A family of entire functions which determines the splitting behavior of polynomials at primes

Hajime KUROIWA (Received July 30, 2010) (Revised March 28, 2011)

ABSTRACT. In this paper, we prove that there exist entire functions which determines the splitting behavior of polynomials at prime. First, to any monic irreducible polynomial and any prime p, we associate a function defined on the set of primes which determines whether the polynomial splits completely at p or not. Then we extend them to entire functions.

1. Introduction

In an introductory article by Professor Ihara, a problem is introduced. To describe it, let us employ the following notation.

NOTATION 1. Let P be the set of prime numbers. Let $f(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial. We define P_f to be the set of prime numbers p such that f(x) splits completely on \mathbf{F}_p .

DEFINITION 2. A sequence of prime numbers $\{p_i\}$ is said to be of **completely splitting type** if for any monic irreducible f(x), there exists N_f such that $n \ge N_f$ implies $p_n \in P_f$.

PROBLEM 1 [1, Problem 3.1]. Can we construct a family \mathcal{F} of countably many complex valued functions which satisfies the following condition: For any sequence $\{p_i\}$ of prime numbers,

 $\{p_i\}$ is of completely splitting type \Leftrightarrow

For any $F \in \mathcal{F}$, there exists a number M_F such that $n \geq M_F$ implies

$$F(p_n) = 0.$$

To solve the above problem affirmatively, we prove the following theorem.

THEOREM 2. Let $u(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial of degree d. Then there exist holomorphic functions $F_{u,0}, F_{u,1}, \dots, F_{u,d-1}$ on \mathbb{C}^{\times} such that for

²⁰¹⁰ Mathematics Subject Classification. 11A41, 11A51.

Key words and phrases. entire function, completely splitting, non-abelian class field theory.

any prime p, u(x) splits completely on \mathbf{F}_p if and only if $F_{u,0}(p) = 0$, $F_{u,1}(p) = 0$, ..., $F_{u,d-1}(p) = 0$.

The functions $F_{u,1}, \ldots, F_{u,d-1}$ are entire functions on \mathbb{C} . We may replace $F_{u,0}$ in Theorem 2 by two other entire functions G_u and $G_{u^{(1)}}$, and may use only entire functions. Theorem 3 gives an affirmative answer to Problem 1 as follows. Indeed, we put

$$\mathscr{F} = \bigcup_{d>1} \mathscr{F}_d$$

$$\mathscr{F}_d = \{G_u, G_{u^{(1)}}, F_{u,1}, \dots, F_{u,d-1} \mid u \in \mathbf{Z}[x] : \text{monic irreducible, deg } u = d\}.$$

Then we see that \mathscr{F} satisfies the required condition. Indeed, we notice that \mathscr{F} is denumerable. Then we use the relation

$$p \in P_u \Leftrightarrow G_u(p) = 0, \qquad G_{u^{(1)}}(p) = 0, \qquad F_{u,1}(p) = 0, \dots, F_{u,d-1}(p) = 0$$

in Theorem 3. Professor Ihara raised this problem to be solved by some non-abelian class field theory. Thus, the proof here must not be what he wanted to mean. Anyway, it would be not too bad to give an elementary proof.

2. The function r_u associated by a polynomial u

Definition 3. Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d. Let

$$u(x) = \prod_{j=1}^{d} (x - \alpha_j)$$

be the factorization of u(x) over **C**. Let $r_u^{(p)}(x)$ be the remainder of x^p divided by u(x).

$$x^p \equiv r_u^{(p)}(x) \mod u(x), \qquad \deg r_u^{(p)}(x) < d$$

It is worth while to note that the computation above may be done over **Z** (instead of the field \mathbf{F}_p). Now, we extend the polynomial $r_u^{(p)}(x)$. We compute $r_u^{(p)}(x)$ in terms of the roots of u(x):

PROPOSITION 1 (Lagrangian interpolation). Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d and let $\alpha_1, \ldots, \alpha_d$ be the roots of u(x). Then

(1)
$$r_u^{(p)}(x) = \sum_{j=1}^d \frac{\alpha_j^p u(x)}{u'(\alpha_j)(x - \alpha_j)}.$$

Proof. Let us put

$$h(x) = \sum_{i=1}^{d} \frac{\alpha_{j}^{p} u(x)}{u'(\alpha_{j})(x - \alpha_{j})} - r_{u}^{(p)}(x).$$

Then we have deg $h(x) \le d - 1$, $h(\alpha_i) = 0$. We thus conclude that h(x) = 0.

