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Abstract. For a group G with a certain positive presentation, we provide a criterion

for two tuples of generators of G to be Hurwitz equivalent. Based on this criterion, we

present an algorithmic approach to solve the Hurwitz equivalence and the Hurwitz

search problems by using the word reversing method.

1. Introduction

Let Bn be the braid group of n-strands and s1; . . . ; sn�1 be the standard

generators. For a group G, we denote by Gn the n-fold direct product of G

and we call an element of Gn a G-system of length n. For a fixed positive

presentation P ¼ hSjRi of G, we call an element of Sn, a G-system consisting

of positive generators S, a generator G-system.

The Hurwitz action is a right action of Bn on Gn defined by

ðg1; g2; . . . ; gnÞ � si ¼ ðg1; g2; . . . ; gi�1; giþ1; g
�1
iþ1gigiþ1; giþ2; . . . ; gnÞ:

The Hurwitz action is diagrammatically represented as in Figure 1. Two G-

systems g and g 0 are called Hurwitz equivalent if they belong to the same orbit

of the Hurwitz action and denote by g@H g 0.

In this paper we study the following two problems.

Hurwitz equivalence problem: Given two G-systems, determine whether

they are Hurwitz equivalent or not.
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Fig. 1. Diagrammatic description of Hurwitz action



Hurwitz search problem: Given two Hurwitz equivalent G-systems g and

g 0, find a braid b such that g � b ¼ g 0.

These problems are very hard compared to the well-known word or con-

jugacy problems. Lieberman-Teicher showed that these problems are un-

decidable even for the braid groups [6].

Although the Hurwitz equivalence/search problems are purely algebraic

problems, they are closely related to geometry and topology. By considering

certain monodromy representations [1] associated to singular points, many

geometric objects in 4-dimensional topology and geometry such as braided

surfaces or surface braids [5], Lefschetz fibrations [7], and complex surfaces or

complex curves [8] are represented by a G-system for an appropriate group G.

Such a G-system representative is not unique, and two G-system represent the

same geometric object if and only if they are Hurwitz equivalent. Thus, the

Hurwitz equivalence/search problems are directly related to the classification

problems these topological or geometric objects.

The aim of this paper is to give an algorithmic approach to the Hurwitz

equivalence/search problem using a method of word-reversing developed by

Dehornoy [2], [3].

In Theorem 2 we give a criterion for two generator G-systems to be

Hurwitz equivalent for a certain nice positive presentation which we call a

Hurwitz-compatible presentation. This allows us to reduce the Hurwitz equiv-

alence problem to much familiar problem, the word problem in monoids.

Based on this observation, we give algorithmic approaches (Algorithm 2,

Algorithm 4) to solve the Hurwitz equivalence/search problems for a generator

G-system g and a general G-system g 0.

Unfortunately, our algorithms are not algorithms in the strict sense: they

often fail to solve the Hurwitz equivalence/search problems. However in

successful case our algorithm solves not only Hurwitz equivalence problems

but also Hurwitz search problems. We can apply our algorithms to try to

test the Hurwitz equivalences for arbitrary G-systems, as we will discuss in

Section 4.3. For an application of geometry or topology, in many cases one

can show two G-systems are not Hurwitz equivalent by using certain invariants

of corresponding geometric objects. Thus, our algorithmic approach will pro-

vide a complementary method to studying Hurwitz equivalences.
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2. Word reversing and complete presentation

In this section we summarize the theory of word reversing and complete

presentation due to Dehornoy. For details, see [2] and [3]. We only use the

right word reversing and the right complete presentations, so we always drop

the word ‘‘right’’.

Let S ¼ fa1; . . . ; amg be a finite set and S� be the free monoid generated

by S. For a word V A S� we denote the length of V with respect to S by

lðVÞ. A positive relation is a pair of elements in S�, denoted by W 1V . A

positive relation W 1V is homogeneous if lðVÞ ¼ lðWÞ. A positive relation

of the form aV 1 aW or Va1Wa is called a reducible relation: As a group

presentation, a reducible relation can be replaced by the simpler relation

V 1W .

A positive group presentation is a group presentation of the form P ¼
hSjRi, where R is a set of positive relations. In this paper we will always

consider finite positive presentations, that is, we always assume both S and R

are finite sets.

Each positive relation V 1W is understood as a group relation V�1W .

We say P is homogeneous if all relations are homogeneous. The associated

monoid Mþ
P is a monoid S�=1, where1 is the smallest congruence on S� that

includes R.

Definition 1 (Word reversing). Let W and W 0 be a word on SUS�1.

