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Abstract. We establish new oscillation and nonoscillation theorems for the second

order quasilinear dynamic equation

ðrðtÞjyDðtÞja�1
yDðtÞÞD þ f ðt; ysðtÞÞ ¼ 0

on a time scale T. Our results not only extend the results given in [J. Wang, On second

order quasilinear oscillations, Funkcialaj Ekvacioj, 41 (1998), 25–54], but also unify the

oscillation and nonoscillation criteria for second order quasilinear di¤erential equations

and di¤erence equations.

1. Introduction and preliminary

The theory of time scales, which has recently received much attention, was

introduced by Stefan Hilger [13] in order to unify continuous and discrete

analysis. For completeness, we recall the following concepts related to the

notions of time scales; see [4] and [5] for more details. A time scale T is an

arbitrary nonempty closed subset of the real numbers R. Since the oscillation

of solutions near infinity is our primary concern, throughout this paper

we assume that sup T ¼ y, and define the time scale interval ½t0;yÞT by

½t0;yÞT :¼ ½t0;yÞVT. On any time scale T we define the forward and

backward jump operators by

sðtÞ :¼ inffs A T : s > tg and rðtÞ :¼ supfs A T; s < tg;

where inf q :¼ sup T and sup q :¼ inf T; here q denotes the empty set. A

point t A T with t > inf T, is said to be left-dense if rðtÞ ¼ t, right-dense if

t < sup T with sðtÞ ¼ t, left-scattered if rðtÞ < t and right-scattered if sðtÞ > t.

The graininess function m for a time scale T is defined by mðtÞ :¼ sðtÞ � t, and
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for any function f : T ! R the notation f sðtÞ denotes f ðsðtÞÞ. We say that

f : T ! R is (delta) di¤erentiable at t A T provided

f DðtÞ :¼ lim
s!t

f ðtÞ � f ðsÞ
t� s

exists when sðtÞ ¼ t (here by s ! t it is understood that s approaches t in the

time scale), and when f is continuous at t and sðtÞ > t,

f DðtÞ :¼ f sðtÞ � f ðtÞ
mðtÞ :

We say the function f : ½t0;yÞT ! R is rd-continuous and write f A
Crdð½t0;yÞT;RÞ provided f is continuous at right-dense points in ½t0;yÞT
and f has finite left-hand limits at left-dense points in ½t0;yÞT. The set of

functions f : ½t0;yÞT ! R which are di¤erentiable and whose derivative is

rd-continuous function is denoted by C 1
rdð½t0;yÞT;RÞ. In addition, if f D b 0,

then f is nondecreasing. A useful formula is

f sðtÞ ¼ f ðtÞ þ mðtÞ f DðtÞ:

For a; b A T, and a di¤erentiable function f , the Cauchy integral of f D is

defined by ð b
a

f DðsÞDs :¼ f ðbÞ � f ðaÞ;

and the improper integral defined asðy
a

f ðsÞDs :¼ lim
t!y

ð t
a

f ðsÞDs:

Note that in case T ¼ R, we have

sðtÞ ¼ t; mðtÞ ¼ 0; fsðtÞ ¼ f 0ðtÞ;
ð b
a

f ðtÞst ¼
ð b
a

f ðtÞdt:

When T ¼ N, we have sðtÞ ¼ tþ 1, mðtÞ ¼ 1, and

fsðtÞ ¼sf ðtÞ :¼ f ðtþ 1Þ � f ðtÞ;
ð b
a

f ðtÞst ¼
Xb�1

t¼a

f ðtÞ:

When T ¼ hN :¼ fhk : k A N; h > 0g, we have sðtÞ ¼ tþ h, mðtÞ ¼ h, and

xsðtÞ ¼shxðtÞ ¼
xðtþ hÞ � xðtÞ

h
;

ð b
a

f ðtÞst ¼
Xðb�a�hÞ=h

k¼0

f ðaþ khÞh;
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and when T ¼ qN0 :¼ ft : t ¼ qn; n A N0; q > 1g, we have sðtÞ ¼ qt, mðtÞ ¼
ðq� 1Þt, and

xsðtÞ ¼sqxðtÞ ¼
xðqtÞ � xðtÞ
ðq� 1Þt ;

ð b
a

f ðtÞst ¼
X

t A ½a;bÞ
f ðtÞmðtÞ:

In the present paper, we are concerned with the oscillation and nonoscilla-

tion of the second order quasilinear dynamic equation

ðrðtÞjyDðtÞja�1
yDðtÞÞD þ f ðt; ysðtÞÞ ¼ 0; ð1:1Þ

where t A ½t0;yÞT. In this paper, we consider situations described by the

following conditions:

(A1) a > 0 is a fixed constant;

(A2) r A Crdð½t0;yÞT;RþÞ with
Ðy
t0
r�1=aðsÞDs ¼ y, Rþ ¼ ð0;yÞ;

(A3) f A Cð½t0;yÞT � R;RÞ with yf ðt; yÞ > 0 for all y0 0 and each fixed

t A ½t0;yÞT;
(A4) f ðt; yÞ is nondecreasing with respect to y for each fixed t A ½t0;yÞT;
(A5) f ðt; yÞ is nonincreasing with respect to y for each fixed t A ½t0;yÞT,

when jyj is su‰ciently large.

By a solution of Eq. (1.1) we mean a nontrivial real-valued function

y A C1
rdð½t0;yÞT;RÞ which has the properties rjyDja�1

yD A C 1
rdð½t0;yÞT;RÞ.

Our attention is restricted to those solutions yðtÞ of Eq. (1.1) which exist on

some half-linear ½ty;yÞT J ½t0;yÞT and satisfy supfjyðtÞj : t A ½T ;yÞTg > 0 for

any T A ½ty;yÞT. A solution yðtÞ of Eq. (1.1) is called to be oscillatory if it

is neither eventually positive nor eventually negative; otherwise it is called to

be nonoscillatory. The equation itself is called to be oscillatory if all its

solutions are oscillatory.

In recent years, there has been much research activity concerning the

oscillation and nonoscillation of linear, nonlinear, half-linear, quasilinear dy-

namic equations on time scales; see for example [1, 2, 3, 6, 7, 8, 9, 10, 11, 12,

14, 15, 16, 17, 18, 19, 20] and the references cited therein. However, to the

best of our knowledge, very little is known about the case of general f ðt; yÞ in

which t and y are not necessarily separable; see [10]. Our purpose here is to

develop oscillation theory for such a general case of Eq. (1.1) on time scales.

