Function spaces of parabolic Bloch type

Yôsuke Hishikawa and Masahiro Yamada
(Received August 19, 2009)
(Revised June 10, 2010)

Abstract

The $L^{(\alpha)}$-harmonic function is the solution of the parabolic operator $L^{(\alpha)}=\partial_{t}+\left(-\Delta_{x}\right)^{\alpha}$. We study a function space $\tilde{\mathscr{B}}_{\alpha}(\sigma)$ consisting of $L^{(\alpha)}$-harmonic functions of parabolic Bloch type. In particular, we give a reproducing formula for functions in $\tilde{\mathscr{B}}_{\alpha}(\sigma)$. Furthermore, we study the fractional calculus on $\tilde{\mathscr{B}}_{\alpha}(\sigma)$. As an application, we also give a reproducing formula with fractional orders for functions in $\tilde{\mathscr{B}}_{\alpha}(\sigma)$. Moreover, we investigate the dual and pre-dual spaces of function spaces of parabolic Bloch type.

1. Introduction

The harmonic Bloch space on the upper half-space of $\mathbf{R}^{n+1}(n \geq 1)$ was studied by Ramey and Yi [7]. Nishio, Shimomura, and Suzuki [5] introduced the α-parabolic Bloch space on the upper half-space and studied important properties of the space. It was also shown in [5] that when $\alpha=1 / 2$, the $1 / 2$ parabolic Bloch space coincides with the harmonic Bloch space of Ramey and Yi. Hence, investigation of the α-parabolic Bloch space contains that of the harmonic Bloch space. In this paper, we generalize the α-parabolic Bloch space, and study properties of its space.

We begin with recalling basic notations. Let H be the upper half-space of \mathbf{R}^{n+1}, that is, $H:=\left\{X=(x, t) \in \mathbf{R}^{n+1} ; x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}, t>0\right\}$, and let $\partial_{j}:=\partial / \partial x_{j}(1 \leq j \leq n)$ and $\partial_{t}:=\partial / \partial t$. Let $C(\Omega)$ be the set of all real-valued continuous functions on a region Ω, and for a positive integer $k, C^{k}(\Omega) \subset$ $C(\Omega)$ denotes the set of all k times continuously differentiable functions on Ω, and put $C^{\infty}(\Omega)=\bigcap_{k} C^{k}(\Omega)$. The harmonic Bloch space \mathscr{B} in [7] is the set of all harmonic functions u on H with

$$
\begin{equation*}
\|u\|_{\mathscr{B}}=|u(0,1)|+\sup _{(x, t) \in H} t\left|\nabla_{(x, t)} u(x, t)\right|<\infty, \tag{1.1}
\end{equation*}
$$

where $\nabla_{(x, t)}=\left(\partial_{1}, \ldots, \partial_{n}, \partial_{t}\right)$ denotes the gradient operator on \mathbf{R}^{n+1}. We also recall the definition of the α-parabolic Bloch space in [5]. For $0<\alpha \leq 1$, the

[^0]parabolic operator $L^{(\alpha)}$ is defined by
$$
L^{(\alpha)}:=\partial_{t}+\left(-\Delta_{x}\right)^{\alpha},
$$
where $\Delta_{x}:=\partial_{1}^{2}+\cdots+\partial_{n}^{2}$ is the Laplacian on the x-space \mathbf{R}^{n}. A function $u \in C(H)$ is said to be $L^{(\alpha)}$-harmonic if u satisfies $L^{(\alpha)} u=0$ in the sense of distributions. (For details, see section 2 of this paper.) The α-parabolic Bloch space \mathscr{B}_{α} is the set of all $L^{(\alpha)}$-harmonic functions $u \in C^{1}(H)$ with
\[

$$
\begin{equation*}
\|u\|_{\mathscr{B}_{x}}=|u(0,1)|+\sup _{(x, t) \in H}\left\{t^{1 / 2 \alpha}\left|\nabla_{x} u(x, t)\right|+t\left|\partial_{t} u(x, t)\right|\right\}<\infty \tag{1.2}
\end{equation*}
$$

\]

where ∇_{x} also denotes the gradient operator on the x-space \mathbf{R}^{n}. It is shown in Theorem 7.4 of [5] that \mathscr{B}_{α} is a Banach space under the norm $\|\cdot\|_{\mathscr{B}_{\alpha}}$. Furthermore, (2.4) and Theorem 7.4 of [5] imply $\mathscr{B}_{1 / 2}=\mathscr{B}$. In this paper, we introduce the following function space of parabolic Bloch type.

Definition 1. Let $0<\alpha \leq 1$. And we put $m(\alpha)=\min \left\{1, \frac{1}{2 \alpha}\right\}$. Then, for a real number $\sigma>-m(\alpha)$, let $\mathscr{B}_{\alpha}(\sigma)$ be the set of all $L^{(\alpha)}$-harmonic functions $u \in C^{1}(H)$ with the norm

$$
\begin{equation*}
\|u\|_{\mathscr{B}_{x}(\sigma)}:=|u(0,1)|+\sup _{(x, t) \in H} t^{\sigma}\left\{t^{1 / 2 \alpha}\left|\nabla_{x} u(x, t)\right|+t\left|\partial_{t} u(x, t)\right|\right\}<\infty . \tag{1.3}
\end{equation*}
$$

Furthermore, let $\tilde{\mathscr{B}}_{\alpha}(\sigma)$ be the set of all functions $u \in \mathscr{B}_{\alpha}(\sigma)$ with $u(0,1)=0$. We note that $\tilde{\mathscr{B}}_{\alpha}(\sigma) \cong \mathscr{B}_{\alpha}(\sigma) / \mathbf{R}$.

We have an interest in analyses of function spaces $\mathscr{B}_{\alpha}(\sigma)$, and our aim of this paper is the investigation of properties of these spaces. We remark that the condition $\sigma>-m(\alpha)$ in Definition 1 requires that the orders of t in (1.3) are positive, that is, $\sigma+\frac{1}{2 \alpha}>0$ and $\sigma+1>0$. Furthermore, our results of this paper can be applied to study conjugate functions on the α-parabolic Bloch space, whose applications will be described elsewhere. We present main results of this paper.

Theorem 1. Let $0<\alpha \leq 1$ and $\sigma>-m(\alpha)$. Then, there exists a constant $C=C(n, \alpha, \sigma)>0$ such that

$$
|u(x, t)| \leq C\|u\|_{\mathscr{B}_{x}(\sigma)} F_{\alpha, \sigma}(x, t)
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma)$ and $(x, t) \in H$, where

$$
F_{\alpha, \sigma}(x, t):= \begin{cases}1+|x|^{-2 \alpha \sigma}+t^{-\sigma} & (0>\sigma>-m(\alpha)) \\ 1+\log (1+|x|)+|\log t| & (\sigma=0) \\ 1+t^{-\sigma} & (\sigma>0)\end{cases}
$$

Let $d V$ be the Lebesgue volume measure on H and $\mathbf{N}_{0}:=\mathbf{N} \cup\{0\}$. The following theorem is a reproducing formula for functions in $\tilde{\mathscr{B}}_{\alpha}(\sigma)$, which is
given by Theorem 4.5 of this paper. (Actually, our result is more general, see also Theorem 5.7.)

Theorem 2. Let $0<\alpha \leq 1$ and $\sigma>-m(\alpha)$. If $k, m \in \mathbf{N}_{0}$ satisfy $m>\sigma$ and $k+m>0$, then

$$
u(x, t)=\frac{2^{k+m}}{\Gamma(k+m)} \int_{H} \mathscr{D}_{t}^{k} u(y, s) \omega_{\alpha}^{m}(x, t ; y, s) s^{k+m-1} d V(y, s)
$$

for all $u \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$ and $(x, t) \in H$, where Γ is the gamma function, $\mathscr{D}_{t}=-\partial_{t}$, and the kernel function ω_{α}^{m} is defined in section 4.

