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Abstract. In this paper, we consider the second-order nonlinear neutral functional

dynamic equation

ðpðtÞð½yðtÞ þ rðtÞyðtðtÞÞ�DÞgÞD þ f ðt; yðdðtÞÞÞ ¼ 0;

on a time scale T and establish some new su‰cient conditions for oscillation. Our

results improve oscillation results for neutral delay dynamic equations on time scales

and are new when dðtÞ > t and/or 0 < g < 1. Furthermore our results can be applied

on the time scales T ¼ hT, for h > 0, T ¼ qN ¼ ft : t ¼ qkg, k A N, q > 1, T ¼ N2 ¼
ft2 : t A Ng, T2 ¼ f

ffiffiffi
n

p
: n A N0g, T3 ¼ f

ffiffiffi
n3

p
: n A N0g, and when T ¼ Tn ¼ ftn : n A N0g

where ftng is the set of harmonic numbers, etc.

1. Introduction

The study of dynamic equations on time scales, which goes back to its

founder Stefan Hilger [6], is an area of mathematics that has recently received a

lot of attention. It has been created in order to unify the study of di¤erential

and di¤erence equations. Many results concerning di¤erential equations carry

over quite easily to corresponding results for di¤erence equations, while other

results seem to be completely di¤erent from their continuous counterparts.

The study of dynamic equations on time scales reveals such discrepancies. The

general idea is to prove a result for a dynamic equation where the domain of

the unknown function is a so-called time scale T, which may be an arbitrary

closed subset of the reals. This way results not only related to the set of real

numbers or set of integers but those pertaining to more general time scales are

obtained.

The three most popular examples of calculus on time scales are di¤erential

calculus, di¤erence calculus, and quantum calculus (see Kac and Cheung [9]),

i.e, when T ¼ R, T ¼ N and T ¼ qN0 ¼ fqt : t A N0g where q > 1. Dynamic

equations on a time scale have an enormous potential for applications such

as in population dynamics. For example, it can model insect populations
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that are continuous while in season, die out in say winter, while their eggs

are incubating or dormant, and then hatch in a new season, giving rise to

a nonoverlapping population (see [4]). There are applications of dynamic

equations on time scales to quantum mechanics, electrical engineering, neural

networks, heat transfer, and combinatorics. A recent cover story article in New

Scientist [14] discusses several possible applications. Since then several authors

have expounded on various aspects of this new theory [5]. The book on

the subject of time scale, i.e., measure chain, by Bohner and Peterson [4]

summarizes and organizes much of time scale calculus. For completeness, we

recall the following concepts related to the notion of time scales. A time scale

T is an arbitrary nonempty closed subset of the real numbers R. We assume

throughout that T has the topology that it inherits from the standard topology

on the real numbers R. The forward jump operator and the backward jump

operator are defined by:

sðtÞ :¼ inffs A T : s > tg; rðtÞ :¼ supfs A T : s < tg;

where sup q ¼ inf T. A point t A T, is said to be left-dense if rðtÞ ¼ t and

t > inf T, is right-dense if sðtÞ ¼ t, is left-scattered if rðtÞ < t and right-scattered

if sðtÞ > t. A function g : T ! R is said to be right-dense continuous (rd-

continuous) provided g is continuous at right-dense points and at left-dense

points in T, left hand limits exist and are finite. The set of all such rd-

continuous functions is denoted by CrdðTÞ. The graininess function m for a

time scale T is defined by mðtÞ :¼ sðtÞ � t, and for any function f : T ! R the

notation f sðtÞ denotes f ðsðtÞÞ.

Definition 1. Fix t A T and let x : T ! R. Define xDðtÞ to be the number

(if it exists) with the property that given any e > 0 there is a neighborhood U of

t with

j½xðsðtÞÞ � xðsÞ� � xDðtÞ½sðtÞ � s�ja ejsðtÞ � sj; for all s A U :

In this case, we say xDðtÞ is the (delta) derivative of x at t and that x is (delta)

di¤erentiable at t.

We will frequently use the results in the following theorem which is due to

Hilger [6].

Theorem 1. Assume that g : T ! R and let t A T.

( i ) If g is di¤erentiable at t, then g is continuous at t.

( ii ) If g is continuous at t and t is right-scattered, then g is di¤erentiable at t

with

gDðtÞ ¼ gðsðtÞÞ � gðtÞ
mðtÞ :

78 S. H. Saker and Donal O’Regan



(iii) If g is di¤erentiable and t is right-dense, then

gDðtÞ ¼ lim
s!t

gðtÞ � gðsÞ
t� s

:

(iv) If g is di¤erentiable at t, then gðsðtÞÞ ¼ gðtÞ þ mðtÞgDðtÞ.

In this paper, we will refer to the (delta) integral which we can define as

follows:

Definition 2. If GDðtÞ ¼ gðtÞ, then the Cauchy (delta) integral of g is

defined by ð t
a

gðsÞDs :¼ GðtÞ � GðaÞ:

It can be shown (see [4]) that if g A CrdðTÞ, then the Cauchy integral

GðtÞ :¼
Ð t
t0
gðsÞDs exists, t0 A T, and satisfies GDðtÞ ¼ gðtÞ, t A T. We will make

use of the following product and quotient rules for the derivative of the pro-

duct fg and the quotient f =g (where ggs 0 0Þ of two di¤erentiable functions f

and g

ð fgÞD ¼ f Dgþ f sgD ¼ fgD þ f Dgs; and
f

g

� �D
¼ f Dg� fgD

ggs
:

An integration by parts formula reads

ð b
a

f ðtÞgDðtÞDt ¼ ½ f ðtÞgðtÞ�ba �
ð b
a

f DðtÞgsDt;

and infinite integrals are defined as

ðy
a

f ðtÞDt ¼ lim
b!y

ð b
a

f ðtÞDt;

and the integration on discrete time scales is defined by

ð b
a

f ðtÞDt ¼
X

t A ½a;bÞ
mðtÞ f ðtÞ:

For oscillation of second-order neutral dynamic equations, we refer the reader

to the papers [1], [2], [3], [7], [8], [11], [12], [13], [15] and [16]. We note that all

the above results for neutral equations are given in the case when gb 1 and

dðtÞa t and nothing is known regarding the oscillation of neutral dynamic
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equations when 0 < g < 1 and dðtÞ > t. So the natural question now is: If it

is possible to find new oscillation criteria to cover these cases? One of our

aims in this paper is to give an a‰rmative answer to this question.