We say the word W 0 is obtained from W by performing one word reversing if

one of the following holds.

(1) W 0 is obtained from W by replacing a subword of the form u�1v with

a subword u 0v 0�1, where u, v are nonempty words on S and u 0, v 0 are

word on S possibly an empty word, such that the positive relation

uu 0 1 vv 0 is contained in R.

(2) W 0 is obtained from W by deleting a subword of the form u�1u

where u is a nonempty word on S.

Diagrammatically, the word reversing is expressed as in Figure 2.

We say a word W on SUS�1 is reversible to a word W 0 on SUS�1 if

W 0 is obtained from W by iterated applications of word reversing. We denote

by W h W 0 if W is reversible to W 0.

Fig. 2. Diagrammatic description of word reversing
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For u; v A S�, u�1v h e implies u1 v [2, Proposition 1.9]. In fact, if

u�1v h e then the word reversing not only shows u and v are congruent but

also gives a Van-Kampen diagram of ðu; vÞ, which describes a congruence of

two words u and v.

Let W ;W 0 A S� be words on S that are congruent. A Van-Kampen

diagram of ðW ;W 0Þ is an oriented sub-graph D of the Cayley graph of Mþ
P

having the following properties.

(1) D has the unique source vertex which corresponds to an element 1,

and the unique sink vertex which corresponds to an element W ¼
W 0 A Mþ

P .

(2) D is a planer graph, and bounded by two edge paths defined by the

word W and W 0. (In particular, D defines a cellular decomposition

TD of a 2-disc).

(3) The labeling of the boundary of each 2-cell in TD is a relation in

R. That is, the labeling is of the form u�1v and the relation u1 v

lies in R.

See Figure 3 for example. Once a Van-Kampen diagram of ðW ;W 0Þ is

constructed, one can find how to change the word W into W 0 by using the

relations in R. That is, one can find a sequence of words on S

W ¼ W0 ! W1 ! � � � ! Wk�1 ! Wk ¼ W 0

where each Wiþ1 is obtained from Wi by performing a relation in R.

Recall the diagrammatic expression of word-reversing in Figure 2. The

word reversing is considered as an operation to glue a 2-cell along paths u�1v,

or an operation to identify two 1-cells having the same label. Thus, from a

diagrammatic expression of word reversing, one obtains a Van-Kampen dia-

gram for ðu; vÞ.

Example 1. Let us consider a positive presentation P1 of the braid

group B3,

P1 ¼ hSjRi ¼ hx; y; z j xyx1 yxy; xy1 yz1 zxi:

Here the relation xy1 yz1 zx is understood as the three relations xy1 yz,

yz1 zx and xy1 zx. Let us reverse the word ðxxyxÞ�1
zxyz.

x�1y�1x�1x�1zxyz h ð1Þ x�1y�1x�1yx�1xyz

x�1y�1x�1yx�1xyz h ð2Þ x�1y�1x�1yyz

x�1y�1x�1yyz h ð3Þ x�1xy�1x�1yz

x�1xy�1x�1yz h ð4Þ y�1x�1yz

y�1x�1yz h ð5Þ e:
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According to this sequence of word reversing, we attach 2-cells or identify

1-cells to get a Van-Kampen diagram of ðxxyx; zxyzÞ shown in Figure 3.

From this Van-Kampen diagram, we read a sequence of words

xxyx ! xyxy ! zxxy ! zxyz

which converts the word xxyx to zxyz by using the relations in R.

In general a word reversing is not su‰cient to detect congruence relations

since u1 v does not always imply u�1v h e. A complete presentation is a

positive presentation such that the converse is true.

Definition 2 (Complete positive group presentation). A positive group

presentation hSjRi is complete if u�1v h e is equivalent to u1 v for all

u; v A S�.

There is a nice characterization of complete presentations for a finite

positive homogeneous presentation. This allows us to check whether a given

homogeneous finite presentation P is complete or not.

Theorem 1 ([2], Proposition 4.4). A finite positive homogeneous presen-

tation hSjRi is complete if and only if the condition SCðSÞ (called the strong

cube condition on S) holds.

SCðSÞ: For s; r; t A S and u; v A S�; if s�1rr�1t h uv�1 then ðsuÞ�1ðtvÞ h e:

Based on the strong cube condition, one can try to make a non-complete

finite homogeneous positive presentation complete, without changing the as-

sociated monoid as follows. Assume that the strong cube condition fails for

some s, r, t, u, v. That is, s�1rr�1t h uv�1 but ðsuÞ�1ðtvÞ h= e. Then we

add a new relation su1 tv so that the strong cube condition is satisfied for

such s, r, t, u, v. Adding a new relation may produce a new word reversing

sequence, so the new presentation is not necessarily complete. We may iterate

this operation to try to get a complete presentation. The precise algorithm is

given as Algorithm 1. This algorithm does not necessarily terminate, so this

is not an algorithm in a strict sense.