This work was motivated by the paper of Wang [20] in which a detailed

analysis of oscillation properties was given for the second order ordinary

quasilinear di¤erential equation

ðjy 0ja�1
y 0Þ 0 þ f ðt; yÞ ¼ 0; tb 0: ð1:2Þ

We will follow closely the presentation of Wang [20] and show that almost all

of his results can be generalized to Eq. (1.1). Our main results are stated and

387Oscillation and nonoscillation



proved in sections 2, 3 and 4. Examples of discrete systems illustrating the

results are also given.

To prove our main results, we need the following known result [4,

Theorem 1.90].

Lemma 1.1 (Keller’s Chain Rule). Let f : R ! R be continuously di¤er-

entiable and suppose g : T ! R is delta di¤erentiable. Then f � g : T ! R is

delta di¤erentiable and the formula

ð f � gÞDðtÞ ¼
ð1
0

f 0ðgðtÞ þ hmðtÞgDðtÞÞdh
� �

gDðtÞ

holds.

2. Existence of nonoscillatory solutions

For the simplicity, define

RðtÞ ¼
ð t
t0

Ds

r1=aðsÞ ; t A ½t0;yÞT:

We begin with the following lemmas.

Lemma 2.1. Assume that (A1)–(A3) hold. Let yðtÞ be a nonoscillatory

solution of Eq. (1.1). Then there exists t1 A ½t0;yÞT such that yðtÞyDðtÞ > 0 for

t A ½t1;yÞT.

Proof. Without loss of generality we may suppose that yðtÞ > 0 and

ysðtÞ> 0 for t A ½t1;yÞTJ ½t0;yÞT. From (1.1), by (A3), ðrðtÞjyDðtÞja�1
yDðtÞÞD

¼ � f ðt; ysðtÞÞ < 0, t A ½t1;yÞT, and so rðtÞjyDðtÞja�1
yDðtÞ is decreasing for

t A ½t1;yÞT. We claim that rðtÞjyDðtÞja�1
yDðtÞ > 0 for t A ½t1;yÞT, so that

yðtÞyDðtÞ > 0 for t A ½t1;yÞT. In fact, if rðt�ÞjyDðt�Þja�1
yDðt�Þ ¼ �k < 0 for

some t� A ½t1;yÞT, then rðtÞjyDðtÞja�1
yDðtÞa�k < 0 for t A ½t�;yÞT, which is

equivalent to yDðtÞa�
�

k
rðtÞ
�1=a

for t A ½t�;yÞT. Integrating the last inequal-

ity from t� to t and letting t ! y, we see, in view of (A1), that yðtÞ ! �y
as t ! y. But this contradicts the assumed positivity of yðtÞ. Therefore,

rðtÞjyDðtÞja�1
yDðtÞ > 0 for t A ½t1;yÞT as claimed. r

Next, we classify all possible nonoscillatory solutions of Eq. (1.1) accord-

ing to their asymptotic behavior as t ! y.

Lemma 2.2. Under the conditions (A1)–(A3), any nonoscillatory solution

yðtÞ of Eq. (1.1) is of one of the following three types:
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( I ) lim
t!y

yðtÞ
RðtÞ ¼ const0 0;

( II ) lim
t!y

yðtÞ
RðtÞ ¼ 0, and lim

t!y
yðtÞ ¼ y or �y;

(III) lim
t!y

yðtÞ
RðtÞ ¼ 0, and lim

t!y
yðtÞ ¼ const0 0.

Proof. Let yðtÞ be a nonoscillatory solution of Eq. (1.1). Without loss

of generality we may assume yðtÞ > 0 and ysðtÞ > 0 for t A ½t1;yÞT J ½t0;yÞT.
By Lemma 2.1, one has yDðtÞ > 0 for t A ½t1;yÞT. From (1.1), ðrðtÞðyDðtÞÞaÞD
< 0 for t A ½t1;yÞT, and so rðtÞðyDðtÞÞa is an eventually positive decreas-

ing function, so that limt!y rðtÞðyDðtÞÞa is either positive or zero, i.e.,

limt!y r1=aðtÞyDðtÞ is either positive or zero. In the first case, by L’Hôpital’s

Rule [4, Theorem 1.120],

lim
t!y

yðtÞ
RðtÞ ¼ lim

t!y
r1=aðtÞyDðtÞ ¼ const0 0:

In the second case, since yðtÞ is increasing, yðtÞ tends to a positive limit, finite

or infinite, as t ! y. r

Now we give criteria for the existence of nonoscillatory solutions of Eq.

(1.1) of type (I), (II) and (III).

Theorem 2.1. Assume that (A1)–(A4) hold. Then Eq. (1.1) has a non-

oscillatory solution of type (I) if and only if there exists a constant c0 0 such

that ðy
j f ðt; cRsðtÞÞjst < y: ð2:1Þ

Proof. (The ‘‘only if ’’ part). Let yðtÞ be a nonoscillatory solution of

type (I) of Eq. (1.1). Without loss of generality we may assume that yðtÞ and

ysðtÞ are eventually positive. Furthermore, there exist a t1 A ½t0;yÞT and

positive constants l and L such that

yðtÞ > 0; yDðtÞ > 0; lRðtÞ < yðtÞ < LRðtÞ for t A ½t1;yÞT:

Consequently,

lRsðtÞ < ysðtÞ < LRsðtÞ for t A ½t1;yÞT: ð2:2Þ

Integrating (1.1) from t1 to t and noting that yDðtÞ > 0 for t A ½t1;yÞT, we

have ðy
t1

f ðs; ysðsÞÞss < y: ð2:3Þ
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By using the monotonicity of f in (A4), we see from (2.2) and (2.3) thatðy
f ðs; lRsðsÞÞss < y;

which is nothing but (2.1) with c ¼ l.

(The ‘‘if ’’ part). Suppose that (2.1) holds for some c ¼ 2k0 0, in which

we assume k > 0 without loss of generality. By (2.1), let t1 A ½t0;yÞT so

large that ðy
t1

f ðt; 2kRsðtÞÞsta ð2a � 1Þk a:

Consider the convex set Y HC½t1;yÞT and the mapping F : Y ! C½t1;yÞT
defined by

Y :¼ fy A C½t1;yÞT : kRðtÞa yðtÞa 2kRðtÞ; t A ½t1;yÞTg

and

ðFyÞðtÞ :¼ 2kRðt1Þ þ
ð t
t1

1

rðsÞ k a þ
ðy
s

f ðu; ysðuÞÞDu
� �� �1=a

Ds; t A ½t1;yÞT:

It is routinely verified that F map Y into itself and that the map F : Y ! Y is

compact. The Schauder-Tychono¤ fixed point theorem therefore ensures the

existence of a function y A Y such that y ¼ Fy, that is,

yðtÞ ¼ 2kRðt1Þ þ
ð t
t1

1

rðsÞ k a þ
ðy
s

f ðu; ysðuÞÞDu
� �� �1=a

Ds; t A ½t1;yÞT:

It is easy to see that yðtÞ is a solution of Eq. (1.1) on ½t1;yÞT with the desired

property limt!y
yðtÞ
RðtÞ ¼ k. r

Theorem 2.2. Assume that (A1)–(A4) hold. Then Eq. (1.1) has a non-

oscillatory solution of type (III) if and only if there exists a constant c0 0 such

that ðy 1

rðtÞ

ðy
t

j f ðs; cÞjDs
� �1=a

Dt < y: ð2:4Þ

Proof. (The ‘‘only if ’’ part). Let yðtÞ be a nonoscillatory solution of

type (III) of Eq. (1.1). We may assume that yðtÞ and ysðtÞ are eventually

positive. Furthermore, there exist a t1 A ½t0;yÞT and positive constants l and

L such that

yðtÞ > 0; yDðtÞ > 0; l < yðtÞ < L for t A ½t1;yÞT:
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The monotonicity condition of f in (A4) implies

f ðt; ysðtÞÞb f ðt; yðtÞÞb f ðt; lÞ; t A ½t1;yÞT: ð2:5Þ

Integrating (1.1) from s to t and noting that yDðtÞ > 0 for t A ½t1;yÞT, we haveð t
s

f ðr; ysðrÞÞDr ¼ rðsÞðyDðsÞÞa � rðtÞðyDðtÞÞa < rðsÞðyDðsÞÞa

for tb sb t1, which gives

1

rðsÞ

ðy
s

f ðr; ysðrÞÞDr
� �1=a

a yDðsÞ; s A ½t1;yÞT:

Then, ð t
t1

1

rðsÞ

ðy
s

f ðr; ysðrÞÞDr
� �1=a

Dsa yðtÞ � yðt1Þ; t A ½t1;yÞT;

which combined with (2.5) yieldsðy
t1

1

rðsÞ

ðy
s

f ðr; lÞDr
� �1=a

DsaL� l < y:

This means that (2.4) holds with c ¼ l.

(The ‘‘if ’’ part). Let (2.4) hold for some c0 0, in which we may choose

c > 0 without loss of generality. Thanks to (2.4), we choose t1 A ½t0;yÞT large

enough so that ðy
t1

1

rðtÞ

ðy
t

f ðs; cÞDs
� �1=a

Dta
c

2
:

Consider the convex set Y HC½t1;yÞT and the mapping F : Y ! C½t1;yÞT
defined by

Y :¼ y A C½t1;yÞT :
c

2
a yðtÞa c; t A ½t1;yÞT

� �

and

ðFyÞðtÞ :¼ c�
ðy
t

1

rðsÞ

ðy
s

f ðu; ysðuÞÞDu
� �1=a

Ds; t A ½t1;yÞT :

It is easily verified that F has a fixed element y A Y by the Schauder-Tychono¤

fixed point theorem, i.e., y ¼ Fy. So

yðtÞ ¼ c�
ðy
t

1

rðsÞ

ðy
s

f ðu; ysðuÞÞDu
� �1=a

Ds; t A ½t1;yÞT:
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This shows that yðtÞ is a solution of Eq. (1.1) on ½t1;yÞT and satisfies

limt!y yðtÞ ¼ c. r

A su‰cient condition for the existence of a nonoscillatory solution of type

(II) of Eq. (1.1) is given in the next theorem.

Theorem 2.3. Assume that (A1)–(A4) hold. Suppose that (2.1) holds for

some c0 0, and in addition thatðy 1

rðtÞ

ðy
t

j f ðs; dÞjDs
� �1=a

Dt ¼ y ð2:6Þ

for all d0 0 with cd > 0. Then Eq. (1.1) has a nonoscillatory solution of type

(II).

Proof. We may suppose that c > 0, and take a k A ð0; cÞ. The condition

(2.1) allows us to choose t1 A ½t0;yÞT so large thatðy
t1

f ðt; kðRsðtÞ þ 1ÞÞDta k a:

Consider the convex set Y HC½t1;yÞT and the mapping F : Y ! C½t1;yÞT
defined by

Y :¼ fy A C½t1;yÞT : ka yðtÞa kðRsðtÞ þ 1Þ; t A ½t1;yÞTg
and

ðFyÞðtÞ :¼ k þ
ð t
t1

1

rðsÞ

ðy
s

f ðu; ysðuÞÞDu
� �1=a

Ds; t A ½t1;yÞT:

Then, applying the Schauder-Tychono¤ fixed point theorem, we see that there

exists an element y A Y such that y ¼ Fy. This function y ¼ yðtÞ satisfies

yðtÞ ¼ k þ
ð t
t1

1

rðsÞ

ðy
s

f ðu; ysðuÞÞDu
� �1=a

Ds; t A ½t1;yÞT; ð2:7Þ

which implies that yðtÞ is a positive solution of Eq. (1.1). From (2.7), we also

see that

lim
t!y

yðtÞ
RðtÞ ¼ lim

t!y
r1=aðtÞyDðtÞ ¼ lim

t!y

ðy
t

f ðu; ysðuÞÞDu
� �1=a

! 0;

and, by (2.6),

lim
t!y

yðtÞb lim
t!y

k þ
ð t
t1

1

rðsÞ

ðy
s

f ðu; kÞDu
� �1=a

Ds

 !
¼ y:

It follows therefore that yðtÞ is a solution of type (II). r
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Example 2.1. Consider the dynamic equation

ðjyDðtÞja�1
yDðtÞÞD þ pðtÞjysðtÞjb�1

ysðtÞ ¼ 0; ð2:8Þ

where a and b are positive constants and p A Crdð½t0;yÞT;RþÞ.
Clearly, the conditions (A1)–(A4) are satisfied for Eq. (2.8). It is easy to

see that the conditions (2.1) and (2.4) respectively reduce toðy
sbðtÞpðtÞDt < y ð2:9Þ

and ðy ðy
t

pðsÞDs
� �1=a

Dt < y: ð2:10Þ

Hence, by Theorems 2.1–2.3, we have

(1) Eq. (2.8) has a nonoscillatory solution such that limt!y
yðtÞ
t

¼ const0
0 if and only if ð2:9Þ holds.

(2) Eq. (2.8) has a nonoscillatory solution such that limt!y yðtÞ ¼ const0
0 if and only if (2.10) holds.

