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ABSTRACT. We establish new oscillation and nonoscillation theorems for the second
order quasilinear dynamic equation

@ O @) + £ (1, (1) = 0

on a time scale T. Our results not only extend the results given in [J. Wang, On second
order quasilinear oscillations, Funkcialaj Ekvacioj, 41 (1998), 25-54], but also unify the
oscillation and nonoscillation criteria for second order quasilinear differential equations
and difference equations.

1. Introduction and preliminary

The theory of time scales, which has recently received much attention, was
introduced by Stefan Hilger [13] in order to unify continuous and discrete
analysis. For completeness, we recall the following concepts related to the
notions of time scales; see [4] and [5] for more details. A time scale T is an
arbitrary nonempty closed subset of the real numbers R. Since the oscillation
of solutions near infinity is our primary concern, throughout this paper
we assume that sup T = oo, and define the time scale interval [fg,c0); by
[fo, 0)g :=[to,00)NT. On any time scale T we define the forward and
backward jump operators by

o(t) :=inf{seT:s> ¢} and  p(7) :=sup{seT,s < 1},

where inf ¢ :=sup T and sup & := inf T, here ¢ denotes the empty set. A
point €T with 7> inf T, is said to be left-dense if p(¢) = ¢, right-dense if
t < sup T with ¢(z) = 1, left-scattered if p(f) < ¢ and right-scattered if o(¢) > t.
The graininess function y for a time scale T is defined by u(¢) := o(¢) — ¢, and
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for any function f : T — R the notation f“(¢) denotes f(o(z)). We say that
f: T — R is (delta) differentiable at T provided

74(4) = lim 1= S19)

exists when o(f) = ¢ (here by s — ¢ it is understood that s approaches 7 in the
time scale), and when f is continuous at ¢ and o(¢) > ¢,

fo) = f(9)
w)

We say the function f:[tp,c0)y — R is rd-continuous and write f €
Cra([to, )7, R) provided f is continuous at right-dense points in [fy, )
and f has finite left-hand limits at left-dense points in [ty, o0);. The set of
functions f : [ty, o)y — R which are differentiable and whose derivative is
rd-continuous function is denoted by Cl([ty, 00)y,R). In addition, if /4 >0,
then f is nondecreasing. A useful formula is

Fo(0) = f(@0) + o) f4(1).

For a,b e T, and a differentiable function f, the Cauchy integral of f4 is
defined by

[0 =

b
J £4(s)ds = f(b) — f(a),

a

and the improper integral defined as

[ rasi=im [ 1)

a =% Jg

Note that in case T = R, we have
b b
o=t w=0. rO=ro. | ros=| ron

When T =N, we have a(f) =¢+1, u(¢t) =1, and
b b—1
=20 =+ D=5, | 0s=Y 10

When T = AN := {hk : ke N,h >0}, we have o(t) =t+h, u(t) =h, and

(b—a—h)/h
(1) = dx() = L =0, bemm S flat ki,

h a k=0
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and when T=¢Y:={r:1=¢",neNy,q> 1}, we have o(t) =qt, u(t)=
(g —1)t, and

xA(l):Aqx(l):M, J nar=Y" flou

tela,b)

In the present paper, we are concerned with the oscillation and nonoscilla-
tion of the second order quasilinear dynamic equation

(r@) [y Oy (0)* + (2, y7 (1) = 0, (1.1)

where ¢ € [to,0)p. In this paper, we consider situations described by the
following conditions:

(A1) a«>0 is a fixed constant;

(A2) re Gu(lto, o)y, RY) with [ r~1/%(s)4s = o0, R* = (0, 00);

(A3) f e C([tr, o) x R,R) with yf(t ») > 0 for all y # 0 and each fixed

t € [ty, 0)1;

(A4) f(z,y) is nondecreasing with respect to y for each fixed 7 € [f, o0);

(AS) f(t,») is nonincreasing with respect to y for each fixed 7 € [t, o0),

when |y| is sufficiently large.

By a solution of Eq. (1.1) we mean a nontrivial real-valued function
ye CL([to,0)r,R) which has the properties r|y4|*” : y4e CL([ty, 0)1, R).
Our attention is restricted to those solutions y(z) of Eq. (1.1) which exist on
some half-linear [t,, c0) < [to, 00)y and satisfy sup{|y(¢)| : t € [T, 0)} > 0 for
any T € [t,,0)p. A solution y(z) of Eq. (1.1) is called to be oscillatory if it
is neither eventually positive nor eventually negative; otherwise it is called to
be nonoscillatory. The equation itself is called to be oscillatory if all its
solutions are oscillatory.

In recent years, there has been much research activity concerning the
oscillation and nonoscillation of linear, nonlinear, half-linear, quasilinear dy-
namic equations on time scales; see for example [1, 2, 3, 6, 7, 8, 9, 10, 11, 12,
14, 15, 16, 17, 18, 19, 20] and the references cited therein. However, to the
best of our knowledge, very little is known about the case of general f(¢, y) in
which ¢ and y are not necessarily separable; see [10]. Our purpose here is to
develop oscillation theory for such a general case of Eq. (1.1) on time scales.
This work was motivated by the paper of Wang [20] in which a detailed
analysis of oscillation properties was given for the second order ordinary
quasilinear differential equation

(V1) + f(,y) =0, 120, (1.2)

We will follow closely the presentation of Wang [20] and show that almost all
of his results can be generalized to Eq. (1.1). Our main results are stated and
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proved in sections 2, 3 and 4. Examples of discrete systems illustrating the
results are also given.