Fig. 3. Construction of Van-Kampen Diagram of ðxxyx; zxyzÞ
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Algorithm 1: Presentation Completion Algorithm

Input: A finite homogeneous positive presentation P ¼ hSjRi of a group G.

Output: A complete presentation of G.

(1) Compute all pairs of words u; v A S� such that s�1rr�1t h uv�1 for

some s; r; t A S.

(2) Check ðsuÞ�1ðtvÞ h e holds for all u, v obtained by Step (1). If

ðsuÞ�1ðtvÞ h= e, then replace the presentation P with the new pre-

sentation

hSjRU fsu1 tvgi

and go back to Step (1).

(3) Stop.

Example 2. Let us consider a presentation P0 of the braid group B3

given by

P0 ¼ hx; y; z j xyx1 yxy; xy1 yzi:

Observe that y�1xx�1y h xyx�1z�1, but ðyxyÞ�1
yzx h= e. So we add a

new relation yxy1 yzx to P0 and obtain the new presentation

P 0
0 ¼ hx; y; z j xyx1 yxy; xy1 yz; yxy1 yzxi:

In P 0
0, a new word reversing sequence x�1yy�1x h ðyxxyÞðyxzxÞ�1 appears.

The reversing of the word ðxyxxyÞ�1ðxyxzxÞ eventually arrives at the word of

the form . . . z�1xzx, . . . x�1zx, or . . . y�1zx. Since there are no relations of the

form z� � �1 � � � , this shows ðxyxxyÞ�1ðxyxzxÞ h= e.

Thus the presentation P 0
0 is not complete. We need to add a new relation

xyxzx1 xyxxy. In this case, a similar argument reveals that the completion

procedure never terminates.

On the other hand, let us consider another presentation of B3

P1 ¼ hx; y j xyx1 yxy; xy1 yz1 zxi

used in Example 1. P1 satisfies the strong cube conditions, so it is complete.

3. Hurwitz equivalence criterion

In this section we provide a criterion for two generator G-systems to be

Hurwitz equivalent. To state our results, we introduce the notion of Hurwitz-

compatible relations.
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Definition 3. Let P ¼ hSjRi be a finite homogeneous positive presen-

tation of a group G and R : V 1W be a positive relation in R. For words

V ¼ a1a2 . . . al , W ¼ a 0
1 . . . a

0
l on S, let gV , gW be generator G-systems defined

by

gV ¼ ða1; . . . ; alÞ; gW ¼ ða 0
1; . . . ; a

0
l Þ:

We say a homogeneous positive relation R is Hurwitz compatible if there exists

an l-braid bR such that gV � bR ¼ gW .

We say a finite presentation P ¼ hSjRi is Hurwitz-compatible if all

relations of R are Hurwitz compatible.

By definition, Hurwitz compatible relations are homogeneous. Knowing a

homogeneous relation R is Hurwitz-compatible is di‰cult, since it is equivalent

to solve the Hurwitz search problem. However, there is a class of Hurwitz

compatible relations which can be easily recognized.

Definition 4. A word-conjugacy relation is a positive relation of the form

R : aV 1Va 0, where a; a 0 A S and V A S�.

It is directly checked that a word-conjugacy relation is a Hurwitz com-

patible relation: gaV � ðs1s2 . . . slðVÞÞ ¼ gVa 0 .

Observe that there is an obvious and fundamental invariant of Hurwitz

equivalence classes. The Coxeter element (or, the global monodromy) of a G-

system g ¼ ðg1; . . . ; gmÞ is an element CðgÞ ¼ g1g2 . . . gm A G. It is easy to see

if g@H g 0 then CðgÞ ¼ Cðg 0Þ. The Coxeter element serves as a fundamental

invariant to study Hurwitz equivalence class. For example, in [4] the author

studied Hurwitz equivalence classes for 3-strand braid groups whose Hurwitz

orbits are finite by studying the centralizer of the Coxeter element.

For a generator G-system g, we consider a refinement of the Coxeter

element. We call the word g1g2 . . . gm A S� the Coxeter word of g and denote

by WðgÞ. The Coxeter word contains more information than the Coxeter

element itself, as the next lemma suggests.