We also give the definitions of parabolic Bergman spaces, which are closely related to the function space of parabolic Bloch type. For $1 \leq p<\infty$ and $\lambda>-1$, the Lebesgue space $L^{p}(\lambda):=L^{p}\left(H, t^{\lambda} d V\right)$ is defined to be the Banach space of all Lebesgue measurable functions u on H with

$$
\|u\|_{L^{p}(\lambda)}:=\left(\int_{H}|u(x, t)|^{p} t^{\lambda} d V(x, t)\right)^{1 / p}<\infty
$$

The α-parabolic Bergman space $\boldsymbol{b}_{\alpha}^{p}(\lambda)$ is the set of all $L^{(\alpha)}$-harmonic functions u on H with $u \in L^{p}(\lambda)$. Furthermore, $L^{\infty}:=L^{\infty}(H, d V)$ is defined to be the Banach space of all Lebesgue measurable functions u on H with

$$
\|u\|_{L^{\infty}}:=\underset{H}{\operatorname{ess} \sup }|u|<\infty,
$$

and let $\boldsymbol{b}_{\alpha}^{\infty}$ be the set of all $L^{(\alpha)}$-harmonic functions u on H with $u \in L^{\infty}$. (For details, see section 2 of this paper and [5].) As an application of Theorem 2, we obtain the following result.

Theorem 3. Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $\lambda>-1$. Then, $\left(\boldsymbol{b}_{\alpha}^{1}(\lambda)\right)^{*} \cong$ $\tilde{\mathscr{B}}_{\alpha}(\sigma)$ under the pairing $\langle\cdot, \cdot\rangle_{\lambda, \sigma}$, where

$$
\begin{gather*}
\langle u, v\rangle_{\lambda, \sigma}:=\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(y, s) \mathscr{D}_{t} v(y, s) s^{\lambda+\sigma+1} d V(y, s), \tag{1.4}\\
u \in \boldsymbol{b}_{\alpha}^{1}(\lambda), v \in \tilde{\mathscr{B}}_{\alpha}(\sigma) .
\end{gather*}
$$

We also discuss a pre-dual space of $\boldsymbol{b}_{\alpha}^{1}(\lambda)$. For $\sigma>-m(\alpha)$, a function space of parabolic little Bloch type $\mathscr{B}_{\alpha, 0}(\sigma)$ is the set of all functions $u \in \mathscr{B}_{\alpha}(\sigma)$ with

$$
\begin{equation*}
\lim _{(x, t) \rightarrow \partial H \cup\{\infty\}} t^{\sigma}\left\{t^{1 / 2 \alpha}\left|\nabla_{x} u(x, t)\right|+t\left|\partial_{t} u(x, t)\right|\right\}=0 . \tag{1.5}
\end{equation*}
$$

Furthermore, let $\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$ be the set of all functions $u \in \mathscr{B}_{\alpha, 0}(\sigma)$ with $u(0,1)=0$. We also give the following result.

Theorem 4. Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $\lambda>-1$. Then, $\boldsymbol{b}_{\alpha}^{1}(\lambda) \cong$ $\left(\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)\right)^{*}$ under the pairing (1.4), that is, $\langle u, v\rangle_{\lambda, \sigma}$ with $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$ and $v \in \tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$.

We remark that the pairing (1.4) is equal to a natural pairing on a dense subset of $\boldsymbol{b}_{\alpha}^{1}(\lambda)$. In fact, for a real number η, let

$$
\mathcal{S}(\eta):=\left\{u \in \boldsymbol{b}_{\alpha}^{\infty} ;\left(1+t+|x|^{2 \alpha}\right)^{n / 2 \alpha+\eta} u(x, t) \text { is bounded on } H\right\} .
$$

Then, Proposition 6.2 of [3] shows that $\mathcal{S}(\eta)$ is a dense subspace of $\boldsymbol{b}_{\alpha}^{1}(\lambda)$ when $\lambda>-1$ and $\eta>\lambda+1$. By the similar argument as in the proof of Theorem 6.5 of [3], it is not hard to see that

$$
\begin{gather*}
\langle u, v\rangle_{\lambda, \sigma}=\frac{2^{\lambda+\sigma+1}}{\Gamma(\lambda+\sigma+1)} \int_{H} u(y, s) v(y, s) s^{\lambda+\sigma} d V(y, s), \tag{1.6}\\
u \in \mathcal{S}(\eta), v \in \tilde{\mathscr{B}}_{\alpha}(\sigma),
\end{gather*}
$$

when $\sigma \geq 0$ and $\eta>\lambda+\sigma+1$ (since $\sigma \geq 0$, the condition $\eta>\lambda+\sigma+1$ implies that $\mathcal{S}(\eta)$ is dense in $\left.\boldsymbol{b}_{\alpha}^{1}(\lambda)\right)$. Furthermore, when $0>\sigma>-m(\alpha)$, the equation (1.6) also holds under the conditions $\lambda+\sigma>-1$ and $\eta>\lambda+1$.

We describe the construction of this paper. In section 2 , we present preliminary facts. In particular, we recall the explicit definition of the $L^{(\alpha)}$ harmonic functions and introduce some known results. In section 3, we study basic properties of $\tilde{\mathscr{B}}_{\alpha}(\sigma)$ and give the proof of Theorem 1. In section 4, we give the proof of Theorem 2. Consequently, we show a reproducing formula for functions in $\tilde{\mathscr{B}}_{\alpha}(\sigma)$. In section 5, we study fractional calculus on $\tilde{\mathscr{B}}_{\alpha}(\sigma)$. As an application, we give a generalization of Theorem 2, which is a reproducing formula with fractional orders for functions in $\tilde{\mathscr{B}}_{\alpha}(\sigma)$. In section 6 , we give the proofs of Theorems 3 and 4.

Throughout this paper, C will denote a positive constant whose value is not necessary the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall basic properties concerning the $L^{(\alpha)}$-harmonic functions. (For details, see [5].) We begin with describing about the operator $\left(-\Delta_{x}\right)^{\alpha}$. Since the case $\alpha=1$ is trivial, we only describe the case $0<\alpha<1$. Let $C_{c}^{\infty}(H) \subset C(H)$ be the set of all infinitely differentiable functions on H with compact support. Then, $\left(-\Delta_{x}\right)^{\alpha}$ is the convolution operator defined by

$$
\begin{equation*}
\left(-\Delta_{x}\right)^{\alpha} \psi(x, t):=-C_{n, \alpha} \lim _{\delta \downarrow 0} \int_{|y|>\delta}(\psi(x+y, t)-\psi(x, t))|y|^{-n-2 \alpha} d y \tag{2.1}
\end{equation*}
$$

for all $\psi \in C_{c}^{\infty}(H)$ and $(x, t) \in H$, where $C_{n, \alpha}=-4^{\alpha} \pi^{-n / 2} \Gamma((n+2 \alpha) / 2) / \Gamma(-\alpha)$ >0. Let $\tilde{L}^{(\alpha)}:=-\partial_{t}+\left(-\Delta_{x}\right)^{\alpha}$ be the adjoint operator of $L^{(\alpha)}$. Then, a function $u \in C(H)$ is said to be $L^{(\alpha)}$-harmonic if u satisfies $L^{(\alpha)} u=0$ in the sense of distributions, that is, $\int_{H}\left|u \cdot \tilde{L}^{(\alpha)} \psi\right| d V<\infty$ and $\int_{H} u \cdot \tilde{L}^{(\alpha)} \psi d V=0$ for all $\psi \in C_{c}^{\infty}(H) . \quad$ By (2.1) and the compactness of $\operatorname{supp}(\psi)$ (the support of ψ), there exist $0<t_{1}<t_{2}<\infty$ and a constant $C>0$ such that

$$
\begin{equation*}
\operatorname{supp}\left(\tilde{L}^{(\alpha)} \psi\right) \subset S=\mathbf{R}^{n} \times\left[t_{1}, t_{2}\right] \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\tilde{L}^{(\alpha)} \psi(x, t)\right| \leq C(1+|x|)^{-n-2 \alpha} \quad \text { for }(x, t) \in S \tag{2.3}
\end{equation*}
$$

