)Qy - Zu(B)Q/“

where in the last step we have used Lemma 1.
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Next, we consider the case where 4= 0. Since Zy(B) = — ,/;é Bk, we
see that if n > h, then Zo(B)Qy = — ,i’;(l) B*Qy = —S,(B)Qq; if n < h — 1, then
B"Zy(B)Qo — ZB"*"Q + ZBon
h—1 h—1
=Y B+ B0,
k=n k=0

n—1

= B*Qy = S:(B) Q-
k=0

Finally, we consider the case where u=1.

Using the relation (16), we
have

nflhll)l ok nlhl- .
:Z k;'BQl > ()BlQl

i=0 k=0 i=0 k=0
h

(5 )) k -1< )
BkQ, = B0,
k0<;<k v ,; k41) 1!

0

Therefore the proof of the lemma is complete. O

ProOF OF THEOREM 6. Put h=hg(u), B, =B —uE. The case where
1 =0 is obvious from (18) and Lemma 2.

Let u#1, £ #0. Using (18), (20) and Lemma 2, we have

k‘

-1
Oualow, ) = S

h—1
_ n), .
AR AVLE D %u “ByZ,(B)Qub — Z,(B) Qub,
0 k=0 '

ES
Il

from which it follows that

b

—1
Quxn(w,b) = % ”’kBZf(Q,,W +Z,(B)Qub) — Z,(B)Q,b

0

>
Il

Vu(w; b) = Z,(B) Qub.
Let u=1. Using (18), (20) and Lemma 2 again, we have

Q1%,(w,b) = Z( )B Q1W+Z( )Bleb

k=0

h—1 h—1
n n
— Qlw—k;(k+1>B{‘+1Q1w+;<k+l)Bf‘Q1b
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= Z (](cniﬁl)!B{((Bl Ow + 01b) + Q1w

= )
= < G _:+ll>'Bf>5(1v,b) + O1w.
< !

=~
Il

This proves the theorem. O
Next, we state properties of Z,(B) and y,(w,b) for the equation (2).
THEOREM 7. If u+# 1, uea(B), then

(B—E)Zu(B)Qy = Oy (22)
ProOF. Putting n=1 in 1) in Lemma 2, we have
S1(B)Qu = BZu(B) Oy — Zu(B)Qu = (B — E)Z,(B) Oy

Since S(B) = E, the assertion (22) holds. O

COROLLARY 4. Assume that 1 ¢ a(B). Then
B-E)"'= Y Z(B)0. (23)
uea(B)

PrOOF. Since B—E is nonsingular and the relation E =3 _ 5 Ou
holds, (23) is easily obtained from (22). O

Lemma 3. p,(w,b) =0 if and only if (B— E)y,(w,b) = 0.

PrOOF.  Assume that (B — E)y,(w,b) =0. Then y,(w,b) € Gp(1). More-
over, since y,(w,b) = Qu(w + Z,(B)b), we see that y,(w,b) € Gp(u). 1f u# 1,
then Gp(1)N Gp(u) = {0}. Therefore we obtain y,(w,b) =0 and vice versa.

O

4. Translation formulae

In this section we establish translation formulae.

4.1. Formulation of translation formulae. Let us consider the case where B in
the equation (2) is nonsingular. Then 0 ¢ o(B). With the notation

1
Biesi =ty B - HE)"  (nea(B)),

Theorem 6 may be rewritten as follows.
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THEOREM 8. Assume that B is nonsingular. Then the component
0,xn(w,b) of the solution x,(w,b) of the equation (2) is expressed as follows:
1) If u#1, then

he(p)— 1

Quxn(w, b) = " 1) Bk 7, (W; b) = Zu(B) Qb
k=0

2) If u=1, then

hg(1)—1

1
O1x,(w,b) = Z (”)k+1 k—_’_lB[k.,l]é(Wab) + O1w.
k=0

On the other hand, for the equation (3) a representation of solutions was
already given in the previous papers [13], [20]. It is based on 4. To describe
the representation of solutions, let us introduce some notations. Set P; =
0;(4) and

ok

Ay = H(A —JE)Y (hed(A)).

Let w =2n/7. Define two matrix functions for any 1€ a(A4) as

ha(2)—1
e ()4, (h¢inZ)
k=0
and
ha(2)—1
Yi(A)= > Bidr, (ieiwl),
k=0
where ¢(z) = (e —1)"" and By, k=0,1,2,..., are Bernoulli’s numbers (refer

o [18]). For the equation (3) we will introduce characteristic quantities: for
Aea(A)

o, (w,b) :==a;(w,b;A) = P,w+ X,(A)P;b (A ¢ iwZ)
and
Bi(w,b) == p,(w,b;A) = 1(A — AE)P;w + Y,(A)P;b (L €iwZ).
THEOREM 9 [13], [20]. Let L€ a(A). The component P,x,(w,b) of the

solution x,(w,b) of the equation (3) is given as follows:
1) If L¢iwZ, then

hA()) 1
Pyx,(w,b) = €™ /‘Ak 20w, b) — X;(A)P;b
k=0

= "o (w,b) — X;(A)P;b.
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2) If AeiwZ, then

ha(2)—1
P;x,(w,b) = n/‘Jrl Ak B (w,b) + Pyw.
k=0

X;(A) and Y,(A) for the equation (3) are characterized as follows. Since
the proofs are similar to Theorem 7 and Corollary 4, they are omitted.

THEOREM 10.
1) If Aea(A\iwZ, then

(e — E)X,(4)P; = P;.
2) If Aea(A)NiwZ, then
(e —E)Y;(A)P, = (4 — AE)P;

COROLLARY 5. Assume that 6(A)NiwZ = . Then

e —E)"'= Y X(4)P;.

Lea(A)

Throughout this section we assume that two complex p x p matrices B and
A in the equation (2) and the equation (3), respectively, are related by B = e™,
7> 0. Then it is trivial that the equation (3) coincides with the equation (2).
The representation of the component Q,x,(w,b) in Theorem § is refined by
using subcomponents P;x,(w,b), € a,(A4). This representation and Theorem
9 are different representations of the same component of the solution. To go
back and forth between these representations, we have to find some transla-
tion formulae referred to in Introduction. Therefore we will turn to find such
translation formulae. Comparing the above two representations of solutions,
the relations below hold.

If u=e™ # 1, then

B"P;y,(w,b) — Z,(B)P;b = e" o (w,b) — X;(A)P;b, (24)
that is,
hs(4)— 1
/u kﬂP)yu(W b) ( )P)b
k=0
ha(2)—1
=" > nFdy j0(w,b) — Xi(A)Psb. (25)

k=0
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If u=1, then

hp(1)— 1 ha(2)—1
k+1k+1B[k1P,151vb 2 n*

Ak_,iﬁl(w, b) (26)
k=0

Since the definition of /,4(A) implies that
Ak,)VP)V7$0 (OSkShA(i)—l), Ak’iP;b:O (kZhA(/l)),

and since hg(u) > hy(A), A € 6,(A), the range of k in the sums of the right sides
of (25) and (26) can be extended over 0 < k < /ig(x) — 1. Furthermore, the
products A; ;A ; and By; By, are obtained from the following rules.