Lemma 1. Let G ¼ hSjRi be a positively presented group and a ¼
ða1; . . . ; amÞ, a 0 ¼ ða 0

1; . . . ; a
0
mÞ be generator G-systems of the same length. If

Wða 0Þ is obtained from WðaÞ by applying a Hurwitz-compatible relation

R : U 1V in R, then a and a 0 are Hurwitz equivalent.

Proof. Let us write WðaÞ ¼ XUY , Wða 0Þ ¼ XVY and sh : Bl ! Blþk be

the k-fold shift map defined by si ! siþk where k ¼ lðXÞ and l ¼ lðUÞ ¼ lðVÞ.
Let i : Blþk ,! Bm be the natural embedding of Blþk. Assume the relation

R : U 1V is Hurwitz-compatible, and let bR be an l braid such that

gU � bR ¼ gV . Then, a � i � shðbRÞ ¼ a 0, thus a and a 0 are Hurwitz equivalent.
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Theorem 2 below shows the relationships between word reversing and

Hurwitz equivalences. It reveals that under some conditions the Coxeter word

or the Coxeter element completely determines the Hurwitz equivalence class.

Theorem 2. Let P ¼ hSjRi be a finite homogeneous positive presentation

of a group G. Assume that P is Hurwitz compatible, and let a, a 0 be generator

G-systems of the same length.

(1) If WðaÞ1Wða 0Þ, then a@H a 0.

(2) If WðaÞ�1
Wða 0Þ h e, then a@H a. Moreover, in this case we can

solve the Hurwitz search problem for a and a 0.

(3) If Mþ
P injects in G, then a@H a 0 if and only if CðaÞ ¼ Cða 0Þ.

(4) If Mþ
P injects in G and the presentation P is complete, then a@H a 0 if

and only if WðaÞ�1
Wða 0Þ h e. Moreover, in this case we can solve

the Hurwitz search problem for a and a 0.

Proof (Proof of Theorem 2). (1) directly follows from Lemma 1. To

prove (2), recall that if u�1v h e then word reversing gives a Van-Kampen

diagram for ðu; vÞ. By using a Van-Kampen diagram we find a sequence of

words on S

W ¼ W0 ! W1 ! � � � ! Wk�1 ! Wk ¼ W 0

where each Wiþ1 is obtained from Wi by applying the relations in R.

Let ai be the generator G-system of length m whose Coxeter word is Wi.

Then by Lemma 1, we can find a braid bi such that ai � bi ¼ aiþ1. Thus,

a � ðb0b1 . . . bk�1Þ ¼ a 0 so we solved the Hurwitz search problem. If the

associated monoid Mþ
P embeds in G, then CðaÞ ¼ Cða 0Þ is equivalent to

WðaÞ1Wða 0Þ, hence (3) follows from (1). Finally (4) follows from (2),

(3) and the definition of the complete presentation.

As we have given as Algorithm 1, for a finite homogeneous positive

presentation P one can try to check whether P is complete or not. Moreover,

even if P is not complete one can try to make P complete. Thus, one can

algorithmically try to show whether two generator G-systems are Hurwitz

equivalent or not by using Theorem 2 (1) and (2). This point of view will be

pursued in next section.

We remark that in a theory of word-reversing and complete presentation,

there is a su‰cient conditions for Mþ
P to inject into G [2, Proposition 7.2].

Thus sometimes one can also apply Theorem 2 (3) (4) to solve Hurwitz

equivalence/search problem.

Example 3 (Artin groups). Let M ¼ ðmijÞ1ai; jam be a Coxeter matrix,

which is a symmetric matrix such that mii ¼ 1 and mij A f2; 3; . . . ;yg for
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distinct i and j. The Artin group G corresponding to M is a group defined by

the positive presentation

G ¼ ha1; . . . ; am jRij ðmi; j 0yÞi

where Rij is a positive irreducible word conjugacy relation

Rij : aiajai . . .|fflfflfflfflffl{zfflfflfflfflffl}
mij

1 ajaiaj . . .|fflfflfflfflffl{zfflfflfflfflffl}
mij

:

We call this presentation the standard presentation of an Artin group G. It

is known that the associated monoid Mþ
P of the standard presentation P of

an Artin group G injects in G [9]. Thus, by Theorem 2 (3), a two generator

G-system a and a 0, a@H a 0 if and only if CðaÞ ¼ Cða 0Þ. This implies that for

generator G-systems, the Hurwitz equivalence problem is equal to the classical

word problem.

