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Abstract. Generalized ridge (GR) regression for an univariate linear model was

proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this

paper, we deal with a GR regression for a multivariate linear model, referred to as a

multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared

error (MSE) of a predicted value, many authors have proposed several GR estimators

consisting of ridge parameters optimized by non-iterative methods. By expanding their

optimizations of ridge parameters to the multiple response case, we derive some MGR

estimators with ridge parameters optimized by the plug-in method. We analytically

compare obtained MGR estimators with existing MGR estimators, and numerical

studies are also given for an illustration.

1. Introduction

We consider a multivariate linear regression model with n observations

of a p-dimensional vector of response variables and a k-dimensional vector of

regressors (for more detailed information, see for example, Srivastava, 2002,

Chapter 9; Timm, 2002, Chapter 4). Let Y ¼ ðy1; . . . ; ynÞ
0, X and E be the

n� p matrix of response variables, the n� k matrix of non-stochastic cen-

terized explanatory variables (i.e., X 01n ¼ 0k) of rankðXÞ ¼ k (< n), and the

n� p matrix of error variables, respectively, where n is the sample size, 1n
is an n-dimensional vector of ones and 0k is a k-dimensional vector of

zeros. Suppose that the row vectors of E are independently and identically

distributed according to a distribution with mean 0p and an unknown

covariance matrix S. The matrix form of the multivariate linear regression

model is expressed as

Y ¼ 1nm
0 þ XX þ E; ð1Þ
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where m is a p-dimensional unknown vector and X is a k � p unknown

regression coe‰cient matrix.

Since X is centerized, the maximum likelihood estimators under normality

or least squares (LS) estimators of m and X are given by y ¼ n�1
Pn

i¼1 yi and

X̂X ¼ ðX 0XÞ�1X 0Y ; ð2Þ

respectively. Since y and X̂X are simple and the unbiased estimators of m and

X, it is widely used in actual data analysis, see e.g., Dien et al. (2006), Sârbu

et al. (2008), Saxén and Sundell (2006), Skagerberg, Macgregor and Kiparis-

sides (1992), Yoshimoto, Yanagihara and Ninomiya (2005). However, when

multicollinearity occurs in X , the LS estimator of X is not a good estimator

in the sense of having a large variance. The ridge regression for an univariate

linear model proposed by Hoerl and Kennard (1970) is one of the ways of

avoiding such problems that arise from multicollinearity. The ridge estimator

is defined by adding yIk to X 0X in the LS estimator, where y (b 0) is called a

ridge parameter. Since estimates of the ridge estimator depend heavily on the

value of y, optimization of y is a very important problem. Choosing y so that

the mean squared error (MSE) of a predictor of Y becomes small is a common

procedure. However, the optimal value of y cannot be obtained without any

iterative computational algorithm.

Hoerl and Kennard (1970) also proposed a generalized ridge (GR) regres-

sion for the univariate linear model simultaneously with the ridge regression.

The GR estimator is defined not by a single ridge parameter but by multiple

ridge parameters y ¼ ðy1; . . . ; ykÞ0, (yi b 0, i ¼ 1; . . . ; k). Even though the

number of parameters has increased, we can obtain an explicit solution for

y to the minimization problem of the MSE of a predictor of Y. By using such

closed forms for the solutions, many authors have proposed several GR

estimators such that y can be obtained by non-iterative optimization methods

(see e.g., Lawless, 1981).

It is well known that the ridge estimator is a shrinkage estimator of

regression coe‰cients towards the origin. One of the advantages of the GR

regression is to be able to obtain a shrinkage estimate for regression coe‰cients

without the use of any iterative optimization algorithm on y. It also has other

advantages, namely, whereas the ridge regression shrinks uniformly all coe‰-

cients of the LS estimator by a single ridge parameter, for the GR regression,

the amount of shrinkage is di¤erent for each explanatory variable. Thus the

GR regression is more flexible than the ridge regression. From this viewpoint,

we deal not with the ridge regression but the GR regression. We refer to the

GR regression for a multivariate linear model as the multivariate GR (MGR)

regression.
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Methods for optimizing y in the GR regression can be roughly divided

into the following types:
� We obtain the optimal y by replacing unknown parameters with their

estimators in the explicit solution of y to the minimization problem for

the MSE of a predictor of Y ;
� We choose an optimal value of y that makes the estimator of the MSE

of a predicted value of Y a minimum.

In this paper, the first type of method is referred to as a plug-in method. Since

the second method corresponds to a determination of y by minimizing an

information criterion (IC), i.e., the Cp criterion proposed by Mallows (1973;

1995) (for the multivariate case, see Sparks, Coutsourides and Troskie (1983)),

the second type of method is called an IC-based method. For each of the

above two types of the optimization methods in the GR regression, formulas

for obtaining optimal y in the MGR regression will be derived.

By extending the formulas for a GR estimator with the optimized ridge

parameters from the plug-in method to the multivariate case, we are able

to propose several MGR estimators with ridge parameters optimized by a

non-iterative method. As for the Cp criterion for the MGR regression,

Yanagihara, Nagai and Satoh (2009) considered the Cp criterion and proposed

a bias-corrected Cp criterion called a modified Cp (MCp) criterion. Their

MCp criterion includes criteria proposed by Fujikoshi and Satoh (1997)

and Yanagihara and Satoh (2010) as special cases. In this paper, we con-

sider the generalized Cp (GCp) criterion (originally GCp for selecting vari-

ables in the univariate regression was proposed by Atkinson (1980)) for the

MGR regression, which includes Cp and MCp criteria omitting constant

terms, as special cases. By using the GCp criterion, we can deal systemati-

cally with the optimization of y when using an IC-based method. In partic-

ular, a family of the MGR estimators with the optimal y obtained using the

IC-based framework contains the James-Stein estimator proposed by Kubo-

kawa (1991).

This paper is organized in the following way: In Section 2, we extend the

univariate GR regression to the MGR regression. Then we illustrate a target

MSE of a predictor of Y and derive y so that the MSE is minimized. In

Section 3, we consider the MGR estimators with the optimized ridge param-

eters and propose plug-in method for the MGR estimator by extending the

method for the GR estimator. In Section 4, we consider the GCp criterion and

optimized method based on IC-based method and another method. In Sec-

tion 5, we discuss relationships between test statistics and the optimized values

of y, and give the magnitude relation among optimized ys. In Section 6, we

compare derived MGR estimators with existing MGR estimators by conducting

numerical studies. Technical details are provided in Appendix.
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2. MGR estimator and target MSE

2.1. Preliminaries. By naturally extending the GR estimator, we derive the

MGR estimator for (1) as

X̂Xy ¼ ðX 0X þQYQ 0Þ�1X 0Y ; ð3Þ

where Y ¼ diagðyÞ and Q is the k � k orthogonal matrix which diagonalizes

X 0X , i.e.,

Q 0X 0XQ ¼ diagðd1; . . . ; dkÞ ¼ D: ð4Þ

Here d1; . . . ; dk are eigenvalues of X 0X . We note that the di’s are always

positive. We can check that the estimator in (3) corresponds to the ordinary

LS estimator in (2) when y ¼ 0k. This means that the estimator in (3) includes

the ordinary LS estimator. If p ¼ 1, then the estimator in (3) corresponds to

the GR estimator proposed by Hoerl and Kennard (1970).