LEMMA 4.
k) jtk jtk
Aj Ay = (]J.T')Aﬁrk,i = ( ; Ajyi,p = K Ajik, 7
In particular, A Ay ; = (k+1)Aps1,, holds.

(j+k)! j+k j+k
By, Bike, 1 ZﬂTB[Hk,m = Bljsew =\" ) Bk

In particular, By By, = (k+ 1)Bjy1,, holds.

Now the following statements A) and B) hold.
A) B"=e¢"1 (neNy) if and only if for all ueo(B) and L€ a,(4) the
relation

he(p)— 1 hg(p)—1
() By P = n*Ai Py (neNy) (27)
k=0 k=0

holds. Indeed, if u # 1, then, taking » =0 in (25), the relation (27) holds,
because w is arbitrary; if 4 = 1, then, taking b = 0 in (26) and applying Lemma
4, we obtain the relation (27).

B) S.(B) = S.(e™) (neNy) if and only if for all x e o(B) and A€ g,(A)
the following relations hold:

(1) If u#1, then

Z,u(B)Pi = X),(A)Pi' (28)
(2) If pu=1, then
hp(1)—1 1 hp(1)—1

_— = —— A, Y, (A)P;. 29
2 (”)k+1k+1 w1 Pr = 2 n* k+1 k2 Y3 (A)P; (29)
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Indeed, if u # 1, then, taking w =0 in (24), we have that
B"P;(Z,B)P;b — X;(A)P;b) = Z,(B)P,b — X;(A)P;b.

Putn=1and v=2Z,(B)P;b— X;(A)P;b. Since P,v=v, we have (B— E)v=0,
that is, ve N(B—E). Since u# 1, we get v =0, and hence (28) holds. If
1 =1, then, taking w =0 in (26), we obtain (29).

The relations (27) and (29) depend on n. However, if we regards these
relations as the expression of polynomials of n with degree /g(x) —1 and
hp(l), we can derive new relations, independent of n, between coefficient

matrices. ;
The Stirling numbers of the first kind [2] (=s;%) and the Stirling

k
numbers of the second kind { . } (= Sk,;) are introduced as the coefficients of
j :

the transform of bases of polynomials as follows:

j . k k
x)j:;[;{]xk’ j € No, xk:;{j}(x)j, k e Np.
= j=

By definition of the Stirling number of the second kind, (27) may be rewritten
as

hp(p)—1 he(w) =1 _j j
>, ediri= 3 S o,
= j=0 k=0
/113(/1)*1 hp(p)—1
0" o
k=0 Jj=k

Hence if 0 <k < hp(p) — 1, then
hp(w)—1
B P = { } Aj P,
J=k

Also, by definition of the Stirling number of the first kind we have that, for

hg(p)—1 k
A Z { .]B[k,ﬂ]P/
= L/

The relation (29) is translated as
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k=0 Itli=
hp(1)—1 I
1 {] +1 }

= Z —Z (1) i1 4j,2 Y2 (A) P;
= Sl e+
hs(1)—1 he()—1 ;.

j+1 } 1

= n A, Y;(A)P;.

o (s ; {k+1 FES W(4)

Thus, if 0 <k < hg(l) —1, then

| hp(1)—1 i 1
k—HB[k,l]PAZ A { }—A Y;(A)P;. (30)

Also, (30) is equivalent to the following relation for 0 < j < hp(1) — 1:

A, Y (A)P; = By P,
]+1 s ( );- Z ]+1 k+1 [k,l] L

1 L0 [k+ 1] 1
[y

Summarizing these results, we arrive at the translation formulae.

THEOREM 11. Let B=e¢™, 1> 0 and /€ a,(A).
1) (Translation formula 1) If 0 <k < hg(u) — 1, then

hg(p)—1 J
By P = Z {k }AJ,APA, (31)
=k
or equivalently, if 0 < j < hp(u)—1, then
hp(u)—1 k
A; ;P = { .]B[kﬁﬂ]P/:- (32)
= L/

2) (Translation formula II) If u # 1, then
Z,B)P,=X,(A)P,.

3) (Translation formula III) Ler pu=1. If 0 <k <hg(l) — 1, then

()1 ;.

1 j+1 1

——ByyPi= ) { }.—Aj.AYi.(A)P/h (33)
= k+1)j+1
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or equivalently, if 0 < j<hg(l)—1, then

hp(1)—1
AL Y(AP = Y [".“] L g,yP. (34)

j+1 =y j+1]lk+1

REMARK 1.  We note that n € Ny in (27) and (29) may be replaced by any
real number t € R, that is, the relations

hg(p)-1 hg(p)—1
Z ( k,upl kAk_’AP;V (te R,JVEO'N(A)) (35)
k=0 k=0
/13(1)71 1 hg(l) 1
i~ —A Y, (A)P;
k:O()/c+lk+1 [kl z; k+1 k2 i()

(te R,Aea(A)) (36)
hold true.

REMARK 2. If k > hy(A), the right side in the relation (31) is the zero
matrix. Thus we have the following fact: If 1€ c,(A) and if k > hy(Z), then
B[k,y]P). =0.

Applying Translation formulae, we give relationships between «;(w,b) and
yu(w,b) for Aeay(A), u#1 and between f5;(w,b) and 6(w,b) for i€ ai(A4),
which are used in later sections.

THEOREM 12. Let /€ a,(A).
1) If u#1, then Pyy,(w,b) = a;(w,b) or y,(w,b) = Zzeaﬂ(A) oy (w,b).
2) If u=1, then

/13(1) 1 1 k

k+1 (B~ E)“Pio(w,b) = ,(w,b).

k=0

Proor. The assertion 1) is obvious from Translation formula II. To
prove the assertion 2), it is sufficient to verify the following two relations:

;\\

hg(1)— 1( 1

~—_ (B-E)"'pP,=4,,pP, (37)
£ k+1

(=1

and
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By the relation (32) in Translation formula I we get

(-1 g A
AP, = Z [1} By P = Z { | ]B[kJrl‘l]Pi

k=1 k=0
hg(1)—1 hg(1)—1 _l)k
V¥k!Biy1 1Py = (B~ E)t'p,.
k=0 k=0

By definition of the Staring numbers of the first kind we have

[kT 1} = (~1)*&L.