4. Algorithm to attack Hurwitz equivalence and Hurwitz search problems

In this section we present an algorithmic approach to solve the Hurwitz

equivalence and Hurwitz search problems. In Sections 4.1 and 4.2 we will

treat generator G-systems of Hurwitz-compatible finite positive presentation.

We present a simple algorithm based on Hurwitz-compatible presentation and

word reversing in Section 4.1, and give an improvement using complete

presentation in Section 4.2. Finally in Section 4.3 we explain how to apply

these algorithms for general case, namely, Hurwitz equivalences for non-

generator G-systems of general groups.

4.1. Naive algorithm. First we provide a simple algorithm. This naive ver-

sion of algorithm still has an advantage compared to the modified algorithm

given in Section 4.2, since it requires less computations.

Let P ¼ hSjRi be a Hurwitz-compatible finite positive presentation of a

group G. Typically we consider the finite presentation such that all relations

are word-conjugacy relations. We further assume that both the word and the

conjugacy (search) problems of G are solvable.

Let g ¼ ðg1; . . . ; gmÞ be a generator G-system and g 0 ¼ ðg 0
1; . . . ; g

0
mÞ be an

arbitrary G-system. We try to check whether g@H g 0 or not as follows.

We begin with two simple tests. First we compare the Coxeter elements

of g and g 0. If CðgÞ0Cðg 0Þ, then gSH g 0. Next for each i, we check

whether there is a permutation t of indices such that g 0
i is conjugate to gtðiÞ for

all i ¼ 1; 2; . . . ;m. If such a permutation does not exist, then gSH g 0. We

will call these two tests the primary test.
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Assume that g and g 0 pass the primary test. The next step is to construct

a Hurwitz compatible presentation P 0 ¼ hS 0jR 0i of G so that both g and g 0

are generator G-systems with respect to the new presentation P 0.

Let t be the permutation obtained from the primary tests. Let us denote

by g 0
i ¼ V�1

i gtðiÞVi where Vi are fixed words on SUS�1, computed in the

primary tests. Let LðiÞ ¼ lðViÞ, and write Vi as

Vi ¼ a
e
ðiÞ
1

n
ðiÞ
1

a
e
ðiÞ
2

n
ðiÞ
2

. . . a
e
ðiÞ
LðiÞ

n
ðiÞ
LðiÞ

where we put S ¼ fa1; . . . ; aMg and n
ðiÞ
k A f1; 2; . . . ;Mg, e

ðiÞ
k A fG1g.

We introduce new generators fg 0
1; . . . ; g

0
mgU fgi; jgi¼1;...;m; j¼1;...;LðiÞ�1 and

new word conjugacy relations fRi; jgi¼1;...;m; j¼1;...;LðiÞ as follows. For j ¼ 1,

we define the relation Ri;1 as

Ri;1 :
gtðiÞanðiÞ

1

1 a
n
ðiÞ
1

gi;1 ðeðiÞ1 ¼ þ1Þ

a
n
ðiÞ
1

gtðiÞ 1 gi;1anðiÞ
1

ðeðiÞ1 ¼ �1Þ:

8<
:

For 1 < j < LðiÞ, we define the relation Ri; j as

Ri; j :
gi; j�1anðiÞ

j

1 a
n
ðiÞ
j

gi; j ðeðiÞj ¼ þ1Þ

a
n
ðiÞ
j

gi; j�1 1 gi; janðiÞ
j

ðeðiÞj ¼ �1Þ:

8<
:

Finally, for j ¼ LðiÞ, we define the relation Ri;LðiÞ as

Ri; j :
gi;LðiÞ�1anðiÞ

LðiÞ
1 a

n
ðiÞ
LðiÞ
g 0
i ðeðiÞ

LðiÞ ¼ þ1Þ

a
n
ðiÞ
LðiÞ
gi;LðiÞ�1 1 g 0

i anðiÞ
LðiÞ

ðeðiÞ
LðiÞ ¼ �1Þ:

8<
:

Let us consider the new positive presentation of G,

P 0 ¼ hSU fgi; jgU fg 0
1; . . . ; g

0
mg jRU fRi; jgi:

We call this positive presentation P 0 the expanded presentation. All of the

newly-added relations Ri; j are word-conjugacy relations, so P 0 is Hurwitz-

compatible.

Now we reverse the word WðgÞ�1
Wðg 0Þ by using the presentation P 0.

The reversing procedure stops in finite time because the expanded presentation

is finite and homogeneous. By Theorem 2 (2), if WðgÞ�1
Wðg 0Þ h e then we

conclude g@H g 0, and we are able to read a braid b such that g � b ¼ g 0 from

a Van-Kampen diagram.