Let ŶYy be a predictor of Y , given by ŶYy ¼ 1n y
0 þ XX̂Xy. In order to define

the MSE of ŶYy, we define the following discrepancy function for measuring the

distance between n� p matrices A and B:

rðA;BÞ ¼ trfðA� BÞS�1ðA� BÞ0g: ð5Þ

Since S is an unknown covariance matrix, we use the following unbiased

estimator instead of S:

S ¼ 1

n� k � 1
ðY � 1n y

0 � XX̂XÞ0ðY � 1n y
0 � XX̂XÞ; ð6Þ

where X̂X is given in (2). By replacing S with (6), we can estimate (5) by

r̂rðA;BÞ ¼ trfðA� BÞS�1ðA� BÞ0g: ð7Þ

These two functions in (5) and (7) correspond to summations of the Maha-

lanobis distance and the sample Mahalanobis distance between rows of A and

B, respectively. By using (5), the MSE of ŶYy is defined as

MSE½ŶYy� ¼ E½rðE½Y �; ŶYyÞ�: ð8Þ

In this paper, we choose y that minimizes the MSE in (8) as the principal

optimum.

2.2. Model transformation. In this subsection, we consider an orthogonal

transformation of Y in order to simplify the calculation of MSE½ŶYy�. Such

a transformation with p ¼ 1 was used in Goldstein and Smith (1974) and

Walker and Page (2001), etc. We extend their transformation to the multi-
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variate regression case. By using the singular value decomposition, we can

determine an n� n orthogonal matrix P1 and a ðk þ 1Þ � ðk þ 1Þ orthogonal

matrix P2 such that

ðX ; 1nÞ ¼ P1LP
0
2; ð9Þ

where L is an n� ðk þ 1Þ matrix. Recall that X is centerized. Therefore, we

have

ðX ; 1nÞ0ðX ; 1nÞ ¼
X 0X 0k

0 0
k n

� �
: ð10Þ

Since the orthogonal matrix P2 diagonalizes (10), from (4), P2 and L can be

expressed as

P2 ¼
Q 0k

0 0
k 1

� �
; ð11Þ

and

L ¼ ðdiagð
ffiffiffiffiffi
d1

p
; . . . ;

ffiffiffiffiffi
dk

p
;
ffiffiffi
n

p
Þ;Okþ1;n�k�1Þ0;

where On;k is an n� k matrix of zeros.

Let

Z ¼ ðz1; . . . ; znÞ0 ¼ P 0
1Y ; G ¼ ðg1; . . . ; gkÞ

0 ¼ Q 0X;

V ¼ ðn1; . . . ; nnÞ0 ¼ P 0
1E: ð12Þ

By using (9) and (11), Z is calculated as

Z ¼ P 0
1ðX ; 1nÞ

X

m 0

� �
þ P 0

1E ¼ P 0
1ðX ; 1nÞP2

Q 0X

m 0

� �
þV ¼ L

G

m 0

� �
þV: ð13Þ

Since Cov½vecðYÞ� ¼ Sn I n holds, we have

Cov½vecðZÞ� ¼ ðIp nP 0
1Þ Cov½vecðYÞ�ðIp nP1Þ ¼ Sn In:

This equation means that Cov½zi� ¼ S, (i ¼ 1; . . . ; n). Thus, from this result

and (13), the following equation is obtained:

zi ¼

ffiffiffiffi
di

p
gi þ ni ði ¼ 1; . . . ; kÞffiffiffi

n
p

mþ ni ði ¼ k þ 1Þ
ni ði ¼ k þ 2; . . . ; nÞ

8<
: ; ðE½ni� ¼ 0p;Cov½ni� ¼ SÞ: ð14Þ

2.3. Equivalence of MSE½ŶYy� and MSE½ẐZy�. By a simple calculation, we can

determine that the LS estimator of ðG 0; mÞ0 is ðL 0LÞ�1L 0Z. Hence, the LS

estimators of G and m can be expressed as ĜG ¼ D�1C 0Z and m̂m ¼ zkþ1=
ffiffiffi
n

p
,
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respectively, where C ¼ ðD1=2;Ok;n�kÞ0. By replacing D in ĜG with DþY, the

MGR estimator of G can be determined as

ĜGy ¼ ðDþYÞ�1C 0Z: ð15Þ

Notice that P 0
1XQ ¼ C . Hence, the relation between the MGR estimators of

X and G is as follows:

QĜGy ¼ ðX 0X þQYQ 0Þ�1QC 0P 0
1Y ¼ X̂Xy: ð16Þ

Let ẐZy be a predictor of Z, i.e., ẐZy ¼ LðĜG 0
y; m̂mÞ

0. The relation between ẐZy and

ŶYy is given by

ẐZy ¼ P 0
1P1LP

0
2

Q 0k

0 0
k 1

� �
ĜGy

m̂m 0

� �
¼ P 0

1ðX ; 1nÞ
X̂Xy

m̂m 0

� �
¼ P 0

1ŶYy: ð17Þ

Notice that E½Z� ¼ P 0
1E½Y�. Thus MSE½ŶYy� can be rewritten as

MSE½ŶYy� ¼ E½trfðE½Y � � ŶYyÞS�1ðE½Y � � ŶYyÞ0P1P
0
1g�

¼ E½rðE½Z�; ẐZyÞ� ¼ MSE½ẐZy�: ð18Þ

The above equation implies that the MSE of ŶYy is equivalent to the MSE of ẐZy.

Therefore it appears that we can search for y minimizing the MSE of ẐZy

instead of the MSE of ŶYy.

2.4. Principal optimum y. Recall that E½Z� ¼ LðG 0; mÞ0 and ẐZy ¼ LðĜG 0
y; m̂mÞ

0.