Take j =0 in the left side of (34) of Translation formula III. Then we see
that the relation

O 1T 1
Y, (A)P; = { ] — By P
i 1 k+1
hp(1)—1 . |
= (=1)"k! By 1P
— k+1
h()=1,  (\k
= > %(B—E)kPA
e k+
holds. This proves the theorem. O

THEOREM 13. Let A€ ai(A). Then

ha(2)—1 1 hp(1)—1 1
T 7 AkaBi(w b) = (Z)ka—HB[k‘l]Pié(w,b) (teR). (39)

pr k+

Proor. By (36) in Remark 1 we have that

hg(1)—1 ha(2)—1 1
- 4 Y (AP, 40
; k*‘k+1 Bk £ i1 A VAP (40)

from which it follows that

113(1)71 1 hA(/L>71 . 1
(D1 777 1 By WPiBji = Z e 1 Ak 1 Yi(A)P; By 1)
k=0 k=0
/1,4(/1)71 1
= ! s lAk}Bl 11 Yi(A4)P;.
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In view of (37) and (38) we notice that, if 1€ o;(A4), then
(B—E)Y,(A)P; = A1 ,P;. (41)
Hence we obtain

hp(1)-1 | ha(A)-1 |
(Dies1 77— By PrBp i = Ay A1 P (42)
= k4 ; k+1
By adding two relations (40) and (42), the relation (39) easily follows. []

As an application of Theorem 12, we shall consider Lyapunov exponents
of solutions to the equation (1).

DerinitioN 1. For a function ¢ : [fy, o0) — C? we define the Lyapunov
exponent y(¢(f)) by

2(p(1)) = lim sup

11— o0

log|le(2)]|

t
if the support of ¢ is not compact, and y(¢(f)) = —oo if the support of ¢ is
compact.

LemMmA 5 [21]. Let x(t;w,h) be any solution of the equation x'(t) =
Ax(t) + h(t), he P.(CP). If there exists a e a(A) such that RA >0 and
that a;(w,ap) # 0, then

x(x(t;w,h)) = max{R1| 1 e a(4),RA > 0,0;(w,a;) # 0},
otherwise y(x(t;w,h)) = 0.

The following result easily follows from Lemma 5, Floquet’s Theorem and
Theorem 12.

THEOREM 14. Let x(t;w, f) be any solution of the equation (1). If there
exists a pea(V(0)) such that |u| > 1 and that y,(w,bs) # 0, then

£x(iw, 1)) =+ maxloglul | € o (V(0), bl > 1.3,(w.by) # 0},

otherwise y(x(t;w, f)) =0.

If Translation formulae are directly proved under the only condition
B =¢™, >0, then the representation (Theorem 9) of solutions based on A4 is
immediately deduced from the one (Theorem 8) based on B, and vice versa.
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Notice that the establishment of Translation formulae plays an essential role
in proving a main theorem (Theorem 1) in the present paper.

So, we will give direct proofs of Translation formulae in the next sub-
section by combinatorial computations.

4.2. Proofs of translation formulae. First, we give a proof of Translation
formula I. The relations (31) and (32) in Translation formula I are equivalent
to each other. So, we will prove (31). To do so, we will characterize the
Stirling numbers as the form of the sum. For n,m,k € N, p(n,m, k) stands for
the set of all finite sequences o := (a1, 0, ...,0,), & € No, i =1,2,... n, which
satisfy

o+ 4+ o, =m, o + 200 + -+ - +no, = k.
Moreover, put
qg(n,m) = {(og, 00, ..., 00) s 0 + 0+ -+ +a, =m,a; € No}.
We make use the product notation such that Hl.”zl o= 000 ... Oy

LemMmA 6 (8], [14]. For 1 <m < n, the following relation holds true:

{,’;}— 2 ”!ﬁwi!)l(f!)“f'

oep(n,m,n)  i=1

LemMma 7.
ha(2)—1 k ()=t
Ai; | =k! A k<hy(A)—1).
2 A > { k} s (ksha) - 1)

i=k

Proor. For the simplicity, we set 4, = A;;, n=hy(.) — 1. Applying
Newton’s polynomial formula, we have

k
" k! o .
A4 = A4 .. A)r

Z k! (T)j' (TZ)jZ (Tn)jn
je‘I(",k)Hinzl(ji!) 1) \ar) o\

|21 +2++nj o .
_ k't " _ iE)./]+2]2+“‘+n/n.

S A TN

A— }vE)j1+2j2+~-+’1fn

—~
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Here ¢(n,k) is classified with the values of i= j; +2j,+ -+ nj,. Indeed,
since (A4 — AE)' =0 for i>n, it is classified with the sum of i such that
k<i<n Clearly, if k<i<n and if (ji, ja2,...,Jju) € p(n,k,i), then j | =
Jita=+=j,. =0, that is, (Jji,j2,...,Ji) € p(i,k,i). Using Lemma 6, we
obtain

- e (A = AE)'
- (l',k,i) ]._.[m:1 (]ln!)(m!) m gl

Il

>
-

m
bS]

This proves the lemma. ]

The proof of Translation formula I. Using the spectral decomposition
theorem of e™, we have

ha(2)—1
ep, = ,u< Aj,/1> P;. (43)

J=

Let k <hy(A) —1. By Lemma 7 and the relation (43), we get

) k
ha(2)—1
(B~ UE)*P; = (e™P; — e™P;)" = (ﬂ Z A; ;P — ,UP/1>
=0
ha(A)—1 k
= u* ( Aj,/l) P
=1
ha(2)-1 j
— u"k’< Z {k }Aj,;) P;.
=k
This proves (31). ]

Next, we give a proof of Translation formula III. Since the relations (33)
and (34) in Translation formula III are equivalent to each other, we will prove
(34) only. The following lemmas are needed in the proof of (34).
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LemMa 8 [2], [9]. If m and j are positive integers, then

AN m) [k+1 1 m—+ 1
D ik T\ ) B
—0 J m J

LEMMA 9. Ae€iwZ, then

/1];(1)71 .
1
A4;,Y;,(A)P, = E <j)Bif,Ai,;.Pa-

i=j
Proor. By definition of Y;(A4) and Lemma 4, we have

hy(2)—1

A, Y, (A)P, = A Z Br Ay ;P
=0

hg(l)—l(j+k

; ) BxAjyi, 1 P

k=0

ha(1)=1 /5
( ‘>Biin,/lP/l'
: J

=]

This completes the proof of the lemma.

The proof of Translation formula IIl. Notice that if k < j, then

HRIRAR

Using Translation formula I, we have

h]g(l)fl k /1];(1)71
+1] 1 k+17] 1
E —— By 1P, = E —Bi.1 P
= {j+1]k+1 L i {j+1]k+1 o

k+1 ]

S RN A
2o 2kt 1 i)k
/13(1)71[ .