Hence, the condition $\int_{H}\left|u \cdot \tilde{L}^{(\alpha)} \psi\right| d V<\infty$ for all $\psi \in C_{c}^{\infty}(H)$ is equivalent to the following: for any $0<t_{1}<t_{2}<\infty$,

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{n}}|u(x, t)|(1+|x|)^{-n-2 \alpha} d x d t<\infty \tag{2.4}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
\partial_{j}\left(-\Delta_{x}\right)^{\alpha} \psi=\left(-\Delta_{x}\right)^{\alpha} \partial_{j} \psi \quad \text { and } \quad \partial_{t}\left(-\Delta_{x}\right)^{\alpha} \psi=\left(-\Delta_{x}\right)^{\alpha} \partial_{t} \psi \tag{2.5}
\end{equation*}
$$

for all $\psi \in C_{c}^{\infty}(H)$.
We describe the fundamental solution of $L^{(\alpha)}$. For $x \in \mathbf{R}^{n}$, let

$$
W^{(\alpha)}(x, t):= \begin{cases}\frac{1}{(2 \pi)^{n}} \int_{\mathbf{R}^{n}} \exp \left(-t|\xi|^{2 \alpha}+i x \cdot \xi\right) d \xi & (t>0) \\ 0 & (t \leq 0)\end{cases}
$$

where $x \cdot \xi$ denotes the inner product on \mathbf{R}^{n} and $|\xi|=(\xi \cdot \xi)^{1 / 2}$. The function $W^{(\alpha)}$ is the fundamental solution of $L^{(\alpha)}$ and it is $L^{(\alpha)}$-harmonic on H. We note that
(2.6) $W^{(\alpha)}>0$ on $H \quad$ and $\quad \int_{\mathbf{R}^{n}} W^{(\alpha)}(x, t) d x=1 \quad$ for all $0<t<\infty$.

Furthermore, $W^{(\alpha)} \in C^{\infty}(H)$. The following lemma is Lemma 2.4 of [5].
Lemma 2.1 ([5, Lemma 2.4]). Let $0<\alpha \leq 1$ and $1 \leq p \leq \infty$. If $f \in$ $C\left(\mathbf{R}^{n}\right) \cap L^{p}\left(\mathbf{R}^{n}\right)$, then for every $x \in \mathbf{R}^{n}$,

$$
\lim _{s \rightarrow+0} \int_{\mathbf{R}^{n}} f(x-y) W^{(\alpha)}(y, s) d y=f(x)
$$

We also present the following lemma, which is Theorem 4.1 of [5] and Lemma 3.1 of [8].

Lemma 2.2 (Theorem 4.1 of [5] and Lemma 3.1 of [8]). Let $0<\alpha \leq 1$, $1 \leq p<\infty$, and $\lambda>-1$. Then, every $u \in \boldsymbol{b}_{\alpha}^{p}(\lambda)$ satisfies the following Huygens property, that is,

$$
\begin{equation*}
u(x, t+s)=\int_{\mathbf{R}^{n}} u(x-y, t) W^{(\alpha)}(y, s) d y=\int_{\mathbf{R}^{n}} u(y, t) W^{(\alpha)}(x-y, s) d y \tag{2.7}
\end{equation*}
$$

holds for all $x \in \mathbf{R}^{n}, 0<s<\infty$, and $0<t<\infty$. Furthermore, every $u \in \boldsymbol{b}_{\alpha}^{\infty}$ also satisfies (2.7).

Since $W^{(\alpha)} \in C^{\infty}(H)$, the Huygens property implies that $\boldsymbol{b}_{\alpha}^{p}(\lambda) \subset C^{\infty}(H)$. We also remark that a function satisfying the Huygens property is $L^{(\alpha)}$-harmonic, because $W^{(\alpha)}$ is $L^{(\alpha)}$-harmonic on H. For a multi-index $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbf{N}_{0}^{n}$, let $\partial_{x}^{\gamma}:=\partial_{1}^{\gamma_{1}} \ldots \partial_{n}^{\gamma_{n}}$. The following estimate is Lemma 1 of [6]: For a multiindex $\gamma \in \mathbf{N}_{0}^{n}$ and an integer $k \in \mathbf{N}_{0}$, there exists a constant $C=C(n, \alpha, \gamma, k)>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\gamma} \partial_{t}^{k} W^{(\alpha)}(x, t)\right| \leq C\left(t+|x|^{2 \alpha}\right)^{-((n+|y|) / 2 \alpha+k)} \tag{2.8}
\end{equation*}
$$

for all $(x, t) \in H$. When $(\gamma, k)=(0,0)$, Lemma 3.1 of [5] gives the following estimate: there exists a constant $C=C(n, \alpha)>0$ such that

$$
\begin{equation*}
W^{(\alpha)}(x, t) \leq C t\left(t+|x|^{2 \alpha}\right)^{-(n / 2 \alpha+1)} \tag{2.9}
\end{equation*}
$$

for all $(x, t) \in H$. Furthermore, the following estimate is Lemma 3.3 of [8] and Theorem 5.4 of [5]: For $1 \leq p<\infty$ and $\lambda>-1$ there exists a constant $C=C(n, \alpha, p, \lambda, \gamma, k)>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\gamma} \partial_{t}^{k} u(x, t)\right| \leq C\|u\|_{L^{p}(\lambda)} t^{-(|\gamma| / 2 \alpha+k)-(n / 2 \alpha+\lambda+1)(1 / p)} \tag{2.10}
\end{equation*}
$$

for all $u \in \boldsymbol{b}_{\alpha}^{p}(\lambda)$ and $(x, t) \in H$. Furthermore, there exists a constant $C=$ $C(n, \alpha, \gamma, k)>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\gamma} \partial_{t}^{k} u(x, t)\right| \leq C\|u\|_{L^{\infty}} t^{-(|\gamma| / 2 \alpha+k)} \tag{2.11}
\end{equation*}
$$

for all $u \in \boldsymbol{b}_{\alpha}^{\infty}$ and $(x, t) \in H$.
The following lemma is Lemma 5 of [6]. We use this in our later arguments.

Lemma 2.3 ([6, Lemma 5]). Let $\theta, c \in \mathbf{R}$. If $\theta>-1$ and $\theta-c+\frac{n}{2 \alpha}+1$ <0, then there exists a constant $C=C(n, \alpha, \theta, c)>0$ such that

$$
\int_{H} \frac{s^{\theta}}{\left(t+s+|x-y|^{2 \alpha}\right)^{c}} d V(y, s)=C t^{\theta-c+n / 2 \alpha+1}
$$

for all $(x, t) \in H$.

3. Basic properties of $\mathscr{B}_{\alpha}(\sigma)$

In this section, we study basic properties of $\mathscr{B}_{\alpha}(\sigma)$. We begin with showing the following lemma.