The precise algorithm is given as Algorithm 2. Algorithm 2 returns

Undecidable if it fails to determine whether g@H g 0 or not.
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Algorithm 2: Hurwitz equivalence and search—Naive algorithm

Input: A finite Hurwitz-compatible presentation P ¼ hSjRi of G, a gener-

ator G-system g ¼ ðg1; . . . ; gmÞ, and a G-system g 0 ¼ ðg 0
1; . . . ; g

0
mÞ.

Output: The truth value of g@H g 0 or Undecidable. In case of g@H g 0, also

return a braid b such that g � b ¼ g 0.

(1) If CðgÞ0Cðg 0Þ, then return false.

(2) Check whether there is a permutation t of indices such that g 0
i is

conjugate to gtðiÞ. If such a permutation does not exist, then return

false.

(3) Compute an expanded presentation P 0 of G.

(4) Check whether WðgÞ�1
Wðg 0Þ h e or not. If not, then return

Undecidable.

(5) If WðgÞ�1
Wðg 0Þ h e, then construct a Van-Kampen diagram for

ðWðgÞ;Wðg 0ÞÞ and compute a braid b such that g � b ¼ g 0 from the

Van-Kampen diagram.

(6) Return true and the braid b.

4.2. A better Algorithm. In Algorithm 2, the word reversing of WðgÞ�1
Wðg 0Þ

is not su‰cient to show g@H g 0 because the word reversing might fail to detect

the congruence of WðgÞ and Wðg 0Þ. To improve Algorithm 2 we try to make

the expanded presentation complete so that it is more likely to succeed in

showing g@H g 0.

The modified algorithm goes as follows. The inputs G ¼ P, g, g 0 and the

first three steps are the same as in Algorithm 2: We do the primary test to

exclude obviously non-Hurwitz-equivalent case, and get an expanded presen-

tation P 0.

The next step is the core of the modified algorithm. We try to make the

expanded presentation P 0 complete preserving the property that the presen-

tation is Hurwitz compatible.

We slightly modify Algorithm 1 so that it is more e¤ective for our

purposes. Recall that in the completion procedure, we add a new relation

su1 tv if s�1rr�1t h uv�1 but ðsuÞ�1ðtvÞ h= e.

Since we need Hurwitz-compatible presentation, we must check whether

the new relation su1 tv is Hurwitz-equivalent or not. Fortunately, adding the

relation su1 tv does not cause a problem.

Lemma 2. Assume that P ¼ hSjRi is a Hurwitz-compatible group pre-

sentation, and take s, r, t, u, v as above. Then the relation su1 tv is also

Hurwitz-compatible.
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Proof. From the reversing sequence s�1rr�1t h uv�1, one can construct

a diagram which is similar to a Van-Kampen diagram. Indeed, one can find a

word w such that this diagram is obtained from two Van-Kampen diagrams of

ðsu; rwÞ and ðrw; tvÞ by gluing along the path w as shown in Figure 4. Thus,

one can read a sequence of words

su ¼ W0 ! W1 ! � � � ! Wi ¼ rw ! Wiþ1 ! Wk�1 ! Wk ¼ tv

where each Wjþ1 is obtained from Wj by performing the relation in R. Since

all relations R are Hurwitz-compatible, we find a braid b such that gsub ¼ gtv,

where gsu, gtv are generator G-systems whose Coxeter words are su, tv. Thus

the relation su1 tv is Hurwitz-compatible.

Now we consider the case s ¼ t, so the relation su1 tv is reducible.

As a group relation, u1 v is equivalent to su1 tv. Since to detect the

Hurwitz equivalences it is better to use finer congruence relations, it is better

to add u1 v instead of su1 tv. Adding the relation u1 v also makes the

strong cube condition for s, r, t, u, v is satisfied, because u�1s�1tv h

u�1v h e.

However, one problem occurs. We cannot expect the relation u1 v is

Hurwitz-compatible unlike Lemma 2. So we will do as follows: We add the

relation u1 v instead of su1 tv if we know the relation u1 v is Hurwitz-

compatible, such as, the case u1 v is a word-conjugacy relation. Otherwise,

we add the relation su1 tv.

Summarizing, we modify the completion procedure as follows. Assume

that s�1rr�1t h uv�1 but ðsuÞ�1ðtvÞ h= e. Assume that s ¼ t and the relation

u1 v is a word-conjugacy relation, then we add a new relation u1 v. Other-

wise, we add a new relation su1 tv. The precise description of the modified

completion algorithm is given as Algorithm 3.

