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Abstract. We study the monoid generated by certain Zariski-van Kampen generators

in the positive homogeneous presented fundamental group of the complement of the

logarithmic free divisor, called the type Bii in the list by Sekiguchi. Although the

monoid is cancellative, it turns out that the monoid is not Gaussian and, hence, is

neither Garside nor Artin. Nevertheless, we show that the monoid carries certain

particular elements similar to the fundamental elements in Artin monoid. Hence, we

can solve the word problem and the conjugacy problem in the monoid and determine

the center of it and the explicit form of the growth function for it. As a result, we can

also solve the word problem and the conjugacy problem in the fundamental group, and

determine the center of it (Theorem 5.8).

1. Introduction

A hypersurface D in C l (l A Zb0) is called a logarithmic free divisor ([S1,

S2]), if the associated module DerC l ð�logðDÞÞ of logarithmic vector fields is a

free OC l -module. Classical example of logarithmic free divisors is the dis-

criminant loci of a finite reflection group ([S1], [S2]). The fundamental group

of the complement of the discriminant loci is presented ([B]) by certain positive

homogeneous relations, called Artin braid relations. The group (resp. monoid)

defined by that presentation is called an Artin group (resp. Artin monoid ) of

finite type [B-S], for which the word problem and other problems are solved

using a particular element D, the fundamental element, in the corresponding

monoid ([B-S], [D], [G]).

In [Se1, 2], Sekiguchi made a list of 17 weighted homogeneous polynomials

that define logarithmic free divisors in C3. They are labeled by the type

X A fAi;Aii;Bi;Bii; . . . ;Bvii;Hi;Hii; . . . ;Hviiig. Then, the fundamental groups

of the complements of the divisors are presented by using Zariski-van Kampen

method in [I]. In [S-I], it turns out that the defining relations can be rewritten

by a system of positive homogeneous relations in the sense explained in § 2 of
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the present paper, so that we can introduce monoids defined by them. We

have shown in [S-I] that, among 17 monoids, five are Artin monoids ([B-S]), and

eight are free abelian monoids. However, four remaining types Bii, Bvi, Hii,

Hiii, the monoids are not Gaussian, and hence are neither Garside ([D-P]) nor

Artin. Nevertheless, we have shown that all the 17 monoids carry certain

particular elements similar to the fundamental elements in Artin monoids. In

this paper, we focus our attention to the type Bii monoid among the remaining

four monoids. As a result, some decision problems in the fundamental group

can be solved (Theorem 5.8). Moreover, we show that the fundamental group

is a solvable group and admits a faithful 5� 5-matrix representation (Corollary

5.12).

Let us explain more details of the content. The explicit form of type

Bii Sekiguchi-polynomial is zð�2y3 þ 4x3zþ 18xyzþ 27z2Þ and is denoted by

DBii
ðx; y; zÞ. We put DBii

:¼ fDBii
ðx; y; zÞ ¼ 0g. Then, the fundamental group

of the complement of the divisor DBii
is presented by Zariski-van Kampen

method, where we need to choose a generator system of the fundamental group

by fixing pathes in a reference fiber. There is an ambiguity of choosing

Zariski-van Kampen generator system, where any two Zariski-van Kampen

generator systems can be transformed to each other by an action of braid.

In § 3, we choose a suitable generator system of the fundamental group

p1ðC3nDBii
; �Þ for solving some decision problems on it (Proposition 3.1).

We fix the presentation and denote the presented group by GBii
. For the

presented group GBii
, we associate a monoid Gþ

Bii
defined by it. We will show

that the associated monoid Gþ
Bii

satisfies the cancellation condition (Proposition

5.5) and naturally injects into the group GBii
. Hence, we can say that the

solvability of the word problem and the conjugacy problem and determinative-

ness of the center in the monoid imply those in the group GBii
(Lemma

4.2). In this way, we solve the word problem and the conjugacy problem

in the group GBii
, and determine the center of it. Moreover, we will deter-

mine the set FðGþ
Bii
Þ of fundamental elements and the set QZðGþ

Bii
Þ of quasi-

central elements. As a corollary, we will show that the subsemigroup

FðGþ
Bii
ÞðHQZðGþ

Bii
ÞÞ is an infinitely generated idealistic subsemigroup (Remark

5.9). Moreover, we show that the group GBii
is not word hyperbolic ([Gr2])