Lemma 3.1. Let $0<\alpha<1$ and suppose that a function $u \in C^{1}(H)$ is $L^{(\alpha)}$ harmonic. Then the following statements hold.
(1) If $\partial_{j} u$ satisfies the condition (2.4), then $\partial_{j} u$ is also $L^{(\alpha)}$-harmonic.
(2) If $\partial_{t} u$ satisfies the condition (2.4), then $\partial_{t} u$ is also $L^{(\alpha)}$-harmonic.

Proof. (1) If u satisfies the condition (2.4) and $\partial_{j} u$ also satisfies the condition (2.4), then by the Fubini theorem and integrating by parts with respect to the variable x_{j}, (2.3) and (2.5) imply that

$$
\int_{H} \partial_{j} u \cdot \tilde{L}^{(\alpha)} \psi d V=-\int_{H} u \cdot \tilde{L}^{(\alpha)}\left(\partial_{j} \psi\right) d V=0
$$

for all $\psi \in C_{c}^{\infty}(H)$. Thus, $\partial_{j} u$ is $L^{(\alpha)}$-harmonic. (2) Similarly, if $\partial_{t} u$ satisfies the condition (2.4), then the $L^{(\alpha)}$-harmonicity of $\partial_{t} u$ follows from (2.2) and (2.5).

For a real number $\delta \geq 0$ and a function u on H, let $u^{\delta}(x, t)=u(x, t+\delta)$ for $(x, t) \in H$. Basic properties of functions in $\mathscr{B}_{\alpha}(\sigma)$ are given in the following. In particular, (1) of Theorem 3.2 is Theorem 1 of section 1.

Theorem 3.2. Let $0<\alpha \leq 1$ and $\sigma>-m(\alpha)$. Then, the following statements hold.
(1) There exists a constant $C=C(n, \alpha, \sigma)>0$ such that

$$
\begin{equation*}
|u(x, t)| \leq C\|u\|_{\mathscr{B}_{x}(\sigma)} F_{\alpha, \sigma}(x, t) \tag{3.1}
\end{equation*}
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma)$ and $(x, t) \in H$, where

$$
F_{\alpha, \sigma}(x, t):= \begin{cases}1+|x|^{-2 \alpha \sigma}+t^{-\sigma} & (0>\sigma>-m(\alpha)) \tag{3.2}\\ 1+\log (1+|x|)+|\log t| & (\sigma=0) \\ 1+t^{-\sigma} & (\sigma>0)\end{cases}
$$

(2) If $u \in \mathscr{B}_{\alpha}(\sigma)$, then

$$
\lim _{s \rightarrow+0} \int_{\mathbf{R}^{n}} u(x-y, t) W^{(\alpha)}(y, s) d y=u(x, t)
$$

for all $(x, t) \in H$.
(3) Every $u \in \mathscr{B}_{\alpha}(\sigma)$ satisfies the Huygens property (2.7).
(4) Let $(\gamma, k) \in \mathbf{N}_{0}^{n} \times \mathbf{N}_{0} \backslash\{(0,0)\}$. If $u \in \mathscr{B}_{\alpha}(\sigma)$, then u belongs to $C^{\infty}(H)$ and $\partial_{x}^{\gamma} \partial_{t}^{k} u$ is $L^{(\alpha)}$-harmonic. Furthermore, there exists a constant $C=$ $C(n, \alpha, \sigma, \gamma, k)>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\gamma} \partial_{t}^{k} u(x, t)\right| \leq C t^{-(|y| / 2 \alpha+k+\sigma)}\|u\|_{\mathscr{B}_{x}(\sigma)} \tag{3.3}
\end{equation*}
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma)$ and $(x, t) \in H$.
(5) The space $\mathscr{B}_{\alpha}(\sigma)$ is a Banach space under the norm (1.3).

Proof. (1) Let $c>0$ be arbitrary real number. Then, for $u \in \mathscr{B}_{\alpha}(\sigma)$ and $(x, t) \in H$, we obtain

$$
\begin{aligned}
|u(x, t)| & \leq|u(0,1)|+\left|\int_{1}^{c}\right| \partial_{t} u(0, s)|d s|+\int_{0}^{1}|x| \cdot\left|\nabla_{x} u(r x, c)\right| d r+\left|\int_{c}^{t}\right| \partial_{t} u(x, s)|d s| \\
& \leq\|u\|_{\mathscr{S}_{x}(\sigma)}\left(1+\left|\int_{1}^{c} s^{-\sigma-1} d s\right|+|x| c^{-\sigma-1 / 2 \alpha}+\left|\int_{c}^{t} s^{-\sigma-1} d s\right|\right) \\
& \leq C\|u\|_{\mathscr{S}_{x}(\sigma)}\left(1+I_{x, \sigma}(c)\right)
\end{aligned}
$$

where

$$
I_{x, \sigma}(c):= \begin{cases}|\log c|+|x| c^{-1 / 2 \alpha}+|\log t| & (\sigma=0) \\ c^{-\sigma}\left(1+|x| c^{-1 / 2 \alpha}\right)+t^{-\sigma} & (\sigma \neq 0)\end{cases}
$$

Since $c>0$ is arbitrary, we can put $c=(1+|x|)^{2 \alpha}$. Then there exists a constant $C>0$ such that

$$
I_{x, \sigma}(c) \leq C \begin{cases}1+|x|^{-2 \alpha \sigma}+t^{-\sigma} & (0>\sigma>-m(\alpha)) \\ 1+\log (1+|x|)+|\log t| & (\sigma=0) \\ 1+t^{-\sigma} & (\sigma>0)\end{cases}
$$

Thus we obtain the estimate (3.1).
(2) Let $u \in \mathscr{B}_{\alpha}(\sigma)$. Also, let $(x, t) \in H$ and $\varepsilon>0$ be fixed. Then, there exists a real number $\delta>0$ such that $|u(x-y, t)-u(x, t)|<\varepsilon$ for all $y \in \mathbf{R}^{n}$ with $|y|<\delta$. Therefore, (2.6), (3.1), and (2.9) imply that

$$
\begin{aligned}
& \left|\int_{\mathbf{R}^{n}} u(x-y, t) W^{(\alpha)}(y, s) d y-u(x, t)\right| \\
& \quad \leq \varepsilon \int_{|y|<\delta} W^{(\alpha)}(y, s) d y+C\|u\|_{\mathscr{B}_{\alpha}(\sigma)} \int_{|y| \geq \delta}\left(F_{\alpha, \sigma}(x-y, t)+1\right) W^{(\alpha)}(y, s) d y \\
& \quad \leq \varepsilon+C s \int_{|y| \geq \delta} \frac{F_{\alpha, \sigma}(x-y, t)+1}{|y|^{n+2 \alpha}} d y .
\end{aligned}
$$

Suppose that $0>\sigma>-m(\alpha)$. Then, (3.2) implies that $F_{\alpha, \sigma}(x-y, t) \leq$ $C\left(1+|y|^{-2 \alpha \sigma}\right)$ for all $y \in \mathbf{R}^{n}$. Therefore, we obtain

$$
\lim _{s \rightarrow+0}\left|\int_{\mathbf{R}^{n}} u(x-y, t) W^{(\alpha)}(y, s) d y-u(x, t)\right| \leq \varepsilon .
$$