PROPOSITION 2. Let $u(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial of degree d. Then:

- (i) For $u(x) \in \mathbf{Z}[x]$, there exists an entire function $r_u^{(z)}(x)$ in z whose special values at primes are equal to the value of $r_u^{(p)}(x)$. u(x) splits completely on $\mathbf{F}_p \Leftrightarrow r_u^{(p)}(x) = x$ on \mathbf{F}_p .

By using equation (1) and by choosing a logarithm $log(\alpha_i)$ of α_i for each j, we may extend the function $r_u^{(p)}(x)$ to an entire function in complex variable p.

DEFINITION 4. Under the same assumption as in Proposition 2, We define $g_{u,i}^{(p)}$ to be the coefficients of the polynomial $r_u^{(p)}(x)$ in x. In other words, we

(2)
$$r_u^{(p)}(x) = \sum_{i=0}^{d-1} g_{u,i}^{(p)} x^i$$
.

Proof of Theorem 2

Proof. Let us define

$$F_{u,i}(p) = \exp\left(\frac{2\pi\sqrt{-1}}{p}\left(g_{u,i}^{(p)} - \delta_{i,1}\right)\right) - 1$$

where $g_{u,i}^{(p)}$ is the entire function in *p*-variable defined by the equation (2) in Definition 4. So, $F_{u,i}(p) = 0$ if and only if $g_{u,i}^{(p)} - \delta_{i,1}$ is divisible by *p*. Thus, $F_{u,i}(p) = 0$ for all $0 \le i \le d-1$ if and only if $r_u^{(p)}(x) - x$ is divisible by p, namely $x^p - x \mod p$ is divisible by $u(x) \mod p$, which is equivalent to the completely splitting property at p.

Use of entire functions

The functions $F_{u,i}(p)$ in Theorem 2 are surely holomorphic functions on \mathbb{C}^{\times} . But they may have singularities at the origin. We may modify our functions so that we only make use of entire functions.

DEFINITION 5. Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d. Then we define

$$u^{(1)}(x) := u(x+1)$$

$$G_u(p) := (F_{u,0}(p) + 1)(F_{u,1}(p) + 1) - 1.$$

THEOREM 3. Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d. Then

- (i) $F_{u,2}(p), \ldots, F_{u,d-1}(p), G_u(p)$ are entire functions.
- (ii) u(x) splits completely on $\mathbf{F}_p \Leftrightarrow F_{u,2}(p) = 0, \dots, F_{u,d-1}(p) = 0, G_u(p) = 0, G_{u^{(1)}}(p) = 0.$

PROOF. (i) We may compute so that

$$r_u^{(0)}(x) = \sum_{j=1}^d \frac{u(x)}{u'(\alpha_j)(x - \alpha_j)} = 1$$

holds. Thus,

$$g_{u,0}^{(0)} = 1, g_{u,1}^{(0)} = 0, \dots, g_{u,d-1}^{(0)} = 0.$$

Therefore,

$$F_{u,2}(p), \dots, F_{u,d-1}(p), \qquad G_u(p) = \exp\left(\frac{2\pi\sqrt{-1}}{p}\left(g_{u,0}^{(p)} + g_{u,1}^{(p)} - 1\right)\right) - 1$$

are entire functions.