Then rðE½Z�; ẐZyÞ can be rewritten as

rðE½Z�; ẐZyÞ ¼ tr L
G � ĜGy

m 0 � m̂m 0

� �
S�1 G � ĜGy

m 0 � m̂m 0

� �0
L 0

( )
: ð19Þ

By elementary linear algebra,

L
G � ĜGy

m 0 � m̂m 0

� �
¼ diagð

ffiffiffiffiffi
d1

p
; . . .

ffiffiffiffiffi
dk

p
;
ffiffiffi
n

p
Þ

On�k�1;kþ1

� �
G � ĜGy

m 0 � m̂m 0

� �
¼

D1=2ðG � ĜGyÞffiffiffi
n

p
ðm� m̂mÞ0

On�k�1;p

0
B@

1
CA:

ð20Þ
Notice that

D1=2ĜGy ¼ D1=2ðDþYÞ�1C 0Z

¼ ðDþYÞ�1ðD;Ok;n�kÞZ ¼ d1

d1 þ y1
z1; . . . ;

dk

dk þ yk
zk

� �0
: ð21Þ
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This equation implies that

D1=2ðG � ĜGyÞ ¼ D1=2G � ðDþYÞ�1ðD;Ok;n�kÞZ

¼
ffiffiffiffiffi
d1

p
g1 �

d1

d1 þ y1
z1; . . . ;

ffiffiffiffiffi
dk

p
gk �

dk

dk þ yk
zk

� �0
: ð22Þ

By using equations (19), (20) and (22), we can derive another expression for

the MSE½ẐZy� as

MSE½ẐZy� ¼ E½rðE½Z�; ẐZyÞ�

¼
Xk
i¼1

E
ffiffiffiffi
di

p
gi �

di

di þ yi
zi

� �0
S�1

ffiffiffiffi
di

p
gi �

di

di þ yi
zi

� �� �

þ nE½ðm� m̂mÞ0S�1ðm� m̂mÞ�: ð23Þ

Recall that m̂m ¼ zkþ1=
ffiffiffi
n

p
. It follows from (14) that

nE½ðm� m̂mÞ0S�1ðm� m̂mÞ� ¼ E½ð
ffiffiffi
n

p
m� zkþ1Þ0S�1ð

ffiffiffi
n

p
m� zkþ1Þ�

¼ trðCov½zkþ1�S�1Þ ¼ p: ð24Þ

Moreover, by using the results that E½zi� ¼
ffiffiffiffi
di

p
gi and E½ziz 0i � ¼ S þ digig

0
i ,

ði ¼ 1; . . . ; kÞ, we calculate that

E
ffiffiffiffi
di

p
gi �

di

di þ yi
zi

� �0
S�1

ffiffiffiffi
di

p
gi �

di

di þ yi
zi

� �� �
¼ jðyijdi; giÞ; ð25Þ

where

jðyijdi; giÞ ¼ dig
0
iS

�1gi �
2d 2

i

di þ yi
g 0iS

�1gi þ
di

di þ yi

� �2
ðpþ dig

0
iS

�1giÞ:

Substituting (24) and (25) into (23) yields

MSE½ẐZy� ¼
Xk
i¼1

jðyijdi; giÞ þ p:

The above equation indicates that the principal optimum value of yi can

be obtained by minimizing jðyijdi; giÞ individually. Let y�
i b 0, (i ¼ 1; . . . ; k)

be the principal optimum value of yi. The first partial derivative of jðyijdi; giÞ
with respect to yi is calculated as

q

qyi
jðyijdi; giÞ ¼

2d 2
i

ðdi þ yiÞ3
ðyig 0iS�1gi � pÞ:
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The above equation yields the principal optimum value of yi as

y�
i ¼ p

g 0iS
�1gi

; ði ¼ 1; . . . ; kÞ: ð26Þ

3. Plug-in method

3.1. MGR estimators with the optimized ridge parameters. For the case of

an univariate linear model, many authors have provided formulas for the GR

estimators with the optimized ridge parameters. By extending their methods

for optimizing y to the multivariate case, we derive formulas for the MGR

estimators with the optimized ridge parameters. Since the MGR estimator X̂Xy

in (3) is obtained by using the equation X̂Xy ¼ QĜGy in (16), we deal with ĜGy in

(15) instead of X̂Xy. Let ĜG ¼ ðĝg1; . . . ; ĝgkÞ
0 be the ordinary LS estimator of G ,

i.e., ĜG ¼ D�1C 0Z. This implies that ĝgi ¼ zi=
ffiffiffiffi
di

p
. Then, we have

ĜGy ¼ ðDþYÞ�1C 0Z ¼ ðDþYÞ�1DĜG : ð27Þ

Let ŷy ¼ ðŷy1; . . . ; ŷykÞ0, ðŷyi b 0; i ¼ 1; . . . ; kÞ be the value of y optimized by such

a method, and let ĝgiðŷyiÞ be the ith row vector of ĜGŷy, which is defined by

substituting ŷy into y in ĜGy. From equation (27), we can see that ĝgiðŷyiÞ is

expressed as

ĝgiðŷyiÞ ¼
di

di þ ŷyi
ĝgi; ði ¼ 1; . . . ; kÞ: ð28Þ

It is clearly that ĝgið0Þ ¼ ĝgi. Let

ti ¼ z 0iS
�1zi; ði ¼ 1; . . . ; kÞ: ð29Þ

Since ĝgi ¼ zi=
ffiffiffiffi
di

p
, ti in (29) can be rewritten as

ti ¼ di ĝg
0
iS

�1ĝgi; ði ¼ 1; . . . ; kÞ: ð30Þ

If ŷyi is a function of ti, then we can express ĝgiðŷyiÞ in (28) as

ĝgiðŷyiÞ ¼ wðtiÞĝgi; ði ¼ 1; . . . ; kÞ;

where wðtiÞ is a function of ti. From (28), it is clearly the case that 0a

wðtiÞa 1, because di > 0 and ŷyi b 0. Hence wðtiÞ is called the weight function.

By using such a weight function, Lawless (1981) expressed several GR estima-

tors with the optimized ridge parameters. According to his notation, we

specify the individual MGR estimator with an optimized value of y using the

weight function.
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3.2. Once plug-in method. Since the principal optimum value y� ¼
ðy�

1 ; . . . ; y
�
kÞ

0 is obtained as (26), we estimate y�
i by replacing gi and S with

ĝgi and S. Then we obtain the following optimal y by single plug-in estimation:

ŷy
½1�
i ¼ p

ĝg 0iS
�1ĝgi

¼ di p

ti
; ði ¼ 1; . . . ; kÞ: ð31Þ

Since wðtiÞ ¼ di=ðdi þ ŷyiÞ, the weight function corresponding to ŷy
½1�
i is given by

w½1�ðtiÞ ¼
ti

ti þ p
:

We refer to this once plug-in method as PI. In the case of p ¼ 1, the above

results coincide with the result in Hoerl and Kennard (1970).