To prove our main results, we need the following known result [4,
Theorem 1.90].

LemMa 1.1 (Keller’s Chain Rule). Let f:R — R be continuously differ-
entiable and suppose g : T — R is delta differentiable. Then fog:T — R is
delta differentiable and the formula

(fog)d(1) = {L Flal) + M,)gz'(,))dh}gz'u)

holds.

2. Existence of nonoscillatory solutions

For the simplicity, define

R(t) = Jtor]fl—;s), 1€ [fo, )y

We begin with the following lemmas.

LemMmA 2.1.  Assume that (A1)—(A3) hold. Let y(t) be a nonoscillatory
solution of Eq. (1.1).  Then there exists t| € [ty, 0)y such that y(t)y4(1) >0 for
te(t,0)r.

Proor. Without loss of generality we may suppose that y(z) >0 and
yo(1) >0 for 1 € [t1, 00)g E [to, 50)p.  From (1.1), by (A3), (r(2)|y4(2)|* 'y (1))*

= —f(t,y°(1)) <0, telt, o)y, and so r(1)|y4(1)|* 'y4(s) is decreasing for
teft), o). We claim that r(7)]y4(s)]* 'y4(1) >0 for telf, o)y, so that
y(1)y4(1) > 0 for te[ty,0)p. In fact, if r(e*)|y4(r*)|" ' y4(t*) = =k < 0 for

some 1* € [ty, 0)p, then r(2)]y4(6)|* ' y4(t) < —k < 0 for t € [t*, o0)y, which is

equivalent to y4(7) < —(%)l " for te[t*,0)p. Integrating the last inequal-
ity from ¢* to ¢ and letting ¢+ — oo, we see, in view of (Al), that y(f) — —c0
as t— oo. But this contradicts the assumed positivity of y(z). Therefore,

()] y4(0)|"'y4() > 0 for t€ry, )y as claimed. O

Next, we classify all possible nonoscillatory solutions of Eq. (1.1) accord-
ing to their asymptotic behavior as ¢ — oo.

LEMMA 2.2. Under the conditions (A1)—(A3), any nonoscillatory solution
y(t) of Eq. (1.1) is of one of the following three types:
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(1) tlirg% = const # 0;

(II) IEII;%:O, and Ilirr;v y(t) = 0 or —o0;
(I11) ,lirg% =0, and rlirg y(t) = const # 0.

Proor. Let y(f) be a nonoscillatory solution of Eq. (1.1). Without loss

of generality we may assume y(¢) > 0 and y?(¢) > 0 for 7 € [t;, 0)p S [to, 20).
By Lemma 2.1, one has y“(¢) > 0 for t € [11,00)y. From (1.1), (r(2)(p*(£))")”
<0 for te[n,w)y, and so r(7)(y4(¢))* is an eventually positive decreas-
ing function, so that lim, .. r(¢)(y4(¢))* is either positive or zero, i.e.,
lim, ., #'/*(¢)p4(¢) is either positive or zero. In the first case, by L'Hopital’s
Rule [4, Theorem 1.120],

lim 20 = lim r'/*(¢)y?(r) = const # 0.

t— oo t t— oo
In the second case, since y(f) is increasing, y(¢) tends to a positive limit, finite
or infinite, as ¢ — oo. O

Now we give criteria for the existence of nonoscillatory solutions of Eq.
(1.1) of type (I), (II) and (III).

THEOREM 2.1. Assume that (Al)—(A4) hold. Then Egq. (1.1) has a non-
oscillatory solution of type (1) if and only if there exists a constant ¢ # 0 such
that

Jm 1 (1, cR% ()| At < . (2.1)

Proor. (The “only if” part). Let y(¢f) be a nonoscillatory solution of
type (I) of Eq. (1.1). Without loss of generality we may assume that y(¢) and
»°(t) are eventually positive. Furthermore, there exist a ¢ € [tp, o)y and
positive constants 7/ and L such that

y(t) >0,  yt)>0, /R(t) < y(t) <LR(t) for tet;, )y
Consequently,
/R°(t) < y°(t) < LR°(1) for t € [, ). (2.2)

Integrating (1.1) from #; to ¢ and noting that y4(¢) > 0 for 7€ [f), 0)y, we
have

Jw f(s,9°(s))As < 0. (2.3)

n
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By using the monotonicity of f in (A4), we see from (2.2) and (2.3) that
0
J f(s,/R?(s))As < o0,

which is nothing but (2.1) with ¢ =/.

(The “if” part). Suppose that (2.1) holds for some ¢ = 2k # 0, in which
we assume k >0 without loss of generality. By (2.1), let ¢ € [ty, ) so
large that

r £(1,2kR°(1)) At < (2% — Dk,

Consider the convex set Y < Clt;, o0)y and the mapping @ : Y — C[t;, 00)y
defined by

Y:={yeClti,0)r: kR(t) < y(t) < 2kR(t),t € [t;, 0)}
and
t 0 1/a
(DY) (1) :=2kR(1;) + Jl (% (k“ + J S (u, y"(u))Au)) As, tet, 00)g.