(3) Eq. (2.8) has a nonoscillatory solution such that

lim
t!y

yðtÞ
t

¼ 0 and lim
t!y

yðtÞ ¼ y or �y;

if ðy
sbðtÞpðtÞDt < y and

ðy ðy
t

pðsÞDs
� �1=a

Dt ¼ y:

In particular, let

T ¼ qN ¼ ft : t ¼ qk; k A N; q > 1g and pðtÞ ¼ 1

tsðtÞ :

Noting that sðtÞ ¼ qt, we have

(4) Eq. (2.8) has a nonoscillatory solution such that limt!y
yðtÞ
t

¼ const0
0 if and only if b < 1 holds.

(5) Eq. (2.8) has a nonoscillatory solution such that limt!y yðtÞ ¼ const0
0 if and only if a < 1 holds.

(6) Eq. (2.8) has a nonoscillatory solution such that limt!y
yðtÞ
t

¼ 0, and

limt!y yðtÞ ¼ y or �y if b < 1a a.

3. Oscillation criteria—su‰cient conditions

In this section, we will establish new oscillation criteria for Eq. (1.1). We

now start with the following three lemmas.
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Lemma 3.1. Let x A C1
rdð½t0;yÞT;RþÞ with xDðtÞb 0 for t A ½t0;yÞT and

g > 0. Then the following inequalities are valid, for t A ½t0;yÞT,

(1)
ðxgðtÞÞD

xgðtÞ b g
xDðtÞ
xsðtÞ ;

(2) ðxgðtÞÞD a gxg�1ðtÞxDðtÞ; 0 < ga 1;

gðxsðtÞÞg�1
xDðtÞ; g > 1:

(

Proof. (1) Since xðtÞ > 0 and xDðtÞb 0 for t A ½t0;yÞT, Lemma 1.1

applies to give

ðxgðtÞÞD ¼ g

ð1
0

½xðtÞ þ hmðtÞxDðtÞ�g�1
dh

� �
xDðtÞ

¼ g

ð1
0

½ð1� hÞxðtÞ þ hxsðtÞ�g�1
dh

� �
xDðtÞ

b
gðxðtÞÞg�1

xDðtÞ; g > 1;

gðxsðtÞÞg�1
xDðtÞ; 0 < ga 1:

(

Thus,

ðxgðtÞÞD

xgðtÞ b

g
xDðtÞ
xðtÞ ; g > 1;

g
ðxsðtÞÞ g�1

x gðtÞ xDðtÞ; 0 < ga 1;

8><
>:

since xDðtÞb 0 implies that xðtÞa xsðtÞ for t A ½t0;yÞT. Thus, Case (1) holds

for both g > 1 and 0 < ga 1.

(2) Case (2) similarly follows, by Lemma 1.1, from

ðxgðtÞÞD ¼ g

ð1
0

½ð1� hÞxðtÞ þ hxsðtÞ�g�1
dh

� �
xDðtÞ

a
gxg�1ðtÞxDðtÞ; 0 < ga 1;

gðxsðtÞÞg�1
xDðtÞ; g > 1;

(

since xðtÞ > 0 and xDðtÞb 0 for t A ½t0;yÞT. r

Lemma 3.2. Let v A C1
rdð½t0;yÞT;RÞ be a nonoscillatory solution of the

second order dynamic equation

ðrðtÞjvDðtÞja�1
vDðtÞÞD þ qðtÞjvsðtÞja�1

vsðtÞ ¼ 0; t A ½t0;yÞT; ð3:1Þ

where a > 0, qðtÞ A Crdð½t0;yÞT;RþÞ and rðtÞ satisfies the condition (A2). Then

the function wðtÞ defined by

wðtÞ :¼ rðtÞ v
DðtÞ
vðtÞ

����
����
a�1

vDðtÞ
vðtÞ
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satisfies the first order di¤erential inequality

wDðtÞ þ qðtÞ þ a

r1=aðtÞ jw
sðtÞjð1þaÞ=a

a 0; t A ½t0;yÞT: ð3:2Þ

Proof. Without loss of generality we may assume that vðtÞ > 0 and

vsðtÞ > 0 for t A ½t0;yÞT. Then, by Lemma 2.1, vDðtÞ > 0 for t A ½t0;yÞT.
Further, by [4, Theorem 1.2 (iv)] and (3.1),

wDðtÞ ¼ rðtÞðvDðtÞÞa

vaðtÞ

� �D
¼ �qðtÞ � rðtÞðvDðtÞÞaðvaðtÞÞD

ðvsðtÞÞavaðtÞ : ð3:3Þ

In view of Lemma 3.1 (1), we get

ðvaðtÞÞD

vaðtÞ b a
vDðtÞ
vsðtÞ for ½t0;yÞT: ð3:4Þ

Recall that rðtÞðvDðtÞÞa a 0 for ½t0;yÞT. Then, by (3.4),

rðtÞðvDðtÞÞaðvaðtÞÞD

ðvsðtÞÞavaðtÞ b a
rðtÞðvDðtÞÞaþ1

ðvsðtÞÞaþ1
¼ a

ðrðtÞðvDðtÞÞaÞðaþ1Þ=a

r1=aðtÞðvsðtÞÞaþ1

b a
ððrðtÞðvDðtÞÞaÞsÞðaþ1Þ=a

r1=aðtÞðvsðtÞÞaþ1
¼ a

r1=aðtÞ ðw
sðtÞÞð1þaÞ=a: ð3:5Þ

Combining (3.3) and (3.5), one obtain (3.2). r

Lemma 3.3. If u A C1
rdð½t0;yÞT;RþÞ, then

ðuaþ1ðtÞÞD a aþ 1

a
ðuaðtÞÞDusðtÞ; a > 0; t A ½t0;yÞT: ð3:6Þ

Proof. By Lemma 1.1, we have

ðuaþ1ðtÞÞD ¼ ðaþ 1Þ
ð1
0

½husðtÞ þ ð1� hÞuðtÞ�auDðtÞdh

and

ðuaðtÞÞDusðtÞ ¼ a

ð1
0

½husðtÞ þ ð1� hÞuðtÞ�a�1
uDðtÞusðtÞdh:

Thus, we have
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a

aþ 1
ðuaþ1ðtÞÞD � ðuaðtÞÞDusðtÞ

¼ a

ð1
0

ð1� hÞ½uðtÞ � usðtÞ�½husðtÞ þ ð1� hÞuðtÞ�a�1
uDðtÞdh

¼ �a

ð1
0

ð1� hÞ½husðtÞ þ ð1� hÞuðtÞ�a�1ðuDðtÞÞ2mðtÞdha 0:

Hence, (3.6) holds. r

Lemma 3.4. Assume that (A1)–(A3) hold. Let yðtÞ be a nonoscillatory

solution of Eq. (1.1), then there exists a constant k > 0 such that yðtÞ eventually

satisfies jyðtÞja kRðtÞ.

