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ABSTRACT. Generalized ridge (GR) regression for an univariate linear model was
proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this
paper, we deal with a GR regression for a multivariate linear model, referred to as a
multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared
error (MSE) of a predicted value, many authors have proposed several GR estimators
consisting of ridge parameters optimized by non-iterative methods. By expanding their
optimizations of ridge parameters to the multiple response case, we derive some MGR
estimators with ridge parameters optimized by the plug-in method. We analytically
compare obtained MGR estimators with existing MGR estimators, and numerical
studies are also given for an illustration.

1. Introduction

We consider a multivariate linear regression model with n observations
of a p-dimensional vector of response variables and a k-dimensional vector of
regressors (for more detailed information, see for example, Srivastava, 2002,
Chapter 9; Timm, 2002, Chapter 4). Let ¥ = (y,,...,¥,)’, X and & be the
n X p matrix of response variables, the n x kK matrix of non-stochastic cen-
terized explanatory variables (i.e., X'1, = 0;) of rank(X) =k (< n), and the
n x p matrix of error variables, respectively, where n is the sample size, 1,
is an n-dimensional vector of ones and 0, is a k-dimensional vector of
zeros. Suppose that the row vectors of & are independently and identically
distributed according to a distribution with mean 0, and an unknown
covariance matrix 2. The matrix form of the multivariate linear regression
model is expressed as

Y=14+XE+6, (1)
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where u is a p-dimensional unknown vector and E is a k x p unknown
regression coefficient matrix.

Since X is centerized, the maximum likelihood estimators under normality
or least squares (LS) estimators of u and = are given by y =n~! >,y and

E=(X'X)"'X"Y, 2)
respectively. Since y and £ are simple and the unbiased estimators of u and
Z, it is widely used in actual data analysis, see e.g., Dien et al. (2006), Sarbu
et al. (2008), Saxén and Sundell (2006), Skagerberg, Macgregor and Kiparis-
sides (1992), Yoshimoto, Yanagihara and Ninomiya (2005). However, when
multicollinearity occurs in X, the LS estimator of 5 is not a good estimator
in the sense of having a large variance. The ridge regression for an univariate
linear model proposed by Hoerl and Kennard (1970) is one of the ways of
avoiding such problems that arise from multicollinearity. The ridge estimator
is defined by adding 0I; to X'X in the LS estimator, where 0 (> 0) is called a
ridge parameter. Since estimates of the ridge estimator depend heavily on the
value of 0, optimization of 0 is a very important problem. Choosing 0 so that
the mean squared error (MSE) of a predictor of ¥ becomes small is a common
procedure. However, the optimal value of 6 cannot be obtained without any
iterative computational algorithm.

Hoerl and Kennard (1970) also proposed a generalized ridge (GR) regres-
sion for the univariate linear model simultaneously with the ridge regression.
The GR estimator is defined not by a single ridge parameter but by multiple
ridge parameters 0 = (0y,...,0;)', (0; >0, i=1,...,k). Even though the
number of parameters has increased, we can obtain an explicit solution for
6 to the minimization problem of the MSE of a predictor of Y. By using such
closed forms for the solutions, many authors have proposed several GR
estimators such that @ can be obtained by non-iterative optimization methods
(see e.g., Lawless, 1981).

It is well known that the ridge estimator is a shrinkage estimator of
regression coefficients towards the origin. One of the advantages of the GR
regression is to be able to obtain a shrinkage estimate for regression coefficients
without the use of any iterative optimization algorithm on . It also has other
advantages, namely, whereas the ridge regression shrinks uniformly all coeffi-
cients of the LS estimator by a single ridge parameter, for the GR regression,
the amount of shrinkage is different for each explanatory variable. Thus the
GR regression is more flexible than the ridge regression. From this viewpoint,
we deal not with the ridge regression but the GR regression. We refer to the
GR regression for a multivariate linear model as the multivariate GR (MGR)
regression.
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Methods for optimizing # in the GR regression can be roughly divided
into the following types:

¢ We obtain the optimal @ by replacing unknown parameters with their

estimators in the explicit solution of # to the minimization problem for

the MSE of a predictor of Y;

*  We choose an optimal value of # that makes the estimator of the MSE

of a predicted value of ¥ a minimum.
In this paper, the first type of method is referred to as a plug-in method. Since
the second method corresponds to a determination of @ by minimizing an
information criterion (IC), i.e., the C, criterion proposed by Mallows (1973;
1995) (for the multivariate case, see Sparks, Coutsourides and Troskie (1983)),
the second type of method is called an IC-based method. For each of the
above two types of the optimization methods in the GR regression, formulas
for obtaining optimal # in the MGR regression will be derived.

By extending the formulas for a GR estimator with the optimized ridge
parameters from the plug-in method to the multivariate case, we are able
to propose several MGR estimators with ridge parameters optimized by a
non-iterative method. As for the C, criterion for the MGR regression,
Yanagihara, Nagai and Satoh (2009) considered the C, criterion and proposed
a bias-corrected C, criterion called a modified C, (MC,) criterion. Their
MC, criterion includes criteria proposed by Fujikoshi and Satoh (1997)
and Yanagihara and Satoh (2010) as special cases. In this paper, we con-
sider the generalized C, (GC,) criterion (originally GC, for selecting vari-
ables in the univariate regression was proposed by Atkinson (1980)) for the
MGR regression, which includes C, and MC, criteria omitting constant
terms, as special cases. By using the GC, criterion, we can deal systemati-
cally with the optimization of # when using an IC-based method. In partic-
ular, a family of the MGR estimators with the optimal # obtained using the
IC-based framework contains the James-Stein estimator proposed by Kubo-
kawa (1991).