In this paper, we consider the nonlinear neutral functional dynamic

equation

ðpðtÞð½yðtÞ þ rðtÞyðtðtÞÞ�DÞgÞD þ f ðt; yðdðtÞÞÞ ¼ 0;ð1:1Þ

on a time scale T and we give some new su‰cient conditions for oscillation.

Throughout this paper, we will assume the following hypotheses:

ðh1Þ g > 0 is an odd positive integer, rðtÞ and pðtÞ are real valued rd-

continuous positive functions defined on T, t : T ! T, d : T ! T,

tðtÞa t for all t A T and limt!y dðtÞ ¼ limt!y tðtÞ ¼ y;

ðh2Þ
Ðy
t0

1
pðtÞ

� �1=g
Dt ¼ y, 0a rðtÞ < 1;

ðh3Þ f ðt; uÞ : T� R ! R is continuous function such that uf ðt; uÞ > 0 for all

u0 0 and there exists a positive rd-continuous function qðtÞ defined on T

such that j f ðt; uÞjb qðtÞjugj:
Since we are interested in the oscillatory and asymptotic behavior of solu-

tions near infinity, we assume that sup T ¼ y, and define the time scale

interval ½t0;yÞT by ½t0;yÞT :¼ ½t0;yÞVT. Throughout this paper these

assumptions will be supposed to hold. Let t�ðtÞ ¼ minftðtÞ; dðtÞg and let

T0 ¼ minft�ðtÞ : tb 0g and t��1ðtÞ ¼ supfsb 0 : t�ðsÞa tg for tbT0. Clearly

if t�ðtÞa t, then t��1ðtÞb t for tbT0, t��1ðtÞ is nondecreasing and coincides

with the inverse of t�ðtÞ when the latter exists. Throughout the paper, we will

use the following notations:

xðtÞ :¼ yðtÞ þ rðtÞyðtðtÞÞ; x½1� :¼ pðxDÞg; and x½2� :¼ ðx½1�ÞD:ð1:2Þ

By a solution of (1.1) we mean a nontrivial real-valued function y which has

the properties x A C1
rd ½t��1ðt0Þ;yÞ; and x½1� A C1

rd ½t��1ðt0Þ;yÞ where Crd is the

space of rd-continuous functions. Our attention is restricted to those solutions

of (1.1) which exist on some half line ½ty;yÞ and satisfy supfjyðtÞj : t > t1g > 0

for any t1 b ty. A solution y of (1.1) is said to be oscillatory if it is neither

eventually positive nor eventually negative. Otherwise it is called non-

oscillatory. The equation itself is called oscillatory if all its solutions are

oscillatory.

The results in the subsection 2.1 cover the case when dðtÞ > t and the

results in the subsection 2.2 cover the case when dðtÞa t. The results in this

paper can be applied to the equation (1.1) when 0 < g < 1 and/or dðtÞ > t and

improve the results established in [15], in the sense that the results can be

applied on any time scale not only on discrete time scales when mðtÞ0 0, which

is the case considered in [15].
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2. Main results

In this section, we state and prove the main oscillation results. We start

with the following Lemmas which play important roles in the proofs of the

main results.

Lemma 2.1. Assume that ðh1Þ–ðh3Þ hold and (1.1) has a nonoscillatory

solution y on ½t0;yÞT and x is defined as in (1.2). Then there exists T > t0 such

that xðtÞx½1�ðtÞ > 0 for tbT.

Proof. Assume that yðtÞ is a positive solution of (1.1) on ½t0;yÞT. Pick

t1 A ½t0;yÞT so that t1 > t0 and so that yðtÞ > 0, yðtðtÞÞ > 0, yðtðtðtÞÞÞ > 0 and

yðdðtÞÞ > 0 on ½t1;yÞT. (Note that in the case when yðtÞ is negative the

proof is similar, since the transformation yðtÞ ¼ �zðtÞ transforms (1.1) into

the same form). Since y is a positive solution of (1.1) and qðtÞ > 0, we have

(see (h3))

ðx½1�ðtÞÞD a�qðtÞygðdðtÞÞ < 0; for t A ½t1;yÞT:ð2:1Þ

Then x½1�ðtÞ is strictly decreasing on ½t1;yÞT. We claim that x½1�ðtÞ > 0 on

½t1;yÞT. Assume not. Then there is t2 A ½t1;yÞT such that (note x½1�ðtÞ is

strictly decreasing), x ½1�ðt2Þ ¼ c < 0. Then from (2.1), we have x½1�ðtÞa c, for

tb t2 and therefore

xDðtÞa c

p1=gðtÞ ; for t A ½t2;yÞT:ð2:2Þ

Integrating the last inequality from t2 to t, we find from ðh2Þ that

xðtÞ ¼ xðt2Þ þ
ð t
t2

xDðsÞDsa xðt2Þ þ c

ð t
t2

Ds

p1=gðsÞ ! �y as t ! y;ð2:3Þ

which implies that x is eventually negative. This contradiction completes the

proof.