(Remark 5.10). We will show that the growth function for the monoid Gþ
Bii

is a

rational function and the explicit form of it can be determined (Theorem

5.8). By observing the distribution of the zeroes of the denominator poly-

nomial of the growth function for the monoid Gþ
Bii
, it is conjectured that the

group GBii
contains a free abelian subgroup of rank 4 of finite index. Indeed,

we can show that the group GBii
contains a subgroup of index three. By using

this proposition, we will show that the group GBii
is a solvable group and

admits a faithful 5� 5-matrix representation.
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2. Positive homogeneous presentation

In this section, we first recall from [B-S] some basic definitions and nota-

tions. Next, for a positive homogeneously finitely presented group

G ¼ hLjRi;

we associate a monoid defined by it.

Let L be a finite set. Let F ðLÞ be the free group generated by L, and let

L� be the free monoid generated by L inside FðLÞ. We call the elements of

FðLÞ words and the elements of L� positive words. The empty word e is the

identity element of L�. If two words A, B are identical letter by letter, we

write A1B. Let G ¼ hLjRi be a positive homogeneously presented group

(i.e. the set R of relations consists of those of the form Ri ¼ Si where Ri and Si

are positive words of the same length), where R is the set of relations. We

often denote the images of the letters and words under the quotient homo-

morphism

FðLÞ ! G

by the same symbols and the equivalence relation on elements A and B in G is

denoted by A ¼ B.

Next, we recall some terminologies and concepts on a monoid M. An

element U A M is said to divide V A M from the left (resp. right), and denoted

by U jlV (resp. U jrV ), if there exists W A M such that V ¼ UW (resp.

V ¼ WU). We also say that V is left-divisible (resp. right-divisible) by U ,

or V is a right-multiple (resp. left-divisible) of U . We say that M admits the

left (resp. right) divisibility theory, if for any two elements U , V of M, there

always exists their left (resp. right) least common multiple, i.e. a left (resp.

right) common multiple which divides any other left (resp. right) common

multiple.

Next, we recall from [S-I] some terminologies and concepts on positive

homogeneously presented monoid.

Definition 2.1. Let G ¼ hLjRi be a positive homogeneously finitely

presented group, where L is the set of generators (called alphabet) and R is

the set of relations. Then we associate a monoid Gþ ¼ hLjRimo defined as the

quotient of the free monoid L� generated by L by the equivalence relation defined

as follows:

i) two words U and V in L� are called elementarily equivalent if either

U 1V or V is obtained from U by substituting a substring Ri of U by Si

where Ri ¼ Si is a relation of R (Si ¼ Ri is also a relation if Ri ¼ Si is a

relation),
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ii) two words U and V in L� are called equivalent, denoted by U HV, if

there exists a sequence U 1W0;W1; . . . ;Wn 1V of words in L� for n A Zb0

such that Wi is elementarily equivalent to Wi�1 for i ¼ 1; . . . ; n.

1. Due to the homogeneity of the relations, we define a homomorphism:

l : Gþ ! Zb0

by assigning to each equivalent class of words the length of the words.

2. We say that Gþ is cancellative, if an equality AXBHAYB for

A;B;X ;Y A Gþ implies X HY.

3. The natural homomorphism p : Gþ ! G will be called the localization

homomorphism.

4. An element D A Gþ is called quasi-central (also see [B-S] 7.1), if there

exists a permutation sD of L=@ (:¼ the image of the set L in Gþ) such that

s � DHD � sDðsÞ

holds for all generators s A L=@. The set of all quasi-central elements is denoted

by QZðGþÞ. The order of an element sD in the permutation group SðL=@Þ is

denoted by ordðsDÞ. Note that DordðsDÞ belongs to the center ZðGþÞ of the

monoid Gþ.

5. An element D A Gþ is called fundamental if there exists a permutation

sD of L=@ such that, for any s A L=@, there exists Ds A Gþ satisfying the

following relation:

DH s � Ds HDs � sDðsÞ:

We denote by FðGþÞ the set of all fundamental elements of Gþ. Note that

e A QZðGþÞ but e B FðGþÞ. It is easy to show that

FðGþÞQZðGþÞ ¼ QZðGþÞFðGþÞ ¼ FðGþÞ:

6. A fundamental element D is called a minimal fundamental element if

any fundamental element dividing D from right or left coincides with D itself.

7. A quasi-central element D is called indecomposable, if it does not

decompose into a product of two nontrivial quasi-central elements. We note that

the identity element e is not indecomposable. We call a fundamental element

prime, if it is an indecomposable quasi-central element.