It is routinely verified that @ map Y into itself and that the map @: Y — Y is
compact. The Schauder-Tychonoff fixed point theorem therefore ensures the
existence of a function y e Y such that y = @y, that is,

t 1 © 1/a

y(t) = 2kR(1) + J <@ (k“ + J S (u, y"(u))Au)) 4s, tet, o).
I3t s

It is easy to see that y(¢) is a solution of Eq. (1.1) on [t;, o) with the desired

property lim,_ ., % =k. O

THEOREM 2.2. Assume that (Al)—(A4) hold. Then Eq. (1.1) has a non-
oscillatory solution of type (111) if and only if there exists a constant ¢ # 0 such

that
Jw (% Lﬁ | £ (s, c)|As>l/2At < o0. (2.4)

ProoF. (The “only if” part). Let y(¢f) be a nonoscillatory solution of
type (III) of Eq. (1.1). We may assume that y(¢) and p°(¢) are eventually
positive. Furthermore, there exist a #| € [ty, 00)p and positive constants / and
L such that

y() >0, yNt)>0, /r<y()<L  for te[t;, ).
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The monotonicity condition of f in (A4) implies

f@y7(0) = f(t,y(0) = f(1,0),  1€[t, 0)y. (2.5)
Integrating (1.1) from s to # and noting that y4(¢) > 0 for ¢ € [t1, 00)y, we have
| £ 37 00ar = )09 = O 0) < ) (5"
for ¢ > s > t;, which gives
1 ” o A !/ Y]
(| reoronar) <320, semmenn.
Then,
t 1 o0 ) 1/o
| (] raronar) as< s s relnon
which combined with (2.5) yields
0 1 0 1/a
Jrl <@JX f(r,{)Ar) Ads< L—1< o0.

This means that (2.4) holds with ¢ ="/.
(The “if” part). Let (2.4) hold for some ¢ # 0, in which we may choose
¢ > 0 without loss of generality. Thanks to (2.4), we choose ?; € [ty, 00)y large

enough so that
0 1 J~oc >1/0< c
— s,c)ds | At < —.
Jll (V(l) t f( ) 2

Consider the convex set ¥ < C[t;, o0)y and the mapping @ : Y — C[t;, )y
defined by

Y= {ye Clt1, ) :% <y() <ctelt, oo)T}
and
0 0 1/a
(Dy)(1) :=c — Jl (%J S (u, y”(u))Au) As, tet, ).

It is easily verified that @ has a fixed element y € Y by the Schauder-Tychonoff
fixed point theorem, ie., y = @y. So
1/a

() =c— Jw (}’(I—S)Jx S (u, y“(u))Au) As, tet, 0)t.

t s
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This shows that y(z) is a solution of Eq. (I.1) on [f;,o0); and satisfies
lim, ., y(t) =c. O

A sufficient condition for the existence of a nonoscillatory solution of type
(II) of Eq. (1.1) is given in the next theorem.

THEOREM 2.3.  Assume that (Al)—(A4) hold. Suppose that (2.1) holds for
some ¢ # 0, and in addition that

© /] Joo )1/01
— s,d)|ds | At = oo 2.6
| (] vsal 20
Sfor all d #0 with ¢d > 0. Then Eq. (1.1) has a nonoscillatory solution of type
(11).

Proor. We may suppose that ¢ > 0, and take a k € (0,¢). The condition
(2.1) allows us to choose f; € [ty, o) so large that

J St k(R7(t) + 1)) At < k™.
131
Consider the convex set Y < Clt;,0)y and the mapping @ : Y — C[t;, )y
defined by
Y:={yeClti,w)p: k< y(t) <k(R°(t)+1),te[t;,0)r}
and
t 1 0 1/a
(Dy)(2) :== k+J (r(s)J S (u, y"(u))Au) As, te(ty, ).
N N

Then, applying the Schauder-Tychonoff fixed point theorem, we see that there
exists an element y € Y such that y = @y. This function y = y(¢) satisfies

t 0 1/o
y(:)=k+L(r(ls)L I, y”(u))Au) ds,  ieln, )y (27)

which implies that y(¢) is a positive solution of Eq. (1.1). From (2.7), we also
see that

0 1/a
fim %% = tim r0340) = fim (o) au) o,
and, by (2.6),

}Ln}J y(t) = }Ln}d <k+ J: (r(ls)f f(u,k)Au)l/aAs> = 0.