Proof. Without loss of generality we assume yðtÞ > 0 and ysðtÞ > 0

eventually. Then, by Lemma 2.1, there exists a t1 A ½t0;yÞT such that

yDðtÞ> 0 for t A ½t1;yÞT. It follows from (1.1) that ðrðtÞðyDðtÞÞaÞD < 0 for

t A ½t1;yÞT. Namely, rðtÞðyDðtÞÞa is an eventually positive decreasing func-

tion, and hence there exist constants m > 0 and t2 A ½t1;yÞT such that

rðtÞðyDðtÞÞa ama and RðtÞb 1 for t A ½t2;yÞT . This gives yDðtÞa m
r1=aðtÞ .

Integrating this inequality from t2 to t, we obtain, for t A ½t2;yÞT,

yðtÞa yðt2Þ þm

ð t
t2

Ds

r1=aðsÞ a yðt2ÞRðtÞ þmRðtÞa kRðtÞ

for some k > 0. r

Now, we are in a position to give and show our main results.

Theorem 3.1. Assume that (A1)–(A3) hold. If for all d > 0,

ðy
inf

dajyj<y
j f ðt; yÞjDt ¼ y; ð3:7Þ

then (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution yðtÞ, we may

suppose that yðtÞ > 0 and ysðtÞ > 0 for t A ½t1;yÞT J ½t0;yÞT, since a parallel

argument holds for the case yðtÞ < 0. Then, by Lemma 2.1, yDðtÞ > 0 for

t A ½t1;yÞT. Integration of (1.1) from t1 to t gives

ðy
t1

f ðs; ysðsÞÞDsa rðt1ÞðyDðt1ÞÞa < y: ð3:8Þ
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On the other hand, since yDðtÞ > 0 implies that 0 < ysðt1Þa ysðtÞ for

t A ½t1;yÞT, and putting d :¼ ysðt1Þ, by (3.7), we findðy
t1

f ðt; ysðtÞÞDtb
ðy
t1

inf
dajysðtÞj<y

j f ðt; ysðtÞÞjDt ¼ y;

which contradicts (3.8). r

Theorem 3.2. Assume that (A1)–(A3) hold. If for some 0 < l < a and all

d > 0, ðy
RlðtÞ inf

dajyj<y

j f ðt; yÞj
jyja Dt ¼ y; ð3:9Þ

and RðtÞ=RsðtÞb c > 0, then Eq. (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution yðtÞ. Without

lose of generality we may suppose that yðtÞ > 0 and ysðtÞ > 0 for t A ½t1;yÞT J
½t0;yÞT, Then, Lemma 2.1 implies that yDðtÞ > 0 for t A ½t1;yÞT. Put

wðtÞ :¼ rðtÞ yDðtÞ
yðtÞ

� �a
:

Applying Lemma 3.2 to (1.1), we then get

ðrðtÞjyDðtÞja�1
yDðtÞÞD þ f ðt; ysðtÞÞ

ðysðtÞÞa jysðtÞja�1
ysðtÞ ¼ 0; t A ½t1;yÞT:

Consequently,

wDðtÞ þ a

r1=aðtÞ ðw
sðtÞÞðaþ1Þ=a þ f ðt; ysðtÞÞ

ðysðtÞÞa a 0; t A ½t1;yÞT: ð3:10Þ

Multiplying (3.10) by RlðtÞ and integrating it over ½t1; t�T, we then have, for

t A ½t1;yÞT, ð t
t1

RlðsÞwDðsÞDsþ a

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=aDs

þ
ð t
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsa 0:

By using the integration by parts formula [4, Theorem 1.77 (vi)] for the first

term of the last inequality, we get, for t A ½t1;yÞT,

RlðtÞwðtÞ �
ð t
t1

ðRlðsÞÞDwsðsÞDsþ a

ð t
t1

RlðsÞRDðsÞðwsðsÞÞð1þaÞ=a
Ds

þ
ð t
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsa c1; ð3:11Þ
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where c1 > 0 is a constant. We now consider two cases: 0 < la 1 and

l > 1.

Case 1. 0 < la 1. By Lemma 3.1 (2), we get

ðRlðsÞÞD a lRl�1ðsÞRDðsÞ; 0 < la 1: ð3:12Þ

Substituting (3.12) into (3.11), we get

RlðtÞwðtÞ � l

ð t
t1

Rl�1ðsÞRDðsÞwsðsÞDs

þ a

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=aDsþ
ð t
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsa c1: ð3:13Þ

Suppose first that ðy
t1

Rl�1ðsÞRDðsÞwsðsÞDs < y:

It then follows from (3.13) thatð t
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsa c1 þ l

ð t
t1

Rl�1ðsÞRDðsÞwsðsÞDs; t A ½t1;yÞT;

which, in the limit as t ! y, shows thatðy
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Ds < y:

But this is impossible, because (3.9) implies thatðy
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsb

ðy
t1

RlðsÞ inf
dajysðsÞj<y

j f ðs; ysðsÞÞj
jysðsÞja Ds ¼ y; ð3:14Þ

where d ¼ ysðt1Þ > 0.

Suppose next that ðy
t1

Rl�1ðsÞRDðsÞwsðsÞDs ¼ y: ð3:15Þ

Then, by (3.13),ð t
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsa c1 þ l

ð t
t1

Rl�1ðsÞRDðsÞwsðsÞDs

� a

ð t
t1

RlðsÞRDðsÞðwsðsÞÞð1þaÞ=aDs: ð3:16Þ
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By means of Hölder’s inequality [4, Theorem 6.13], one then haveð t
t1

Rl�1ðsÞRDðsÞwsðsÞDs

¼
ð t
t1

ðRlðsÞRDðsÞÞa=ðaþ1Þ
wsðsÞ RDðsÞ

Raþ1�lðsÞ

� �1=ðaþ1Þ
ðsÞDs

a

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=aDs

� �a=ðaþ1Þ ð t
t1

RDðsÞ
Raþ1�lðsÞDs

� �1=ðaþ1Þ
: ð3:17Þ

By Lemma 3.1 (1), we get, for a� l > 0,

ðRa�lðtÞÞD

Ra�lðtÞ b ða� lÞR
DðtÞ

RsðtÞ : ð3:18Þ

Then, by [4, Theorem 1.20 (iv)] and (3.18),

� 1

Ra�lðtÞ

� �D
¼ ðRa�lðtÞÞD

ðRsðtÞÞa�l
Ra�lðtÞ

b ða� lÞ RDðtÞ
ðRsðtÞÞaþ1�l

¼ ða� lÞ RDðtÞ
Raþ1�lðtÞ

RðtÞ
RsðtÞ

� �aþ1�l

b ða� lÞcaþ1�l
1

RDðtÞ
Raþ1�lðtÞ :