In general, a minimal fundamental element may not be prime. Here is an

example.

Example 2.2. Let us consider the following monoid:

M1 :¼ a; b; c

������
cb ¼ ba;

bc ¼ ab;

ac ¼ ca

* +
mo

:
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We can easily show that acb is a minimal fundamental element, but ac and b are

nontrivial quasi-central elements. Hence, acb is not prime.

3. Positive homogeneous presentation of GBii

In this section, we recall from [S-I] a positive homogeneous presentation

of the fundamental group of the complement of the type Bii logarithmic free

divisor that is given by using Zariski-van Kampen method (see [Ch], [T-S] for

instance). There is an ambiguity of choosing Zariski-van Kampen generator

system. We choose one of them and consider some dicision problems of

words.

In [S-I] § 4, we presented the fundamental group of the type Bii positive

homogeneously. We then showed the following proposition:

Proposition 3.1. For any choice of Zariski-van Kampen generator system

fa; b; cg (up to a permutation), the fundamental group of type Bii admits only

one of the following two presentations I and II

I: a; b; c

������
cbb ¼ bba;

bc ¼ ab;

ac ¼ ca

* +
;

II: a; b; c

������
ababab ¼ bababa;

b ¼ c;

aabab ¼ baaba

* +
:

For example, an explicit form of an isomorphism from the presentation I to the

presentation II is given by the correspondence

a 7! baba�1b�1; b 7! babab�1a�1b�1; c 7! c:

In this paper, we adopt the presentation I and denote this presented group

by GBii
. For the presented group GBii

, we associate the monoid Gþ
Bii
. We

have an important remark on the monoid Gþ
Bii
.

Remark 3.2. Since both sides of the defining relations of Gþ
Bii

contain the

same number of the letter b, for arbitrary word W in Gþ
Bii
, the number of the

letter b in W ought to be preserved in the process of rewriting W.

4. Word problem and Conjugacy problem

In the present section, we define the word problem and the conjugacy

problem in a monoid.
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Definition 4.1. Let Gþ ¼ hLjRimo be a positive homogeneously presented

monoid.

1) For arbitrary two words U, V in L�, give an algorithm that decides

whether U HV in Gþ or not.

2) For arbitrary two words U, V in L�, give an algorithm that decides

whether there exists an element A in Gþ such that AU HVA (then we write

U @
mo

V) or not.

The problems 1), 2) are called the word problem and the conjugacy

problem Editor in a monoid Gþ, respectively.

Lemma 4.2. Let G be a positive homogeneously presented group, and let Gþ

be the associated monoid. Assume that the monoid Gþ is a cancellative monoid

and FðGþÞ0q. Then:

(1) The localization homomorphism p : Gþ ! G is injective.

(2) The word problem in Gþ is solvable if and only if the word problem

in G is solvable.

(3) The conjugacy problem in Gþ is solvable if and only if the conjugacy

problem in G is solvable.

Proof. (1) Let D A FðGþÞ be a fundamental element. We can easily

show that, for any U A Gþ, U devides DlðUÞ from the left and the right.

Hence, we show that the monoid Gþ satisfies Öre’s condition (see [C-P]).

Therefore, the localization homomorphism p is injective.

(2) We put L :¼ DordðsDÞ, which belongs to the center ZðGþÞ of the

monoid Gþ. For any two elements U , V in G, there exists a non-negative

integer k in Zb0 such that both ðpðLÞÞkU and ðpðLÞÞkV are equivalent to

positive words. Since the localization homomorphism p is injective, there

exists a unique element U 0 A Gþ (resp. V 0 A Gþ) such that

pðU 0Þ ¼ ðpðLÞÞkU ðresp: pðV 0Þ ¼ ðpðLÞÞkVÞ:

Therefore, we have shown that U ¼ V can be shown in G algorithmically if

and only if U 0 HV 0 can be shown in Gþ algorithmically.

(3) If two elements U and V in G are conjugate, then there exists a word

B such that BU ¼ VB. There exists a non-negative integer l in Zb0 such that

ðpðLÞÞ lB is equivalent to a positive word. Since pðLÞ belongs to the center of

the group G, we say that two elements U and V in G are conjugate precisely

when there is a positive word A such that AU is equivalent to VA. Therefore,

due to the injectivity of the localization homomorphism p, we can show that

the conjugacy problem in Gþ is solvable if and only if the conjugacy problem

in G is solvable. r
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5. Main results

In this section, we state the main results on Gþ
Bii

and GBii
. First we

prepare some lemmas.