This paper is organized in the following way: In Section 2, we extend the
univariate GR regression to the MGR regression. Then we illustrate a target
MSE of a predictor of Y and derive # so that the MSE is minimized. In
Section 3, we consider the MGR estimators with the optimized ridge param-
eters and propose plug-in method for the MGR estimator by extending the
method for the GR estimator. In Section 4, we consider the GC, criterion and
optimized method based on IC-based method and another method. In Sec-
tion 5, we discuss relationships between test statistics and the optimized values
of 0, and give the magnitude relation among optimized #s. In Section 6, we
compare derived MGR estimators with existing MGR estimators by conducting
numerical studies. Technical details are provided in Appendix.
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2. MGR estimator and target MSE

2.1. Preliminaries. By naturally extending the GR estimator, we derive the
MGR estimator for (1) as

E) = (X'X+000)'Xx'Y, 3)

where @ = diag(f) and Q is the k x k orthogonal matrix which diagonalizes
X'X, ie.,

Q/X/XQ = diag(dl, cee ,dk) =D. (4)

Here di,...,d; are eigenvalues of X'X. We note that the d’s are always
positive. We can check that the estimator in (3) corresponds to the ordinary
LS estimator in (2) when @ = 0;. This means that the estimator in (3) includes
the ordinary LS estimator. If p =1, then the estimator in (3) corresponds to
the GR estimator proposed by Hoerl and Kennard (1970).

Let Y, be a predictor of Y, given by Yy = 1,5’ + XZy. In order to define
the MSE of Yy, we define the following discrepancy function for measuring the
distance between n x p matrices A and B:

r(A4,B) =tr{(4A—-B) X '(4-B)'}. (5)

Since 2 is an unknown covariance matrix, we use the following unbiased
estimator instead of X

1 . )
S=—— (Y- 1,7 - X&)(Y - 1,§y — X&), 6
. y )'( y ) (6)

where £ is given in (2). By replacing X with (6), we can estimate (5) by
#(A,B) =tr{(4 — B)S'(4 - B)"}. (7)

These two functions in (5) and (7) correspond to summations of the Maha-
lanobis distance and the sample Mahalanobis distance between rows of 4 and
B, respectively. By using (5), the MSE of Yy is defined as

MSE[Y,] = E[r(E[Y], Yo)]. ®)
In this paper, we choose # that minimizes the MSE in (8) as the principal
optimum.

2.2. Model transformation. In this subsection, we consider an orthogonal
transformation of ¥ in order to simplify the calculation of MSE[¥,]. Such
a transformation with p =1 was used in Goldstein and Smith (1974) and
Walker and Page (2001), etc. We extend their transformation to the multi-
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variate regression case. By using the singular value decomposition, we can
determine an n x n orthogonal matrix P; and a (k+ 1) x (k+ 1) orthogonal
matrix P, such that

(X,1,) = P|LP}, 9)

where L is an n x (k + 1) matrix. Recall that X is centerized. Therefore, we
have

(10)

o) = (0 %)

0, n

Since the orthogonal matrix P, diagonalizes (10), from (4), P, and L can be

expressed as
(O O

L= (dlag(\/aa SRR \/d7k7 \/ﬁ)v 0k+1,n7k71)/a

where O, is an n x k matrix of zeros.
Let

and

Z:(zla"'7zl1),:PiY7 F:(yl?"'7Yk)/:QlE7
YV =i, = P&, (12)

By using (9) and (11), Z is calculated as

—
o I=

=1 =7

ZP{(X,ln)(ﬂ,> +P{é"P{(X,1,,)P2<Q’u, >+"VL<£,> +v. (13)

Since Cov|vec(Y)] = 2 ® I, holds, we have
Cov[vec(Z)] = (I, ® P}) Covlvec(Y)|(I, ® P1) =X ® I,.

This equation means that Cov[z;] =2, (i=1,...,n). Thus, from this result
and (13), the following equation is obtained:

\/CTiyi—‘y-v,‘ (izl,...,k)
a=d vt (=k+1) . (Eb]=0,Cov]=2). (14
v, (i=k+2,....n)

2.3. Equivalence of MSE[Y,] and MSE[Z,]. By a simple calculation, we can
determine that the LS estimator of (I'",u)" is (L'L) 'L'Z. Hence, the LS
estimators of I' and u can be expressed as I' = D~ 'C'Z and ji = 7141 /v/n,
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respectively, where C = (D'/?, O, «)'. By replacing D in I’ with D + @, the
MGR estimator of I' can be determined as

I,=D+06)'CZ. (15)

Notice that P{1XQ = C. Hence, the relation between the MGR estimators of

—

Z and I is as follows:

Ol = (X'X +00Q')'QC'PY = &, (16)

Let Zy be a predictor of Z, i.e., Zy = L(fé,ﬁ)'. The relation between Zy and
Yy is given by

Zy= P;PILP;(OQ, 01k> (r‘9> = Pi(X, ln)(?’,’) = P|Yy. (17)
k i it
Notice that E[Z] = P{E[Y]. Thus MSE[Y,] can be rewritten as
MSE[Yy] = E[tr{(E[Y] — Yy) X~ (E[Y] — Y,)'P,P}}]
— Er(E[Z), Zy)] = MSE[Z,]. (18)

The above equation implies that the MSE of Y, is equivalent to the MSE of Z,.
Therefore it appears that we can search for @ minimizing the MSE of Zj
instead of the MSE of Y.