Lemma 2.2. Assume that ðh1Þ–ðh3Þ hold and (1.1) has a nonoscillatory

solution y on ½t0;yÞT and x is defined as in (1.2). Then there exists T b t0 such

that

ðpðtÞðxDðtÞÞgÞD þ PðtÞxgðdðtÞÞa 0; for tbT ;ð2:4Þ

where PðtÞ ¼ qðtÞð1� rðdðtÞÞÞg:

Proof. Assume that yðtÞ is a positive solution of (1.1) on ½t0;yÞT. Pick

t1 A ½t0;yÞT so that t1 > t0 and so that yðtÞ > 0, yðtðtÞÞ > 0, yðtðtðtÞÞÞ > 0 and

yðdðtÞÞ > 0 for tb t1. (Note that in the case when yðtÞ is negative the proof
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is similar, since the transformation yðtÞ ¼ �zðtÞ transforms (1.1) into the same

form). Since y is a positive solution of (1.1), then from Lemma 2.1, we see

that (note x½1�ðtÞ > 0 and pðtÞ > 0Þ

xðtÞ > 0; xDðtÞ > 0; and ðx½1�ðtÞÞD < 0; for tb t1:ð2:5Þ

Since tðtÞa t and rðtÞb 0, we have from (1.2) and (2.5) that

xðtÞ ¼ yðtÞ þ rðtÞyðtðtÞÞa yðtÞ þ rðtÞxðtðtÞÞ

a yðtÞ þ rðtÞxðtÞ; for tb t1:

Thus yðtÞb ð1� rðtÞÞxðtÞ, for tb t1. Then for tb t2, where t2 > t1 is chosen

large enough, we have

yðdðtÞÞb ð1� rðdðtÞÞÞxðdðtÞÞ:ð2:6Þ

From (2.1) and the last inequality, we have inequality (2.4) and this completes

the proof.

2.1. The case when dðtÞ > t

In this subsection, we establish some su‰cient conditions for oscillation of

(1.1) when dðtÞ > t. We start with the following theorem.

Theorem 2.1. Assume that ðh1Þ–ðh3Þ hold. Let y be a nonoscillatory

solution of (1.1) and make the Riccati substitution

wðtÞ :¼ x½1�ðtÞ
xgðtÞ ;ð2:7Þ

where x is defined as in (1.2). Then wðtÞ > 0, for tbT (here T is as in Lemma

2.2) and

wDðtÞ þQðtÞ þ g

p1=gðtÞ ðw
sðtÞÞ1þ1=g

a 0; for t A ½T ;yÞT;ð2:8Þ

where

QðtÞ :¼ gPðtÞ p1=gðtÞPðt;TÞ
p1=gðtÞPðt;TÞ þ sðtÞ � t

� �g
; and Pðt;TÞ :¼

ð t
T

1

pðsÞ

� �1=g
Ds:

Proof. Let y be as above and without loss of generality, we assume that

there is t1 > t0 such that yðtÞ > 0, yðtðtÞÞ > 0, yðtðtðtÞÞÞ > 0 and yðdðtÞÞ > 0

for tb t1. Then from Lemma 2.1 and (1.2), there exists T > t1 such that

xðtÞ > 0; x½1�ðtÞ > 0; and x½2�ðtÞ < 0; for tbT :
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By the quotient rule [4, Theorem 1.20] and the definition of wðtÞ, we have

wDðtÞ ¼ xgðtÞx½2�ðtÞ � ðxgðtÞÞDx½1�ðtÞ
xgðtÞðxsðtÞÞg

¼ x½2�ðtÞ
ðxdðtÞÞg

xdðtÞ
xsðtÞ

� �g
� ðxgðtÞÞDx½1�ðtÞ

xgðtÞðxsðtÞÞg :

From Lemma 2.2, we see that

wDðtÞa�PðtÞ xdðtÞ
xsðtÞ

� �g
� ðxgðtÞÞDx½1�ðtÞ

xgðtÞðxsðtÞÞg ; for tbT :ð2:9Þ

By the Pötzsche chain rule ([4, Theorem 1.90]), if f DðtÞ > 0 and g > 1, (note

f s b f Þ we obtain

ð f gðtÞÞD ¼ g

ð1
0

½ f ðtÞ þ mhf DðtÞ�g�1
f DðtÞdhð2:10Þ

b g

ð1
0

ð f ðtÞÞg�1
f DðtÞdh ¼ gð f ðtÞÞg�1

f DðtÞ:

Also by the Pötzsche chain rule ([4, Theorem 1.90]), if f DðtÞ > 0 and 0 < ga 1,

we obtain

ð f gðtÞÞD ¼ g

ð1
0

½ f ðtÞ þ hmðtÞ f DðtÞ�g�1
dh f DðtÞð2:11Þ

¼ g

ð1
0

½ð1� hÞ f ðtÞ þ hf sðtÞ�g�1
dhf DðtÞ

b g

ð 1
0

ð f sðtÞÞg�1
dhf DðtÞ ¼ gð f sðtÞÞg�1

f DðtÞ:

Now from (2.10) and (2.11), using f ðtÞ ¼ xðtÞ and the fact that xðtÞ is

increasing and x ½1�ðtÞ is decreasing, we have for g > 1, that

ððxðtÞÞgÞDx½1�ðtÞ
ðxðtÞÞgðxsðtÞÞg b

gx½1�ðtÞðx½1�Þ1=gðtÞ
p1=gxðtÞðxsðtÞÞg

b
gðx½1�ðtÞÞsððx½1�ðtÞÞsÞ1=g

p1=gxsðtÞðxsðtÞÞg ¼ g
1

p1=gðtÞ ðw
sðtÞÞ1=gþ1:
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Also for 0 < ga 1, we have

ðxgðtÞÞDx½1�ðtÞ
xgðtÞðxsðtÞÞg b

gx½1�ðtÞðxsðtÞÞg�1ðx½1�ðtÞÞ1=g

p1=gðtÞxgðtÞðxsðtÞÞg

b
gðx½1�ðtÞÞsððx½1�ÞsðtÞÞ1=g

p1=gðtÞðxsðtÞÞgxsðtÞ ¼ g
1

p1=gðtÞ ðw
sðtÞÞ1þ1=g:

Thus

ðxgðtÞÞDx½1�ðtÞ
xgðtÞðxsðtÞÞg b g

1

p1=g
ðwsðtÞÞ1þ1=g; for g > 0:

Substituting this inequality into (2.9), we have

wDðtÞa�PðtÞ xdðtÞ
xsðtÞ

� �g
� g

1

p1=gðtÞ ðw
sÞ1þ1=g; for tbT :ð2:12Þ

Next consider the coe‰cient of P in (2.12). Since xs ¼ xþ mxD, we have

xsðtÞ
xðtÞ ¼ 1þ mðtÞ xD

xðtÞ ¼ 1þ mðtÞ
p1=gðtÞ

ðx½1�ðtÞÞ1=g

xðtÞ :

Also since x½1�ðtÞ is decreasing, we have for tbT , that

xðtÞ ¼ xðTÞ þ
ð t
T

ðx ½1�ðsÞÞ1=g 1

pðsÞ

� �1=g
Ds

b xðTÞ þ ðx½1�ðtÞÞ1=g
ð t
T

1

pðsÞ

� �1=g
Ds > ðx½1�ðtÞÞ1=g

ð t
T

1

pðsÞ

� �1=g
Ds:

It follows that

xðtÞ
ðx½1�ðtÞÞ1=g

b

ð t
T

1

pðsÞ

� �1=g
Ds ¼ Pðt;TÞ; for tbT :ð2:13Þ

Hence

xsðtÞ
xðtÞ ¼ 1þ mðtÞ x

DðtÞ
xðtÞ ¼ 1þ mðtÞ

p1=gðtÞ
ðx½1�ðtÞÞ1=g

xðtÞ

a
p1=gðtÞPðt;TÞ þ mðtÞ

p1=gðtÞPðt;TÞ ; for tbT :

Hence, we have

xðtÞ
xsðtÞ b

p1=gðtÞPðt;TÞ
p1=gðtÞPðt;TÞ þ sðtÞ � t

; for tbT :
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Thus for tbT , we have

xdðtÞ
xsðtÞ ¼

xdðtÞ
xðtÞ

xðtÞ
xsðtÞ b

xdðtÞ
xðtÞ

� �
p1=gðtÞPðt;TÞ

p1=gðtÞPðt;TÞ þ sðtÞ � t
:ð2:14Þ

Now, since dðtÞ > t and xðtÞ is increasing, we have

xdðtÞ > xðtÞ:ð2:15Þ

This and (2.14) guarantee that

xdðtÞ
xsðtÞ b

p1=gðtÞPðt;TÞ
p1=gðtÞPðt;TÞ þ sðtÞ � t

; for tbT :ð2:16Þ

Put (2.16) into (2.12) and we obtain inequality (2.8) and this completes the

proof.

Theorem 2.2. Assume that ðh1Þ–ðh3Þ hold. Furthermore, assume thatðy
t0

QðsÞDs ¼ y:ð2:17Þ

Then every solution of (1.1) oscillates.

Proof. Suppose to the contrary and assume that y is a nonoscillatory

solution of equation (1.1). Without loss of generality we may assume that

yðtÞ > 0, yðtðtÞÞ > 0, yðtðtðtÞÞÞ > 0 and yðdðtÞÞ > 0 for tbT (where T is as

in Theorem 2.1). We consider only this case, because the proof when yðtÞ < 0

is similar. Let w be defined as in Theorem 2.1. Then from Theorem 2.1, we

see that wðtÞ > 0 for tbT and satisfies the inequality

�wDðtÞbQðtÞ þ g

p1=gðtÞ ðw
sðtÞÞ1þ1=g > QðtÞ; for tbT :ð2:18Þ

From the definition of x½1�ðtÞ, we see that

xDðtÞ ¼ x½1�ðtÞ
pðtÞ

� �1=g
:

Integrating this from T to t, we obtain

xðtÞ ¼ xðTÞ þ
ð t
T

1

pðsÞ x
½1�ðsÞ

� �1=g
Ds; for tbT :

Taking into account that x½1�ðtÞ is positive and decreasing, we get

xðtÞb xðTÞ þ ðx½1�ðtÞÞ1=g
ð t
T

1

pðsÞ

� �1=g
Ds; for tbT :
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It follows that

wðtÞ ¼ x½1�ðtÞ
xgðtÞ a

ð t
t0

1

pðsÞ

� �1=g
Ds

 !�g

; for t A ½T ;yÞT;

which implies, using (h2), that limt!y wðtÞ ¼ 0. Integrating (2.18) from T to

y and using limt!y wðtÞ ¼ 0, we obtain

wðTÞb
ðy
T

QðsÞDs;

which contradicts (2.17). The proof is complete.

In the following, we consider the case whenðy
t0

QðsÞDs < y:ð2:19Þ

We introduce the following notations:

p� :¼ lim inf
t!y

tg

pðtÞ

ðy
sðtÞ

QðsÞDs; q� :¼ lim inf
t!y

1

t

ð t
T

sgþ1

pðtÞQðsÞDs;

l :¼ lim inf
t!y

t

sðtÞ :