It follows therefore that y(¢) is a solution of type (II). O
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ExampLE 2.1. Consider the dynamic equation

(O @) + p@)y ()] 'y7 (1) = 0, (2.8)

where o and f are positive constants and p € Cy([t9, 00)p, R™).
Clearly, the conditions (A1)—(A4) are satisfied for Eq. (2.8). It is easy to
see that the conditions (2.1) and (2.4) respectively reduce to

Jw B (1) pl() At < oo (2.9)

and
JOO (Jj p(s)As)l/%At < o0. (2.10)

Hence, by Theorems 2.1-2.3, we have
(1) Egq. (2.8) has a nonoscillatory solution such that lim,_., %t) = const #
0 if and only if (2.9) holds.
(2) Eq. (2.8) has a nonoscillatory solution such that lim,_.,, y(f) = const #
0 if and only if (2.10) holds.
(3) Eq. (2.8) has a nonoscillatory solution such that

tlirn @: 0 and ,lim y(t) = 00 or —oo,
if
) 0 0 1/a
J () p(H) At < o and J (J p(s)As) At = o0.

t

In particular, let
T=¢N={r:1=¢"keN,g>1} and p(t)=—.

Noting that o(f) = ¢z, we have
4) Eq. (2.8) has a nonoscillatory solution such that lim,_,, W0 const #
( q y ;
0 if and only if f < 1 holds.
5) Eq. (2.8) has a nonoscillatory solution such that lim,_.., y(¢) = const #
(
0 if and only if o < 1 holds.
6) Eq. (2.8) has a nonoscillatory solution such that limHmM =0, and
t
lim;,, y(f) =0 or —0 if f< 1 <a.

3. Okscillation criteria—sufficient conditions

In this section, we will establish new oscillation criteria for Eq. (1.1). We
now start with the following three lemmas.
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LemMmA 3.1. Let x e Cly([ty, o), RT) with x4(t) > 0 for t € [ty, o)y and
y>0. Then the following inequalities are valid, for t € [ty, o0)y,

()" x4,
RO
A px?7H (x4 (1), 0<y<l,
@ T ey, s 1.
Proor. (1) Since x(7) >0 and x4(¢) >0 for e [fy,0)y, Lemma 1.1
applies to give

(7 ()" = V{J] Pe(e) + hﬂ(Z)X"(l)]“dh}X"(t)

0

= y{J [(1 = h)x(d) + hx"(t)}yldh}x"(z)
Z{yoc 0) ), > 1,

p(x(0) X1, 0<y<L
Thus,

(l) t 9 V>17

") x4(1), 0<y<l1
‘C[) 7 y—’

since x4(7) > 0 implies that x(z) < x?(¢) for t € [ty, o). Thus, Case (1) holds
for both y > 1 and 0 <y < 1.
(2) Case (2) similarly follows, by Lemma 1.1, from

()" = V{Jl [(1 = A)x() + hxc’(t)]”dh}xﬁ(l)

0
- yx?7 71 (6)xA(1), 0<y<l,
~ @) ), >,
since x(7) >0 and x4(r) > 0 for € [ty, 00). ]

LemMA 3.2. Let ve CY([ty, 0)p,R) be a nonoscillatory solution of the
second order dynamic equation

@ O o () + (O ()0 (1) =0, teltg )y (3.1)

where o > 0, q(t) € Cq([to, 0)1, RT) and (1) satisfies the condition (A2). Then
the function w(t) defined by
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satisfies the first order differential inequality

wa (1) + q(t) + r—|w”(z)\(l+“>/“ <0, 1€lty,0)g (3.2)

Proor. Without loss of generality we may assume that v(7) >0 and
v(t) >0 for te[ty,00)r. Then, by Lemma 2.1, v4(s) >0 for e [f, 0)g.
Further, by [4, Theorem 1.2 (iv)] and (3.1),

A a4 ) (04 % 4
WA(I) — (r([)l(]l;(l()t)) ) — —q(l) _ (l)( (l)) 15 (Z)) . (33)

In view of Lemma 3.1 (1), we get

> ) for [ty, 00)y. (3.4)

Recall that r(7)(v4(2))* <0 for [fy, 0)y. Then, by (3.4),

(O @) ) _ re!0) @)
W () v () = (wo(e))*! PV (1) (0o (1)) "
(@A) a ey
> o D) (w(1)) . (3.5)
Combining (3.3) and (3.5), one obtain (3.2). O

Lemma 3.3, If ue CL([ty, )y, RT), then

o+ 1
o

IA

w1 (1)? (u®(0))u’ (1), %> 0, 1€ [tg, 0)yp. (3.6)

Proor. By Lemma 1.1, we have

1
Wt () = (a+1) L [hu® (6) + (1 = h)u(6))*u? (¢)dh
and
(u*(0)u’ (1) = ocjl[hu”(l) + (1 = W)u()]* " u? (6)u®(1)dh.

0

Thus, we have
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o o+ o g
m(u Y = (u(0) "u (1)
- ocr(l — W)[u(t) — u® (O] [hu’ (1) + (1 = B)u()]* "u?(¢)dh
0
S J1(1 — W[t (1) + (1 = h)u()]* () u(t)dh < 0
0
Hence, (3.6) holds. O

LEMMA 3.4. Assume that (A1)—(A3) hold. Let y(t) be a nonoscillatory
solution of Eq. (1.1), then there exists a constant k > 0 such that y(t) eventually
satisfies |y(t)| < kR().