2.4. Principal optimum 0. Recall that E[Z] = L(I'"',u)’ and Zy = L(I'}, i)’
Then r(E[Z],Zy) can be rewritten as

r(E[Z],Zg):tr{L(i/__I;‘j)E"(;I:Z?)/L’}. (19)

By elementary linear algebra,

() () () - e
(20)

Notice that

D'’Iy=D"?*D+0)"'C'Z

_ d dy !
= (D UD,0 , ) Z = ). (21
(D+0) (D,0nr) <d1 il ’dk+9kzk> (21)
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This equation implies that
DI —Iy) =D'’I — (D+0)"'(D,0, 1)Z
!
\Vd s\ di . 22
( y'd+0 ka+9 ) 22)

By using equations (19), (20) and (22), we can derive another expression for
the MSE[Z] as

MSE[Zy] = E[r(E[Z], Zy)]

:Zk:E[(\/_% T40 ) (fy' a+0, )}

i=1
+nE[(p— )2 (u— ). (23)
Recall that gi=z;.1/+/n. It follows from (14) that
nE[(u— )" (n— @) = E[(Vnu— z00) 27 (Vi — z541)]
— tr(Covlz]Z ") = p. (24)

Moreover, by using the results that E[z] = +/diy; and E[ziz)] = 2 +diyy),
(i=1,...,k), we calculate that

[(\/_% d+0 ) (fy, d+0 ):|:¢(Hi|di>yi)a (25)

where

(Oilds,y,) = dy!E~ 247 4 2( +dylEy)
(p 1 17))1 y yl d +0 y J)I d[+0[ p lyi yi N

Substituting (24) and (25) into (23) yields

k
MSE(Zg] = > ¢(0ildi,7,) + p

i=1

The above equation indicates that the principal optimum value of 6; can
be obtained by minimizing ¢(6;|d;,y;) individually. Let 67 >0, (i=1,...,k)
be the principal optimum value of ¢;. The first partial derivative of ¢(0;|d;, y;)
with respect to 6; is calculated as

2d?

0
— o(0;|d;, i =—2L(6; ;271 i —P)-
ae,-(”( \di, ;) (di+9i)3( %Xy — D)
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The above equation yields the principal optimum value of 6; as

. P :
gi:m, (i=1,....k). (26)

3. Plug-in method

3.1. MGR estimators with the optimized ridge parameters. For the case of
an univariate linear model, many authors have provided formulas for the GR
estimators with the optimized ridge parameters. By extending their methods
for optimizing # to the multivariate case, we derive formulas for the MGR
estimators with the optimized ridge parameters. Since the MGR estimator £y
in (3) is obtained by using the equation &y = QI in (16), we deal with I'y in
(15) instead of Zy. Let I' = (;,...,7,) be the ordinary LS estimator of I,
ie, I'=D7'C'Z. This implies that §, = z;/\/d;. Then, we have

Iy=D+0)"'C'Z=(D+06)'DI. (27)

Let 0= (6,...,00), (6; >0,i=1,....k) be the value of 8 optimized by such
a method, and let 3;(6;) be the ith row vector of Iy, which is defined by

substituting  into @ in I'y. From equation (27), we can see that 7,(6,) is
expressed as

It is clearly that 9;(0) =3, Let
=28z, (i=1,...,k). (29)
Since §; = z;/\/d;, t; in (29) can be rewritten as
t=d3'S'5,  (i=1,...k). (30)
If ; is a function of #;, then we can express 7,(6;) in (28) as
7(0) =w(ty,  (i=1,....k),

where w(z#;) is a function of #. From (28), it is clearly the case that 0 <
w(t;) < 1, because d; > 0 and 6; > 0. Hence w(z;) is called the weight function.
By using such a weight function, Lawless (1981) expressed several GR estima-
tors with the optimized ridge parameters. According to his notation, we
specify the individual MGR estimator with an optimized value of # using the
weight function.
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3.2. Once plug-in method. Since the principal optimum value 6" =
(0F,...,00)" is obtained as (26), we estimate 0 by replacing y; and X with
7; and S. Then we obtain the following optimal @ by single plug-in estimation:

é}l]:m%_%_p, (i=1,....k). (31)
Vi Vi i

Since w(t;) = d;/(d; + 6;), the weight function corresponding to HAIM is given by

Mgy =t
whl(5;) = .
() =7~ »
We refer to this once plug-in method as PI. In the case of p =1, the above
results coincide with the result in Hoerl and Kennard (1970).

3.3. Multiple plug-in method. We will avoid problems that arise from multi-
collinearity by the once plug-in method. However, we find that élm is made by
the ordinary LS estimator of p,. Hence, if multicollinearity occurs, HAID] tends
to small beyond necessity because §; tends to have large variance. Such an
under evaluation problem of §; may be improved by using the MGR estimator
instead of p;, in the optimal 0; because the MGR estimator tends to have
smaller variance than the ordinary LS estimator. Therefore, we obtain the
following optimal # by multiple plug-in estimation:

élm:m, (S:1,2,...;i:1,...,k), (32)

oSy
where J?i[s] =dp;/(d; + él[s]), (s=0,1,...) and él[O] =0. Notice that izlm is equal
to the estimator obtained using the PI method. Equation (32) implies that

1

. o\
oY = L= oY, (s=1,2,...5i=1,... k). (33)