= L k.+1 : Ai ;P

k+1|j+1] L kS

103
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Moreover, combining Lemma 8 and Lemma 9, we get

he(1)—1 .
1 k+1 i
k 1{' 1]{1(}‘4’?”)*
=7 ot/

/13(1)71 .
1 i+1
- § Biiy (A P;
- f+l(f+1> AR

/llg(l)fl .

1 i+ 1)!

= E - - ( ,.) ~ BijA4ii P
i=j l+1(./+1)'(l_/)'

1 he(1)—1 ;

=T Z (J.)B,-,-A,»JP;.
=]

B 1

1

Therefore the relation (34) in Translation formula III holds true. ]

A; Y, (A)P;.

Finally, we give a proof of Translation formula II.

The left side and right side in Translation formula II contain the derivatives
of a(z) =1/(z— 1) and &(z) = =15, respectively. Since &(z) = a(e®), we need
the higher derivatives of a composition of two functions. So, we state Faa di
Bruno’s formula below.

Lemma 10 [8], [14]. Let y = f(u), u=g(x) be infinitely differentiable.
Put h(x) = f(g(x)). Then, for n > 1, the following relation holds true:

A (x) & 1 (g9 )Y
n!( )_;fuc)(g(x)) Z H(aﬂ) <g i!( )> '

o€ p(nk,n) i=1 ’

Now we will apply the above formula to the functions:

W= =(—w gw=e ) = fleW).

1—u

Since
FO@ =k —u) " =k W), (k=1,2,...,),

1" (x) is translated by Lemma 10 as follows.

h (x " o 1 [e*\
it 3 Tl (5)

o€ p(nk,n) i=1

_ . Lekx k+1 e
"2 T e

k=1 aep(nk,n
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Setting 1 = e™, we have

(n)(+9 n
h (M):Z Z k! ke el iy

}’l! =1 e plmfe,n) Hle(oci!)(l'!)%

- Z k! k
- p(n,k,n) Hznzl(at')(l')“' (1 _ﬂ)k+1 :

k=1 oe
By utilizing Lemma 6, 42" (1) becomes
h(n)(f;)_zn:{n}Lﬂk n>1
= k) —ﬂ)kH B

Set &(x) = —h(x). Then in view of (8), we have the following result.

LemMa 11. If e = pu # 1, then

T S A L (] PRI

k=0 k=0

The proof of Translation formula II. Using Translation formula I, Cor-
ollary 2 and Lemma 11, we obtain

Z,B)P;= Y ua®(u)By.P;
k=0

hA(/L>71 . . hA(/»)fl j
= 2 ﬂca( )(Iu) Z {k}Aj Pj.
= Jj=k

Il
N
=
L
N
-
—N
=~ ~.
—
=
"~
Q
=
=
N——
o
~
~

This proves Translation formula II. O

5. The proofs of Theorem 1 and Theorem 2 and related results

In this section, we give the proof of the representation theoems of
solutions to the equation (1) by combining translation formulae, Floquet’s
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theorem and the representation of solutions given in [13] for the equation (1)
with A(f) = 4.

5.1. Period map. Now we state the properties of the solution operator U(z,s)
of the homogeneous equation (5) and the period map V(¢).

Lemma 12 [11, 16]. The solution operator U(t,s) has the following pro-

perties:
1) U(t,t)=E for all teR.
2) U(t,s)U(s,r) = Ul(t,r).
3) The map (t,s,x)+— U(t,$)x is continuous for (1,5,x) e R x R x C’,
4) U(t+rt,s+71)=U(1,s).
5) U's+1,s)=U(s+nt,s) (neN).
6) U(t+nt,s)=U"t+1,0)U(t,s) = U(t,s)U"(s+1,5) (neNy).
7) U(t,s) is a nonsingular matrix and U(t,s)”" = U(s, 1).

8) LU(t,s) = A(H)U(t,s)

ot

LU(t,s) = —U(t,s)A(s)

> 0s
It follows from the Floquet representation that
U(t,s) = P(0)e" 4P (s) and V(1) =P(O)V(O)P()"".  (44)

Here we recall elementary results in linear algebra. Let C and D be
square matrices with the same size. Assume that there exists a nonsingular
matrix 7 such that CT =TD. Then o¢(C)=¢g(D) and Q,(C)T = TQ,(D)
(yea(C)).

The following lemma is well-known.

LemMma 13 [11, 16]. For t,s € R the following relations hold:

) o(V(1) =0a(V(0), teR.

2) Let puea(V(0)). Then /’lV(A)(,LL):hV(t)(,u) and U(Z,S)GV(A)(,M):
GV(t)(/v‘)-

LemMma 14. The following results hold true:

1)

0u(1) = PQUOP (1) = S PPP' (1),  Qu0)= Y Pu
leay,(A) reay(A)

2)

Gry(w) = P(t)Gr)(w) = P(t) @D Ga(4).
Jea,(4)
Proor. Since V(t)P(t) = P(t)V(0), we have that Q,(#)P(t) = P(1)Q,(0)
and Gy(u) = P(t)Gy)(u). In view of (6) and (7), the remainder of the
proof is obvious. ]
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COROLLARY 6. Let nea(V(0)). Then

U(t,5)Qu(s) = P()e" 910, (0)P~(s),
and
U(t,5)Quls) = U(1,0)0,(0) U™ (5,0) = U(1,0)0,(0) U(0, 5)
hold.
PrOOF. (44) and Lemma 14 imply that
U(1,5)Qu(s) = PP~ (5)P(5) 0,(0) P (s)
— P(1)e" 10, (0)P~\(s).

Since Q,(0) =37, (1) P2 and ¢ and P; are commutative, e and Q,(0) are
also commutative. Therefore we have that

U1, 5)Qu(s) = P(1)e!™4 0, (0)P(5) = P(1) 0, (0)e " P~ (s)
= P(1)e" Q,u(0)e P~ (s) = U(1,0)0u(0) U™ (s,0)
holds. ]
ReMARK 3. We note that
Gyy(u) = U(1,0)Gy) (1) = P(t)Gyo)()  (t€R),

because of 3) in Lemma 13 and 2) in Lemma 14.

5.2. Representations of solutions: characteristic exponents. First, we give the
representation of solutions of equation (1) which is based on characteristic
exponents. By the transformation x = P()y, the equation (1) is reduced to the
following equation

D0 = A0 +h0), 0 =w, (43)

where h(¢) = P~1(¢) f(£). Since P~!(¢) is t-periodic, /() is also t-periodic. Put
ap = J eI (s)ds
0

in the equation (45). The relationship between @, and by is given in the
following lemma.

Lemma 15. aj, = by.
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Proor. Since P(r) = E, we have
by = J P(2)e™1P=1(s) f(s)ds = J "M (s)ds = ay,.