Proor. Without loss of generality we assume p(¢) >0 and po(¢) >0
eventually. Then, by Lemma 2.1, there exists a ¢ €[t, o) such that
y4(1)>0 for e, )y It follows from (1.1) that (r(r)(y?(1))*)* <0 for
te[t,0)p. Namely, r(7)(p4(f))* is an eventually positive decreasing func-
tion, and hence there exist constants m >0 and # € [t;,00); such that
r()(y4(2))* <m* and R(t) > 1 for re[n,);. This gives y4(r) < %
Integrating this inequality from #, to ¢, we obtain, for ¢ € [f, o),

y(1) < y(t2) +mJ: rlfis(s) < y(©2)R(t) + mR(1) < kR(1)

for some k > 0. Ol

Now, we are in a position to give and show our main results.

THEOREM 3.1.  Assume that (A1)-(A3) hold. If for all 6 > 0,

rc inf | f(t, )|t = oo, (3.7)

0<]yl<eo
then (1.1) is oscillatory.

ProOF. Assume that (1.1) has a nonoscillatory solution y(z), we may
suppose that y(7) >0 and y?(¢) > 0 for t € [t;, ) S [ty, )y, since a parallel
argument holds for the case y(¢) <0. Then, by Lemma 2.1, y4(r) >0 for
te[t;,0)p. Integration of (1.1) from 7 to ¢ gives

rf(s, y7(5))ds < (1) (5 (1))* < oo. (3.8)

n
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On the other hand, since y4(z) >0 implies that 0 < y?(r) < y°(¢) for
te[t;,)r, and putting J := y?(1), by (3.7), we find

| resrwars |7 e s o)ian= oo,

f n 0<[y°(t)|<o0

which contradicts (3.8). O
THEOREM 3.2.  Assume that (A1)—(A3) hold. If for some 0 < ) < o and all

0>0,

J R int LU 4 o (3.9)
0<|y|<o ‘yl

and R(t)/R°(t) = ¢ > 0, then Eq. (1.1) is oscillatory.
ProOOF. Assume that (1.1) has a nonoscillatory solution y(f). Without

lose of generality we may suppose that y(¢) > 0 and y°(z) > 0 for 1 € [t;, 00)y S
[to,0)y, Then, Lemma 2.1 implies that y4(¢) > 0 for te[t;,0)p. Put

(2O
w(t) = (l)( ) > .
Applying Lemma 3.2 to (1.1), we then get
ol O o)+ Lo =0 e ln e,
Consequently,
o a o+1)/a f(t7yo(t))
WA(t)+rlT(Z)(W (1)) =Y/ R <0, te[n,0)p. (3.10)

Multiplying (3.10) by R*(¢) and integrating it over [f;,#];, we then have, for
te[t, ),

JI R*(s)w4(s)4s + ocJt R(s)RA(s)(w(s)) /" 45

1 n

s < 0.

o f(s7(s)
+LR®(W®VA

By using the integration by parts formula [4, Theorem 1.77 (vi)] for the first
term of the last inequality, we get, for € [, o),

t t

(R*(5)) " w (s)4s + ocJ RA(s)R™(s) (W (s)) 19/ 45

4]

RH(t)w(1) — J

4]

+J:1 R)'(S)WASSQ, (3.11)
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where ¢; >0 is a constant. We now consider two cases: 0< A<1 and
A> 1.
Case 1. 0<A<1. By Lemma 3.1 (2), we get

(R*(s))? < AR*'(s)RA(s), O0<A<l. (3.12)

Substituting (3.12) into (3.11), we get

RA(0)w(t) — th RV (5) R4 (s)w (s) ds

n

Jrajt Ri(S)RA(S)(WU(S))(%LU/“AS+L RA(S)WASSCI. (3.13)

Suppose first that

JOO R (s)RA(s)w(s)ds < c0.
It then follows from (3.13) that
J:l R*(s) %:)()SB)AS <+ AJ; R (s)RA(s)w° (s) s, tet, o),

which, in the limit as ¢ — oo, shows that

J‘90 R)'(S) f(sa ya(s))

. (y"(s))“ As < 0.

But this is impossible, because (3.9) implies that

J\ Ri(s) L0 4o J Ris) int LT 5
0 (y7(s)) 0 a<lyes)l<e |yo(s)]
where 6 = y7(#;) > 0.
Suppose next that
J RN () RA(s)w (5) ds = o (3.15)
141

Then, by (3.13),
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By means of Hoélder’s inequality [4, Theorem 6.13], one then have

Jt R*Y(s)RA(s)w’ (s)4s

‘ Agg) \MED
= [ R RI6) et (L))) (5)s

| Ru+l—2(s

< (J RA)R(5) (w(5)) “As)a/(ﬁl) (J RRli(i)@ "S>I/W)' o

By Lemma 3.1 (1), we get, for o« — 1 > 0,

R (1)” R
t

=k (3.18)

Then, by [4, Theorem 1.20 (iv)] and (3.18),

LYt R
(Rx)(t)> - (RJ(Z))M_AR“_)*([) = ( ;“) (Ra_(t))o(+l—/1

R0 (R
= (O( - A’) Roz+1*;“(l) (RG(Z))

RA(1)

This implies that

t RA(S) il 1 4
Ry (1Y,
le Re*1=4(s) o =2 J, \R*(s)

cf ! 1
T a—A R“f’ﬂ“(ll)