The proof of the case $\sigma \geq 0$ is similar to that of $0>\sigma>-m(\alpha)$.
(3) Let $u \in \mathscr{B}_{\alpha}(\sigma)$ and $s>0$ be fixed. Then, by the definition of the norm (1.3), we have $\partial_{j} u^{s / 2} \in L^{\infty}$. Therefore, $\partial_{j} u^{s / 2}$ satisfies the condition (2.4). Furthermore, (1) of Theorem 3.2 implies that $\lim _{|x| \rightarrow \infty} u^{s / 2}(x, t)(1+|x|)^{-n-2 \alpha}$ $=0$ for each $t>0$. Thus, by (1) of Lemma 3.1, we have $\partial_{j} u^{s / 2} \in \boldsymbol{b}_{\alpha}^{\infty}$. Since every element in $\boldsymbol{b}_{\alpha}^{\infty}$ satisfies the Huygens property by Lemma 2.2, we obtain

$$
\begin{aligned}
\partial_{j} u(x, t+s) & =\partial_{j} u^{s / 2}(x, t+s / 2)=\int_{\mathbf{R}^{n}} \partial_{j} u^{s / 2}(x-y, s / 2) W^{(\alpha)}(y, t) d y \\
& =\int_{\mathbf{R}^{n}} \partial_{j} u(x-y, s) W^{(\alpha)}(y, t) d y
\end{aligned}
$$

for all $(x, t) \in H$. Hence, for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ and $x_{j}^{\prime} \in \mathbf{R}$, put

$$
x^{\prime}=\left(x_{1}, \ldots, x_{j-1}, x_{j}^{\prime}, x_{j+1}, \ldots, x_{n}\right),
$$

then we have

$$
u(x, t+s)-u\left(x^{\prime}, t+s\right)=\int_{\mathbf{R}^{n}}\left(u(x-y, s)-u\left(x^{\prime}-y, s\right)\right) W^{(\alpha)}(y, t) d y .
$$

Therefore, the function

$$
\begin{equation*}
v(x, t, s):=u(x, t+s)-\int_{\mathbf{R}^{n}} u(x-y, s) W^{(\alpha)}(y, t) d y \tag{3.4}
\end{equation*}
$$

is a constant with respect to the variable $x_{j}(1 \leq j \leq n)$. By a similar argument with respect to s, the function v is also a constant with respect to the variable s. Since for each fixed $s>0$ the function $v(\cdot, \cdot, s)$ is $L^{(\alpha)}$-harmonic by (3.4), we have $\partial_{t} v=\partial_{t} v+\left(-\Delta_{x}\right)^{\alpha} v=0$. Therefore, v is a constant, and which is equal to $\lim _{t \rightarrow+0} v(x, t, s)=0$ by (2) of Theorem 3.2.
(4) Let $u \in \mathscr{B}_{\alpha}(\sigma)$ and $(\gamma, k) \in \mathbf{N}_{0}^{n} \times \mathbf{N}_{0} \backslash\{(0,0)\}$. Then, by (3) of Theorem 3.2, u belongs to $C^{\infty}(H)$ and $\partial_{x}^{\gamma} \partial_{t}^{k} u$ is $L^{(\alpha)}$-harmonic. Let $(y, s) \in H$. Put $\gamma^{\prime}=\left(\gamma_{1}, \ldots, \gamma_{j-1}, \gamma_{j}-1, \gamma_{j+1}, \ldots, \gamma_{n}\right)$, where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma_{j} \neq 0$. Then, since $\partial_{j} u^{s / 2} \in \boldsymbol{b}_{\alpha}^{\infty}$ by the definition of (1.3), the estimate (2.11) implies that

$$
\begin{aligned}
\left|\partial_{x}^{\gamma} \partial_{t}^{k} u(y, s)\right| & =\left|\partial_{x}^{\gamma^{\prime}} \partial_{t}^{k}\left(\partial_{j} u^{s / 2}\right)(y, s / 2)\right| \leq C s^{-\left(\left|\gamma^{\prime}\right| / 2 \alpha+k\right)} \sup _{(x, t) \in H}\left|\partial_{j} u^{s / 2}(x, t)\right| \\
& \leq C s^{-(|y| / 2 \alpha+k+\sigma)} \sup _{(x, t) \in H}(t+s / 2)^{\sigma+1 / 2 \alpha}\left|\partial_{j} u(x, t+s / 2)\right| \\
& \leq C s^{-(|\gamma| / 2 \alpha+k+\sigma)}\|u\|_{\mathscr{S}_{x}(\sigma)} .
\end{aligned}
$$

By a similar argument with respect to t, we also have the estimate (3.3).
(5) Let $\left\{u_{\ell}\right\}$ be a Cauchy sequence in $\mathscr{B}_{\alpha}(\sigma)$. Then, by (1) of Theorem 3.2, $\left\{u_{\ell}(x, t)\right\}$ is a Cauchy sequence in \mathbf{R}. Thus, we define a function u on H such that $u(x, t)=\lim _{\ell \rightarrow \infty} u_{\ell}(x, t)$ for each $(x, t) \in H$. Moreover, by (4) of Theorem 3.2, $\left\{\partial_{j} u_{\ell}(x, t)\right\}$ and $\left\{\partial_{t} u_{\ell}(x, t)\right\}$ are Cauchy sequences with respect to the locally uniform topology on each domain $\mathbf{R}^{n} \times\left[t_{0}, \infty\right)$ with $t_{0}>0$. Hence, u belongs to $C^{1}(H)$. Let $x \in \mathbf{R}^{n}, 0<s<\infty$, and $0<t<\infty$ be fixed. Then, by (3) of Theorem 3.2, we have

$$
\begin{equation*}
u_{\ell}(x, t+s)=\int_{\mathbf{R}^{n}} u_{\ell}(x-y, t) W^{(\alpha)}(y, s) d y \tag{3.5}
\end{equation*}
$$

for each ℓ. Since $\left\{u_{\ell}\right\}$ is a Cauchy sequence in $\mathscr{B}_{\alpha}(\sigma)$, (3.1) implies that $\left|u_{\ell}(x-y, t)\right| \leq C F_{\alpha, \sigma}(x-y, t)$ for all $\ell \in \mathbf{N}$ and $y \in \mathbf{R}^{n}$. Suppose that $0>\sigma>$ $-m(\alpha)$. Then, (2.9) and (3.2) show that

$$
\begin{equation*}
\left|u_{\ell}(x-y, t) W^{(\alpha)}(y, s)\right| \leq C \frac{1+|y|^{-2 \alpha \sigma}}{1+|y|^{n+2 \alpha}} \tag{3.6}
\end{equation*}
$$

for all $\ell \in \mathbf{N}$ and $y \in \mathbf{R}^{n}$. Since the right-hand side of (3.6) is integrable with respect to y, (3.5) and the Lebesgue dominated convergence theorem imply that u satisfies the Huygens property. Hence, u is $L^{(\alpha)}$-harmonic. Furthermore, we show $\left\|u_{\ell}-u\right\|_{\mathscr{D}_{\alpha}(\sigma)} \rightarrow 0$ and $u \in \mathscr{B}_{\alpha}(\sigma)$. In fact, since $\left\{u_{\ell}\right\}$ is a Cauchy sequence in $\mathscr{B}_{\alpha}(\sigma)$, for every $\varepsilon>0$ there exists $\ell_{0} \in \mathbf{N}$ such that $\left\|u_{\ell}-u_{\ell^{\prime}}\right\|_{\mathscr{B}_{\alpha}(\sigma)}<\varepsilon$ for all $\ell, \ell^{\prime} \geq \ell_{0}$. Therefore, if $\ell, \ell^{\prime} \geq \ell_{0}$, then