0 0

This proves the lemma. ]

Let Lea(4). If a G4(A)-valued function y(¢) satisfies the equation

&y
dt
we say that y(¢) is a solution of the equation (45) in G4(4). Clearly, if y() is
a solution of the equation (45), then P, y(¢) is a solution of the equation (45) in

G4(A). The following representation of P;y(¢) follows from our papers [13],
[20].

= Ay(t) + P;h(1),

LemMmA 16.  Let y(t) be a solution of the equation (45).
1) If A¢iwZ, then P,;y(t) is expressed as
Py(1) = e oy (w,an) + us(1,h),
and u,(t,h) is a t-periodic solution of the equation (45) in G4(A), where
t
w(1,h) = —e" X, (A)Pay, +J e=94P, h(s)ds.
0

2) If LeiwZ, then P,y(t) is expressed as

o %)
Piy(1) = Z

tk+l

A AE)CB, (w, ap) + e*' Pyw + u (1, h),

=~

and u;(t,h) is a t-periodic continuous function, which is not necessarily a solution
of the equation (45) in G4(A), where

.( A—JE)*Y,(A)P; ah+J0 AP, h(s)ds.

By using a solution y(¢) of the equation (45), the solution x(¢) = P(z) y(¢)
of the equation (1) is expressed as

x(t)= 3 POPy().

rea(A)

Using Lemma 15 and Lemma 16, we can obtain a representation of each
component x;(7) = P(¢)P;y(t) = P(t)P; P~ (¢)x(t). Set

£i(t) = P(t)P;h(1) = P(1) PP~ (1) f (1).



Representations of solutions and translation formulae 109

THEOREM 15.  Each component x,(t) of the solution x(t) of the equation (1)
is expressed as follows:
1) If 2 ¢iwZ, then x,(t) is expressed as
xi(t) = U(l7 0)0(@(1/1/, bf) + vg(t, f)

ha(A)-1

»

t

= " P(1) A = 2E) K a;(w,by) + v;(2, f), (46)

k=0

and v)(t, f) is a t-periodic solution of the equation y'(t) = A(t)y + fi(t), where

00, ) = V0K + [ U0

2) If AeiwZ, then x;(t) is expressed as

tkH A AE) B, (w, by) + e P(t)Pw + v,(t, f)

h,d(/L) 1
= _p Z
=0

and v,(t, f) is a t-periodic continuous function, where

it ha(4)-1 fk+1

e
Ug(ﬂf) = _TP(I) v (k+ 1)

(A JE) Y, (A)P; bf+Jt U(t,s) f(s)ds

5.3. Representations of solutions: characteristic multipliers. Next, we give the
proof of Theorem 1. Our approach is to translate the representation of solu-
tions in Theorem 15 into the representation based on characteristic multipliers
of 7(0) by combining Translation formulae with Floquet’s theorem. To do
so, we will decompose the solution (4) into generalized eigenspace of period
map V(¢).

Multiplying Q,(¢) to the solution (4), we have

Ou()x(t;w, ) = U(£,0)Q,(0)w + L U(t,5)0u(s)f (s)ds  pea(V(0)).
Since 0u(0) = >, 5, () P2, it follows from Corollary 6 that

U(t, 5)Qu(s) = P(1)e!" 0, (0)P(s) ™"

=P(t) Y e"VPP(s)". (47)
reay(A)
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For a uea(V(0)) we set
1 k
V(O)[k,#] - ,Ukk' (V(O) —,UE) :

Moreover, since V(0) =™, it follows from Translation formula I and the
relation (35) that

hy o) (p)—1 k
Aj,P; = Z { ] V(0) g P (48)
= L/
and
hl/(o)(ﬂ)*l hV(o)(/‘)*l
t* Ay P, = Z DV (0)ye, P2 (49)
k=0 k=0

hold for Ze€a,(A4). Set

k;t = Z (O) _IUE)k'

hV((J)(ﬂ>1|:k:| Ty 0y (1)~ 1 k l
=1

=1
Notice that if iy )(u) =1, then W(u) = O. If j=1, then (48) is reduced to
A1,,1Pi = W(,u)Pi.

Lemma 17.  Let A€ ay(A). Then

) (1) —
QM M—iE) p (W Z ( ) 0) kg P (50)

PrOOF. Since (4 — AE)P; =14, P, =1W(u)P,, we have that

M A=ZEWP; _ AW (0P, _ (/)W) p,

holds. Moreover, using (49), we can obtain

) ) (1)~ hy (o) ()=
k=0

1

N
<—> Ay, Py
T

k=0
hy o) (1)—1 t
= (;) V(O)[k,,u]P/l,
k=0 k

which means (50). O
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THEOREM 16.

U(t,0)0,(0) = u"/* R, ()W @)
Ty o) (1)1
= R0 Y ( > - (51)
=0

In particular, if hy) (@) =1, then

U(1,0)04(0) = u""Ru(1)Qu(0) (1 # 1),
U(t,0)01(0) = Ri()01(0)  (u=1). (52)
Proor. Take s=0 in (47). Since P(0) = E, (47) is reduced to
U(1,0)0,(0) = P(t) Y e"P;.
reay(A)

Using Lemma 17, we have

Z etAPgZ Z eizet(A—/lE)PA:e(t/r)W(u) Z e/ltpz

reau(A) Aea,(A) leay,(A)

_ e(t/r)W(/z)ﬂt/rS'u( ) t/rS ( ) (t/7) (t)
and hence
U(1,0)04(0) = u'""P(0)S(1)e 19",
Hence, the definition of R,(#) shows (51). The remainder is obvious. O

REMARK 4. Since Qﬂ(O)2 = 0,(0), U(t,0)0,(0) in Theorem 16 may be
expressed as

hwm(ﬂ)l
U000 =1 R() Y (£) 0.40.0
=0

The component Q,(#)x(f) of solutions x(¢) of the homogeneous periodic
linear differential equation (5) satisfying the initial condition x(0) = w is ex-
pressed as follows:

0,()x(t) = U(1,0)0,(0)w (teR)

Irlluo)(#) 1 { 1 )
=R Y (1) (VO - QO (V)
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If x(t;w,f) is a solution of the equation (1), then Q,(f)x(t;w,f) is a
solution of the equation
d :
7370 = A0y(1) + Qu(0) f(1). (53)

In general, if a Gy, (u)-valued function y(z) satisfies the equation (53), then
y(2) is called a solution of the equation (1) in Gy(;(x). If x(z) is a solution of
the equation (1), then Q,(#)x(?) € Gy(y(u), te R. Hence Q,(7)x(t) is a solu-
tion of the equation (1) in Gy, (u).

LemMmA 18. Let y(t) be a solution of the equation (53). Then y(t) is a
solution of the equation (1) in Gy, (n) if and only if" y(0) € Gy (1)

Since >, vy Qult) = E, we have
= Y 00x0, =3 0f0),
nea(V(0)) uea(V(0)

where

reau(A) reay,(A)
because of Lemma 14. Set

Vulw; bp) = 7, (w, b5 V(0)), - (w, br) = 0w, br; V(0)).