For each j A Zb0, let

Wð jÞ :¼ fw A Gþ
Bii

jw contains the letter b just j-timesg:

For each k A Zb0, we put

Dk :¼ ðakbÞ3; Lk :¼ bakbb:

Lemma 5.1. The following relations hold for i ¼ 1; 2; . . . :

aibH bci; bbai H cibb:

Proof. By using the defining relations ab ¼ bc, bba ¼ cbb repeatedly, we

show the equations. r

Lemma 5.2. If w A Wð jÞ ð jb 4Þ, then b3jlw and b3jrw.

Proof. First of all, D0 ¼ b3 belongs to the center ZðGþ
Bii
Þ of the monoid

Gþ
Bii
. Secondly, w inevitably contains a substring whose form is generally

written as bapcqbarcsbatcub (p; q; r; s; t; u A Zb0). Lastly, we have an equality

bapcqbH bcqapbH aqbbcp:

Therefore, by applying the defining relations to the substring bapcqbarcsbatcub,

we have:

bapcqbarcsbatcubH aqbbcparcsaubbct H a jcrþubbbbapþsct H bbba jcrþubapþsct:

Lemma 5.3. aLk HLka, cLk HLkc.

Proof. We have an equality:

abakbbH bcakbbH bakcbbH bakbba:

In the same way, we have an equality:

cbakbbH cbbckbH bbackbH bbckabH bbckbcH bakbbc: r

We recall three facts from [S-I] § 5, § 7 and § 8.

Proposition 5.4. The monoid Gþ
Bii

admits neither the left divisibility theory

nor the right divisibility theory.

Proposition 5.5. The monoid Gþ
Bii

is a cancellative monoid.

Proposition 5.6. For any D A QZðGþ
Bii
Þ, ordðsDÞ is equal to 1.
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As a consequence of Proposition 5.4, the monoid Gþ
Bii

is not Gaussian and,

hence, is neither Garside monoid nor Artin monoid.

We show that for an arbitrary element w in Gþ
Bii

we choose a unique word

in the free monoid fa; b; cg� that represents w, which we call the normal form

of w. Thanks to Lemma 5.2 and Proposition 5.5, for any element w in Wð jÞ
ð jb 4Þ, there exist a unique integer m in Zb0 and a unique element w 0 in Wð jÞ
ð ja 3Þ such that wH b3mw 0. Therefore, it is su‰cient to show the existence of

this notion for w A Wð jÞ ð ja 3Þ.

Lemma 5.7. If w A Wð jÞ ð ja 3Þ, then w has the following normal forms:

j ¼ 0: apcq ¼: ðp; qÞ0 ðp; q A Zb0Þ
j ¼ 1: apcqbar ¼: ðp; q; rÞ1 ðp; q; r A Zb0Þ
j ¼ 2: apcqbbcr ¼: ðp; q; rÞ2 ðp; q; r A Zb0Þ
j ¼ 3: apcqbarbb ¼: ðp; q; rÞ3 ðp; q; r A Zb0Þ

Proof. We can easily show that w can be equivalently transformed into

the above form. Therefore, we only prove the uniqueness of the normal form.

j ¼ 0: We assume that apcq H asct ðpþ q ¼ sþ tÞ and pb s. Due to

the cancellativity, we cancell as from left so that we obtain a new relation

ap�scq H ct. Next, we cancell cq from right so that we obtain a relation

ap�s H ct�q. If p� s ð¼ t� qÞb 1, this relation is contrary to Proposition 7.7

in [S-I]. Hence, we conclude p� s ¼ t� q ¼ 0.

j ¼ 1: We assume that apcqbar H asctbau ðpþ qþ r ¼ sþ tþ uÞ, and

qb t. We cancell ct from left so that we obtain a relation cq�tbcpar H
bcsau. If q� tb 1, this relation is contrary to Proposition 7.7 in [S-I].