$$
\begin{aligned}
& \left|u_{\ell}(0,1)-u_{\ell^{\prime}}(0,1)\right| \\
& \quad+t^{\sigma}\left\{t^{1 / 2 \alpha}\left|\nabla_{x} u_{\ell}(x, t)-\nabla_{x} u_{\ell^{\prime}}(x, t)\right|+t\left|\partial_{t} u_{\ell}(x, t)-\partial_{t} u_{\ell^{\prime}}(x, t)\right|\right\}<\varepsilon
\end{aligned}
$$

for all $(x, t) \in H$. Since $u_{\ell^{\prime}}(0,1) \rightarrow u(0,1)$ and $\partial_{j} u_{\ell^{\prime}}(x, t) \rightarrow \partial_{j} u(x, t), \partial_{t} u_{\ell^{\prime}}(x, t)$ $\rightarrow \partial_{t} u(x, t)$ for each $(x, t) \in H$, we obtain

$$
\left|u_{\ell}(0,1)-u(0,1)\right|+t^{\sigma}\left\{t^{1 / 2 \alpha}\left|\nabla_{x} u_{\ell}(x, t)-\nabla_{x} u(x, t)\right|+t\left|\partial_{t} u_{t}(x, t)-\partial_{t} u(x, t)\right|\right\} \leq \varepsilon
$$

for all $(x, t) \in H$. Hence, it follows that $\left\|u_{\ell}-u\right\|_{\mathscr{B}_{\alpha}(\sigma)} \leq \varepsilon$ for all $\ell \geq \ell_{0}$. Also, we have $u=u-u_{\ell_{0}}+u_{\ell_{0}} \in \mathscr{B}_{\alpha}(\sigma)$. The proof of the case $\sigma \geq 0$ is similar to that of $0>\sigma>-m(\alpha)$. This completes the proof.

Remark 3.3. It is well-known that $W^{(1 / 2)}$ is the Poisson kernel (see (2.4) of [5]). Hence, (3) of Theorem 3.2 implies that every $u \in \mathscr{B}_{1 / 2}(\sigma)$ is harmonic on H. Conversely, every harmonic functions which satisfy the condition (1.3) is $L^{(1 / 2)}$-harmonic on H.

4. Reproducing formulae on $\mathscr{B}_{\alpha}(\sigma)$

We study reproducing formulae on $\mathscr{B}_{\alpha}(\sigma)$. Let $\gamma \in \mathbf{N}_{0}^{n}$ and $m \in \mathbf{N}_{0}$. Then, a function $\omega_{\alpha}^{\gamma, m}$ on $H \times H$ is defined by

$$
\begin{equation*}
\omega_{\alpha}^{\gamma, m}(x, t ; y, s)=\partial_{x}^{\gamma} \mathscr{D}_{t}^{m} W^{(\alpha)}(x-y, t+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{m} W^{(\alpha)}(-y, 1+s) \tag{4.1}
\end{equation*}
$$

for $(x, t),(y, s) \in H$, where $\mathscr{D}_{t}=-\partial_{t}$. In particular, we shall write $\omega_{\alpha}^{m}=\omega_{\alpha}^{0, m}$. We shall give reproducing formulae on $\mathscr{B}_{\alpha}(\sigma)$ using the kernel function ω_{α}^{m}. First, we present estimates of the function $\omega_{\alpha}^{\gamma, m}$. The following lemma is (2) of Proposition 3.1 of [3].

Lemma 4.1 ([3, (2) of Proposition 3.1]). Let $0<\alpha \leq 1, \gamma \in \mathbf{N}_{0}^{n}$, and $m \in \mathbf{N}_{0}$. Then, for every $(x, t) \in H$, there exists a constant $C=C(n, \alpha, \gamma, m, x, t)>0$ such that

$$
\left|\omega_{\alpha}^{\gamma, m}(x, t ; y, s)\right| \leq C\left(1+s+|y|^{2 \alpha}\right)^{-(n+|y|) / 2 \alpha-m-m(\alpha)}
$$

for all $(y, s) \in H$.
We give the following estimates, which are Lipschitz type estimates of functions in $\mathscr{B}_{\alpha}(\sigma)$.

Lemma 4.2. Let $0<\alpha \leq 1, \sigma>-m(\alpha), \gamma \in \mathbf{N}_{0}^{n}$, and $k \in \mathbf{N}_{0}$. Then, the following statements hold.
(1) For every real number $M>1$, there exists a constant $C=$ $C(n, \alpha, \gamma, k, M, \sigma)>0$ such that

$$
\begin{aligned}
& \left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(x, t+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(0,1+s)\right| \\
& \quad \leq C\|u\|_{\mathscr{B}_{x}(\sigma)}\left(\frac{|x|}{(1+s)^{(|x|+1) / 2 \alpha+k+\sigma}}+\frac{|t-1|}{(1+s)^{|v| / 2 \alpha+k+1+\sigma}}\right)
\end{aligned}
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma),(x, t) \in \mathbf{R}^{n} \times\left[M^{-1}, M\right]$, and $s \geq 0$.
(2) For every $(x, t) \in H$, there exists a constant $C=C(n, \alpha, \gamma, k, x, t, \sigma)>0$ such that

$$
\left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(x, t+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(0,1+s)\right| \leq C\|u\|_{\mathscr{B}_{x}(\sigma)}(1+s)^{-|\gamma| / 2 \alpha-k-m(\alpha)-\sigma}
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma)$ and $s \geq 0$.

Proof. (1) By (4) of Theorem 3.2, we have

$$
\begin{aligned}
& \left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(x, t+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(0,1+s)\right| \\
& \quad \leq\left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(x, t+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(0, t+s)\right|+\left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(0, t+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(0,1+s)\right| \\
& \quad \leq \int_{0}^{1}|x| \cdot\left|\nabla_{x} \partial_{x}^{\gamma} \mathscr{D}_{t}^{k} u(r x, t+s)\right| d r+\left|\int_{1}^{t}\right| \partial_{x}^{\gamma} \mathscr{D}_{t}^{k+1} u(0, \tau+s)|d \tau| \\
& \quad \leq C\|u\|_{\mathscr{S}_{x}(\sigma)}\left(\frac{|x|}{(1+s)^{(|\gamma|+1) / 2 \alpha+k+\sigma}}+\frac{|t-1|}{(1+s)^{||\gamma| / 2 \alpha+k+1+\sigma}}\right)
\end{aligned}
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma),(x, t) \in \mathbf{R}^{n} \times\left[M^{-1}, M\right]$, and $s \geq 0$.
(2) The desired estimate immediately follows from (1) of Lemma 4.2.

The following lemma is important for the proof of our reproducing formulae on $\mathscr{B}_{\alpha}(\sigma)$.