This implies that

ð t
t1

RDðsÞ
Raþ1�lðsÞDsa� cl�a�1

1

a� l

ð t
t1

1

Ra�lðsÞ

� �D
Ds

a
cl�a�1
1

a� l

1

Ra�lðt1Þ
¼: c2: ð3:19Þ

Combining (3.17) with (3.19), we haveð t
t1

Rl�1ðsÞRDðsÞwsðsÞDs

a c
1=ðaþ1Þ
2

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=a
Ds

� �a=ðaþ1Þ

¼ c
1=ðaþ1Þ
2

Ð t
t1
RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=aDs

ð
Ð t
t1
RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=aDsÞ1=a

: ð3:20Þ
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On the other hand, since it from (3.15) that

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=a
Ds ! y as t ! y;

we see from (3.20) that there exists t2 A ½t1;yÞT such that

ð t
t1

Rl�1ðsÞRDðsÞwsðsÞDsa a

l

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=aDs

for all t A ½t2;yÞT. Using the above inequality in (3.16), we conclude that

ðy
t0

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsa c1;

in contradiction to (3.14) which also holds in the present situation.

Case 2. l > 1. By Lemma 3.1 (2), we get

ðRlðsÞÞD a lðRsðsÞÞl�1
RDðsÞ; l > 1: ð3:21Þ

Substituting (3.21) into (3.11), we get

RlðtÞwðtÞ � l

ð t
t1

ðRsðsÞÞl�1
RDðsÞwsðsÞDs

þ a

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=aDsþ
ð t
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsa c1: ð3:22Þ

Similarly to the proof of Case 1, supposing that

ðy
t1

Rl�1ðsÞðRsðsÞÞl�1
wsðsÞDs < y;

we also get a contradiction to (3.14). Hence, we suppose next thatðy
t1

ðRsðsÞÞl�1
RDðsÞwsðsÞDs ¼ y:

Then, by (3.22),

ð t
t1

RlðsÞ f ðs; y
sðsÞÞ

ðysðsÞÞa Dsa c1 þ l

ð t
t1

ðRsðsÞÞl�1
RDðsÞwsðsÞDs

� a

ð t
t1

RlðsÞRDðsÞðwsðsÞÞð1þaÞ=aDs:
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By means of Hölder’s inequality [4, Theorem 6.13] again,

ð t
t1

ðRsðsÞÞl�1
RDðsÞwsðsÞDsa

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=aDs

� �a=ðaþ1Þ

�
ð t
t1

RDðsÞ
ðRsðsÞÞaþ1�l

RsðsÞ
RðsÞ

� �al
Ds

 !1=ðaþ1Þ

a
1

c
al=ðaþ1Þ
1

ð t
t1

RlðsÞRDðsÞðwsðsÞÞðaþ1Þ=a
Ds

� �a=ðaþ1Þ

�
ð t
t1

RDðsÞ
ðRsðsÞÞaþ1�l

Ds

 !1=ðaþ1Þ

:

By [4, Theorem 1.20 (iv)], and note that (3.18),

� 1

Ra�lðtÞ

� �D
¼ ðRa�lðtÞÞD

ðRsðtÞÞa�l
Ra�lðtÞ

b ða� lÞ RDðtÞ
ðRsðtÞÞaþ1�l:

Using the same argument as the proof of Case 1, we finish the proof. r

Theorem 3.3. Assume that (A1)–(A4) hold. If for all d, d 0 with d 0 >

d > 0, ðy
inf

dajyjad 0
j f ðt; yÞjDt ¼ y; ð3:23Þ

and there is a continuous function j : ½y0;yÞ ! Rþ, y0 > 0, and a constant

t2 A ½t1;yÞT such that for t A ½t2;yÞT,

inf
jyjby0

f ðt; yÞ
jðjyjÞ b

1

r1=aðtÞ ð3:24Þ

and ðy
y0

jðyÞdy ¼ y; ð3:25Þ

then (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution yðtÞ, we may

suppose that yðtÞ > 0 and ysðtÞ > 0 for t A ½t1;yÞT J ½t0;yÞT, then yDðtÞ > 0

for t A ½t1;yÞT and (3.8) holds by Lemma 2.1. The solution yðtÞ is either

bounded or unbounded.
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If yðtÞ is bounded, then da yðtÞa d 0 for t A ½t1;yÞT, for some positive

constant d and d 0, and by (3.23), we haveðy
t1

f ðt; ysðtÞÞDtb
ðy
t1

inf
dajysðtÞjad 0

j f ðt; ysðtÞjDt ¼ y:

But this contradicts (3.8).

If yðtÞ is unbounded, and let uðtÞ ¼ r1=aðtÞyDðtÞ, then uðtÞ > 0 and uðtÞ is

nonincreasing for t A ½t1;yÞT. In view of Lemma 3.3, we have

a

aþ 1
ððr1=aðtÞyDðtÞÞaþ1ÞD a ððr1=aðtÞyDðtÞÞaÞDðr1=aðtÞyDðtÞÞs

a ðrðtÞðyDðtÞÞaÞDr1=aðtÞyDðtÞ:

Multiplying (1.1) by r1=aðtÞyDðtÞ and integrating it from t1 to t, and using the

above inequality, we arrive at

a

aþ 1
½ðr1=aðtÞyDðtÞÞaþ1 � ðr1=aðt1ÞyDðt1ÞÞaþ1�

þ
ð t
t1

r1=aðsÞ f ðs; ysðsÞÞyDðsÞDsa 0;

from which follows thatðy
t1

r1=aðsÞ f ðs; ysðsÞÞyDðsÞDs < y:

Then we have, by (A4),ðy
r1=aðsÞ f ðs; yðsÞÞyDðsÞDs < y: ð3:26Þ

On the other hand, (3.24) implies that

r1=aðtÞ f ðt; yÞb jðyÞ for t A ½t2;yÞT; y A ½y0;yÞ;

and t2 can be chosen so that yðtÞb y0 for t A ½t2;yÞT. Therefore, it fol1ows

from (3.25) thatðy
t2

r1=aðsÞ f ðs; yðsÞÞyDðsÞDsb
ðy
t2

jðyðsÞÞyDðsÞDs

¼
ðy
yðt2Þ

jðuÞdu ¼ y;

which contradicts (3.26). r
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Theorem 3.4. Assume that (A1)–(A3) and (A5) hold. If for all d, d 0 with

d 0 b db 0, (3.23) holds, and for all c0 0,

ðy
j f ðt; cRsðtÞÞjDt ¼ y; ð3:27Þ

then Eq. (1.1) is oscillatory.