Theorem 2.3. Assume that ðh1Þ–ðh3Þ hold and pD b 0. Let y be a

positive solution of (1.1), and x is defined as in (1.2). Define

r� :¼ lim inf
t!y

tgwsðtÞ
pðtÞ ; R :¼ lim sup

t!y

tgwsðtÞ
pðtÞ :

where w is defined as in (2.7). Then

p� a r� � l gr1þ1=g
� ;ð2:20Þ

and

p� þ q� a
1

l gðgþ1Þ :ð2:21Þ

Proof. Let y be as above and without loss of generality, we assume that

there is T > t0 such that yðtÞ > 0, yðtðtÞÞ > 0, yðtðtðtÞÞÞ > 0 and yðdðtÞÞ > 0

for tbT where T is chosen large enough. From Lemma 2.1, we know that x

satisfies (2.5) where x is defined as in (1.2). From Theorem 2.1, we get from

(2.8) that

�wDðtÞbQðtÞ þ g

p1=gðtÞ ðw
sðtÞÞðgþ1Þ=g; for tbT :ð2:22Þ
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First, we prove (2.20). Integrating (2.22) from sðtÞ to y and using

limt!y wðtÞ ¼ 0 (see the proof of Theorem 2.2), we obtain

wsðtÞb
ðy
sðtÞ

QðsÞDsþ g

ðy
sðtÞ

ðwsðsÞÞ1=gwsðsÞDs
p1=gðsÞ ; for tbT :ð2:23Þ

It follows from (2.23) that

tgwsðtÞ
pðtÞ b

tg

pðtÞ

ðy
sðtÞ

QðsÞDsþ gtg

pðtÞ

ðy
sðtÞ

ðwsðsÞÞ1=gwsðsÞDs
p1=gðsÞ ; for tbT :ð2:24Þ

Let e be a su‰ciently small positive quantity, then by the definition of p� and

r� we can pick T1 A ½T ;yÞT, su‰ciently large, so that

tg

pðtÞ

ðy
sðtÞ

QðsÞDsb p� � e; and
tgwsðtÞ
pðtÞ b r� � e; for tbT1:ð2:25Þ

From (2.24) and (2.25) and using the fact that pD b 0, it follows that

tgwsðtÞ
pðtÞ b ðp� � eÞ þ g

tg

pðtÞ

ðy
sðtÞ

sðwsðsÞÞ1=gsgwsðsÞ
p1=gðsÞsgþ1

Dsð2:26Þ

b ðp� � eÞ þ ðr� � eÞ1þ1=g tg

pðtÞ

ðy
sðtÞ

gpðsÞ
sgþ1

Ds

b ðp� � eÞ þ ðr� � eÞ1þ1=g
tg
ðy
sðtÞ

gDs

sgþ1
; for tbT1:

Using the Pötzsche chain rule ([4, Theorem 1.90]), we see that

�1

sg

� �D
¼ g

ð1
0

1

½sþ hmðsÞ�gþ1
dha

ð1
0

g

sgþ1

� �
dh ¼ g

sgþ1
:

This implies that

ðy
sðtÞ

g

sgþ1
Dsb

ðy
sðtÞ

�1

sg

� �D
Ds ¼ 1

sgðtÞ :ð2:27Þ

Then from (2.26) and (2.27), we have

tgwsðtÞ
pðtÞ b ðp� � eÞ þ ðr� � eÞ1þ1=g t

sðtÞ

� �g
; for tbT1:
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Taking the lim inf of both sides as t ! y, we have

r� b p� � eþ ðr� � eÞ1þ1=g
l g; for tbT1:

Since e > 0 is arbitrary, we get

p� a r� � r1þ1=g
� l g;ð2:28Þ

and this completes the proof of (2.20). Next, we prove (2.21). Multiplying

both sides (2.22) by tgþ1=pðtÞ, and integrating the new inequality from T to t

(tbTÞ, we getð t
T

sgþ1

pðsÞw
DðsÞDsa�

ð t
T

sgþ1

pðsÞQðsÞDs� g

ð t
T

sgwsðsÞ
pðsÞ

� �ðgþ1Þ=g
Ds:

Using integration by parts, we obtain for tbT that

tgþ1wðtÞ
pðtÞ a

T gþ1wðTÞ
pðTÞ þ

ð t
T

sgþ1

pðsÞ

� �D
wsðsÞDs�

ð t
T

sgþ1QðsÞDs
pðsÞ

� g

ð t
T

sgwsðsÞ
pðsÞ

� �ðgþ1Þ=g
Ds:

By the quotient rule and applying the Pötzsche chain rule, we see that

sgþ1

pðsÞ

� �D
¼ ðsgþ1ÞD

psðsÞ � sgþ1pDðsÞ
pðsÞpsðsÞ a

ðgþ 1ÞsgðsÞ
psðsÞ a

ðgþ 1ÞsgðsÞ
pðsÞ ;ð2:29Þ

since pDðtÞb 0. This leads to

tgþ1wðtÞ
pðtÞ a

T gþ1wðTÞ
pðTÞ �

ð t
T

sgþ1

pðsÞQðsÞDs

þ
ð t
T

ðgþ 1Þ sgðsÞwsðsÞ
pðsÞ

� �
Ds

� g

ð t
T

sgwsðsÞ
pðsÞ

� �ðgþ1Þ=g
Ds; for tbT :

Let e > 0 be given, then using the definition of l, we can assume, without loss

of generality, that T is su‰ciently large so that s
sðsÞ > l � e, sbT . It follows

that

sðsÞaKs; sbT where K :¼ 1

l � e
> 1:

Then we get that
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tgþ1wðtÞ
pðtÞ � T gþ1wðTÞ

pðTÞ

a�
ð t
T

sgþ1

pðsÞQðsÞDs

þ
ð t
T

ðgþ 1ÞK g s
gwsðsÞ
pðsÞ � g

sgwsðsÞ
pðsÞ

� �ðgþ1Þ=g
( )

Ds; for tbT :

Let uðsÞ :¼ sgwsðsÞ=pðsÞ, so ulðsÞ ¼ ðsgwsðsÞ=pðsÞÞl, where l ¼ gþ1
g
. It follows

for tbT that

tgþ1wðtÞ
pðtÞ a

T gþ1wðTÞ
pðTÞ �

ð t
T

sgþ1QðsÞDs
pðsÞ þ

ð t
T

fðgþ 1ÞK guðsÞ � gulðsÞgDs:

Using the inequality

Bu� Aul
a

gg

ðgþ 1Þgþ1

Bgþ1

Ag
;

where A, B are constants, we get for tbT that

tgþ1wðtÞ
pðtÞ a

T gþ1wðTÞ
pðTÞ �

ð t
T

sgþ1

pðsÞQðsÞDs

þ
ð t
T

gg

ðgþ 1Þgþ1

½ðgþ 1ÞK g�gþ1

gg
Ds

a
T gþ1wðTÞ

pðTÞ �
ð t
T

sgþ1

pðsÞQðsÞDsþ K gðgþ1Þðt� TÞ:

It follows from this that

tgwðtÞ
pðtÞ a

T gþ1wðTÞ
tpðTÞ � 1

t

ð t
T

sgþ1QðsÞDs
pðsÞ þ K gðgþ1Þ 1� T

t

� �
; for tbT :

From (2.8), we see that w is nonincreasing and this implies that ws aw, since

sðtÞb t. This gives us that

tgwsðtÞ
pðtÞ a

T gþ1wðTÞ
tpðTÞ � 1

t

ð t
T

sgþ1QðsÞDs
pðsÞ þ K gðgþ1Þ 1� T

t

� �
; for tbT :

Taking the lim sup of both sides as t ! y, we obtain

Ra�q� þ K gðgþ1Þ ¼ �q� þ
1

ðl � eÞgðgþ1Þ :
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Since e > 0 is arbitrary, we get that Ra�q� þ ð1=l gðgþ1ÞÞ. Using this and

inequality (2.28), we get

p� a r� � l gr1þ1=g
� a r� aRa�q� þ

1

l gðgþ1Þ :

Therefore

p� þ q� a
1

l gðgþ1Þ ;

and this completes the proof of (2.21). The proof is complete.

From Theorem 2.3, we have the following result.

Theorem 2.4. Assume that ðh1Þ–ðh3Þ hold and pD b 0. Furthermore,

assume that

p� >
gg

l g
2ðgþ 1Þgþ1

:ð2:30Þ

Then every solution of (1.1) oscillates.

Proof. Suppose to the contrary and assume that y is a nonoscillatory

solution of equation (1.1). Without loss of generality we may assume that

yðtÞ > 0, yðtðtÞÞ > 0, yðtðtðtÞÞÞ > 0 and yðdðtÞÞ > 0 for tbT where T is

chosen large enough. We consider only this case, because the proof when

yðtÞ < 0 is similar. Let w and r� be as defined in Theorem 2.3. Then from

Theorem 2.3, we see that r� satisfies the inequality

p� a r� � l grðgþ1Þ=g
� :

Using

Bu� Auðgþ1Þ=g
a

gg

ðgþ 1Þgþ1

Bgþ1

Ag
;

we get that

p� a
gg

l g
2ðgþ 1Þgþ1

;

which contradicts (2.30). This completes the proof. 9

We also have as a consequence of Theorem 2.3 the following oscillation

result.
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Theorem 2.5. Assume that ðh1Þ–ðh3Þ hold and pD b 0. Furthermore,

assume that

p� þ q� >
1

l gðgþ1Þ :ð2:31Þ

Then every solution of (1.1) oscillates.

In the following, we give an example to illustrate the results in Theorem 2.4

for a mixed type equation. Note the following facts:

ðy
t0

Ds

sn
¼ y; if 0a na 1; and

ðy
t0

Ds

sn
< y; if n > 1:ð2:32Þ

For more details we refer the reader to [4, Theorem 5.68 and Corollary 5.71].

Example 1. Consider the following second-order neutral dynamic equation

yðtÞ þ 1

2
yðtðtÞÞ

� �DD
þ lðsðtÞ � 1Þ
tsðtÞðt� 1Þ yðdðtÞÞ ¼ 0; for t A ½2;yÞT;ð2:33Þ

where T is a time scale, g ¼ 1, tðtÞ < t, and dðtÞ > t, tðtÞ and dðtÞ A T and

limt!y dðtÞ ¼ limt!y tðtÞ ¼ y, and l > 0 is a constant. Now rðtÞ ¼ 1=2,

pðtÞ ¼ 1, f ðt; uÞ ¼ qðtÞu, where

qðtÞ ¼ lðsðtÞ � 1Þ
tsðtÞðt� 1Þ :

Take any T b 2, and since pðtÞ ¼ 1, we have Pðt;TÞ ¼ Pðt;TÞ ¼ t� T. This

gives

QðtÞ :¼ PðtÞ Pðt;TÞ
Pðt;TÞ þ sðtÞ � t

¼ lðsðtÞ � 1Þ
tsðtÞðt� 1Þ

t� T

t� T þ sðtÞ � t

¼ lðsðtÞ � 1Þ
2tsðtÞðt� 1Þ

t� T

sðtÞ � T
:

It is easy to see that assumptions ðh1Þ–ðh3Þ hold and also (2.19) is satisfied, since

ðy
t0

QðsÞDs ¼ l

2

ðy
t0

ðsðsÞ � 1Þ
ssðsÞðs� 1Þ

s� T

sðsÞ � T
Ds

a
l

2

ðy
2

ðsðsÞ � 1Þ
ssðsÞðs� 1ÞDs <

l

2

ðy
2

ðsðsÞ � 1Þ
sðsðsÞ � 1Þðs� 1ÞDs

¼ l

2

ðy
2

1

sðs� 1ÞDs <
l

2

ðy
2

1

ðs� 1Þ2
Ds < y:
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To apply Theorem 2.4 it remains to discuss condition (2.30). Note

lim inf
t!y

tg

pðtÞ

ðy
sðtÞ

QðsÞDs ¼ l

2
lim inf
t!y

t

ðy
sðtÞ

lðsðsÞ � 1Þ
2ssðsÞðs� 1Þ

s� T

sðsÞ � T

� �
Ds

>
l

2
lim inf
t!y

t

ðy
sðtÞ

l

2ssðsÞ �
T

2ssðsÞðs� 1Þ

� �
Ds

b
l

2
lim inf
t!y

t

ðy
sðtÞ

�1

s

� �D
Ds ¼ l

2
l;

since

lim inf
t!y

t

ðy
sðtÞ

1

ssðsÞðs� 1ÞDsb lim inf
t!y

t

ðy
sðtÞ

1

s2sðsÞDs

b lim inf
t!y

t

ðy
sðtÞ

�1

2s2

� �D
Ds ¼ lim inf

t!y

t

2s2ðtÞ ¼ 0:

Hence, by Theorem 2.4 every solution of (2.33) oscillates if l > 1=2l2:

2.2. The case when dðtÞa t

In this subsection, we establish some su‰cient conditions for oscillation of

(1.1) when dðtÞa t. To prove the main results in this subsection we need the

following lemma.