Lemma 4.3. Let $0<\alpha \leq 1, \sigma>-m(\alpha), u \in \mathscr{B}_{\alpha}(\sigma),(x, t) \in H$, and let $c_{1}, c_{2}>0$ be real numbers. Then, the following statements hold.
(1) For any $0<\varepsilon<m(\alpha)$, there exists a constant $C=C(n, \alpha, \sigma, \varepsilon)>0$ such that

$$
|u(y, s)| \leq C\|u\|_{\mathscr{S}_{\alpha}(\sigma)} M_{\alpha, \sigma, \varepsilon}(y, s)
$$

for all $(y, s) \in H$, where

$$
M_{\alpha, \sigma, \varepsilon}(y, s):= \begin{cases}\left(1+s+|y|^{2 \alpha}\right)^{-\sigma} & (0>\sigma>-m(\alpha)) \tag{4.2}\\ \left(1+s+|y|^{2 \alpha}\right)^{\varepsilon}+s^{-\varepsilon} & (\sigma=0) \\ 1+s^{-\sigma} & (\sigma>0)\end{cases}
$$

(2) If $k, m \in \mathbf{N}_{0}$, then for every $\delta>0$ and every $y \in \mathbf{R}^{n}$,

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right) s^{k+m}=0 . \tag{4.3}
\end{equation*}
$$

Furthermore, if $k, m \in \mathbf{N}_{0}$ satisfy $k+m>0$, then

$$
\begin{equation*}
\int_{H}\left|\mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right)\right| s^{k+m-1} d V(y, s)<\infty \tag{4.4}
\end{equation*}
$$

(3) If $k, m \in \mathbf{N}_{0}$ satisfy $m>\sigma$ and $k+m>0$, then there exist a constant $C=C\left(n, \alpha, \sigma, k, m, c_{1}, c_{2}\right)>0$ and a function $G_{\alpha, \sigma, k, m}$ on H such that

$$
\begin{equation*}
\left|\mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right)\right| \leq C G_{\alpha, \sigma, k, m}(y, s) \tag{4.5}
\end{equation*}
$$

for all $(y, s) \in H$ and $0<\delta \leq 1$, and such that

$$
\begin{equation*}
\int_{H} G_{\alpha, \sigma, k, m}(y, s) s^{k+m-1} d V(y, s)<\infty \tag{4.6}
\end{equation*}
$$

Proof. (1) By (1) of Theorem 3.2, we have

$$
|u(y, s)| \leq C\|u\|_{S_{x}(\sigma)} F_{\alpha, \sigma}(y, s)
$$

for all $(y, s) \in H$, where $F_{\alpha, \sigma}$ is the function defined in (3.2). If $0>\sigma>-m(\alpha)$, then we get

$$
F_{\alpha, \sigma}(y, s)=1+|y|^{-2 \alpha \sigma}+s^{-\sigma} \leq C\left(1+s+|y|^{2 \alpha}\right)^{-\sigma}
$$

for all $(y, s) \in H$. Next, let $\sigma=0$. Then, taking a constant ε with $0<\varepsilon<$ $m(\alpha)$, we also get

$$
\begin{aligned}
F_{\alpha, \sigma}(y, s) & =1+\log (1+|y|)+|\log s| \\
& \leq C\left(1+|y|^{2 \alpha \varepsilon}+s^{\varepsilon}+s^{-\varepsilon}\right) \leq C\left(\left(1+s+|y|^{2 \alpha}\right)^{\varepsilon}+s^{-\varepsilon}\right)
\end{aligned}
$$

for all $(y, s) \in H$. Since the case $\sigma>0$ is trivial, we obtain the desired result.
(2) Let $\delta>0$ be fixed. Suppose $k=0$ and $m \in \mathbf{N}_{0}$. Then, by (1) of Lemma 4.3, we have

$$
\left|u^{\delta}\left(y, c_{1} s\right)\right| \leq C M_{\alpha, \sigma, \varepsilon}\left(y, c_{1} s+\delta\right)
$$

for all $(y, s) \in H$. If $0>\sigma>-m(\alpha)$, then we have

$$
\begin{equation*}
M_{\alpha, \sigma, \varepsilon}\left(y, c_{1} s+\delta\right)=\left(1+c_{1} s+\delta+|y|^{2 \alpha}\right)^{-\sigma} \leq C\left(1+s+|y|^{2 \alpha}\right)^{-\sigma} \tag{4.7}
\end{equation*}
$$

for all $(y, s) \in H$. Next, let $\sigma=0$ and $0<\varepsilon<m(\alpha)$. Then, we also have

$$
\begin{align*}
M_{\alpha, \sigma, \varepsilon}\left(y, c_{1} s+\delta\right) & =\left(1+c_{1} s+\delta+|y|^{2 \alpha}\right)^{\varepsilon}+\left(c_{1} s+\delta\right)^{-\varepsilon} \tag{4.8}\\
& \leq C\left(\left(1+s+|y|^{2 \alpha}\right)^{\varepsilon}+s^{-\varepsilon}\right)
\end{align*}
$$

for all $(y, s) \in H$. Thus, if we put

$$
E_{\alpha, \sigma, \varepsilon}(y, s):= \begin{cases}\left(1+s+|y|^{2 \alpha}\right)^{-\sigma} & (0>\sigma>-m(\alpha)) \\ \left(1+s+|y|^{2 \alpha}\right)^{\varepsilon}+s^{-\varepsilon} & (\sigma=0) \\ 1 & (\sigma>0)\end{cases}
$$

then Lemma 4.1 implies that for every $\delta>0$ there exists a constant $C>0$ such that

$$
\begin{aligned}
\left|u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right)\right| s^{m} & \leq C s^{m} E_{\alpha, \sigma, \varepsilon}(y, s)\left(1+c_{2} s+|y|^{2 \alpha}\right)^{-n / 2 \alpha-m-m(\alpha)} \\
& \leq C s^{m} E_{\alpha, \sigma, \varepsilon}(y, s)\left(1+s+|y|^{2 \alpha}\right)^{-n / 2 \alpha-m-m(\alpha)}
\end{aligned}
$$

for all $(y, s) \in H$. Therefore, (4.3) is obtained. Furthermore, if $m \neq 0$, then (4.4) follows from Lemma 2.3.

Suppose $k \in \mathbf{N}$ and $m \in \mathbf{N}_{0}$. Then, (4) of Theorem 3.2 implies that

$$
\begin{equation*}
\left|\mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right)\right| \leq C\left(c_{1} s+\delta\right)^{-(k+\sigma)}\|u\|_{\mathscr{S}_{x}(\sigma)} \tag{4.9}
\end{equation*}
$$

for all $(y, s) \in H$. Since $-1 \leq-m(\alpha)<\sigma$, there exists a real number θ such that

$$
0 \geq m(\alpha)-1>\theta>-\min \{0, \sigma\}-1 \geq-1 .
$$

Therefore, by Lemma 4.1, we have

$$
\begin{aligned}
& \left|\mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right)\right| s^{k+m} \\
& \quad \leq C\left(c_{1} s+\delta\right)^{-(k-1)+\theta}\left(c_{1} s+\delta\right)^{-(\sigma+1+\theta)}\left(1+c_{2} s+|y|^{2 \alpha}\right)^{-n / 2 \alpha-m-m(\alpha)} s^{k+m} \\
& \quad \leq C s^{\theta+1+m}\left(1+s+|y|^{2 \alpha}\right)^{-n / 2 \alpha-m-m(\alpha)}
\end{aligned}
$$

for all $(y, s) \in H$. Hence, (4.3) is obtained, and (4.4) also follows from Lemma 2.3.
(3) Suppose $k=0$. Let $\sigma>0$. Then, we have

$$
\begin{equation*}
M_{\alpha, \sigma, \varepsilon}\left(y, c_{1} s+\delta\right)=1+\left(c_{1} s+\delta\right)^{-\sigma} \leq C\left(1+s^{-\sigma}\right) \tag{4.10}
\end{equation*}
$$

for all $(y, s) \in H$ and $\delta>0$. Thus, (4.7), (4.8), (4.10), and Lemma 4.1 imply that

$$
\left|u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right)\right| \leq C M_{\alpha, \sigma, \varepsilon}(y, s)\left(1+s+|y|^{2 \alpha}\right)^{-n / 2 \alpha-m-m(\alpha)}
$$

for all $(y, s) \in H$ and $0<\delta \leq 1$, where $\sigma>-m(\alpha)$ and C is a constant independent of δ. Hence, by the conditions $m \in \mathbf{N}$ and $m>\sigma$, Lemma 2.3 implies that $G_{\alpha, \sigma, 0, m}(y, s):=M_{\alpha, \sigma, \varepsilon}(y, s)\left(1+s+|y|^{2 \alpha}\right)^{-n / 2 \alpha-m-m(\alpha)}$ satisfies (4.6).