3.3. Multiple plug-in method. We will avoid problems that arise from multi-

collinearity by the once plug-in method. However, we find that ŷy
½1�
i is made by

the ordinary LS estimator of gi. Hence, if multicollinearity occurs, ŷy
½1�
i tends

to small beyond necessity because ĝgi tends to have large variance. Such an

under evaluation problem of yi may be improved by using the MGR estimator

instead of ĝgi in the optimal yi because the MGR estimator tends to have

smaller variance than the ordinary LS estimator. Therefore, we obtain the

following optimal y by multiple plug-in estimation:

ŷy
½s�
i ¼ p

ĝg
½s�1� 0
i S�1ĝg

½s�1�
i

; ðs ¼ 1; 2; . . . ; i ¼ 1; . . . ; kÞ; ð32Þ

where ĝg
½s�
i ¼ diĝgi=ðdi þ ŷy

½s�
i Þ, ðs ¼ 0; 1; . . .Þ and ŷy

½0�
i ¼ 0. Notice that ĝg

½1�
i is equal

to the estimator obtained using the PI method. Equation (32) implies that

ŷy
½s�
i ¼ 1þ ŷy

½s�1�
i

di

 !2
ŷy
½1�
i ; ðs ¼ 1; 2; . . . ; i ¼ 1; . . . ; kÞ: ð33Þ

In the case of p ¼ 1, the value of (32) was proposed by Hoerl and Kennard

(1970), and they used ĝg
½2�
i to estimate the regression coe‰cient. Hence we also

use ĝg
½2�
i which is obtained by using ŷy

½2�
i . We denote this twice plug-in method

as PI2. The optimal value of yi derived using the PI2 method is given by

ŷy
½2�
i ¼ di pðti þ pÞ2

t3i
; ði ¼ 1; . . . ; kÞ;

and the weight function corresponding to ŷy
½2�
i is given by

w½2�ðtiÞ ¼
t3i

t3i þ pðti þ pÞ2
:
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3.4. Infinite plug-in method. For the case of p ¼ 1, Hemmerle (1975) showed

that the value of (32) converges as s ! y. By extending the proof in

Hemmerle (1975) to the multivariate case, we obtain the following limiting

value of (32) as s ! y:

ŷy
½y�
i ¼

difti � 2p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiðti � 4pÞ

p
g

2p
ðti b 4pÞ

y ðti < 4pÞ

8><
>: ; ði ¼ 1; . . . ; kÞ; ð34Þ

(the proof is given in Appendix A.1). We refer to this infinite plug-in method

as PIy. The weight function w½y�ðtiÞ corresponding to ŷy
½y�
i is given by

w½y�ðtiÞ ¼
2p

tið1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p=ti

p
Þ

ðti b 4pÞ

0 ðti < 4pÞ

8><
>: :

4. Alternative methods

4.1. IC-based method. Yanagihara, Nagai and Satoh (2009) proposed Cp

criterion for optimizing y and its bias-corrected Cp (Modified Cp; MCp)

criterion. By omitting constant terms, their criteria are included in a class

of criteria specified by l. The class is expressed by the generalized Cp (GCp)

criterion as

GCpðyjlÞ ¼ l�1r̂rðY; ŶYyÞ þ 2p trfðX 0X þQYQ 0Þ�1X 0Xg; ð35Þ

where the function r̂r is given by (7). It notes that GCpðyj1Þ and GCpðyjcMÞ are
corresponding the main terms with respect to y in the Cp and MCp criteria

where cM ¼ ðn� k � 1Þ=ðn� k � p� 2Þ. By using the GCp criterion, we can

deal systematically with the optimization of y when we use IC-based method.

The optimal value of yi which minimizes (35) is obtained as

ŷy
ðGÞ
i ðlÞ ¼

lpdi

ti � lp
ðti > lpÞ

y ðti a lpÞ

8><
>: ; ði ¼ 1; . . . ; kÞ; ð36Þ

(the proof is given in Appendix A.2). Then the weight function wðGÞðtijlÞ
corresponding to ŷy

ðGÞ
i ðlÞ is given by

wðGÞðtijlÞ ¼
1� lp

ti
ðti > lpÞ

0 ðti a lpÞ

8><
>: : ð37Þ
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From (36), ŷy
ðCÞ
i that minimizes the Cp criterion is ŷy

ðCÞ
i ¼ ŷy

ðGÞ
i ð1Þ, ði ¼ 1; . . . ; kÞ.

Then equation (37) yields the weight function of this estimator as wðCÞðtiÞ ¼
wðGÞðtij1Þ. This optimization method is referred to as Cp.

Moreover, ŷy
ðMÞ
i minimizing the MCp criterion is given by ŷy

ðMÞ
i ¼ ŷy

ðGÞ
i ðcMÞ,

ði ¼ 1; . . . ; kÞ, and the weight function is wðMÞðtiÞ ¼ wðGÞðtijcMÞ. This opti-

mization method is referred to as MCp.

Kubokawa (1991) proposed an improved James-Stein estimator which is a

shrinkage estimator when pb 3. Suppose that E@Nn�pðOn;p;Sn InÞ. Since

ĝgi @Npðgi;S=diÞ, ði ¼ 1; . . . ; kÞ, ðn� k � 1ÞS@Wpðn� k � 1;SÞ and S?? ĝgi,

(i ¼ 1; . . . ; k) are satisfied, the James-Stein estimator of gi is obtained as

ĝg
ðJÞ
i ¼

1� cJp

ti

� �
ĝgi ðti > cJpÞ

0p ðti a cJpÞ

8><
>: ;

where cJ ¼ ðn� k � 1Þðp� 2Þ=fpðn� k � pþ 2Þg. Hence, the weight function

for this optimization is obtained as

wðJÞðtiÞ ¼
1� cJp

ti
ðti > cJpÞ

0 ðti a cJpÞ

8<
: :

Since wðJÞðtiÞ ¼ di=ðdi þ ŷy
ðJÞ
i Þ, we have

ŷy
ðJÞ
i ¼

cJpdi

ti � cJp
ðti > cJpÞ

y ðti a cJpÞ

8><
>: ; ði ¼ 1; . . . ; kÞ:

From (36), we can see that ŷy
ðJÞ
i ¼ ŷy

ðGÞ
i ðcJÞ holds. This implies that ŷy

ðJÞ
i is also

obtained by minimizing GCpðyjcJÞ. This optimization method is referred to

as JS.

4.2. Another method. In the case of p ¼ 1, there is a method for optimizing

y which does not correspond to either a plug-in method or an IC-based

method. Such a method was proposed by Lott (1973). By extending this

method to the multivariate case, we obtain the following optimal y:

ŷy
ðPÞ
i ¼ 0 ðti > 2pÞ

y ðti a 2pÞ

�
; ði ¼ 1; . . . ; kÞ;

and the weight function wðPÞðtiÞ corresponding to ŷy
ðPÞ
i is given by

wðPÞðtiÞ ¼
1 ðti > 2pÞ
0 ðti a 2pÞ

�
:
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According to the notation in Lawless (1981), this optimization method is

referred to as PC (principal component).