Lemma 2.3. Assume that ðh1Þ–ðh3Þ hold. Furthermore assume that

pD
b 0; and

ðy
t0

dgðsÞqðsÞ½1� rðdðsÞÞ�gDs ¼ y:ð2:34Þ

Let y be a nonoscillatory solution of (1.1) on ½t0;yÞT and x is defined as in

(1.2). Then there exists T A ½t0;yÞT, su‰ciently large, so that

(i) xðtÞ > txDðtÞ for t A ½T ;yÞT;
(ii) xðtÞ=t is strictly decreasing on ½T ;yÞT.

Proof. Assume that y is a positive solution of (1.1) on ½t0;yÞT. Pick

t1 A ½t0;yÞT so that t1 > t0 and so that yðtÞ > 0, yðtðtÞÞ > 0, yðtðtðtÞÞÞ > 0 and

yðdðtÞÞ > 0 on ½t1;yÞT. (Note that in the case when yðtÞ is negative the proof

is similar, since the transformation yðtÞ ¼ �zðtÞ transforms (1.1) into the same

form). Since y is a positive solution of (1.1), then from Lemma 2.1, we see

that xðtÞ satisfies (2.5) for tb t2 where t2 > t1 is chosen large enough. Let

UðtÞ :¼ xðtÞ � txDðtÞ. This implies that U DðtÞ ¼ �sðtÞxDDðtÞ, for t A ½t2;yÞT.
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To determine the sign of U DðtÞ we need to know the sign of xDDðtÞ. Since

(see (2.4) and (2.5)) ðpðtÞðxDðtÞÞgÞD < 0 on ½t2;yÞT, we have after di¤erentia-

tion that

pDðtÞðxDðtÞÞg þ psððxDðtÞÞgÞD < 0; for tb t2:ð2:35Þ

Using the Pötzsche chain rule ([4, Theorem 1.90]),

ð f gðtÞÞD ¼ g

ð1
0

½ f ðtÞ þ mðtÞhf DðtÞ�g�1
f DðtÞdh;ð2:36Þ

we have

ððxDðtÞÞgÞD ¼ g

ð1
0

½xDðtÞ þ hmðtÞxDDðtÞ�g�1
dhxDDðtÞð2:37Þ

¼ gxDDðtÞ
ð1
0

½xDðtÞ þ h½xDsðtÞ � xDðtÞ�g�1
dh

¼ gxDDðtÞ
ð1
0

½hxDsðtÞ þ ð1� hÞxDðtÞ�g�1
dh:

From (2.35), we have that

psððxDðtÞÞgÞD < �pDðtÞðxDðtÞÞg a 0; for tb t2;

since pDðtÞb 0 and xDðtÞ > 0 for tb t2. It follows that

psððxDðtÞÞgÞD < 0; for tb t2:

This shows, see (2.37), that xDDðtÞ < 0 for tb t2, since the integral in (2.37) is

positive. This implies that UðtÞ is strictly increasing on ½t2;yÞT. To com-

plete the proof, we show that there is t4 A ½t2;yÞT with Uðt4Þb 0, so since UðtÞ
is strictly increasing, there exists t3 A ½t2;yÞT with UðtÞ > 0 for tb t3. Assume

not, then UðtÞ < 0 on ½t3;yÞT for any t3 b t2. Therefore,

xðtÞ
t

� �D
¼ txDðtÞ � xðtÞ

tsðtÞ ¼ �UðtÞ
tsðtÞ > 0; t A ½t3;yÞT;ð2:38Þ

which implies that xðtÞ=t is strictly increasing on ½t3;yÞT. Pick t4 A ½t3;yÞT so

that dðtÞb dðt3Þ > 0, for tb t4 (note that limt!y dðtÞ ¼ yÞ. Then xðdðtÞÞ=dðtÞ
b xðdðt3ÞÞ=dðt3Þ ¼: d > 0, so that xðdðtÞÞb ddðtÞ for tb t4. Now integrating

both sides of the dynamic inequality (2.4) from t4 to t, we have

pðtÞðxDðtÞÞg � pðt4ÞðxDðt4ÞÞg þ
ð t
t4

PðsÞxgðdðsÞÞDsa 0; for tb t4:
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This implies for t > t4, that

pðt4ÞðxDðt4ÞÞg b
ð t
t4

PðsÞxgðdðsÞÞDsb d g

ð t
t4

PðsÞdgðsÞDs:ð2:39Þ

Letting t ! y, we obtain a contradiction to assumption (2.34). Hence there

exists t3 A ½t2;yÞT such that UðtÞ > 0 on ½t3;yÞT. Consequently,

xðtÞ
t

� �D
¼ txDðtÞ � xðtÞ

tsðtÞ ¼ �UðtÞ
tsðtÞ < 0; t A ½t3;yÞT;ð2:40Þ

and we have that xðtÞ=t is strictly decreasing on ½t3;yÞT. This completes the

proof of the Lemma.