In the case of p =1, the value of (32) was proposed by Hoerl and Kennard
(1970), and they used 39,[2] to estimate the regression coefficient. Hence we also
use ;3[[2] which is obtained by using 91[2]. We denote this twice plug-in method
as PI,. The optimal value of 6; derived using the PI, method is given by

o dip(ti+p)’
i l-3

>

and the weight function corresponding to 9,[2] is given by
7

[2]( ) =
w t .
T34 plti+p)
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3.4. Infinite plug-in method. For the case of p = 1, Hemmerle (1975) showed
that the value of (32) converges as s — oo. By extending the proof in
Hemmerle (1975) to the multivariate case, we obtain the following limiting
value of (32) as s — oo:

. di{ti — 2[7 — 1/ ti(ti — 4[7)} ([_ > 4p)
o) — » PETP i=1,.0k),  (34)
0 (ti < 4[))

(the proof is given in Appendix A.1). We refer to this infinite plug-in method
as PI,. The weight function w(*l(#;) corresponding to HIM is given by

2p
W (1) =4 (1 —/T—4p/1;)

0 (ll' < 4]7)

(t; = 4p)

4. Alternative methods

4.1. IC-based method. Yanagihara, Nagai and Satoh (2009) proposed C,
criterion for optimizing @ and its bias-corrected C, (Modified C,; MC,)
criterion. By omitting constant terms, their criteria are included in a class
of criteria specified by 4. The class is expressed by the generalized C, (GC,)
criterion as

GCy(0)7) = 27 "H(Y, ¥p) + 2p tr{(X'X + QOQ") ' X'X}, (35)

where the function 7 is given by (7). It notes that GC,(0|1) and GC,(0|cm) are

corresponding the main terms with respect to € in the C, and MC, criteria

where em = (n—k—1)/(n—k —p—2). By using the GC, criterion, we can

deal systematically with the optimization of # when we use IC-based method.
The optimal value of #; which minimizes (35) is obtained as

ipdl
R ;> A
0= - " i, (36)

[o'e] (li < ip)

(the proof is given in Appendix A.2). Then the weight function w(®)(z]|2)
corresponding to HEG)(/I) is given by

wlO(1]2) = t ' . (37)



Optimization of ridge parameters in MGR regression by plug-in methods 311

From (36), H ) that minimizes the C, criterion is 0 éfG)(l), (i=1,...,k).
Then equation (37) yields the weight function of this estimator as w< >(t,) =
wlG)(4;]1). This optimization method is referred to as C,.
Moreover, HAZ-(M> minimizing the MC, criterion is given by éfM) = QA,SG)(CM),
(i=1,...,k), and the weight function is w™) () = w(®(#;|ep). This opti-
mization method is referred to as MC,.

Kubokawa (1991) proposed an improved James-Stein estimator which is a
shrinkage estimator when p > 3. Suppose that & ~ N, ,(0yp, Z ® I,). Since

Vi~ Ny Z/di), (i=1,....k), (n=k—-1)S~W,(n—k—-12) and S 1y,

i=1,... k) are satisfied, the James-Stein estimator of yp; is obtained as
1
ap
3O = (1 I )J’z (ti > cip)
0, (t: < cip)

where ¢; =(n—k—1)(p —2)/{p(n—k —p+2)}. Hence, the weight function
for this optimization is obtained as
ap
1——= (4 > cp)
w (1) = li .
0 (ti < ap)

Since w(1;) = d;/(d; + 61", we have

From (36), we can see that 9< = 9 ( ) holds. This implies that é(J) is also
obtained by minimizing GC,(0|c;). This optimization method is referred to
as JS.

4.2. Another method. In the case of p =1, there is a method for optimizing
6 which does not correspond to either a plug-in method or an IC-based
method. Such a method was proposed by Lott (1973). By extending this
method to the multivariate case, we obtain the following optimal 6:

A 0 ti>2
eﬁp)—{ (6 > p), (i=1,...,k),
0 (liS2p)

and the weight function w®)(¢;) corresponding to éfm is given by

1 (i >2p)
w(n) = { 0 (5<2p)
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According to the notation in Lawless (1981), this optimization method is
referred to as PC (principal component).

5. Properties of the optimized ridge parameters

5.1. Relationship with hypothesis testing. Sometimes, an estimate of the MGR
estimator of y; becomes 0, after optimizing. This result can be considered
from the viewpoint that we estimate p; as 0, when the null hypothesis in the
following hypothesis test is accepted:

HQ Vi = 01, VS. H] 2P #* 0[,. (38)
In this subsection, we discuss the relationship between each method for
optimizing @ and the hypothesis test of (38). Since Cov[p,| = 2'/d;, the test
statistic for (38) is #; in (30). Suppose that & ~ N,y ,(0y p, 2 ® I,). Then the
test statistic #; is distributed according to the Hotelling’s 7' distribution with p
and n—k — 1 degrees of freedom when the null hypothesis Hy is true (see
e.g., Siotani, Hayakawa and Fujikoshi, 1985, p. 190). For the P1.., C,, MC,,
JS and PC methods, the MGR estimators of p; with the optimized ridge
parameters become 0, if the test statistic ¢; is smaller than a threshold value «,
ie., 4p, p, ecup, cyp and 2p, respectively. This indicates that the MGR
estimator with the optimized ridge parameter becomes 0, when the hypothesis
H, is accepted. The significance level of the above test is determined by the
particular threshold value a. When the hypothesis Hy is rejected, the MGR
estimators with the ridge parameter optimized by PI., C,, MC, and JS
methods are shrinkage estimators of the ordinary LS estimator of I'. These
shrinkage ratios become small as #; increases and eventually approach 1. On
the other hand, the PC method does not shrink the ordinary LS estimator of I”
even when the hypothesis Hj is rejected. The PI and PI, methods do not
result in the MGR estimators with the optimized ridge parameters becoming 0,,.
The MGR estimators with the ridge parameters optimized by the PI and PI,
methods are always shrinkage estimators of the ordinary LS estimator of I.
These shrinkage ratios also become small as ¢ increases and eventually
approach 1. The relations between hypothesis testing and estimation are
shown in Table 1.