- (ii) (\Leftarrow) obvious from Theorem 2.
- (\Rightarrow) From the definition of $F_{u,i}(p)$ and $G_u(p)$, we see that

$$x^p = ax + (1 - a) \mod u(x), \quad p$$

holds. We have furthermore

$$(x+1)^p = ax + 1 \mod u^{(1)}(x), \ p.$$

Namely, we have

$$x^p = ax \mod u^{(1)}(x), \quad p.$$

Therefore, we conclude that $r_u^{(p)}(x) = x$ on \mathbf{F}_p .

5. Example

(1) The case of $u(x) = x^2 - l$ ($l \in \mathbb{Z}$). We may easily compute by using equation (1) so that

$$r_u^{(p)}(x) = l^{(p-1)/2}x, \qquad g_{u,0}^{(p)} = 0, \qquad g_{u,1}^{(p)} = l^{(p-1)/2}$$

holds. Then we see that $F_{u,i}(p)$ and $G_u(p)$ are given as follows:

$$F_{u,0}(p) = 0, \qquad F_{u,1}(p) = G_u(p) = \exp\left(\frac{2\pi\sqrt{-1}}{p}(l^{(p-1)/2} - 1)\right) - 1.$$

The reader may easily verify that

$$u(x)$$
 splits completely on $\mathbf{F}_p \Leftrightarrow \left(\frac{l}{p}\right) = 1 \Leftrightarrow F_{u,1}(p) = 0$.

 $(\frac{l}{n})$ is the quadratic residue symbol.)

Note 4. In general, if $\mathbf{Q}[x]/u(x)$ is abelian extension, then by the class field theory, it is known already that Theorem 2 is solved by periodic functions like

$$F_m(p) = \exp\left(\frac{2\pi\sqrt{-1}}{m}(p-1)\right) - 1$$

instead of our complicated function $F_{u,i}$. See [1, §3], [3, I §10, VI].

(2) The case of $u(x) = x^2 - x - 1$. We may compute similarly

$$r_u^{(p)}(x) = \sum_{i=1}^d \frac{\alpha_j^p u(x)}{u'(\alpha_j)(x - \alpha_j)} = F_p x + F_{p-1}$$

when F_n is the *n*-th Fibonacci numbers. $r_u^{(p)}$ in this case somehow inherits the properties of the Fibonacci numbers. We may thus expect that even for a general u, our function $F_{u,i}$ has rich contents as the Fibonacci numbers have.

(3) The case of $u(x) = x^3 - l$.

$$\begin{split} r_u^{(p)}(x) &= \sum_{j=1}^d \frac{\alpha_j^p u(x)}{u'(\alpha_j)(x-\alpha_j)} = \sum_{j=1}^3 \frac{1}{3} \alpha_j^{p-2} \frac{u(x)}{(x-\alpha_j)} \\ &= \frac{1}{3} l^{(p-2)/3} (1+\omega^{p-2}+\omega^{2(p-2)}) x^2 + \frac{1}{3} l^{(p-1)/3} (1+\omega^{p-1}+\omega^{2(p-1)}) x \end{split}$$

(4) The case of $u(x) = x^n - l$.

$$r_u^{(p)}(x) = \sum_{j=1}^d \frac{\alpha_j^p u(x)}{u'(\alpha_j)(x - \alpha_j)} = \sum_{j=1}^n \frac{1}{n} \alpha_j^{p-n+1} \frac{u(x)}{(x - \alpha_j)}$$

References

[1] Y. Ihara, "Koremoaremo...imadatoketeimasen (Neither this nor that is yet solved)" (in Japanese), Suurikagaku (Mathematical science), saiensu-sya, Tokyo, August 1994.

- [2] D. E. Knuth, The Art of Computer Programming volume 2 SEMINUMERICAL ALGO-RITHMS Arithmetic, Addison-Wesley, 1969.
- [3] J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, 1992.

Hajime Kuroiwa
Department of Mathematics
Faculty of Science
Kochi University
Kochi, 780-8520, Japan
E-mail: b10d6a05@s.kochi-u.ac.jp