Theorem 2.6. Assume that ðh1Þ–ðh3Þ and (2.34) hold. Let y be a non-

oscillatory solution of (1.1) and x and w are defined as in (1.2) and (2.7). Then

wðtÞ > 0, for tbT (here T is as in Lemma 2.3) and

wDðtÞ þ AðtÞ þ g
1

p1=gðtÞ ðw
sÞ1þ1=gðtÞa 0; for t A ½T ;yÞT:ð2:41Þ

where

AðtÞ :¼ PðtÞ dðtÞ
sðtÞ

� �g
and PðtÞ ¼ qðtÞð1� rðdðtÞÞÞg:

Proof. Let y be as above and without loss of generality we assume that

there is t1 > t0 such that yðtÞ > 0, yðtðtÞÞ > 0, yðtðtðtÞÞÞ > 0 and yðdðtÞÞ > 0

for tb t1. From Lemma 2.3, since pDðtÞb 0, we see that (see the proof of

Lemma 2.3) there exists T > t1 such that

xðtÞ > 0; xDðtÞ > 0; and xDDðtÞa 0; for tbT :

From the definition of w, by quotient rule [4, Theorem 1.20] and as in the

proof of Theorem 2.1, we get

wDðtÞa�PðtÞ xdðtÞ
xsðtÞ

� �g
� g

1

p1=gðtÞ ðw
sðtÞÞ1þ1=g; for tbT :ð2:42Þ

Now, we consider the coe‰cient of PðtÞ in (2.42). From Lemma 2.3, since

ðxðtÞ=tÞ is decreasing and dðtÞa ta sðtÞ, we have

xdðtÞ
xsðtÞ b

dðtÞ
sðtÞ :ð2:43Þ
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Substituting (2.43) into (2.42), we have the inequality (2.41) and this completes

the proof.

The proof of the following theorem is similar to the proof of Theorem 2.2

(use inequality (2.41)).

Theorem 2.7. Assume that ðh1Þ–ðh2Þ and (2.34) hold. Furthermore, as-

sume that ðy
t0

AðsÞDs ¼ y:

Then every solution of (1.1) oscillates.

In the following we consider the case when

ðy
t0

AðsÞDs < y:ð2:44Þ

We will use the following notations:

A� :¼ lim inf
t!y

tg

pðtÞ

ðy
sðtÞ

AðsÞDs; B� :¼ lim inf
t!y

1

t

ð t
T

sgþ1

pðsÞAðsÞDs:

Theorem 2.8. Assume that ðh1Þ–ðh2Þ and (2.34) hold. Furthermore, as-

sume that

A� >
gg

l g
2ðgþ 1Þgþ1

:ð2:45Þ

Then every solution of (1.1) oscillates.

Proof. The proof is similar to the proof of Theorem 2.4, by replacing

QðtÞ by AðtÞ and so is omitted.

Also we can obtain the following result.

Theorem 2.9. Assume that ðh1Þ–ðh3Þ and (2.34) hold. Furthermore, as-

sume that

A� þ B� >
1

l gðgþ1Þ :ð2:46Þ

Then every solution of (1.1) oscillates.

In the following, we give an example to illustrate the results in Theorem 2.8.

To obtain the conditions for oscillation we will use the facts in (2.32).
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Example 2. Consider the following second-order nonlinear neutral delay

dynamic equation

tg�1 yðtÞ þ d�1ðtÞ � 1

d�1ðtÞ
yðtðtÞÞ

 !D0
@

1
A

g0
@

1
A
D

þ bs2g�2

dgðtÞ ygðdðtÞÞ ¼ 0;ð2:47Þ

t A ½1;yÞT;

where b > 0, and g� 2 > 0 and is an odd positive integer, tðtÞ, dðtÞ A T with

limt!y dðtÞ ¼ limt!y tðtÞ ¼ y, and tðtÞa t, dðtÞa t. We assume that d�1ðtÞ
(the inverse of the function dðtÞÞ exists, and T is a time scale such

ðy
t0

sg

sgþ2
Ds < y:ð2:48Þ

Here

pðtÞ ¼ tg�1; rðtÞ ¼ d�1ðtÞ � 1

d�1ðtÞ
¼ 1� 1

d�1ðtÞ
; and qðtÞ ¼ bs2g�2

dgðtÞ :

It is easy to see that the assumptions ðh1Þ–ðh3Þ hold. To apply Theorem 2.8 we

must show that conditions (2.34), (2.44) and (2.45) are satisfied. Note (2.34) is

satisfied, since

ðy
t0

dgðsÞqðsÞ½1� rðdðsÞÞ�gDs ¼ b

ðy
1

dgðsÞ 1

s

� �g
s2g�2

dgðsÞ Ds

¼ b

ðy
1

sðsÞ
s

� �g
sg�2ðsÞDs

b b

ðy
1

sg�2ðsÞDsb b

ðy
1

sg�2Ds ¼ y:

Now, we show that (2.44) holds. To see this note by (2.48) that

ðy
t0

AðsÞDs ¼
ðy
t0

1

s

� �g
bs2g�2

dgðsÞ
dðsÞ
sðsÞ

� �g
Ds

¼ b

ðy
t0

sg�2

sg
Ds ¼ b

ðy
t0

sg

sgs2
Ds

a b

ðy
t0

sg

sgþ2
Ds < y:
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Finally we discuss (2.45). Note

lim inf
t!y

1

t

ð t
T

sgþ1

pðsÞAðsÞDs ¼ lim inf
t!y

1

t

ð t
1

sgþ1

sg�1

1

s

� �g
bs2g�2

dgðsÞ
dðsÞ
sðsÞ

� �g
Ds

¼ b lim inf
t!y

1

t

ð t
1

ssg�2

sg�1
Ds ¼ b lim inf

t!y

1

t

ð t
1

sg�2

sg�2
Ds

> b lim inf
t!y

1

t

ð t
1

Ds ¼ b:

Then by Theorem 2.8, every solution of (2.47) oscillates if b > gg=l g
2ðgþ 1Þgþ1

.
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