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ABSTRACT. In this paper, we prove that there exist entire functions which determines
the splitting behavior of polynomials at prime. First, to any monic irreducible
polynomial and any prime p, we associate a function defined on the set of primes
which determines whether the polynomial splits completely at p or not. Then we
extend them to entire functions.

1. Introduction

In an introductory article by Professor Thara, a problem is introduced. To
describe it, let us employ the following notation.

NortaTiON 1. Let P be the set of prime numbers. Let f(x) € Z[x] be a
monic irreducible polynomial. We define P, to be the set of prime numbers p
such that f(x) splits completely on F,.

DeriNITION 2. A sequence of prime numbers {p;} is said to be of
completely splitting type if for any monic irreducible f(x), there exists N
such that n > Ny implies p, € Py.

ProBLEM 1 [1, Problem 3.1]. Can we construct a family F of countably
many complex valued functions which satisfies the following condition: For any
sequence {p;} of prime numbers,

{pi} is of completely splitting type <

For any F € &, there exists a number Mg such that n > Mg implies

F(p,) =0.
To solve the above problem affirmatively, we prove the following theorem.

THEOREM 2. Let u(x) € Z[x] be a monic irreducible polynomial of degree d.
Then there exist holomorphic functions Fy o, Fy 1, ..., F, 41 on C* such that for
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any prime p, u(x) splits completely on ¥, if and only if F,o(p) =0, F,1(p) =
07 e 7Fu7d,1(p) = 0.

The functions F, i,...,F, 41 are entire functions on C. We may replace
F,o in Theorem 2 by two other entire functions G, and G,u, and may use
only entire functions. Theorem 3 gives an affirmative answer to Problem 1 as
follows. Indeed, we put

Fa=A{Gy, G0, Fy1,...,Fya-1|ueZx] : monic irreducible, degu = d}.

Then we see that & satisfies the required condition. Indeed, we notice that
is denumerable. Then we use the relation

pePu(:)Gu(p)ZO, Gum(p):Oa Fu,l( )_0 ud l(p) 0

in Theorem 3. Professor Thara raised this problem to be solved by some non-
abelian class field theory. Thus, the proof here must not be what he wanted to
mean. Anyway, it would be not too bad to give an elementary proof.

2. The function r, associated by a polynomial u«

DerINITION 3. Let u(x) € Z[x] be a monic irreducible polynomial of
degree d. Let

d
X) = H(x — o)
j=1

be the factorization of u(x) over C. Let P (x) be the remainder of x” divided
by u(x).

x? = rlP(x) mod u(x), deg riP(x) < d

It is worth while to note that the computation above may be done over Z
(instead of the field F,). Now, we extend the polynomial i) (x). We compute

P (x) in terms of the roots of u(x):

ProposiTioN 1 (Lagrangian interpolation). Let u(x) € Z[x] be a monic
irreducible polynomial of degree d and let oy, ..., 04 be the roots of u(x). Then

o u(x)

d
() Z:u’ J(x — o)
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Proor. Let us put

P

d
= _ #(p)
z::u’ (o) x—ocj) r ().

Then we have deg h(x) <d —1, h(o;) =0. We thus conclude that /(x) =0
O

PrROPOSITION 2. Let u(x) € Z[x] be a monic irreducible polynomial of
degree d. Then:
(1) For u(x) € Z[x|, there exists an entire function r) (x) in z whose special
values at primes are equal to the value of rl(,p ) (x).
(if) u(x) splits completely on F, & P (x) =x on F,.

By using equation (1) and by choosing a logarithm log(«;) of «; for each j,
we may extend the function ri? )(x) to an entire function in complex variable p.

DerNiTION 4. Under the same assumption as in Proposition 2, We define
gl(,’ l) to be the coefficients of the polynomial rf,p )(x) in x. In other words, we
put

d—1
2) () =gl
i=0

3. Proof of Theorem 2

Proor. Let us define

F..i(p) = exp <2n\/_ (gl(” 5:',1)) -1
(p)

where g,”/ is the entire function in p- Varlable deﬁned by the equation (2) in
Definition 4. So, F,;(p) = 0 if and only if gu, —J;,1 is divisible by p. Thus,
F,i(p)=0 for all 0 <i<d—1 if and only if r,ﬁm(x) — x is divisible by p,
namely x” —x mod p is divisible by u(x) mod p, which is equivalent to the
completely splitting property at p. O

4. Use of entire functions

The functions F,;(p) in Theorem 2 are surely holomorphic functions
on C*. But they may have singularities at the origin. We may modify our
functions so that we only make use of entire functions.
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DEerINITION 5. Let u(x) € Z[x] be a monic irreducible polynomial of
degree d. Then we define
uV(x) == u(x+ 1)
Gu(p) := (Fuo(p) + 1)(Fu1(p) +1) = 1.

THEOREM 3. Let u(x) € Z[x] be a monic irreducible polynomial of degree d.
Then
(1) Fu2(p)s... Fua—1(p), Gu(p) are entire functions.
(i) wu(x) splits completely on F, < F,>(p) =0,...,F,qa-1(p) =0, Gu(p)
= 0, Guu) (p) =0.

Proor. (i) We may compute so that

Oy N~ U
ru (X)—Z _1
Jj=1

u' (o) (x — o)

holds. Thus,

Therefore,

2mv/ -1
Fua2(p)s-- s Fua-1(p), Gu(P)—eXp< ’ (gfngrgL(,ﬂ)—l))—l

are entire functions.
(i) («=) obvious from Theorem 2.
(=) From the definition of F, ;(p) and G,(p), we see that

xP =ax+ (1 —a) mod u(x), p
holds. We have furthermore
(x+1)” =ax+1 mod uV(x), p.
Namely, we have
x” = ax mod u'V(x), p.

Therefore, we conclude that r,(/’ ) (x) =x on F,. N

5. Example

(1) The case of u(x) =x>—1 (leZ). We may easily compute by using
equation (1) so that

rP(x) = 1=D2, gip) -0, gt(’p) — J(r-1)/2
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holds. Then we see that F,;(p) and G,(p) are given as follows:

Fuo(p)=0,  Fu.i(p) =Gulp) = CXP<2EF(1(p_1)/2 - 1)) — 1.

The reader may easily verify that

. /
u(x) splits completely on F, < (;) =1& F,(p)=0.

((4) is the quadratic residue symbol.)

NOTE 4. In general, if Q[x]/u(x) is abelian extension, then by the class
field theory, it is known already that Theorem 2 is solved by periodic functions

like
Fo(p) = exp (hﬁ (r— 1)) -1

m
instead of our complicated function F, ;. See [1, §3], [3, 1 §10, VI].

(2) The case of u(x) =x>—-x—1. We may compute similarly

ol u(x)

d

(p) — J —

r\P(x) = — _—Fx+F,

) =D gy~ TP
when F,, is the n-th Fibonacci numbers. rf,” ) in this case somehow inherits the
properties of the Fibonacci numbers. We may thus expect that even for a
general u, our function F,; has rich contents as the Fibonacci numbers have.

(3) The case of u(x)=x*—1

» B d oc;'u(x) B 301 u(x)
CR R M S AN

j=1
= %;(1’%/3(1 o2 + P )X 4 %1("*”“(1 P L

(4) The case of u(x) =x" —1.

d P
#(P) (x) = Z % u(x) _ . lap—”+l u(x)
u . _ ] — .
= (o) (x — o) =" (x — o)
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