=:(C. (3]9)
Combining (3.17) with (3.19), we have
t
J R* ()R (s)w (s)ds
i

‘ o/ (1)
< czl/(m+1> (L RA(S)RA(S)(WJ(S))<a+l)/xds)
1

_ e I RA(s)RA(s)(w?(s)) “*1)/" 45
L RM)RA(s) (v (s) T s

(3.20)
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On the other hand, since it from (3.15) that

t
J RA)RA(s)(w7(5) /s — o0 as 1 — oo,
n

we see from (3.20) that there exists #, € [fj, o) such that

J’ RF1(5)RA(5)w°(s) s < %Jz R¥s)RA(s)(w7(s)) /" s

151 151

for all 7€ [t2, 0)p. Using the above inequality in (3.16), we conclude that

J: RA(S)WAS <cj,

in contradiction to (3.14) which also holds in the present situation.
Case 2. 2>1. By Lemma 3.1 (2), we get

(RN < A(R7(s))*'RA(s), 4> 1.

Substituting (3.21) into (3.11), we get

RA(Ow(1) — 4 Jr (R7(s))" ' RA () (5) s

n

+u J: RA(s)R™(s)(w(s)) /" s + Ll Ri(s)L52°1) ((;’J fs)()S) Jas <.

Similarly to the proof of Case 1, supposing that

Jw R*1(s)(R%(5))* "o (s)ds < oo,

1

we also get a contradiction to (3.14). Hence, we suppose next that

Jm(R”(s))HRﬂ(s)wﬂ(s)gs = 0.

14
Then, by (3.22),

é)()sz)ﬁs <c + /1J: (RU(S))AilRA(S)WU(S)AS

s ~
~
<
~—
N
S~—"
~
~ |y
3|5
o=

- ocJ[ R*(s)R(s)(w? (s5)) 1 H*/% 4s.

n

(3.21)

(3.22)
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By means of Holder’s inequality [4, Theorem 6.13] again,

t P t | o/(a+1)
J (R%(5))* 'R (s)w’(s)ds < (J R* ()R (s)(w(s)) ** V“As)

14 n

(Lt )

< ([ R(s)RA(s) (w7 (s)) *T V% 45 R
- clot)./(cH—l) "

. RA(s) 1/(o+1)
X (L WAS) .

By [4, Theorem 1.20 (iv)], and note that (3.18),

AR N SO . RA(1)
(R“‘*(t)) "~ (Ro(1)) R A1) 2 (=4 (R (1)) .

1/(0+1)

Using the same argument as the proof of Case 1, we finish the proof. [
THEOREM 3.3. Assume that (A1)-(A4) hold. If for all J, &' with &' >
0>0,

Jw inf |f(t, y)|dt = o0, (3.23)

o<|yl=<o’

and there is a continuous function ¢ : [y, 0) — RT, yo >0, and a constant
t € [t1,00)y such that for te€ [t, 0),

/() 1
|}’1\I§;)0 (0(|y|) = rl/“([) (324)
and
r P(y)dy = o, (3.25)
Yo

then (1.1) is oscillatory.

ProOOF. Assume that (1.1) has a nonoscillatory solution y(z), we may
suppose that y(z) >0 and y°(¢) > 0 for 7 € [t1, )y S [to, )y, then p4(r) >0
for te[t;,0)r and (3.8) holds by Lemma 2.1. The solution y(¢) is either
bounded or unbounded.
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If y(¢) is bounded, then & < y(r) <6’ for 7€ [t;,00)y, for some positive
constant § and &', and by (3.23), we have
| s | it 1o 0lai= e,

n 0 0|y (D] <o

But this contradicts (3.8).
If y(¢) is unbounded, and let u(z) = r'/*(¢)y4(¢), then u(z) > 0 and u(z) is
nonincreasing for ¢ € [f;,0);. In view of Lemma 3.3, we have

(M) () < (PO 0) A0 v (1)

o+ 1
(r(O) () (1) y (1),

Multiplying (1.1) by r'/#(¢)y4(¢) and integrating it from #; to ¢, and using the
above inequality, we arrive at

[ (0 (@) = (M) p ()]

IA

o
o+ 1

+ J P2(5) £ (5, 17(5) 7 (5)ds < O,

from which follows that

r r(s)f (s, 77(5)) " (5) s < 0.

151

Then we have, by (A4),
J P(8) £ (s, p(5))y4 () ds < o0. (3.26)
On the other hand, (3.24) implies that

P f(ty) = p(y)  for 1€, 0)g, ye [y, ®),

and 7, can be chosen so that y(¢) > yy for t € [z, o). Therefore, it follows
from (3.25) that

which contradicts (3.26). ]
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THEOREM 3.4.  Assume that (A1)—(A3) and (A5) hold. If for all 5, 5" with
0' >8>0, (3.23) holds, and for all ¢ # 0,

Jw £ (£, cR%(1))| At = oo, (3.27)

then Eq. (1.1) is oscillatory.