Table 2 shows the significance levels P(#; > a) with a =4p (Pl,.), p (C,),
emp (MCp), cyp (JS) and 2p (PC) when (k,n) = (5,20), (5,50),(10,20), (10, 50)
and p=3. From Table 2, we can see that the significance level of Pl is
the smallest among the five methods in all cases. This means that the PI.,
method most frequently makes the MGR estimator with the optimized ridge
parameter into 0,. We note that the significance level of the JS method is
greater than that of the C, method and that the significance level of the C,
method is greater than that of the MC, method.
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Table 1. Relationship between hypothesis testing and shrinkage of the estimator

Method a Hy is rejected | H, is accepted
PI, P, — shrinking $; shrinking %;
Pl 4p shrinking p; 0,
G p shrinking §; 0,
MC, cmp shrinking $; 0,
JS cp shrinking p; 0,
PC 2p i 0,

Table 2. The significance levels in several cases

k| n| PL ¢, MG, IS PC

5 120 | 0.0524 0.4895 0.3515 0.8348 0.2170
50 | 0.0166 0.4231 0.3805 0.8121 0.1428

10 { 20 | 0.0978 0.5426  0.3204 0.8526 0.2832
50 | 0.0181 0.4271 0.3790 0.8135 0.1470

5.2. Magnitude relations among optimized #’s. In this subsection, we obtain
magnitude relations among 6 optimized by each method.
It follows from (33) that é,m >0, (s=1,2,...), because élm > 0. When

s =2, we have
. LA
67 = 1+=-]0">46".

Suppose that 6" > "' is satisfied. Then, we derive

~ 2 ~ 2
é[ﬂ1+l] (i el[m] é[l] (s 091[”771] é[l] _ é[m]
’ | 7 RO

Consequently, by mathematical induction, we obtain the following theorem:

THEOREM 1. The following relationships among the optimized 0 always
hold:

0<0<d? <. (i=1,.. k). (39)

For @ optimized by the IC-based method, we obtain the following theorem
from (36):

THEOREM 2. When A1 < Ay holds, the optimized value of 0 always satisfies:
0 () <07 (2),  (i=1,....k), (40)

with equality if and only if t; < A1p.
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From theorem 2, we have
00 <O, 0P <™, =1k,

because 1 < ey and ¢y < em are satisfied. Notice that ¢y > 1 holds when
p>{3+(9+8( —1)"/21/2 and ¢y <1 holds when p< {3+ (9+

8n—k—1)" /2. Hence we have
{é@ <0V (p>{(3+9+8mn—k—-1)}/2), =1 0
i=1,...,k).

(
é[(J) Séi@ (p<{3+ 9+8(n*k*1)}/2)’

The magnitude relations with 8 optimized by the plug-in method and IC-
based methods are shown as follows (the proof is given in Appendix A.3):

THEOREM 3. The following relationships among the optimized values of 0
hold:

, (when 2 >=1),
D) <6 (when 0< i <1),

with equality if and only if t; < Ap.

It follows from éfG)(l) =0 and theorem 3 that

with equality if and only if ¢ < p.

5.3. Magnitude relations among weight funstions. The shrinkage ratio of each
method corresponds to the weight function w(z;). A method with smaller w(z;)
shrinks §; to a greater extent. When w(z;) is nearly equal to one, the method
shrinks §; hardly at all. Figure 1 shows the weight functions associated with
each method when (k,n) = (5,20),(5,50),(10,20),(10,50) and p =3. From
these figures, we can see that the weight function of MC, is always smaller than
those of PI, Pl,, C, and JS. Thus the MC, method always shrinks p; to a
greater extent than do the PI, PI,, C, and JS methods. The weight functions
of PI, and C, are always smaller than that of PI. The weight function of PI,
is always smaller than those of C,, PI, PI, and PC.

The above magnitude relations among the weight functions are satisfied
only when (k,n) = (5,20), (5,50),(10,20),(10,50) and p =3. Notice that the
weight function w(t;) = d;/(d; + 0;). Hence, we can obtain the magnitude
relations among the weight functions by using theorems 1, 2 and 3. General
magnitude relations among the weight functions are given by the following
theorem:
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Fig. 1. Shrinkage ratio (value of weight function) for each optimization method in several cases.
THEOREM 4. The following relationships among the weight functions hold:

wl=l(1) < - < wBl(5) < wll(z),

Sy < [P SO (p2 (34 I k1)),
v wO () <w(t) (p< {3+ me@,
W[w]([i) < W(C>([1) < W[l](,l)

Notice that these relationships among the methods correspond to the
relationships among the significance levels of the various methods.