Hence, we conclude q ¼ t. Next, we cancell b from left so that we obtain

a relation cpar H csau. From the case of j ¼ 0, we obtain p ¼ s, r ¼ u:

j ¼ 2: We assume apcqbbcr H asctbbcu. We can easily show an equiv-

alent relation apcqbarbH asctbaub and cancell b from right. From the case of

j ¼ 1, we obtain p ¼ s, q ¼ t, r ¼ u:

j ¼ 3: We assume apcqbarbbH asctbaubb. We cancell bb from right so

that we obtain a relation apcqbar H asctbau. From the case of j ¼ 1, we

obtain p ¼ s, q ¼ t, r ¼ u. r

Theorem 5.8. The following i), ii), iii), iv), and v) hold.

i) The element D0 belongs to QZðGþ
Bii
ÞnFðGþ

Bii
Þ. The elements Dk

ðkb 1Þ belong to FðGþ
Bii
Þ and ordðsDk

Þ ðkb 0Þ is equal to 1.

ii) a) The element D0 is an indecomposable quasi-central element.

b) The fundamental elements Dk ðkb 1Þ are prime.

c) If D is an indecomposable quasi-central element, then there exists a non-

negative integer k in Zb0 such that D is equivalent to Dk.

d) We have Dk1Dk2 HDk1þk2D0 ðk1; k2 A Zb0Þ.
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iii) The center ZðGBii
Þ is isomorphic to Z2 and generated by D0 and D1.

iv) The word problem and the conjugacy problem in GBii
are solvable.

v) The spherical growth function for the monoid Gþ
Bii

is the following:

Xy
n¼0

ant
n ¼ t2 � tþ 1

ð1� tÞ4
;

where we put an :¼afw A Gþ
Bii

j lðwÞ ¼ ng.

Proof. i) Since D0 belongs to the center of Gþ
Bii
, D0 belongs to QZðGþ

Bii
Þ.

Due to the cancellativity of Gþ
Bii
, we can easily show that D0 does not belong to

FðGþ
Bii
Þ. Next, we prove Dk belong to FðGþ

Bii
Þ. For the proof of this, it is

su‰cient to show that Dk are quasi-central elements which are divisible by the

generators a, b and c (see [S-I, Proposition 7.4]). Actually, it is easy to show

the following:

ðakbÞ3 H ðbakÞ3 H ðbckÞ3 H ðckbÞ3:

And, we can also show that

a � Dk H a � bakbakbak H bakcbakbak H bakbbckaak H bakbakbak � aHDk � a;

b � Dk H b � ckbckbckbHDk � b

and

c � Dk H akcbakbakbH akcbbckakbH akbbckaakbH akbakbakb � cHDk � c:

Lastly, according to the Corollary of Theorem 5 in [S-I], we can show that

ordðsDk
Þ is equal to 1.

ii) a),b) Since Dk contain the letter b just 3-times, it is su‰cient to show

that, if w A Wð jÞ ð ja 2Þ is a quasi-central element, then w is equivalent to e.

We consider the following three cases:

j ¼ 0: As ordðswÞ is equal to 1, a relation b � ðp; qÞ0 H ðp; qÞ0 � b ought to

hold. Thus, an equation ðq; 0; pÞ1 H ðp; q; 0Þ1 holds. Due to Lemma 5.7, we

conclude p ¼ q ¼ 0.

j ¼ 1: In the same way, we have a relation a � ðp; q; rÞ1 H ðp; q; rÞ1 � a.
Thus, an equation ðpþ 1; q; rÞ1 H ðp; q; rþ 1Þ1 holds. A contradiction.

j ¼ 2: We have a relation c � ðp; q; rÞ2 H ðp; q; rÞ2 � c. Thus, an equation

ðp; qþ 1; rÞ2 H ðp; q; rþ 1Þ2 holds. A contradiction.

c) Due to Lemma 5.2, D belongs to Wð jÞ ð ja 3Þ. If D belongs to

Wð jÞ ð ja 2Þ, D cannot be a quasi-central element. Thus, D belongs to Wð3Þ.
So, we put D1 ðp; q; rÞ3. In particular, we have a relation b � ðp; q; rÞ3 H
ðp; q; rÞ3 � b. Cancelling bbb from left, we have an equation ðq; r; pÞ1 H
ðp; q; rÞ1. Hence, we obtain p ¼ q ¼ r. Then, we have DH ðp; p; pÞ3 1Dp.
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d) We have