5. Properties of the optimized ridge parameters

5.1. Relationship with hypothesis testing. Sometimes, an estimate of the MGR

estimator of gi becomes 0p after optimizing. This result can be considered

from the viewpoint that we estimate gi as 0p when the null hypothesis in the

following hypothesis test is accepted:

H0 : gi ¼ 0p vs: H1 : gi 0 0p: ð38Þ
In this subsection, we discuss the relationship between each method for

optimizing y and the hypothesis test of (38). Since Cov½ĝgi� ¼ S=di, the test

statistic for (38) is ti in (30). Suppose that E@Nn�pðOn;p;Sn InÞ. Then the

test statistic ti is distributed according to the Hotelling’s T 2 distribution with p

and n� k � 1 degrees of freedom when the null hypothesis H0 is true (see

e.g., Siotani, Hayakawa and Fujikoshi, 1985, p. 190). For the PIy, Cp, MCp,

JS and PC methods, the MGR estimators of gi with the optimized ridge

parameters become 0p if the test statistic ti is smaller than a threshold value a,

i.e., 4p, p, cM p, cJp and 2p, respectively. This indicates that the MGR

estimator with the optimized ridge parameter becomes 0p when the hypothesis

H0 is accepted. The significance level of the above test is determined by the

particular threshold value a. When the hypothesis H0 is rejected, the MGR

estimators with the ridge parameter optimized by PIy, Cp, MCp and JS

methods are shrinkage estimators of the ordinary LS estimator of G . These

shrinkage ratios become small as ti increases and eventually approach 1. On

the other hand, the PC method does not shrink the ordinary LS estimator of G

even when the hypothesis H0 is rejected. The PI and PI2 methods do not

result in the MGR estimators with the optimized ridge parameters becoming 0p.

The MGR estimators with the ridge parameters optimized by the PI and PI2
methods are always shrinkage estimators of the ordinary LS estimator of G .

These shrinkage ratios also become small as ti increases and eventually

approach 1. The relations between hypothesis testing and estimation are

shown in Table 1.

Table 2 shows the significance levels Pðti > aÞ with a ¼ 4p (PIy), p (Cp),

cMp (MCp), cJp (JS) and 2p (PC) when ðk; nÞ ¼ ð5; 20Þ; ð5; 50Þ; ð10; 20Þ; ð10; 50Þ
and p ¼ 3. From Table 2, we can see that the significance level of PIy is

the smallest among the five methods in all cases. This means that the PIy
method most frequently makes the MGR estimator with the optimized ridge

parameter into 0p. We note that the significance level of the JS method is

greater than that of the Cp method and that the significance level of the Cp

method is greater than that of the MCp method.
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5.2. Magnitude relations among optimized y’s. In this subsection, we obtain

magnitude relations among y optimized by each method.

It follows from (33) that ŷy
½s�
i > 0; ðs ¼ 1; 2; . . .Þ, because ŷy

½1�
i > 0. When

s ¼ 2, we have

ŷy
½2�
i ¼ 1þ ŷy

½1�
i

di

 !2
ŷy
½1�
i > ŷy

½1�
i :

Suppose that ŷy
½m�
i > ŷy

½m�1�
i is satisfied. Then, we derive

ŷy
½mþ1�
i ¼ 1þ ŷy

½m�
i

di

 !2
ŷy
½1�
i > 1þ ŷy

½m�1�
i

di

 !2
ŷy
½1�
i ¼ ŷy

½m�
i :

Consequently, by mathematical induction, we obtain the following theorem:

Theorem 1. The following relationships among the optimized y always

hold:

0 < ŷy
½1�
i < ŷy

½2�
i < � � � < ŷy

½y�
i ; ði ¼ 1; . . . ; kÞ: ð39Þ

For y optimized by the IC-based method, we obtain the following theorem

from (36):

Theorem 2. When l1 < l2 holds, the optimized value of y always satisfies:

ŷy
ðGÞ
i ðl1Þa ŷy

ðGÞ
i ðl2Þ; ði ¼ 1; . . . ; kÞ; ð40Þ

with equality if and only if ti a l1 p.

Table 1. Relationship between hypothesis testing and shrinkage of the estimator

Method a H0 is rejected H0 is accepted

PI, PI2 — shrinking ĝgi shrinking ĝgi
PIy 4p shrinking ĝgi 0p

Cp p shrinking ĝgi 0p

MCp cM p shrinking ĝgi 0p

JS cJp shrinking ĝgi 0p

PC 2p ĝgi 0p

Table 2. The significance levels in several cases

k n PIy Cp MCp JS PC

5 20 0.0524 0.4895 0.3515 0.8348 0.2170

50 0.0166 0.4231 0.3805 0.8121 0.1428

10 20 0.0978 0.5426 0.3204 0.8526 0.2832

50 0.0181 0.4271 0.3790 0.8135 0.1470
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From theorem 2, we have

ŷy
ðCÞ
i a ŷy

ðMÞ
i ; ŷy

ðJÞ
i a ŷy

ðMÞ
i ; ði ¼ 1; . . . ; kÞ;

because 1 < cM and cJ < cM are satisfied. Notice that cJ b 1 holds when

pb f3þ ð9þ 8ðn� k � 1ÞÞ1=2g=2 and cJ < 1 holds when p < f3þ ð9þ
8ðn� k � 1ÞÞ1=2g=2. Hence, we have

ŷy
ðCÞ
i a ŷy

ðJÞ
i ðpb f3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8ðn� k � 1Þ

p
g=2Þ;

ŷy
ðJÞ
i a ŷy

ðCÞ
i ðp < f3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8ðn� k � 1Þ

p
g=2Þ;

(
ði ¼ 1; . . . ; kÞ:

The magnitude relations with ŷy optimized by the plug-in method and IC-

based methods are shown as follows (the proof is given in Appendix A.3):

Theorem 3. The following relationships among the optimized values of y

hold:

ŷy
½1�
i < ŷy

ðGÞ
i ðlÞ; ðwhen lb 1Þ;

ŷy
ðGÞ
i ðlÞa ŷy

½y�
i ; ðwhen 0 < la 1Þ;

(
ði ¼ 1; . . . ; kÞ; ð41Þ

with equality if and only if ti a lp.

It follows from ŷy
ðGÞ
i ð1Þ ¼ ŷy

ðCÞ
i and theorem 3 that

ŷy
½1�
i < ŷy

ðCÞ
i a ŷy

½y�
i ; ði ¼ 1; . . . ; kÞ;

with equality if and only if ti a p.

5.3. Magnitude relations among weight funstions. The shrinkage ratio of each

method corresponds to the weight function wðtiÞ. A method with smaller wðtiÞ
shrinks ĝgi to a greater extent. When wðtiÞ is nearly equal to one, the method

shrinks ĝgi hardly at all. Figure 1 shows the weight functions associated with

each method when ðk; nÞ ¼ ð5; 20Þ; ð5; 50Þ; ð10; 20Þ; ð10; 50Þ and p ¼ 3. From

these figures, we can see that the weight function of MCp is always smaller than

those of PI, PI2, Cp and JS. Thus the MCp method always shrinks ĝgi to a

greater extent than do the PI, PI2, Cp and JS methods. The weight functions

of PI2 and Cp are always smaller than that of PI. The weight function of PIy
is always smaller than those of Cp, PI, PI2 and PC.