6. Numerical studies

In this section, we conduct numerical studies to compare the MSEs of
predictors of Y consisting of the MGR estimators with the optimized ridge
parameters. Let R, and 4,(p) be g x g matrices defined by
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L p p!
p 1 p pi?
. 2 1 q-3
R, = diag(1,...,q), d,(p)=1| P P P
pi=t pitr pa? 1

The explanatory matrix X was generated from X = W¥'? where ¥ =
R,l/ 2Ak(px)R,i/ > and W is an nx k matrix whose elements were generated
independently from the uniform distribution on (—1,1). The k& x p unknown
regression coefficient matrix = was defined by = = dFZ, where J is a constant,
and F and E are defined as

0.8501 0.6571 0.2159
—0.2753 —-0.2432 —-0.1187
—0.3193 -0.2926 —0.1671
0.2754  0.2608  0.1766
F—( I, Oy 10-x ) 0.2693  0.2164  0.2066

Ok Op_y 10—« —0.0676 —0.0663 —0.0561
0.2239  0.2197  0.1880
—0.0352 —0.0346 —0.0305
0.3240  0.3199  0.2868
—-0.3747 -0.3727 —-0.3554

I
(=}
Il

Here 6 controls the scale of the regression coefficient matrix and F controls the
number of non-zero regression coefficients via x (dimension of the true model).
Values of elements of Z,, which is an essential regression coefficient matrix,
are the same as in Lawless (1981). Simulated data values Y were generated
by Nux3(XE,Z®1,) repeatedly under several selections of n, k, x, 0 and
Py, Where X = R;/2A3(0.8)R;/2 and the number of repetition was 10,000. At
each repetition, we evaluated r(XZ, Yé), where f/é =1,y + X.E}; which is the
predicted value of Y obtained from each method. The average of r(XZ, Y,;)
across 10,000 repetition was regarded as the MSE of f’é. In the simulation, a
standardized X was used for estimating regression coefficients. Tables 3, 4, 5
and 6 depict MSE[f’é]/{3(k+ 1)} x 100 in the case of (k,n) = (5,20),(5,50),
(10,20) and (10, 50), respectively, where 3(k + 1) is the MSE of the predictor
of Y derived by using the LS estimator of Z.

In tables 3, 4, 5 and 6, we observe that the method can improve the LS
estimation when values in the tables do not exceed 100. In each table, the
average of MSE[Yé] /{3(k + 1)} x 100 across all cases is also depicted in the
bottom line of the table. From the tables, we can see that all methods

improve the ordinary LS method in almost all cases. The PI, method
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Table 3. MSE of each method (k =5, n = 20)

k| 6 | po | PI PI, PL,

¢, MG, JS  PC

01 0.0 0.2 | 50.84 36.51 23.08 3742  29.72 66.34 53.80
0.8 | 50.91 36.59  23.25 37.47 29.82  66.38 53.56
0.99 | 51.03 36.75 23.43 37.65 30.00 66.48 53.98

3110 02 | 67.30  62.39  69.92 65.59 62.74  80.68 92.45
0.8 | 57.06  46.37  40.11 48.28 4230 71.90 68.89
0.99 | 51.81 37.91 25.15 38.94 3143 67.28 55.82

3.0 0.2 | 96.60 103.34 14820 103.14 110.90 97.90 113.59
0.8 | 75.36 74.01 97.23 75.60 76.52  84.66 95.46
0.99 | 56.42 4543 3836  47.29 41.13  71.37 67.53

51 1.0 02| 7410 7298  96.22 75.55 76.16 84.56  100.71
0.8 | 67.01 62.10 72.66 64.74 6250  79.63 89.26
0.99 | 59.84 50.45 52.24 5148  47.25 7281 69.32

3.0 0.2 | 94.69 98.22  121.30 98.30 103.00 96.21  105.66
0.8 | 90.12 93.12  125.76 93.21 97.92  93.66 104.29
0.99 | 64.97 56.03 49.79 57.41 5271  76.81 72.99

Average 67.20  60.81 67.11 62.14  59.61 78.44 79.82

improved on the ordinary LS method more than the PI method in almost all
cases when n = 20. When « is small, it is necessary to shrink the LS estimator
to a greater extent. On the other hand, it is not necessary to shrink the LS
estimator when « is large. Thus PI,, works well when x is small but does not
work well when x is large since x controls the number of non-zero elements in
the true regression coefficient matrix = and PI,, has the most shrinkage of the
LS estimators. These estimation methods more improve when ¢ is small than
0 is large since 0 means the scale of the true regression coefficient matrix and
these estimate methods shrink the LS estimator. When p, is 0.99, these
estimate methods improve the LS estimator even if x and J are large since the
LS estimator is unstable. On average, C, was the best method in almost cases
except PI, and MC,. One of the reasons is that the shape of the weight
function of C, is near to that of PI,, which is shown in Figure 1. Further-
more, because the MC, criterion is the bias corrected C, criterion, the results
from the MC, and C, methods become similar when # is large. The PI and JS
methods improve the ordinary LS method in almost cases although the ratios
of improvement are not as great. On average, Pl is the best method to
obtain stable estimator except (k,n) = (10,20). When (k,n) = (10,20), MC,
is the best method on average to obtain stable estimator.
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Table 4. MSE of each method (k =5, n = 50)

k|6 | p | PL P, P, C MG IS PC

0] 0.0 0.2 | 4729 32.07 19.19 3257 3034 62.83 45.92
0.8 | 47.61 32.39 19.36 3292 30.67 63.18 46.59
0.99 | 4745 3229 1947 3280 3057 6292  46.10

3110 02 | 7223 70.58 9832 71.75 7191 81.26  90.43
0.8 | 60.71 53.64 61.60 5578 54.80 73.95 71.87
099 | 49.18 3514  24.04 36.08 3398 64.04 51.12

3.0 0.2 | 8396 81.75 83.95 8255 8242 89.09 91.32
0.8 | 82.78 84.85 119.82 86.15 86.97 8885 104.87
099 | 60.54 5346  58.64 56.16 55.09 74.47 80.63