Proof. Let yðtÞ be a nonoscillatory solution of Eq. (1.1), and we suppose

that yðtÞ > 0 and ysðtÞ > 0 for t A ½t1;yÞT J ½t0;yÞT. Then yDðtÞ > 0 for

t A ½t1;yÞT by Lemma 2.1. Note that yðtÞ may be either bounded or

unbounded. If yðtÞ is bounded, following the proof of Theorem 3.3, by

(3.23), we get a contraction. So yðtÞ is unbounded. Let y2 > 0 be such that

f ðt; yÞ is nonincreasing in y for y > y2. Since yðtÞ ! y as t ! y, there

exist, by Lemma 3.4, positive constants k and t2 A ½t1;yÞT such that y2 a

ysðtÞa kRsðtÞ for t A ½t2;yÞT, which implies f ðt; ysðtÞÞb f ðt; kRsðtÞÞ for

t A ½t2;yÞT by (A5). It follows from (3.8) and (3.27) that

y >

ðy
t2

f ðs; ysðsÞÞDsb
ðy
t2

f ðs; kRsðsÞÞDs ¼ y;

which is a contradiction. r

Remark 3.1. If we choose T ¼ R and rðtÞ1 1, then Theorems 3.1–3.4

reduce to [20, Theorems 1.1 and 1.2] for Eq. (1.2).

Now we consider the dynamic equation

ðjyDðtÞja�1
yDðtÞÞD þ qðtÞgðysðtÞÞ ¼ 0 for t A ½t0;yÞT; ð3:28Þ

where q A Crdð½t0;yÞT;RþÞ, g A CðR;RÞ with ygðyÞ > 0 for all y0 0.

By Theorems 3.1–3.4, we have

Corollary 3.1. Eq. (3.28) is oscillatory if one of the following conditions

is satisfied

(1) lim inf
jyj!y

j f ðyÞj > 0 and
Ðy

qðtÞDt ¼ y;

(2) lim inf
jyj!y

j f ðyÞj
jyja > 0, t

sðtÞ b c > 0 and
Ðy

tlqðtÞDt ¼ y for some 0 <

l < a;

(3) lim inf
jtj!y

jqðtÞj > 0 and gðyÞ is nondecreasing;

(4) lim inf
jtj!y

jqðtÞj > 0 and gðyÞ is nonincreasing with
Ðy jgðcRsðtÞÞjDt ¼ y

for all c0 0.
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4. Oscillation criteria—necessary and su‰cient conditions

In this section, we give the necessary and su‰cient conditions for all

solution of Eq. (1.1) to be oscillatory.

Theorem 4.1. Assume that (A1)–(A4) hold. Suppose in addition that

there exists a continuous nondecreasing function j : R ! R with the properties

that

sgn jðuÞ ¼ sgn u;

ðGy du

jðuÞ < y; ð4:1Þ

and for some constants k > 0, y1 > 0 and l0 0 with sgn l ¼ sgn y,

j f ðt; yÞjb kj f ðt; lÞj jjðyÞja; t A ½t1;yÞT; jyjb y1: ð4:2Þ

Then Eq. (1.1) is oscillatory if and only ifðy 1

rðtÞ

ðy
t

j f ðs; cÞjDs
� �1=a

Dt ¼ y for all c0 0: ð4:3Þ

Proof. (The ‘‘only if ’’ part). If (4.3) is violated, then, by Theorem 2.2,

Eq. (1.1) has a nonoscillatory solution yðtÞ such that limt!y yðtÞ ¼ const0 0.

(The ‘‘if ’’ part). Let (4.3) hold and suppose that Eq. (1.1) has a

nonoscillatory solution yðtÞ. We may assume that yðtÞ > 0 and ysðtÞ > 0

for t A ½t1;yÞT J ½t0;yÞT . Then, by Lemma 2.1, yDðtÞ > 0 for t A ½t1;yÞT.
It follows from Theorem 2.2 that limt!y yðtÞ ¼ þy. Integration of ð1:1Þ
gives, for s A ½t1;yÞT,

r1=aðsÞyDðsÞb
ðy
s

f ðu; ysðuÞÞDu
� �1=a

:

This together with (A4) and the fact j is nondecreasing on R imply that, for

s A ½t1;yÞT,

yDðsÞ
jðyðsÞÞb

1

rðsÞ

ðy
s

f ðt; ysðuÞÞ
jaðyðsÞÞ Du

� �1=a

b
1

rðsÞ

ðy
s

f ðt; yðuÞÞ
jaðyðuÞÞ Du

� �1=a
: ð4:4Þ

Note that yðtÞ ! þy as t ! y, and in view of (4.2), there is t2 A ½t1;yÞT such

that

f ðt; yðtÞÞ
jaðyðtÞÞ b kf ðt; lÞ; t A ½t2;yÞT ð4:5Þ
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for some k > 0 and l > 0. Substituting (4.5) into (4.4), and integrating it from

t2 to t, we obtainð yðtÞ
yðt2Þ

du

jðuÞ b k1=a

ð t
t2

1

rðsÞ

ðy
s

f ðu; lÞDu
� �1=a

Ds;

which, in the limit as t ! y, gives

k1=a

ð t
t2

1

rðsÞ

ðy
s

f ðu; lÞDu
� �1=a

Ds < y:

This contradicts (4.3). r

Theorem 4.2. Assume that (A1)–(A4) hold. Suppose in addition that

there exists a continuous nonincreasing function c : ½�M;M� ! R, M > 0, such

that

sgn cðuÞ ¼ sgn u;

ðGM

G0

du

cðjujð1�aÞ=a
uÞ

< y; ð4:6Þ

and for some constants k > 0, u1 > 0,

j f ðt; uuÞjb kj f ðt; uÞj jcðuÞj; t A ½t1;yÞT; u0 0; 0 < juja u1: ð4:7Þ

Then Eq. (1.1) is oscillatory if and only ifðy
j f ðt; cRsðtÞÞjDt ¼ y for all c0 0: ð4:8Þ

Proof. (The ‘‘only if ’’ part). If (4.8) is violated, then, by Theorem 2.1,

Eq. (1.1) has a nonoscillatory solution yðtÞ such that limt!y
yðtÞ
RðtÞ ¼ const0 0.