The above magnitude relations among the weight functions are satisfied

only when ðk; nÞ ¼ ð5; 20Þ; ð5; 50Þ; ð10; 20Þ; ð10; 50Þ and p ¼ 3. Notice that the

weight function wðtiÞ ¼ di=ðdi þ ŷyiÞ. Hence, we can obtain the magnitude

relations among the weight functions by using theorems 1, 2 and 3. General

magnitude relations among the weight functions are given by the following

theorem:
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Theorem 4. The following relationships among the weight functions hold:

w½y�ðtiÞ < � � � < w½2�ðtiÞ < w½1�ðtiÞ;

wðMÞðtiÞa
wðJÞðtiÞawðCÞðtiÞ ðpb f3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8ðn� k � 1Þ

p
g=2Þ;

wðCÞðtiÞawðJÞðtiÞ ðp < f3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8ðn� k � 1Þ

p
g=2Þ;

(

w½y�ðtiÞawðCÞðtiÞ < w½1�ðtiÞ:

Notice that these relationships among the methods correspond to the

relationships among the significance levels of the various methods.

6. Numerical studies

In this section, we conduct numerical studies to compare the MSEs of

predictors of Y consisting of the MGR estimators with the optimized ridge

parameters. Let Rq and DqðrÞ be q� q matrices defined by

Fig. 1. Shrinkage ratio (value of weight function) for each optimization method in several cases.
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Rq ¼ diagð1; . . . ; qÞ; DqðrÞ ¼

1 r r2 � � � rq�1

r 1 r � � � rq�2

r2 r 1 � � � rq�3

..

. ..
. ..

. . .
. ..

.

rq�1 rq�2 rq�3 � � � 1

0
BBBBBBB@

1
CCCCCCCA
:

The explanatory matrix X was generated from X ¼ WC 1=2 where C ¼
R

1=2
k DkðrxÞR

1=2
k and W is an n� k matrix whose elements were generated

independently from the uniform distribution on ð�1; 1Þ. The k � p unknown

regression coe‰cient matrix X was defined by X ¼ dFX0, where d is a constant,

and F and X are defined as

F ¼ Ik Ok;10�k

Ok�k Ok�k;10�k

� �
; X0 ¼

0:8501 0:6571 0:2159

�0:2753 �0:2432 �0:1187

�0:3193 �0:2926 �0:1671

0:2754 0:2608 0:1766

0:2693 0:2164 0:2066

�0:0676 �0:0663 �0:0561

0:2239 0:2197 0:1880

�0:0352 �0:0346 �0:0305

0:3240 0:3199 0:2868

�0:3747 �0:3727 �0:3554

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

Here d controls the scale of the regression coe‰cient matrix and F controls the

number of non-zero regression coe‰cients via k (dimension of the true model).

Values of elements of X0, which is an essential regression coe‰cient matrix,

are the same as in Lawless (1981). Simulated data values Y were generated

by Nn�3ðXX ;Sn InÞ repeatedly under several selections of n, k, k, d and

rx, where S ¼ R
1=2
3 D3ð0:8ÞR1=2

3 and the number of repetition was 10; 000. At

each repetition, we evaluated rðXX ; ŶYŷyÞ, where ŶYŷy ¼ 1n y
0 þ XX̂Xŷy which is the

predicted value of Y obtained from each method. The average of rðXX ; ŶYŷyÞ
across 10; 000 repetition was regarded as the MSE of ŶYŷy. In the simulation, a

standardized X was used for estimating regression coe‰cients. Tables 3, 4, 5

and 6 depict MSE½ŶYŷy�=f3ðk þ 1Þg � 100 in the case of ðk; nÞ ¼ ð5; 20Þ; ð5; 50Þ,
ð10; 20Þ and ð10; 50Þ, respectively, where 3ðk þ 1Þ is the MSE of the predictor

of Y derived by using the LS estimator of X .

In tables 3, 4, 5 and 6, we observe that the method can improve the LS

estimation when values in the tables do not exceed 100. In each table, the

average of MSE½ŶYŷy�=f3ðk þ 1Þg � 100 across all cases is also depicted in the

bottom line of the table. From the tables, we can see that all methods

improve the ordinary LS method in almost all cases. The PI2 method
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improved on the ordinary LS method more than the PI method in almost all

cases when n ¼ 20. When k is small, it is necessary to shrink the LS estimator

to a greater extent. On the other hand, it is not necessary to shrink the LS

estimator when k is large. Thus PIy works well when k is small but does not

work well when k is large since k controls the number of non-zero elements in

the true regression coe‰cient matrix X and PIy has the most shrinkage of the

LS estimators. These estimation methods more improve when d is small than

d is large since d means the scale of the true regression coe‰cient matrix and

these estimate methods shrink the LS estimator. When rx is 0:99, these

estimate methods improve the LS estimator even if k and d are large since the

LS estimator is unstable. On average, Cp was the best method in almost cases

except PI2 and MCp. One of the reasons is that the shape of the weight

function of Cp is near to that of PI2, which is shown in Figure 1. Further-

more, because the MCp criterion is the bias corrected Cp criterion, the results

from the MCp and Cp methods become similar when n is large. The PI and JS

methods improve the ordinary LS method in almost cases although the ratios

of improvement are not as great. On average, PIy is the best method to

obtain stable estimator except ðk; nÞ ¼ ð10; 20Þ. When ðk; nÞ ¼ ð10; 20Þ, MCp

is the best method on average to obtain stable estimator.

Table 3. MSE of each method ðk ¼ 5; n ¼ 20Þ

k d rx PI PI2 PIy Cp MCp JS PC

0 0.0 0.2 50.84 36.51 23.08 37.42 29.72 66.34 53.80

0.8 50.91 36.59 23.25 37.47 29.82 66.38 53.56

0.99 51.03 36.75 23.43 37.65 30.00 66.48 53.98

3 1.0 0.2 67.30 62.39 69.92 65.59 62.74 80.68 92.45

0.8 57.06 46.37 40.11 48.28 42.30 71.90 68.89

0.99 51.81 37.91 25.15 38.94 31.43 67.28 55.82

3.0 0.2 96.60 103.34 148.20 103.14 110.90 97.90 113.59

0.8 75.36 74.01 97.23 75.60 76.52 84.66 95.46

0.99 56.42 45.43 38.36 47.29 41.13 71.37 67.53

5 1.0 0.2 74.10 72.98 96.22 75.55 76.16 84.56 100.71

0.8 67.01 62.10 72.66 64.74 62.50 79.63 89.26

0.99 59.84 50.45 52.24 51.48 47.25 72.81 69.32

3.0 0.2 94.69 98.22 121.30 98.30 103.00 96.21 105.66

0.8 90.12 93.12 125.76 93.21 97.92 93.66 104.29

0.99 64.97 56.03 49.79 57.41 52.71 76.81 72.99

Average 67.20 60.81 67.11 62.14 59.61 78.44 79.82
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A. Appendix

A.1. The proof of equation (34). In this subsection, we show that the ŷy
½s�
i

in (32) converges to ŷy
½y�
i in (34) as s ! y by extending the technique in

Hemmerle (1975).