Now we are in a position to prove Theorem 1.

The proof of Theorem 1. The proof follows from the representation of
solutions in Theorem 15 and Translation formulae.

1) Letu#1and Aeo,(A4). Since the representation (46) of solutions in
Theorem 15 is given as

(1) = U(1,0)2(w, br) + 03 (1, f),

we obtain

0,(0x(1) = > xi()=U(t,0) Y o(wb)+ Y it f).

leayu(A) leayu(A) leayu(A)

Using Theorem 12 and Lemma 14, we have

ou(w,bf) = Piyﬂ(w,bf) and Q},(O) = Z P/z,

so that

S w00.by) = 0ul0)7,00.b7) = 1,0, by).
leay,(A)
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This shows that

Qu()x(1) = U(1,0)y,(w, b)) + > va(t, f).

leau(A)

Using Translation formula II, we get

Y NP = Y Zu(V(0)P; = Zu(V(0)0,(0),
Area,(A) Aea,(A)
and hence, we see that A,(t, /) = Zieoﬂ(/,)v;,(t,f) holds. Since v,(7, f) is a
7-periodic solution of the equation y'(¢) = A(t)y+ fi(t), hu(t,f) is also a
7-periodic solution of y'(¢) = A(t)y + Qu(1)f(r). Since —Z,(V(0))Q,(0)bs €
Gyo)(n), it follows from Lemma 18 that h,(z, ) is a t-periodic solution of
the equation (1) in Gy(,(u). This implies that (9) holds. (10) follows from
Theorem 16.
2) Since V(0) = e™, it follows from Theorem 13 that, for any e R,

(4 = 2E)"f; (w. by)

hp(1)-1 ; 1 )
- X <_>/ Ty VO = B Piolw. by). (54)

=0 \F

On the other hand, we have that

P(t) > €"Py=Ri(t) = Ri(1)Q1(0). (55)

A€a (A)

Using the above relation (54), (55) and Theorem 15, we obtain

Qi(0)x(1) = > xi()

).EU](A)
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hg(1)—1
~r Y- (3) (VO - B

k=0

+ RO+ Y vt f). (56)

;.EGI(A)

It is easy to show that /u(t, /) =", , 4 vi(t, f) holds and that (7, f) is
t-periodic. This completes the proof. O

The following result is derived from Theorem 1 and Theorem 16.

CorOLLARY 7. Let puea(V(0)), hyoy(u) =1 in Theorem 1. Then the
component Q,(1)x(t) of solutions x(t) of the equation (1) satisfying the initial
condition x(0) = w is expressed as follows:

1) If u#1, then

Qﬂ(l)x(t) = U(tv O)yﬂ(w’ b/) +h#(lvf)
— W R, 00 ) e ) (1€ R),
2) If u=1, then

01(H)x(1r) = % U(1,0)01(0)by + U(1,0)01(0)w + Ay (2, f)

= LRI(0QO)by + RI(QO)w +In(t,f)  (1eR).

ProOF. If u # 1, the assertion 1) immediately follows from Theorem 1.
Let u=1. Since hyq(l)=1, it follows from (52) that U(#,0)Q:(0) =
Ri()Q1(0) holds. Thus (11) in Theorem 1 is reduced to

Q1 (0)x(1) = £R1 (000w, by) + Ri(OQ1(0)w + (1, ) (t€R).

Since hy()(1) =1, we have that V(0)Q;(0) = Q1(0), and hence do(w,bs) =
01(0)bs. Those facts imply the assertion 2). O

We state some remarks, which are concerned with Theorem 1.
1) We define z,(¢) as

U(,0)Z,(V(0)Q,(0)b, A
(=4 | ) (57)
RO Y (r>k+l<k+1>!(V(°)‘E) 01(0)by. p—1.
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Then

t

0,(0x(1) = (U(L0) Q00w+ 5,(0) + (50 + | U190,/ 615 ).
The second term of the right side coincides with /4,(¢, /) in Theorem 1. The
function z,(7) is called a periodicizing function for the equation (1) (cf. [20]).

Setting

F(O) = | U9/ (5)ds
0
we see that F(z+ 1) — F(1) = U(#,0)by holds. Note that z,(z) is the Gy, (u)-
component of a continuous solution (indefinite sum) z(z) = 4" (U(¢,0)bs) of
the equation

A:z(t) == z(t + 1) — z(t) = U(¢,0)by, teR. (58)
2) Let us consider the case where 1¢ (7 (0)). Then
2(1.) = U.0)(V(0) — )by

is a periodicizing function for the equation (1). Take z(z, f) as z(¢) in (58).
Then the solution x(z;w, f) of the equation (1) may be rewritten

x(6) =U(t,0)(w+ (V(0) — E)_lbf) +h(t, f) (teR)

where h(t, f) = —z(t, )+ F(t). U(t,0)(w+ (V(0) — E)_lbf) is a solution of
the homogeneous equation (5) associated with the equation (1) and the func-
tion A(t, f) is a t-periodic solution of the equation (1). Moreover, k(¢ f) is
expressed as

t+t
e f) = (= Vo)™ | U+ )/ 6)ds.
t
3) As a general case, the following relation holds for the solution
x(t;w, f) to the equation (1):

(V) — E)x(t;w, ) =U(,0)((V(0) — E)w + br) +v(t, f) (teR). (59)

where

t t

U(t,s)(V(s) — E)f(s)ds = J U(t+ 7,5)f(s)ds

t+t

o(t, f)=-=U(t,0)by + JO

is a 7-periodic solution of the equation y' = A(f)y + (V(t) — E) f(¢).
Using (59) and Theorem 1, we have the following result.

PRrOPOSITION 2. Let u= 1€ g(V(0)) and let Q,(t)x(t) be the component of
the solution x(t) := x(t;w, f) of the equation (1).
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) If d(1) =0, then (V(t) — E)Q1(t)x(t) is t-periodic:
V(1) = E)i(0)x(2) = (V(1) = E)n (1, f) = Ri(1) Q1 (0)by-
2) Ifd(1)=1, then (V(t)—E (
V(1) = E)Q1(0)x(2) = Ri(0)o(w, by) + (V' (1) = E)ln (2, f) = Ri (1) Q1 (0)by.

3) If d(1) > 1, then (V(t) — E)Qi(t)x(¢) is unbounded on R, and R_:

VO (1)x(t) is t-periodic:

(l)d(l)—l
V()= B)Q(0x(0) = i =5 ROV (0) - E)* D71 6(w, by)

+ o(t4M~1 (|f] = +o0).

5.4. A special case. We give the proof of Theorem 2. The following lemma
of dichotomy type is proved in many literatures, e.g. [11], [16]. We now give
a proof in our situation. Hereafter, we denote by ||M|| any norm of a p x p
matrix M.