Proor. Let y(f) be a nonoscillatory solution of Eq. (1.1), and we suppose
that y(1) >0 and y°(z) >0 for re[n,0) S [fo,0)y. Then y4(s) >0 for
te(t;,0)r by Lemma 2.1. Note that y(f) may be either bounded or
unbounded. If y(f) is bounded, following the proof of Theorem 3.3, by
(3.23), we get a contraction. So y(f) is unbounded. Let y> > 0 be such that
f(¢,y) is nonincreasing in y for y > y,. Since y(f) — oo as t— oo, there
exist, by Lemma 3.4, positive constants k and # € [f;, c0)y such that y, <
y°(t) <kR°(t) for te[t, )y, which implies f(z,y°(¢r)) = f(t,kR°(¢)) for
t€[t,0)r by (AS5). Tt follows from (3.8) and (3.27) that

o0 > rcf(v, y°(s))4s = wa(s, kR (s))4s = oo,

5] 5]

which is a contradiction. O

ReEMark 3.1. If we choose T=R and r(f) =1, then Theorems 3.1-3.4
reduce to [20, Theorems 1.1 and 1.2] for Eq. (1.2).

Now we consider the dynamic equation

(O @)" +q(0g(r (1) =0 for tew, )y, (3.28)

where g € Cry([t9, 0)1,RT), g€ C(R,R) with yg(y) >0 for all y #0.
By Theorems 3.1-3.4, we have

CorOLLARY 3.1.  Egq. (3.28) is oscillatory if one of the following conditions
is satisfied
(1) llirr‘linf|f(y)| >0 and [* q(t) At = oo;
y|— 0

2) llin‘linf‘ﬁ‘y,)‘ >0, ?’0 >c>0 and [ thq(0)4t= o for some 0<
¥l

A< oy
(3) h\Iln inf |q(?)| > 0 and g(y) is nondecreasing;
t|—o0
(4) liminf|g(¢)| > 0 and g(y) is nonincreasing with [* |g(cR°(1))|4t = oo

|¢]—c0

for all ¢ #0.
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4. Oscillation criteria—necessary and sufficient conditions

In this section, we give the necessary and sufficient conditions for all
solution of Eq. (1.1) to be oscillatory.

THEOREM 4.1. Assume that (Al)—(A4) hold. Suppose in addition that
there exists a continuous nondecreasing function ¢ : R — R with the properties
that

sgn o(u) = sgn u Jﬂc du < 0 4.1)
’ pu) ~ '

and for some constants k >0, y;1 >0 and ¢ #0 with sgn{ = sgn y,

S =kl f @O, 1€, o) [y =y (4.2)

Then Eq. (1.1) is oscillatory if and only if

© 1 [® 1/a
J (@Jt | £ (s, c)|As> At=o0  for all ¢ +#0. (4.3)

Proor. (The ‘“‘only if” part). If (4.3) is violated, then, by Theorem 2.2,
Eq. (1.1) has a nonoscillatory solution y(z) such that lim,_,., y(¢) = const # 0.

(The “if” part). Let (4.3) hold and suppose that Eq. (1.1) has a
nonoscillatory solution y(7). We may assume that y(z) >0 and p°(¢) >0
for 7€ [t),00)r S [fo,0)7. Then, by Lemma 2.1, y4(¢) >0 for t€ [t,0)q.
It follows from Theorem 2.2 that lim, ., y(f) = +oco. Integration of (1.1)
gives, for se€[t;,00)r,

rw®f®2(fﬂmWMMOw

This together with (A4) and the fact ¢ is nondecreasing on R imply that, for
s € [t1, ),

o(3(s) " \r(s) Je 0 ((s))
) N
ZQ®L¢mw»A>' (44)

Note that y(f) — +o0 as t — oo, and in view of (4.2), there is #; € [f], o0) such
that

St (1)
2 O(0) > kf(t,4), t€[tr, )y (4.5)
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for some k > 0 and / > 0. Substituting (4.5) into (4.4), and integrating it from
1, to t, we obtain

YO gy t 1 (© 1/o
— Zkl/“J (—J f(u,/ Au) As,
J,0o Are ), )

which, in the limit as ¢ — oo, gives

ke J: (r(ls)f S (u, /)Au)l/ads < o0.

This contradicts (4.3). O
THEOREM 4.2. Assume that (Al)—(A4) hold. Suppose in addition that
there exists a continuous nonincreasing function  : [—M, M| — R, M > 0, such
that
+M dv
sgn Y (v) = sgn v, J — < 0, 4.6
v) s (o) (&)

and for some constants k >0, v; > 0,
|f(t,uv)| = k| f(t,u)] Y (v)], tet,o), u#0,0<|v|<v;.  (47)
Then Eq. (1.1) is oscillatory if and only if

|1 errontai=cc gor a2 @s)

Proor. (The ““only if” part). If (4.8) is violated, then, by Theorem 2.1,
Eq. (1.1) has a nonoscillatory solution y(#) such that lim,ﬂw%: const # 0.