Theorem 1 shows that fŷy½s�i g is a monotonic increasing sequence. If ŷy
½s�
i is

bounded above, ŷy
½s�
i surely converges. To prove the convergence, we prove the

following lemma:

Lemma 1. Let a1 be a positive number. Define a sequence of real numbers

by

asþ1 ¼ ð1þ asÞ2a1; ðs ¼ 1; 2; . . .Þ:

Then as converges to some number if and only if a1 a 1=4. If a1 a 1=4, we

obtain

lim
s!y

as ¼
1

2a1
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a1

p

2a1
: ð42Þ

Table 4. MSE of each method ðk ¼ 5; n ¼ 50Þ

k d rx PI PI2 PIy Cp MCp JS PC

0 0.0 0.2 47.29 32.07 19.19 32.57 30.34 62.83 45.92

0.8 47.61 32.39 19.36 32.92 30.67 63.18 46.59

0.99 47.45 32.29 19.47 32.80 30.57 62.92 46.10

3 1.0 0.2 72.23 70.58 98.32 71.75 71.91 81.26 90.43

0.8 60.71 53.64 61.60 55.78 54.80 73.95 77.87

0.99 49.18 35.14 24.04 36.08 33.98 64.64 51.12

3.0 0.2 83.96 81.75 83.95 82.55 82.42 89.09 91.32

0.8 82.78 84.85 119.82 86.15 86.97 88.85 104.87

0.99 60.54 53.46 58.64 56.16 55.09 74.47 80.63

5 1.0 0.2 80.15 81.29 114.58 82.15 82.80 86.98 99.23

0.8 71.57 69.36 96.08 70.84 70.83 81.53 91.18

0.99 59.20 48.89 45.25 49.25 47.84 71.47 61.47

3.0 0.2 91.53 90.87 99.02 90.73 90.93 94.01 94.40

0.8 87.83 88.93 115.44 88.97 89.63 91.33 98.13

0.99 66.36 59.40 61.12 61.10 60.12 77.51 78.26

Average 67.23 60.99 69.06 61.99 61.26 77.60 77.17
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Proof. It can be easily checked that asþ1 b as by the inductive method.

Suppose that the a ¼ lims!y as exists. Then a is one of the solutions of the

following quadratic equation with respect to x;

x ¼ ð1þ xÞ2a1 , x2 þ 2 1� 1

2a1

� �
xþ 1 ¼ 0: ð43Þ

The discriminant shows (43) has real roots if and only if a1 a 1=4.

If a1 ¼ 1=4, the equation (43) has the multiple root a ¼ 1. Suppose

a1 a 1=4 and ak a 1 for some k. Then

akþ1 a ð1þ 1Þ2=4 ¼ 1:

Hence the sequence fasg is bounded by the induction. Since fasg is an

Table 5. MSE of each method ðk ¼ 10; n ¼ 20Þ

k d rx PI PI2 PIy Cp MCp JS PC

0 0.0 0.2 49.77 35.22 21.05 36.40 22.57 66.23 55.34

0.8 50.27 35.80 21.64 36.99 23.11 66.70 55.96

0.99 50.11 35.51 21.29 36.69 22.76 66.68 55.82

3 1.0 0.2 57.73 47.42 43.32 49.39 39.69 72.94 71.97

0.8 53.27 40.64 30.17 42.34 29.95 69.36 63.52

0.99 50.56 36.23 22.42 37.50 23.74 67.05 57.10

3.0 0.2 73.25 69.84 82.01 71.63 71.33 83.63 92.06

0.8 65.95 60.01 69.20 61.94 58.46 78.63 84.43

0.99 53.57 41.00 30.90 42.71 30.45 69.70 63.87

5 1.0 0.2 60.81 52.30 54.38 54.04 47.44 74.61 75.55

0.8 57.84 47.66 44.80 49.29 40.49 72.46 70.34

0.99 54.96 42.70 35.20 43.71 33.31 69.89 61.94

3.0 0.2 76.32 74.00 86.35 76.20 76.35 85.99 97.57

0.8 69.44 63.82 71.08 65.27 62.56 80.46 83.88

0.99 56.84 44.89 34.23 46.26 34.90 71.42 64.57

10 1.0 0.2 67.46 62.71 74.94 64.92 62.67 79.84 88.92

0.8 60.78 51.81 50.95 53.62 45.99 74.93 74.79

0.99 55.46 43.27 35.17 44.26 33.86 70.22 61.84

3.0 0.2 86.68 87.82 109.28 88.68 95.67 91.73 102.46

0.8 79.91 79.81 101.50 81.68 85.70 88.25 102.05

0.99 58.76 47.86 39.12 49.51 38.88 73.12 69.11

Average 61.41 52.40 51.38 53.95 46.66 74.94 73.96
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increasing sequence, it has the limiting value which is not greater than 1.

If a1 a 1=4, the equation (43) has the roots

a1 ¼
1

2a1
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a1

p

2a1
and a2 ¼

1

2a1
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a1

p

2a1
:

Since a2 ¼ a2ða1Þ is a strict decreasiong function of a1, a2ða1Þ > a2ð1=4Þ ¼ 1 for

any a1 < 1=4. Hence the limiting value is a1 because it can not be greater

than 1.

We consider as in the above lemma as ŷy
½s�
i =di. Then a1 a 1 when ti b 4p.

By using this lemma, we obtain the ŷy
½y�
i when ti b 4p. On the other hand,

from Theorem 1, we note fasg is also monotone increasing sequence. Hence,

if ti < 4p holds, lims!y ŷy
½s�
i ¼ y is satisfied.