Suppose that Algorithm 3 terminates and we obtained a complete Hurwitz

compatible presentation P 0. (As we will explain in Remark 1, in our purpose

we are able to modify Algorithm 3 so that it always terminates in finite time,

without a¤ecting the output of the algorithm.)

Fig. 4. Van-Kampen-like Diagram from word reversing s�1rr�1t h uv�1
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Algorithm 3: Modified Presentation Completion Algorithm

Input: A finite positive homogeneous presentation P ¼ hSjRi of a group G

such that all relations are Hurwitz-compatible.

Output: A complete, Hurwitz-compatible presentation of G.

(1) Compute all pair of words u; v A S� such that s�1rr�1t h uv�1 for

some s; r; t A S.

(2) Check ðsuÞ�1ðtvÞ h e holds for all u, v obtained by Step (1). As-

sume that ðsuÞ�1ðtvÞ h= e for some u, v.

(a) If s0 t, then replace the presentation P with the new presen-

tation

hSjRU fsu1 tvgi

and go back to Step (1).

(b) If s ¼ t, then replace the presentation P with the new presen-

tation

hSjRU fu1 vgi; if u1 v is a word-conjugacy relation;

hSjRU fsu1 tvgi; if u1 v is not a word-conjugacy relation

�

and go back to Step (1). (See Remark 1 below)

(3) Stop.

It should be noted that the monoids Mþ
P 0 and Mþ

P 0 might be di¤erent

unlike the usual completion procedure described in Algorithm 1.

The rest are the same as the previous algorithm. We reverse the word

WðgÞ�1
Wðg 0Þ by using the complete presentation P 0. If WðgÞ�1

Wðg 0Þ h e,

then we conclude g@H g 0 and compute a braid b such that g � b ¼ g 0 from a

Van-Kampen diagram.

The explicit description of the above algorithm is given as Algorithm 4.

Algorithm 4 solves the Hurwitz equivalence problem if possible and returns the

value Undecidable if it fails to solve. As in Algorithm 2, Undecidable simply

means we can not solve the problem using this algorithm, so it does not imply

the problem is undecidable.

Remark 1. Recall that we wanted a complete presentation so that word-

reversing e¤ectively detects the congruence of WðgÞ and Wðg 0Þ. Since the

presentation P is homogeneous, to detect the congruence of Coxeter words

WðgÞ and Wðg 0Þ we do not need all congruence relations: It is su‰cient to

know the relations of lengtha l where l be the length of g.

Thus in our purpose, step (2) in Algorithm 3 (step (4) in Algorithm 4) can

be simplified so that the Algorithm 4 terminates in finite time as follows: In
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step (2) of Algorithm 3, if the length of newly-added relations su1 tv or u1 v

become bigger than the length of g, then we stop the completion procedure and

go directly to step (5) of Algorithm 4.

Algorithm 4: Hurwitz equivalence and search—modified algorithm

Input: A finite positive group presentation P ¼ hSjRi of G such that all

relations in R are Hurwitz-compatible, a generator G-system g ¼ ðg1; . . . ; gmÞ,
and a G-system g 0 ¼ ðg 0

1; . . . ; g
0
mÞ.

Output: The truth value of g@H g 0 or Undecidable. In case of g@H g 0, then

also return a braid b such that g � b ¼ g 0.

(1) If CðgÞ0Cðg 0Þ, then return false.

(2) Check whether there is a permutation t of indices such that g 0
i is

conjugate to gtðiÞ. If such a permutation does not exist, then return

false.

(3) Compute the expanded presentation P 0 of G.

(4) Make the expanded presentation P 0 complete by using modified

completion procedure (Algorithm 3) (See Remark 1 below.)

(5) Check whether WðgÞ�1
Wðg 0Þ h e or not. If WðgÞ�1

Wðg 0Þ h= e,

then return undecidable.

(6) Compute a Van-Kampen diagram for ðWðgÞ;Wðg 0ÞÞ using word-

reversing.

(7) Calculate a braid b such that g � b ¼ g 0 by using the Van-Kampen

diagram.

(8) Return true and the braid b.

Remark 2. There are many variations of Algorithm 2 and Algorithm 4.

We can use any Hurwitz-compatible presentation P 00 of G whose gen-

erating set contains fg1; . . . ; gm; g 0
1; . . . ; g

0
mg, as substitutes of an expanded pre-

sentation P 0 in Algorithm 2 and 4.