LemmA 19. Let pea(V(0)).
1) If |u| > 1, there exist M >0 and 6 > 0 such that

|U(s,0)Qu(t)]| < Me 209 t>s.
2) If |yl <1, there exist N >0 and & >0 such that

|U(t,8)Qu(s)|| < Ne™®=9) >
Proor. It follows from Corollary 6 that

U1, )Qu(s) = P(1)e! 910, (0)P(s) "

holds for uea(V(0)). Since P(f), P~'(t) are t-periodic, there is a constant
H >0 such that ||P(¢)|| < H, |P~!(¢)|| < H. Hence we have

Z e(r—.v)A P;

leayu(A)

1U(1,5)Qu(s)ll < H?[le"0,(0)]| = H?

<HY 3 [l
J€0,(A)

Since ¢,(A4) is a finite set, the assertions in the lemma are easily proved.

O

The proof of Theorem 2. By Lemma 19, the improper integrals in the
theorem is convergent.
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1) Let ueoy(V(0)). Since

kt
J(kl) U(0,5)Qu(s)f (s)ds = J U(0, (k — 1)t + 5)Q,(s) f (s)ds

0

T

- U(O,kr)J Uz, (k — 1)t + 5)0u(s) £ (s)ds

0

T

= U(0.k0) | Ul 90007 5)ds

0

= U(O,k‘[)Qﬂ(O)bf,
we have

n kt

J U090,/ ds =" | U050,/ ()ds

k=1 J (k=1)z
= Z U(0, k) Qu(0)by
— U(0,m7)S,(V(0)) 0, (0)by
From U(0,nt) = (V(0)™")" it follows that
U(0,17)5,(V(0)) 0,(0)by
= U(0,n7)[V"(0)Z,(V(0)) Qu(0)bs — Z,u(V(0)) Qpu(0)by]
Z,(V(0))Qu(0)by — U(0,n7) Z,,(V(0)) Qpu(0)by -
Since lim,,_.,, U(0,n7)Z,(V(0))0,(0)by =0 by Lemma 19, we obtain
| v090,6)16) = 2.V 0) QO
Hence £,(t, f) in Theorem 1 is expressed as

e ) = ~U(0)Z,(VO) Q.00 + || U(5)0,05) )

o0

-U(1,0) JO

- _ J: U(t,5)Q,(s)f (s)ds + J; U(1,5)Qu(s) f (s)ds

U(0, )0, (s) f (s)ds + j U(t, )0, () £ (5)ds

=— F Ul(t,5)0u(s)f (s)ds.

Therefore we obtain the assertion 1) in the theorem.

117
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2) Let ueo_(V(0)). Since

—(k—1)t
| v090.0s s = Uitk - 15.0)0,00

we have

0
| v0.90,6056)ds = s, (vo) 2.0
= V"(0)Z,(V(0))0u(0)by = Z,(V(0)) Qu(0)by-
On the other hand, we have lim, .., V"(0)Z,(¥(0))0,(0)by = 0 by Lemma 19,
we obtain

0
| vo906r6a=-z.ro)o.om.

Hence #,(t, f) in Theorem 1 is expressed as

t

h(t, f) = =U(t,0)Z,(V(0))0,(0)bs —l—J Ul(t,5)0u(s)f (s)ds

0

t

0
= U(1,0) L U(0,5)0,(s)f (s)ds + J U(t,5)0.(s)f (s)ds

0
-| vt

Therefore we obtain the assertion 2) in the theorem. O
Using Theorem 2, we have the following result, cf. [4].
CoroLLARY 8. Let puea(V(0)), |u| #1. Let x(t) be a solution of the

equation (1), whose initial condition satisfies y,(w,br) =0 for all pe a(V(0)).
Then Q,(t)x(t) is expressed as

-[ vt s, weavoy)
Qu)x()=¢ (60)
| vevorwa. wes o),

which is a t-periodic function.
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COROLLARY 9. z,(t) in (57) is rewritten as

Jw Ul,9)0u) /(s (ueon(V(0)
2u(1) =

0
| vesomses weovo).

5.5. Examples. In this subsection, we will illustrate Theorem 1 or Corollary
7 through examples. Let us consider representations of solutions of the initial
value problem of 2-dimensional periodic linear differential equation of the type

%x(l) = A(t)x(t) + f(1), x(0) = w. (61)

Assume that

where a(¢) and b(¢) are continuous t-periodic real-valued functions, and that
f(¢) is a 2-dimensional continuous t-periodic function.
Set

a(t,s) = Jta(s)ds, a(t) = a(t,0), plt,s) = th(s)ds, p(t) = p(,0).

N N

The solution operator U(z,s) of the homogeneous equation x’' = A(7)x
associated with the equation (61) is given by

U(t,s) = e*t9) P98 B= (? 8),

(cf. [15]), that is,

0=y 1)

Since a(f) and b(f) are t-periodic, we have

O((l+ T, t) - O((‘L', 0) - O((‘L'), ﬂ(l‘+ Ty t) = ﬂ(‘[,O) :ﬂ(f),

and

V() = oM 1,0) BT, 0B _ Lu(D)E+S(T)B _ V(0) = ea(r)( 1 0>.
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Set 4 = @E —&—@B. Since ¥(0) and A4 is related to V(0) = ¢™, we see
that by Floquet’s theorem U(t,0) = P(t)e’! holds. Hence the z-periodic func-
tion P(¢) is expressed as

P(1) = U(t,0)e " = o(0~(t/2)a(x)) o BO)~(1/()B.

Moreover, since g(A4) = {(T} and o(V(0)) = e™“ by the spectral mapping
theorem, we have o( V(0)) ={u}t, u=e* ( 9. Furthermore, it is easy to verify
that the relation Q,(f) = Q,(0) = E holds for the projection Q,(f):C?* —
Gyo)(n), mea(V(0)). By easy calculations, we have the following result.

Lemma 20.  If B(t) # 0, then hy)(un) = 2; If B(z) =0, then hy)(u) = 1.

Applying Theorem 1 to the equation (61), the following result holds, in
which the forms of the 7-periodic function /,(¢, f) are omitted.

ProrosITION 3.
1) Let u#1. Then the solution x(t;w, ) of the equation (61) is ex-
pressed by

1
B(1)

1 1 0
Pu(w,br) = W+F 2B 1 b |.