5110 0.2 | 80.15 81.29 11458 82.15 82.80 86.98 99.23
0.8 | 71.57 69.36  96.08 70.84 70.83 81.53 91.18
0.99 | 59.20 4889 4525 4925 4784 7147 61.47

3.0 0.2 | 91.53  90.87 99.02  90.73 90.93 94.01 94.40
0.8 | 87.83 8893 11544 8897 89.63 91.33 98.13
0.99 | 66.36  59.40 61.12  61.10 60.12 77.51 78.26

Average 67.23 6099  69.06 6199 61.26 77.60 71.17

A. Appendix

A.1. The proof of equation (34). In this subsection, we show that the 91-[5']
in (32) converges to HA,[T“] in (34) as s — oo by extending the technique in
Hemmerle (1975).

Theorem 1 shows that {él[sl} is a monotonic increasing sequence. If 9,[S] is
bounded above, 9,[5] surely converges. To prove the convergence, we prove the
following lemma:

LemMa 1. Let a; be a positive number.  Define a sequence of real numbers
by

agip = (1 +as)2a1, (s=1,2,...).

Then ay converges to some number if and only if ay <1/4. If a) <1/4, we

obtain

. 1 V1 —4da
Iimag=—-1—-——"—7—.

42
§—0 2a1 2611 ( )
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Table 5. MSE of each method (k =10, n = 20)

k| @6 | p | PL P, P, C MC IS PC

01 0.0 0.2 | 4977 3522  21.05 36.40 22.57 66.23 55.34
0.8 | 50.27 3580  21.64 36.99 23.11 66.70 55.96
0.99 | 50.11 35.51 21.29  36.69 22.76  66.68 55.82

3110 0.2 | 5773 4742 4332 4939 39.69 7294 7197
0.8 | 53.27 40.64 30.17 4234 2995 69.36  63.52
0.99 | 50.56 36.23 2242 3750 2374 67.05 57.10

3.0 02 | 7325 69.84 82.01 71.63 7133 83.63 92.06
0.8 | 6595 60.01 69.20 6194 5846 78.63 84.43
0.99 | 53.57 41.00 30.90 4271 3045 69.70  63.87

5110 0.2 | 60.81 5230 5438 54.04 4744 74.61 75.55
0.8 | 57.84 47.66 4480 4929 4049 7246  70.34
0.99 | 54.96 42.70 3520 4371 3331 69.89 6194

3.0 0.2 ] 7632 74.00 86.35 7620 76.35 85.99 97.57
0.8 | 69.44 63.82 71.08 6527 62.56 80.46 83.88
0.99 | 56.84 44.89 3423 46.26 3490 71.42 64.57

10 | 1.0 0.2 | 67.46 62.71 7494 6492 62.67 79.84  88.92
0.8 | 60.78 51.81 50.95 53.62 4599 7493 74719
0.99 | 5546 43.27 3517 4426 3386 70.22  61.84

3.0 0.2 | 86.68 87.82 109.28 88.68 95.67 91.73 102.46
0.8 ] 7991 79.81 101.50 81.68 8570 88.25 102.05
0.99 | 58.76  47.86 39.12 4951 38.88 73.12  69.11

Average 61.41 5240 51.38° 5395 46.66 74.94 73.96

ProoOF. It can be easily checked that ay.| > a; by the inductive method.
Suppose that the o = lim,_.,, a, exists. Then o is one of the solutions of the
following quadratic equation with respect to x;

x=(1+x)a & x2+2<1—%>x+1:0. (43)
1

The discriminant shows (43) has real roots if and only if a; < 1/4.
If a; =1/4, the equation (43) has the multiple root o =1. Suppose
a1 <1/4 and g, <1 for some k. Then

ar < (1+1)2/4=1.

Hence the sequence {a;} is bounded by the induction. Since {a;} is an
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Table 6. MSE of each method (k =10, n = 50)

k|6 | p | PL PL P ¢, MCc, IS PC

01 0.0 0.2 | 4287  26.28 12.11 26.88 24.10 5987  41.73
0.8 | 42.68 26.17 1210 2674 2399 59.61 41.42
099 | 4299  26.49 1240  27.09 2432 5993  42.03

3110 0.2 | 63.01 5823  76.41 60.78 60.16  76.18 86.79
0.8 | 50.32 38.31 35.46 39.91 3791  66.16 59.75
0.99 | 43.62  27.86 14.99  28.69 26.04 6040 4443

3.0 0.2 | 84.48 85.35 107.83 86.11 86.78  89.75 99.43
0.8 | 67.10 6297  79.81 65.18 64.72 78.80  88.53
0.99 | 50.32 3850 3538  40.26 3829 6620  61.03

5110 0.2 | 69.15 67.09 9234  69.52 69.48  80.63 95.30
0.8 | 56.52  47.06 4943 4849  47.03 70.50  67.56
0.99 | 49.48 3526 23.94 35.79 3346 64.67  49.55

3.0 0.2 | 91.12 9428 123.88 94.49 9572 93.81 105.41
0.8 | 69.83 64.95 68.86 66.82 66.14  80.19 84.84
0.99 | 53.86 42.07 3485  43.63 41.58  68.77 61.46

10 | 1.0 0.2 | 79.11 81.30 112.51 84.22 8496 88.14 111.74
08 | 63.54 5732 6844  59.06 5823 7596  79.99
0.99 | 50.43 36.79 2588  37.60 3534 6554 5249

3.0 0.2 | 99.63 103.28 121.89 102.29 103.58 98.83 102.91
0.8 | 82.53 83.03 101.04 85.10 85.48 89.54 104.24
0.99 | 59.89  51.95 55.35 54.25 5294 73.63 76.64

Average 62.50 54.98 60.23 56.33 5525 74.62 74.16

increasing sequence, it has the limiting value which is not greater than 1.
If a; <1/4, the equation (43) has the roots
1 1 \/1—4611 1 \/1—4611

= —_—— —_———— = —_—— 1
A 2611 2(11 and % 2611 + 2611

Since oy = ap(ay) is a strict decreasiong function of a, ax(a;) > ax(1/4) =1 for
any a; < 1/4. Hence the limiting value is «; because it can not be greater
than 1.