We illustrate how our algorithm solves Hurwitz equivalence/search prob-

lems, by giving a simple, but illustrative example.

Example 4. Let G ¼ B3 ¼ hx; y j xyx1 yxyi be the 3-string braid group

with the standard presentation. The relation xyx1 yxy is a word-conjugacy

relation, hence the standard presentation is Hurwitz compatible. Let us try to

solve Hurwitz equivalence/search problems for two G-systems g ¼ ðx; x; y; xÞ
and g 0 ¼ ðy�1xy; x; y; y�1xyÞ using Algorithm 2 and Algorithm 4.

It is directly checked that g and g 0 pass the primary test. That is, the step

(1) and (2) do not return false.
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In step (3), we compute the expanded presentation. We introduce a

new generator z ¼ y�1xy, and a new word conjugacy relation yz1 xy. The

expanded presentation P 0 is now given as

P 0 ¼ hx; y; z j xyx1 yxy; yz1 xyi:

Let us apply Algorithm 2. By direct computation, ðxxyxÞ�1ðzxyzÞ h= e in

the presentation P 0, hence Algorithm 2 returns Undecidable.

Then let us apply Algorithm 4. In step (4) in Algorithm 4, we apply the

modified completion procedure, Algorithm 3.

As we have seen in Example 2, y�1xx�1y h xyx�1z�1, but

ðyxyÞ�1
yzx h= e. The relation yxy1 yzx is reducible and the reduced rela-

tion xy1 zx is a word-conjugacy relation. Thus, we add the new relation

xy1 zx to P 0, and get the presentation

P1 ¼ hx; y; z j xyx1 yxy; yz1 xy1 zxi:

As we have seen in Example 2, the presentation P1 is complete, hence we

arrived at the complete Hurwitz compatible presentation P 0 ¼ P1.

Now we proceed to step (5): We reverse the word ðxxyxÞ�1ðzxyzÞ. As

we have seen in Example 1, ðxxyxÞ�1ðzxyzÞ h e. In step (6), we draw the

Van-Kampen diagram of ðxxyx; zxyzÞ. See Example 1 and Figure 3 again.

From the Van-Kampen diagram, we obtain the sequence of words

xxyx ! xyxy ! zxxy ! zxyz:

Thus by considering the corresponding braid actions, we conclude that

g � ðs2s3Þðs�1
1 Þðs3Þ ¼ g 0:

Thus, Algorithm 4 returns true and the braid s2s3s
�1
1 s3, hence solves the

Hurwitz equivalence and search problems.

This example also illustrates a usefulness of modified completion algo-

rithm: As we observed in Example 2, the usual completion algorithm,

Algorithm 1 does not terminate.

4.3. Attacking Hurwitz equivalences for general cases. We close the paper by

explaining an algorithmic approach to attack Hurwitz equivalences for general

cases, that is, G-systems which are not generator G-systems.

Let G be a group and consider two G-systems of length n, g ¼ ðg1; . . . ; gnÞ
and g 0 ¼ ðg 0

1; . . . ; g
0
nÞ. We will assume that the word and the conjugacy

problem of G is solvable.

To apply Algorithms given in previous sections, we use a Hurwitz-

compatible group presentation

P ¼ ha1; . . . ; an jRi
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that satisfies the following properties:

(1) Let A be the group defined by the group presentation P. Then a

map p : fa1; . . . ; ang� ! G defined by pðaiÞ ¼ gi is a homomorphism.

(2) For each relation v1w in R, lðvÞ ¼ lðwÞa n.

Such a group presentation can be obtained by taking all Hurwitz-compatible

relations which hold for fg1; . . . ; gng.
First we check the primary tests for g and g 0. If g and g 0 passed the

primary test, then there exists a permutation t and words WiðGÞ on G ¼
fgG1

1 ; . . . ; gG1
n g such that

g 0
i ¼ WiðGÞgtðiÞWiðGÞ�1

holds.

Now let a 0
i ¼ WiðAÞatiWiðAÞ�1, where WiðAÞ is a word on a1; . . . ; an

that is obtained from the word WiðGÞ by replacing each gG1
i with aG1

i . We

consider generator A-systems a ¼ ða1; . . . ; anÞ and a 0 ¼ ða 0
1; . . . ; a

0
nÞ. Clearly

if a � b ¼ a 0 ðb A BnÞ then g � b ¼ g 0. Apply Algorithm 2 or Algorithm 4 to

attack Hurwitz equivalence/search problem for a and a 0. This might solve

the Hurwitz equivalence/search problem for g and g 0.
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