(The ‘‘if ’’ part). Let (4.8) hold and suppose that Eq. (1.1) has a

nonoscillatory solution yðtÞ. We may assume that yðtÞ > 0 and ysðtÞ > 0 for

t A ½t1;yÞT J ½t0;yÞT. Then, by Lemma 2.1, yDðtÞ > 0 for t A ½t1;yÞT. Let

xðtÞ :¼ r1=aðtÞyDðtÞ, t A ½t1;yÞT. Because of Theorem 2.1 and (4.8), the non-

oscillatory solution yðtÞ has to be either of type (II) and type (III), and hence

xðtÞ ¼ r1=aðtÞyDðtÞ decreases to 0 as t ! y. Observe that, for t A ½t1;yÞT,

yðtÞ � yðt1Þ ¼
ð t
t1

yDðsÞDs ¼
ð t
t1

r1=aðsÞyDðsÞ
r1=aðsÞ Dsb

ð t
t1

r1=aðtÞyDðtÞ
r1=aðsÞ Ds

¼ r1=aðtÞyDðtÞ½RðtÞ � Rðt1Þ� ¼ xðtÞ½RðtÞ � Rðt1Þ�;

which implies that there are positive constants t2 A ½t1;yÞT and 0 < c < 1 such

that

0 < xðtÞaM and yðtÞb cxðtÞRðtÞ; t A ½t2;yÞT: ð4:9Þ
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For a fixed 0 < u0 aM, define

GðuÞ :¼
ð u0
u

du

cðu1=aÞ ; u A ð0; u0�

and

kðt; hÞ :¼ rðtÞðyDðtÞÞa þ hmðtÞðrðtÞðyDðtÞÞaÞD; t A ½t2;yÞT; h A ½0; 1�:

Then,

kðt; hÞ ¼ ð1� hÞxaðtÞ þ hðxsðtÞÞa b ðxsðtÞÞa: ð4:10Þ

By Lemma 1.1, the fact cðuÞ is nonincreasing and (4.10), we have, for

t A ½t2;yÞT,

½GðrðtÞðyDðtÞÞaÞ�D ¼
ð1
0

G 0ðkðt; hÞÞdh
� �

ðrðtÞðyDðtÞÞaÞD

¼
ð1
0

dh

cðk1=aðt; hÞÞ

� �
f ðt; ysðtÞÞ

b

ð1
0

dh

cðxsðtÞÞ

� �
f ðt; ysðtÞÞ ¼ f ðt; ysðtÞÞ

cðxsðtÞÞ : ð4:11Þ

In view of (4.9) and (A4), we see that

f ðt; ysðtÞÞ
cðxsðtÞÞ b

f ðt; cxsðtÞRsðtÞÞ
cðxsðtÞÞ b kf ðt; cRsðtÞÞ; t A ½t3;yÞT; ð4:12Þ

where the second inequality in (4.9) and the nondecreasing property of f ðt; yÞ
in y have been used. Combining (4.11) with (4.12), we have

½GðrðtÞðyDðtÞÞaÞ�D b kf ðt; cRsðtÞÞ for t A ½t3;yÞT;

from which it follows that, by (4.6),

k

ð t
t3

f ðs; cRsðsÞÞDsaGðrðtÞðyDðtÞÞaÞa
ðM
0

du

cðu1=aÞ :

This shows that k
Ðy
t3
f ðs; cRsðsÞÞDs < y, a contradiction to (4.8). r

Remark 4.1. If we choose T ¼ R and rðtÞ1 1, then Theorems 4.1 and

4.2 reduce to [20, Theorems 2.3 and 2.4] for Eq. (1.2).

Let T ¼ N, Eq. (1.1) becomes the di¤erence equation

DðrnjDynja�1DynÞ þ f ðn; ynþ1Þ ¼ 0; n A N; ð4:13Þ

where Dyn ¼ ynþ1 � yn.
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By Theorems 4.1 and 4.2, we have

Corollary 4.1. Assume that (A1)–(A4) hold.

(1) Suppose in addition there exists a continuous nondecreasing function

jðuÞ : R ! R such that (4.1) and (4.2) hold. Then (4.13) is oscillatory

if and only if

Xy
n¼1

1

rn

Xy
k¼n

j f ðk; cÞj
 !1=a

¼ y for all c0 0:

(2) Suppose in addition there exists a continuous nonincreasing function

cðuÞ : ½�M;M� ! R, M > 0, such that (4.6) and (4.7) hold. Then

(4.13) is oscillatory if and only if

Xy
n¼1

j f ðn; cRnþ1Þj ¼ y for all c0 0:

Remark 4.1. Theorems 4.1 and 4.2 extend and improve Theorems 3.1

and 3.2 in Grace et al. [10], respectively.

Finally, we give some examples to illustrate our main results.

Example 4.1. Let T ¼ N, and consider the di¤erence equation

DðjDynja�1DynÞ þ
nnjynþ1jp�1

ynþ1

1þ nmjynþ1jq
¼ 0; n A N; ð4:14Þ

where Dyn ¼ ynþ1 � yn, p > 0, q > 0, m > 0, and n are constants. Equation

(4.14) is oscillatory provided that one of the following is satisfies.

(1) pb qþ a, and m� na lþ 1 for some 0 < l < a;

(2) qþ a > pb q, and m� na 1;

(3) q > pb q� 1 and m� na 0;

(4) q > p and m� nþ q� pa 1.

Proof. Case (1). Noting that

j f ðn; yÞj ¼ nnjyjp

1þ nmjyjq b nn�m jyjp

1þ jyjq ;

and gðyÞ ¼ yp�a

1þyq is an increasing function, then we haveðy
tl inf

dajyj<y

j f ðt; yÞj
jyja Dtb inf

dajyj<y

jyjp�a

1þ jyjq
Xy
n¼1

nlþn�m

¼ dp�a

1þ dq
Xy
n¼1

nlþn�m ¼ y:

Hence, by Theorem 3.2, Eq. (4.14) is oscillatory.
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Similarly, Cases (2), (3) and (4) can be prove by Theorems 3.1, 3.3 and 3.4,

respectively. r

Example 4.2. Let T ¼ qN :¼ fqk : k A N; q > 1g, and consider the q-

di¤erence equation

DqðjDq yðtÞja�1Dq yðtÞÞ þ f ðt; yðqtÞÞ ¼ 0; t A T; ð4:15Þ

where

Dq yðtÞ ¼
yðqtÞ � yðtÞ
ðq� 1Þt ; f ðt; yÞ ¼ tb

jyjg�1
y
:

If bb�1, gb 0, and g� ba 2, then Eq. (4.15) is oscillatory.

Proof. Clearly, f ðt; yÞ is a nonincreasing function with respect to y for

each fixed t A ½t0;yÞT. Note that for all d, d 0 with d 0 b db 0 and for all c0 0,ðy
inf

dajyjad 0
j f ðt; yÞjDt ¼ 1

ðd 0Þg
ðy

tbDt ¼ y;

and

ðy
j f ðt; cRsðtÞÞjDt ¼ q� 1

qg

Xy
k¼1

qðbþ1�gÞk ¼ y:

Hence, by Theorem 3.4, Eq. (4.15) is oscillatory. r
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