Dk1Dk2 H ak1ck1Lk1a
k2ck2Lk2 H ak1þk2ck1þk2Lk1Lk2

H ak1þk2ck1þk2Lk1þk2bbbHDk1þk2D0:

iii) By the consideration in ii), we easily show that, if w belongs to

ZðGþ
Bii
Þnfeg, then there exists a unique pair ðk; lÞ A Zb0 � Zb0 such that w is

equivalent to DkD
l
0. And, due to Lemma 4.2, we say that the localization

homomorphism p : Gþ
Bii

! GBii
is injective. For an arbitrary element U in

ZðGBii
Þ, there exists a positive integer m A Zb0 such that Dm

1 U is equivalent

to a positive word. Since we can regard Dm
1 U as an element in ZðGþ

Bii
Þ, there

exists a unique pair ðk; lÞ A Zb0 � Zb0 such that Dm
1 U is equivalent to

DkD
l
0ðHDk

1D
1�k
0 D l

0Þ. Thus, we show that ZðGBii
Þ can be generated by D0

and D1. Next, we consider an equation

Dk1
0 D l1

1 ¼ Dk2
0 D l2

1 ðk1; k2; l1; l2 A ZÞ

to determine the center ZðGBii
Þ. Applying Lemma 5.7 to this equation, we

obtain k1 ¼ k2 and l1 ¼ l2. Hence, the center ZðGBii
Þ is isomorphic to Z2.

iv) By Lemma 5.7, it is su‰cient to show that we can solve the word

problem and the conjugacy problem in Gþ
Bii
. Because of the homogeneity of

the defining relations in Gþ
Bii
, we can obtain algorithmically all the possible

expressions of word W in Gþ
Bii

in a finite number of steps. Hence, for arbitrary

two words U ;V A Gþ
Bii
, by comparing two types of complete lists of all the

possible expressions of words U and V , we can solve the word problem in Gþ
Bii
.

Next, we consider the conjugacy problem in Gþ
Bii
. It is su‰cient to show that,

for arbitrary two words U ;V ðA Wð jÞ ð ja 3ÞÞ of the same length n, we decide

in a finite number of steps whether U @
mo

V or not. We consider the following

four cases:

j ¼ 0: We prove the following Claims:

Claim 1. If ðp; n� pÞ0 @mo
ðq; n� qÞ0 ð0a p < qa nÞ, then we say that

p ¼ 0 and q ¼ n.

Proof. First, we easily show that ðn; 0Þ0 @mo
ð0; nÞ0. Assuming that

ðp; n� pÞ0 @mo
ðq; n� qÞ0 ð1a p < qa nÞ;

then we say there exists an element w in Gþ
Bii

such that

w � ðp; n� pÞ0 H ðq; n� qÞ0 � w:

By Lemma 5.2, we may assume w A Wð jÞ ð ja 3Þ. Applying Lemma 5.7 to

the equality w � ðp; n� pÞ0 H ðq; n� qÞ0 � w, we show that a contradiction occurs

for any w A Wð jÞ ð ja 3Þ. r
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j ¼ 1: We prove the following claim:

Claim 2. If w;w 0 A Wð1Þ, then w @
mo

w 0.

Proof. We have

cpþrar � ðp; q; rÞ1 H cpþrarapcqbar H cpþqþrarapbar

H cpþqþrbcpþrar H ð0; pþ qþ r; 0Þ1 � cpþrar:

Hence, we say ðp; q; rÞ1 @mo
ð0; pþ qþ r; 0Þ1.

j ¼ 2: We prove the following claim:

Claim 3. If w;w 0 A Wð2Þ, then w @
mo

w 0.

Proof. We have

apþrcpb � ðp; q; rÞ2 H apþrcpbapcqbbcr H apþqþrcpbapbbcr H apþqþr � bapbbcpþr

H apþqþrbbapþrcpbH ðpþ qþ r; 0; 0Þ2 � apþrcpb:

Hence, we say ðp; q; rÞ2 @mo
ðpþ qþ r; 0; 0Þ2. r

j ¼ 3: We prove the following claim:

Claim 4. ðp; q; rÞ3 @mo
ðr; p; qÞ3 @mo

ðq; r; pÞ3.

Proof. First, we have b � ðp; q; rÞ3 H bapcqbarbbH ðq; r; pÞ3 � b. Next, we

have bb � ðp; q; rÞ3 H bbapcqbarbbH cpbbcqbbcrbH arcpbaqbbbbH ðr; p; qÞ3 � bb.
r

Hence, we can choose a representative ðp; q; rÞ3 ðp; qb rÞ.
As ðp; q; rÞ3 H ðp� r; q� rÞ0Dr and Dr belongs to the center ZðGþ

Bii
Þ, the

case j ¼ 3 can be reduced to the case j ¼ 0.