Table 6. MSE of each method ðk ¼ 10; n ¼ 50Þ

k d rx PI PI2 PIy Cp MCp JS PC

0 0.0 0.2 42.87 26.28 12.11 26.88 24.10 59.87 41.73

0.8 42.68 26.17 12.10 26.74 23.99 59.61 41.42

0.99 42.99 26.49 12.40 27.09 24.32 59.93 42.03

3 1.0 0.2 63.01 58.23 76.41 60.78 60.16 76.18 86.79

0.8 50.32 38.31 35.46 39.91 37.91 66.16 59.75

0.99 43.62 27.86 14.99 28.69 26.04 60.40 44.43

3.0 0.2 84.48 85.35 107.83 86.11 86.78 89.75 99.43

0.8 67.10 62.97 79.81 65.18 64.72 78.80 88.53

0.99 50.32 38.50 35.38 40.26 38.29 66.20 61.03

5 1.0 0.2 69.15 67.09 92.34 69.52 69.48 80.63 95.30

0.8 56.52 47.06 49.43 48.49 47.03 70.50 67.56

0.99 49.48 35.26 23.94 35.79 33.46 64.67 49.55

3.0 0.2 91.12 94.28 123.88 94.49 95.72 93.81 105.41

0.8 69.83 64.95 68.86 66.82 66.14 80.19 84.84

0.99 53.86 42.07 34.85 43.63 41.58 68.77 61.46

10 1.0 0.2 79.11 81.30 112.51 84.22 84.96 88.14 111.74

0.8 63.54 57.32 68.44 59.06 58.23 75.96 79.99

0.99 50.43 36.79 25.88 37.60 35.34 65.54 52.49

3.0 0.2 99.63 103.28 121.89 102.29 103.58 98.83 102.91

0.8 82.53 83.03 101.04 85.10 85.48 89.54 104.24

0.99 59.89 51.95 55.35 54.25 52.94 73.63 76.64

Average 62.50 54.98 60.23 56.33 55.25 74.62 74.16
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A.2. The proof of equation (36). From (4), the second part of GCpðyjlÞ in

(35) can be rewritten as

trfðX 0X þQYQ 0Þ�1X 0Xg ¼ trfðDþYÞ�1Dg ¼
Xk
i¼1

di

di þ yi
: ð44Þ

Moreover, from (12) and (17), the first part of GCpðyjlÞ can be rewritten as

r̂rðY ; ŶYyÞ ¼ trfðY � ŶYyÞS�1ðY � ŶYyÞ0g

¼ trfP1ðZ � ẐZyÞS�1ðZ � ẐZyÞ0P 0
1g ¼ r̂rðZ; ẐZyÞ: ð45Þ

By using (17) and (20), we have

ẐZy ¼ L
ĜGy

m̂m 0

� �
¼

D1=2ĜGyffiffiffi
n

p
m̂m 0

On�k�1;p

0
B@

1
CA: ð46Þ

Notice that m̂m ¼ zkþ1=
ffiffiffi
n

p
and zi � fdi=ðdi þ yiÞgzi ¼ fyi=ðdi þ yiÞgzi. Substitut-

ing (21) and (46) into (45) yields

r̂rðZ; ẐZyÞ ¼
Xk
i¼1

yi

di þ yi

� �2
ti þ

Xn
i¼kþ2

z 0iS
�1zi; ð47Þ

where ti is given by (29) or (30). Let ŶY and ẐZ be ŶYy and ẐZy with y ¼ 0k,

respectively. Then, from similar calculations with (45) and (46), we derive

ðY � ŶYÞ0ðY � ŶYÞ ¼ ðZ � ẐZÞ0ðZ � ẐZÞ ¼
Xn
i¼kþ2

ziz
0
i :

This equation implies that ðn� k � 1ÞS ¼
Pn

i¼kþ2 ziz
0
i . Consequently, by using

this result, (44), (45) and (47), GCpðyjlÞ can be rewritten as

GCpðyjlÞ ¼
Xk
i¼1

f ðyijdi; ti; lÞ þ l�1pðn� k � 1Þ; ð48Þ

where the function f ðyijdi; ti; lÞ is defined by

f ðyijdi; ti; lÞ ¼ l�1 yi

di þ yi

� �2
ti þ

2pdi
di þ yi

; ði ¼ 1; . . . ; kÞ:

Hence in order to obtain ŷyðGÞðlÞ ¼ ðŷyðGÞ
1 ðlÞ; . . . ; ŷyðGÞ

k ðlÞÞ0, ðŷyðGÞ
i ðlÞb 0;

i ¼ 1; . . . ; kÞ making GCpðyjlÞ the minimum, we can see that it is necessary
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only to minimize f ðyijdi; ti; lÞ individually. The first partial derivative of

f ðyijdi; ti; lÞ with respect to yi is calculated as

q

qyi
f ðyijdi; ti; lÞ ¼

2di

lðdi þ yiÞ3
fyiðti � lpÞ � lpdig:

This derivative indicates that f ðyijdi; ti; lÞ becomes a minimum at yi ¼
lpdi=ðti � lpÞ when ti � lp > 0 holds. On the other hand, f ðyijdi; ti; lÞ is

a monotonic decreasing function of yi when ti � lpa 0 holds. Thus,

f ðyijdi; ti; lÞ converges to the minimum value as yi ! y when ti � lpa 0

holds. Consequently, from the above two results, the equation (36) follows.

A.3. The proof of equation (41). Firstly, we show the proof of the first

inequality of equation (41). It is easy to obtain ŷy
ðGÞ
i ðlÞ > ŷy

½1�
i when ti a lp,

because ŷy
ðGÞ
i ðlÞ ¼ y and ŷy

½1�
i < y are satisfied when ti a lp. When ti > lp,

from (31) and (36), we can see that

ŷy
ðGÞ
i ðlÞ � ŷy

½1�
i ¼ di pfðl� 1Þti þ lpg

tiðti � lpÞ :

Since ti > 0 holds, the right side of the above equation becomes positive when

lb 1. Thus, ŷy
ðGÞ
i ðlÞ > ŷy

½1�
i holds when lb 1.

Next, we show the proof of the second inequality of equation (41). Sup-

pose that 0 < la 1. It is easy to obtain ŷy
ðGÞ
i ðlÞa ŷy

½y�
i when ti a 4p, because

ŷy
½y�
i ¼ y and ŷy

ðGÞ
i ðlÞay are satisfied when ti a 4p. Notice that

1� 2p

ti � p

� �2
� 1� 4p

ti

� �
¼ 4p3

tiðti � pÞ2
> 0:

The above equation and the inequality ti � pa ti � lp imply that

1� 4p

ti
< 1� 2p

ti � p

� �2
< 1� 2p

ti � lp

� �2
: ð49Þ

Since ti b 4p is assumed, we obtain 1� 2p=ðti � pÞ ¼ ðti � 3pÞ=ðti � pÞ > 0.

Hence, 1� 2p=ðti � lpÞ > 0 can also be derived. It follows from this result

and the inequality (49) that ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p

ti

s
< 1� 2p

ti � lp
: ð50Þ

By multiplying both sides of (50) by ti after calculation, we have

ti

ti � lp
<

ti �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiðti � 4pÞ

p
2p

: ð51Þ
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Subtracting 1 from both sides of (51) yields

lp

ti � lp
<

ti � 2p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiðti � 4pÞ

p
2p

: ð52Þ

Thus, when ti > 4p, ŷy
ðGÞ
i ðlÞ < ŷy

½y�
i can be derived by multiplying both sides of

(52) by di. Consequently, ŷy
ðGÞ
i ðlÞa ŷy

½y�
i is obtained when 0 < la 1.
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