(The “if” part). Let (4.8) hold and suppose that Eq. (1.1) has a
nonoscillatory solution y(z). We may assume that y(¢) >0 and y?(¢) > 0 for
tet,00)r S [fo,0)p. Then, by Lemma 2.1, y4(z) > 0 for t€[r, o). Let
E(f) := r'*(1)y4(1), te[t1,0)p. Because of Theorem 2.1 and (4.8), the non-
oscillatory solution y(¢) has to be either of type (II) and type (III), and hence

E(f) = r'/*(¢) y4(t) decreases to 0 as t — oo. Observe that, for ¢ € [f, )y,

y(t) = y(0) = JI yA(s)ds = r MAS > JI Mz’s

\ W F(s) o rie(s)
= Oy OIR() = R(n)) = E0R() = R(n),

which implies that there are positive constants , € [f, ) and 0 < ¢ < 1 such
that

0<é(y<sM and (1) = cE(H)R(1), tet, 0)r. (4.9)
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For a fixed 0 < uyp < M, define

G(u) := J:Oﬁ, u e (0,ug)

and
K(t,h) = r(0)(y* ()" + hp(@) (r() ()N, 1€, 0)p, he[0,1].
Then,
w(t,h) = (1= h)&* (1) + h(&7(2)" = (¢7(1))" (4.10)

By Lemma 1.1, the fact (u) is nonincreasing and (4.10), we have, for
t€[t, ),

1

[G(r(D) (" (1))")]

G'(w h))dh) (D) (1))

0

(
([ s ) te.57(0)
(

o Y(x!/#(2,h))
b dh iy
0 l//(éﬂ(t)))f(t’ y (Z)) -
In view of (4.9) and (A4), we see that
f(6,y7(0) (5, eC°()R(1))
wEe@) (&)

where the second inequality in (4.9) and the nondecreasing property of f(¢, y)
in y have been used. Combining (4.11) with (4.12), we have

[G(r()(»"(0)")]* = kf (1,cR°(1)  for 1€ [t3,0)y,
from which it follows that, by (4.6),

Y

> kf(t,cR°(1)), te(ts, ), (4.12)

t i PPN M dy
ka(s, cR(s))4s < G(r(t)(¥7(1)") < L o)

This shows that kftf f(s,cR?(s))4s < o0, a contradiction to (4.8). O

ReEMaRrk 4.1. If we choose T =R and r(f) = 1, then Theorems 4.1 and
4.2 reduce to [20, Theorems 2.3 and 2.4] for Eq. (1.2).

Let T=N, Eq. (1.1) becomes the difference equation
Aol Apal™ " Apa) + £ (1, yui1) =0,  neN, (4.13)

where A4y, = yui1 — V-
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By Theorems 4.1 and 4.2, we have

COROLLARY 4.1.  Assume that (A1)—(A4) hold.

(1)  Suppose in addition there exists a continuous nondecreasing function
o(u) : R — R such that (4.1) and (4.2) hold. Then (4.13) is oscillatory
if and only if

o0

1/a
Z( Z|fkc> =  for all ¢#0.

"ni=
(2)  Suppose in addition there exists a continuous nonincreasing function
y): [-M,M] - R, M >0, such that (4.6) and (4.7) hold. Then
(4.13) is oscillatory if and only if

Z |f(n,cRyi1)| =00  for all ¢ #0.
n=1

REmMARK 4.1. Theorems 4.1 and 4.2 extend and improve Theorems 3.1
and 3.2 in Grace et al. [10], respectively.

Finally, we give some examples to illustrate our main results.

ExaMpPLE 4.1. Let T =N, and consider the difference equation

21 1|yt [P vt
A(|4ya|" Ady,) + Tl 0, neN, (4.14)

where 4y, = Yny1 — Y, p >0, ¢ >0, u>0, and v are constants. Equation
(4.14) is oscillatory provided that one of the following is satisfies.

(1) p=qg+a, and p—v<721+1 for some 0 < A <

(2) g+o>p>q, and u—v<1;

B3) g>p=g—1and u—v<0;

4 g>pand u—v+qg—p<1l.

Proor. Case (1). Noting that

n'lyl” LI
n, s ,
T =TT

pP—o%
and g(y) = 1J+

0 g p— 0
J l‘}" inf |f(l’y)|Al‘ inf |y| Z Av—u

s<lyl<o | y|” o<lyl<oo 14| y|7 &

5P X -
_ Iv—p _
RRET P SLA

Hence, by Theorem 3.2, Eq. (4.14) is oscillatory.
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Similarly, Cases (2), (3) and (4) can be prove by Theorems 3.1, 3.3 and 3.4,
respectively. O

ExampLe 4.2. Let T=¢N:={¢*:keN,g> 1}, and consider the g¢-
difference equation

A4y Ayp(0) + £ (1, ¥(qr)) =0, €T, (4.15)
where
_ vlgt) = ¥(1) _ v
Aq)’(t)—wa f(l’y)_|y|7—’1y'

If f>—-1, y>0, and y — f <2, then Eq. (4.15) is oscillatory.

Proor. Clearly, f(z, y) is a nonincreasing function with respect to y for
each fixed 7 € [fy, 00);. Note that for all 5, ¢’ with §' > 6 > 0 and for all ¢ # 0,

0 1 0
J inf |f(¢t, )4t = JtﬁAt:oo,

s<|yl<o’ (")’
and
| vt ermoiar =125 gk —
7 =
Hence, by Theorem 3.4, Eq. (4.15) is oscillatory. O
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