These complete the proof.

v) First, let ak;n :¼afw A WðkÞ j lðwÞ ¼ ng ðk ¼ 0; 1; . . . ; nÞ, and let

bm :¼ afw A Wð3Þ j lðwÞ ¼ mg ðm ¼ 3; 4; . . . ; n; n þ 1; n þ 2Þ. We consider

the following three cases: a3n, a3nþ1 and a3nþ2.

Case a3n: By Lemma 5.7, we show bm ¼ ð1=2Þðm� 2Þðm� 1Þ. And, due

to Lemma 5.2, we can easily show that

a3n;3n ¼ b3; a3n�1;3n ¼ b4; . . . ; a3;3n ¼ b3n:

In the same way, we show that

a2;3n ¼ ð3n=2Þð3n� 1Þð¼ b3nþ1Þ; a1;3n ¼ ð3n=2Þð3nþ 1Þð¼ b3nþ2Þ

and a0;3n ¼ 3nþ 1. Hence,
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a3n ¼
X3n
k¼0

ak;3n ¼ a0;3n þ
X3n
k¼1

ak;3n

¼ 3nþ 1þ ð1=2Þ
X3n
k¼1

kðk þ 1Þ ¼ ð1=2Þð9n3 þ 9n2 þ 8nþ 2Þ:

Case a3nþ1: In the same way, we show that

a3nþ1 ¼
X3nþ1

k¼0

ak;3nþ1 ¼ a0;3nþ1 þ
X3nþ1

k¼1

ak;3nþ1

¼ 3nþ 2þ ð1=2Þ
X3nþ1

k¼1

kðk þ 1Þ ¼ ð1=2Þð9n3 þ 18n2 þ 17nþ 6Þ:

Case a3nþ2: In the same way, we show that

a3nþ2 ¼
X3nþ2

k¼0

ak;3nþ2 ¼ a0;3nþ2 þ
X3nþ2

k¼1

ak;3nþ2

¼ 3nþ 3þ ð1=2Þ
X3nþ2

k¼1

kðk þ 1Þ ¼ ð1=2Þð9n3 þ 27n2 þ 32nþ 14Þ:

Next, we easily show:

ð1� tÞ4
Xy
k¼0

a3kt
3k þ

Xy
k¼0

a3kþ1t
3kþ1 þ

Xy
k¼0

a3kþ2t
3kþ2

( )
¼ t2 � tþ 1:

Hence, we obtain the explicit formula. r

Remark 5.9. In [S-I] § 6, we raised a question: let G be a positive

homogeneously presented group and let Gþ be the associated monoid. Then,

are there finitely many elements D1;D2; . . . ;Dk A FðGþÞ such that the following

holds?

FðGþÞ ¼ QZðGþÞD1 UQZðGþÞD2 U � � �UQZðGþÞDk:

As a consequence of Theorem 5.8, we have constructed a counterexample. We

claim that FðGþ
Bii
ÞðHQZðGþ

Bii
ÞÞ is an infinitely generated idealistic subsemi-

group. For the proof of this, we assume that FðGþ
Bii
Þ is finitely generated:

QZðGþ
Bii
ÞDk1 UQZðGþ

Bii
ÞDk2 U � � �UQZðGþ

Bii
ÞDkm . However, when we take an

integer l large enough, Dl cannot belong to

QZðGþ
Bii
ÞDk1 UQZðGþ

Bii
ÞDk2 U � � �UQZðGþ

Bii
ÞDkm :

A contradiction.
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Remark 5.10. Since the group GBii
contains Z2 as a subgroup, GBii

is not

word hyperbolic ([Gr2]).

In [S3, S4], the distribution of the zeroes of the denominator polynomials

of the growth functions associated with Artin monoids is investigated. Since

the zeroes of the denominator polynomials of the growth function for the

monoid Gþ
Bii

only consist of 1 with multiplicity 4, he asked whether the group

GBii
contains a free abelian subgroup of rank 4 of finite index. Actually, we

show this in the following Lemma.