2) Let u=1. Then the solution x(t;w,f) of the equation (61) is ex-
pressed by

x(tw, f) = o0 < ?)yﬂ(w, br) + hu(t, f), (62)

where

te®(0) 1 0
x(t;w, f) = </)’(t)’2+; (7) 1)5(“’abf)
HW)(ﬂ(t) s (0) ?)W”‘(”f ’ )

where

Proor. We will apply Theorem 1 to the equation (61). By easy calcu-
lations, we have

ﬂt/r =M = /) S,(1) = ('u)*t/fe(&(‘f)/r)tE —E
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and

1
Ru(t):P(l)=e“<f>‘<f/f)“(f)<ﬁ(t)_1 o (1>>

Moreover, we have

= E+-e ™9 (e™ — uE)
- E +£e—05(‘[) (eoc(r)E+[)’(r)B _ eu(f)E)
T

t t
—E+- (Y8 —E)=E+-B(x)B
T T

B (;ﬁlw ?>

Let ## 1. Then a(z) #0. Since

1 A B
Zﬂ(V(O))_ 1_,uE (1_ﬂ>2 (ﬂ(f) O)_ﬂ—l <1ﬂ‘uﬂ(f) 1>’

we obtain

(w,br) + 1 1 0 b
VW, 01) =W i1 %ﬂﬁ(f) 117
Therefore (10) in Theorem 1 becomes (62).

Let u=1. Then a(r) =0. Thus we have R(t) = P(t) = e*WEHB.
e~ WIFOB and hence

Moreover, we have

1
k=0

S(3) wmr -6

t t [t
=—-E4+—(-—1)(*—E
T Jr21’ (r >(€ )
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Therefore the solution x(#;w, f) of the equation (61) has the form of (63).

5.6. Backward solutions of the difference equation (2). If B is nonsingular,
the solution x,(w,b) of the equation (2) exists uniquely for negative integers
n. Let P,(C?) denote the set of all t-periodic and continuous C”-valued
functions defined on R. If there exists a f(¢) € P,(C”) such that b = by, we
may regard x,(w,b) as the value of the solution at = nt to some t-periodic
linear differential equation

xX'() = A(0)x(t) + (1), x(0) =w

such that (0) = B. We infer that the representation of the solution x,(w,b)
for n <0 to the equation (2) can be obtained by substituting ¢ = nt into the
formulae in Theorem 1.

To carry out this plan, we see that for any b € C? there exists a 7-periodic
function f(¢) such that b = by,

Lemma 21.  The mapping from f € P.(CP) to by e C’ is surjective.

Proor. For any n € N such that % < 7, we define a r-periodic continuous
function ¢, € P.(R) as follows: the restriction of ¢,(s) to [0,7]

n’s, 0<s<l/n
0u(o. =3 —n(s—2/n), 1/n<s<2/n
0, 2/n<s<rt.

Clearly, we have

J; @,(8)ds = 1.

Moreover, we get

T T

wmwfv@mmmw+U@mL%®ﬁ

| v

0 0

= E(U(T,s) —U(z,0))p,(s)ds + U(z,0).
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For any ¢ > 0 there is an n € N such that |U(z,s) — U(z,0)|| < ¢ for s € [0,2/n].
Since ¢,(s) =0 on [2,7], we have

JOT U(z,)p,(s)ds — U(z, O)H < r/n 1U(z,5) — U(z,0)| |o, (s)|ds

0

2/n
< SJ 0, (s)ds = ¢,
0

that is,

lim J Uz, ), (s)ds = U(z,0).
n—w Jg
Since U(t,0) is nonsingular, G := [j U(t,s)p, (s)ds is also nonsingular for
sufficiently large np e N.  For any ¢ € C?, we put f.(s) = ¢, (s)c. Then f.(s) €
P.(C”) and b; = Gc, which implies that the mapping from f € P.(C”) to
by e C? is surjective. [

THEOREM 17. Assume that B is nonsingular in the equation (2). The
representations of Q,x,(w,b) in Theorem & are also valid for negative integers n.

Proor. First, we shall show that the equation (2) corresponds to a peri-
odic system, which is the same type as the equation (1). Since B is non-
singular, there is a t-periodic equation z’(f) = A(f)z such that B = U(x,0),
where U(t,s) stands for the solution operator. Moreover, it follows from
Lemma 21 that there is a /"€ P.(C”) such that b = by. Hence the equation (2)
corresponds to the equation x'(f) = A(f)x + f(¢)--- (PE). Denote by x(¢) :=
x(t;w, f) the solution of the equation (PE) satisfying the initial condition
x(0) =w. Set Q, = Q,(0). Now we calculate the values Q,x(nt) at ¢t = nr,
neZ in Theorem 1.

Since S,(f) and R,(f) are t-periodic, R,(0) = P(0)S,(0) = Q,. Thus we
have the following assertion:

1) Let u#1. Since h,(0,f)=—Z,(V(0))0,b, we see that

-1

Qux(nt) = p" (1) B 7 (w,b) — Z,,(B) Qb

0

=
=
=N
E

>
i

2) Let u=1. Since h(0,f) =0, we have

h3<1> 1

Q1x(nt) 2 n)ist T lBk 10(w,b) + O1w.

This proves the theorem. O
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5.7. Remarks on bounded solutions to the equation (1). Finally, as an appli-
cation of Lemma 21, we will give a result concerned with Coppel’s result.
For a general continuous linear system, Coppel gives in section 1 of chapter
V in the book [3] the dichotomy conditions for the fundamental matrix as
the necessary and sufficient condition for the existence of bounded solutions
corresponding to any bounded, continuous forcing function f(#). For the
periodic continuous system (1) we discuss the necessary and sufficient condition
for the existence of bounded solutions on R, for every function f e P.(C?).
To do so, the following lemma is needed.

LemMmA 22. The following statements are equivalent.

1) (E—-V(0)w=>s has at least one solution for every function f €
P.(C?).

2) 1¢a(V(0)).

3) There exists a function f e P.(C?) such that (E— V(0))w = by has a
unique solution.

Proor. Since {bs|f € P.(C”)} = C’ by Lemma 21, we see that the con-
dition 1) holds if and only if (V(0) — E) is invertible. The remainder of the
proof is obvious. ]

The following theorem is based on the spectrum of ¥7(0) instead of the
dichotomy condition.

THEOREM 18. The following statements are equivalent.

1) The equation (1) has at least one bounded solution on R. for every
Sunction f e P(CP).

2) 1¢a(V(0)).

3) There exists a function f € P.(C?) such that the equation (1) has a
unique t-periodic solution.

4) The equation (1) has a unique t-periodic solution for every function
f e P(CP).

Proor. We shall show the equivalence of the assertions 1) and 2). By
Massera’s theorem the assertion 1) holds if and only if the equation (1) has a
7-periodic solution for every function f € P.(C?). The latter condition holds
if and only if (V(0) — E)w= —by has a solution w for every f e P.(C’).
Therefore the equivalence of the assertions 1) and 2) follows from Lemma 22.
The remainder of the proof is obvious. O

Farkas [6, Corollary 2.3.2] points out that if the condition 2) holds in
above, then the condition 4) holds, but says nothing for its converse.
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