We consider a, in the above lemma as él[‘y] /di;. Then a; <1 when ¢; > 4p.
By using this lemma, we obtain the 91[001 when #; > 4p. On the other hand,
from Theorem 1, we note {a,} is also monotone increasing sequence. Hence,
if # < 4p holds, lim,_.. 0 = oo is satisfied.

1
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A.2. The proof of equation (36). From (4), the second part of GC,(|4) in
(35) can be rewritten as

di
di+0;

t{(X'X + 00Q") 'X'X} = tr{(D + ©) ' D} = ij (44)
i=1

Moreover, from (12) and (17), the first part of GC,(0|4) can be rewritten as
F(Y,¥g) = tr{(Y — ¥Y)S (Y — ¥y)'}
= tt{P|(Z — Zy)S™(Z — Zy)'P}} = H(Z, Zy). (45)

By using (17) and (20), we have

. Dl/zfg

N I,

Zy= L< Af’) = va | (46)
A Onfkfl,p

Notice that /2 = Z/H_]/\/ﬁ and 3 — {d,/(dl + 0[)}zl‘ = {01/(07, + 0[)}@. Substitut-
ing (21) and (46) into (45) yields

k 2 n
5 0; _
HZ,Zy) = :(d'+9.) L+ Y Sz, (47)

i=1 i=k+2

where 1 is given by (29) or (30). Let ¥ and Z be Y, and Z, with 6 = 0,
respectively. Then, from similar calculations with (45) and (46), we derive

n
Y-VY-Y)=(Z-2)(Z-2)= > zz]
i=k+2
This equation implies that (n —k —1)8 =", , ziz/. Consequently, by using
this result, (44), (45) and (47), GC,(0|1) can be rewritten as

k
GCp(012) = > f(Oild, 11, 2) + 77" pln —k — 1), (48)
i=1

where the function f(6;|d;,t;, ) is defined by

o 6 N 2pd;
A 4. — 1 i ) i P
f(6i|di, t;,0) = 4 (d,-+9i> tl+di+9i, (i=1,...,k).

Hence in order to obtain é(G)(i):(é;G)(}v),...,él((G)(/l))’, (9(G>(i)20,

1
i=1,...,k) making GC,(0|1) the minimum, we can see that it is necessary
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only to minimize f(0;|d;,t;,A) individually. The first partial derivative of
f(0i|d;, t;,2.) with respect to 6; is calculated as

0 2d;

fOi|di, t;, 1) = ———{0:(¢ — Apd;

g Ol ) = 5= 0= i) = i)
This derivative indicates that f(0:|d;,;,4) becomes a minimum at 6; =
Apd;/(ti — Ap) when t; — Ap >0 holds. On the other hand, f(0i|d;,#;,7) is
a monotonic decreasing function of 6; when ¢ —Ap <0 holds. Thus,
f(6i|d;, t;, 1) converges to the minimum value as 6; — oo when ¢, — Ap <0
holds. Consequently, from the above two results, the equation (36) follows.

A.3. The proof of equation (41). Firstly, we show the proof of the first
1nequa11ty of equation (41). It is easy to obtain é (4) >é when #; < Ap,
because 0 )(/1) = oo and 49” < oo are satisfied when #; < Ap. When ¢; > Ap,
from (31) and (36), we can see that

A7) g = dip{(% — )lz+/1p}
ti(ti = 2p)
Since #; > 0 holds, the right side of the above equation becomes positive when
A=1. Thus, 0/9(1) > 6" holds when 1> 1.
Next, we show the proof of the second inequality of equation (41). Sup-
pose that 0 < 4 < 1 It is easy to obtain éi(G)(i) < é,[v“] when ¢; < 4p, because
6! = o and 6’( (A) < oo are satisfied when #; <4p. Notice that

1
2\ 4 4p3
(-2) - (1-2) -2,
li=p i)t —p)

The above equation and the inequality ¢, —p < t; — Ap imply that

4 2\ 2\’
——p<<1 p)<<1— 4 ) (49)
ti ti—p ti—Ap

Since f; >4p is assumed, we obtain 1—2p/(t; —p) = (t; —3p)/(t; — p) > 0.
Hence, 1 —2p/(t; — Ap) > 0 can also be derived. It follows from this result
and the inequality (49) that

=

4p 2p
l-—<1- . 50
t; < ti — ;»p ( )
By multiplying both sides of (50) by ¢ after calculation, we have
. t — t:(t: — 4
h iz Vil ) (51)

ti—Ap 2p
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Subtracting 1 from both sides of (51) yields

N P (1t —4
p =2 Vit p). (52)

ti—Ap 2p

Thus, when #; > 4p, éi(G)(i) < élm can be derived by multiplying both sides of
(52) by d;. Consequently, !7(2) < 0 is obtained when 0 < 7 < 1.
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