Lemma 5.11. For an arbitrary element w in GBii
, the element w has the

following normal form:

hp; q; r; si :¼ bpðD1D
�1
0 Þqarcs ðp; q; r; s A ZÞ:

Proof. We assume that

hp; q; r; si ¼ hp 0; q 0; r 0; s 0i ðp; p 0; q; q 0; r; r 0; s; s 0 A ZÞ:

Since D1D
�1
0 belongs to the center of the group GBii

and ac ¼ ca, we say that

hp� p 0; q� q 0; r� r 0; s� s 0i ¼ e. Without loss of generality, we assume that

q� q 0 b 0. Then, an equation

bp�p 0
D

q�q 0

1 ar�r 0cs�s 0 ¼ b3q�3q 0

holds. If p� p 0 b 0, then we multiply atcu ðt; ug 0Þ from the right. Thus,

both sides of the equation are equivalent to positive words. Since the local-

ization homomorphism p is injective, an equation

bp�p 0
D

q�q 0

1 ar�r 0þtcs�s 0þu H b3q�3q 0
atcu

holds. Due to Remark 3.4, we can easily show that p ¼ p 0. Thus, an

equation

D
q�q 0

1 ar�r 0þtcs�s 0þu H b3q�3q 0
atcu

holds. Due to Limma 5.7, we show that q ¼ q 0, r ¼ r 0, s ¼ s 0. Similarly, if

p� p 0 a 0, we conclude that p ¼ p 0, q ¼ q 0, r ¼ r 0, s ¼ s 0. Therefore, we have

shown the uniqueness of the normal form.

For an arbitrary element w in GBii
, there exists a non-negative integer k in

Zb0 such that ðpðD1ÞÞkw is equivalent to a positive word. Since the local-

ization homomorphism p is injective, there exists a unique element w 0 in Gþ
Bii

such that pðw 0Þ ¼ ðpðD1ÞÞkw. Applying Lemma 5.7 to the element w 0, we can

easily show that w can be equivalently transformed into the above form.

r

As a corollary of the theorem, we show the following.
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Corollary 5.12. The following i), ii), iii), iv) and v) hold.

i) The group GBii
contains a subgroup of index three isomorphic to Z4.

ii) The group GBii
has a polynomial growth rate.

iii) The group GBii
is solvable.

iv) A faithful 5� 5-matrix representation r : GBii
! GLð5;ZÞ of the group

GBii
is constructed:

hp; q; r; si 7!

1 p q r s

0 1 0 0 0

0 0

0 0 Np

0 0

0
BBBBBB@

1
CCCCCCA
; where N ¼

1 0 0

0 0 �1

1 1 �1

0
B@

1
CA:

v) The group GBii
is torsion free.

Proof. i) Let H be the subgroup of GBii
generated by D0, D1D

�1
0 , a and c.

Due to the commutativity of each pair of the generators and Lemma 5.11, we

show that H is isomorphic to Z4. It is easy to show that H is a subgroup of

index three.

ii) Due to the Gromov’s theorem on groups of polynomial growth

([Gr1]), the group GBii
has a polynomial growth rate.

iii) Since there is a sequence of subgroups

f1g /H / GBii

such that GBii
=H is an abelian group, the group GBii

is solvable.

iv) For any integers p, q, r, s, t in Z, we have three equalities:

hp; q; r; si � b3t H b3t � hp; q; r; si;

hp; q; r; si � b3tþ1 H b3tþ1 � hp; qþ s;�s; r� si;

hp; q; r; si � b3tþ2 H b3tþ2 � hp; qþ r; s� r;�ri:

Therefore, we have three equalities:

hp; q; r; si � h3t; q 0; r 0; s 0iH hpþ 3t; qþ q 0; rþ r 0; sþ s 0i;

hp; q; r; si � h3tþ 1; q 0; r 0; s 0iH hpþ 3tþ 1; q 0 þ qþ s; r 0 � s; s 0 þ r� si;

hp; q; r; si � h3tþ 2; q 0; r 0; s 0iH hpþ 3tþ 2; q 0 þ qþ r; r 0 þ s� r; s 0 � ri:

Hence, we show that the map r is a group homomorphism. Due to Lemma

5.11, we show that r is a faithful representation.

v) We assume that hp; q; r; sik ¼ e for integers p, q, r, s in Z and k in

Z>0. Since the first 2� 2-matrix of the normal form hp; q; r; si is a unipotent
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matrix with the ð1; 2Þ entry equal to p, we have p ¼ 0. Since D1D
�1
0 belongs

to the center of the group GBii
and ac ¼ ca, we show that

h0; q; r; sik ¼ h0; kq; kr; ksi:

Hence, we say that q ¼ 0, r ¼ 0, s ¼ 0. r
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