Suppose $k \in \mathbf{N}$. Then, since $k+\sigma>0$, (4.9) implies that

$$
\left|\mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right)\right| \leq C\left(c_{1} s+\delta\right)^{-(k+\sigma)}\|u\|_{\mathscr{S}_{\alpha}(\sigma)} \leq C s^{-(k+\sigma)}
$$

for all $(y, s) \in H$ and $\delta>0$. Therefore, Lemma 4.1 also implies that $G_{\alpha, \sigma, k, m}(y, s):=s^{-(k+\sigma)}\left(1+s+|y|^{2 \alpha}\right)^{-n / 2 \alpha-m-m(\alpha)}$ satisfies (4.5). Furthermore, by the conditions $m>\sigma$ and $\sigma>-m(\alpha)$, Lemma 2.3 implies that $G_{\alpha, \sigma, k, m}$ also satisfies (4.6).

We give a reproducing formula for u^{δ} with $u \in \mathscr{B}_{\alpha}(\sigma)$ and $\delta>0$.

Proposition 4.4. Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $\delta>0$. If $k, m \in \mathbf{N}_{0}$ satisfy $k+m>0$, then

$$
\begin{align*}
& u^{\delta}(x, t)-u^{\delta}(0,1) \tag{4.11}\\
& \quad=\frac{\left(c_{1}+c_{2}\right)^{k+m}}{\Gamma(k+m)} \int_{H} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right) s^{k+m-1} d V(y, s)
\end{align*}
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma),(x, t) \in H$, and real numbers $c_{1}, c_{2}>0$.
Proof. We remark that the integrand in the right-hand side of the equality (4.11) belongs to $L^{1}(H, d V)$ by (4.4).

First, we show (4.11) with $k \in \mathbf{N}$ and $m=0$. Since $\mathscr{D}_{t}^{k} u^{\delta} \in \boldsymbol{b}_{\alpha}^{\infty}$ for every $k \in \mathbf{N}$, Lemma 2.2 implies that

$$
\begin{align*}
& \int_{H} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{0}\left(x, t ; y, c_{2} s\right) s^{k-1} d V(y, s) \tag{4.12}\\
&=\int_{0}^{\infty} \int_{\mathbf{R}^{n}} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \\
& \times\left(W^{(\alpha)}\left(x-y, t+c_{2} s\right)-W^{(\alpha)}\left(-y, 1+c_{2} s\right)\right) d y s^{k-1} d s \\
&=\int_{0}^{\infty}\left(\mathscr{D}_{t}^{k} u^{\delta}\left(x, t+\left(c_{1}+c_{2}\right) s\right)-\mathscr{D}_{t}^{k} u^{\delta}\left(0,1+\left(c_{1}+c_{2}\right) s\right)\right) s^{k-1} d s .
\end{align*}
$$

We prove that the right-hand side of (4.12) is equal to $\frac{\Gamma(k)}{\left(c_{1}+c_{2}\right)^{k}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right)$ by induction on k. Let $k=1$. Then, (2) of Lemma 4.2 implies that the righthand side of (4.12) with $k=1$ is equal to $\left(c_{1}+c_{2}\right)^{-1}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right)$. Assume that the right-hand side of (4.12) is equal to $\frac{\Gamma(k)}{\left(c_{1}+c_{2}\right)^{k}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right)$. Then, integrating by parts, we have

$$
\begin{gather*}
\int_{0}^{\infty}\left(\mathscr{D}_{t}^{k+1} u^{\delta}\left(x, t+\left(c_{1}+c_{2}\right) s\right)-\mathscr{D}_{t}^{k+1} u^{\delta}\left(0,1+\left(c_{1}+c_{2}\right) s\right)\right) s^{k} d s \tag{4.13}\\
=-\left(c_{1}+c_{2}\right)^{-1}\left[\left(\mathscr{D}_{t}^{k} u^{\delta}\left(x, t+\left(c_{1}+c_{2}\right) s\right)\right.\right. \\
\left.\left.\quad-\mathscr{D}_{t}^{k} u^{\delta}\left(0,1+\left(c_{1}+c_{2}\right) s\right)\right) s^{k}\right]_{0}^{\infty} \\
+\left(c_{1}+c_{2}\right)^{-1} k \int_{0}^{\infty}\left(\mathscr{D}_{t}^{k} u^{\delta}\left(x, t+\left(c_{1}+c_{2}\right) s\right)\right. \\
\left.\quad-\mathscr{D}_{t}^{k} u^{\delta}\left(0,1+\left(c_{1}+c_{2}\right) s\right)\right) s^{k-1} d s .
\end{gather*}
$$

By (2) of Lemma 4.2 and the assumption of induction, the first term and the second term of the right-hand side of (4.13) are equal to 0 and $\frac{\Gamma(k+1)}{\left(c_{1}+c_{2}\right)^{k+1}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right)$, respectively.

Next, we show (4.11) with $k \in \mathbf{N}_{0}$ and $m \in \mathbf{N}$ by induction on m. Let $m=1$. If $k=0$, then integrating by parts, we have

$$
\begin{aligned}
& \int_{H} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{1}\left(x, t ; y, c_{2} s\right) d V(y, s) \\
&= \int_{\mathbf{R}^{n}} \int_{0}^{\infty} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{1}\left(x, t ; y, c_{2} s\right) d s d y \\
&=-\frac{1}{c_{2}} \int_{\mathbf{R}^{n}}\left[u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{0}\left(x, t ; y, c_{2} s\right)\right]_{0}^{\infty} d y \\
&-\frac{c_{1}}{c_{2}} \int_{\mathbf{R}^{n}} \int_{0}^{\infty} \mathscr{D}_{t} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{0}\left(x, t ; y, c_{2} s\right) d s d y \\
&=-\frac{1}{c_{2}} \int_{\mathbf{R}^{n}} \lim _{s \rightarrow \infty} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{0}\left(x, t ; y, c_{2} s\right) d y \\
&+\frac{1}{c_{2}} \int_{\mathbf{R}^{n}} u(y, \delta)\left(W^{(\alpha)}(x-y, t)-W^{(\alpha)}(-y, 1)\right) d y \\
&-\frac{c_{1}}{c_{2}} \int_{H} \mathscr{D} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{0}\left(x, t ; y, c_{2} s\right) d V(y, s)
\end{aligned}
$$

Therefore, (4.3), (3) of Theorem 3.2, and (4.11) with $k=1$ and $m=0$ imply that

$$
\begin{aligned}
& \int_{H} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{1}\left(x, t ; y, c_{2} s\right) d V(y, s) \\
& \quad=\frac{1}{c_{2}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right)-\frac{c_{1}}{c_{2}\left(c_{1}+c_{2}\right)}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right) \\
& \quad=\frac{1}{c_{1}+c_{2}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right)
\end{aligned}
$$

If $k \geq 1$, then (4.3) and (4.11) with $m=0$ imply that

$$
\begin{aligned}
& \int_{H} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{1}\left(x, t ; y, c_{2} s\right) s^{k} d V(y, s) \\
&= \int_{\mathbf{R}^{n}} \int_{0}^{\infty} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{1}\left(x, t ; y, c_{2} s\right) s^{k} d s d y \\
&=-\frac{1}{c_{2}} \int_{\mathbf{R}^{n}}\left[\mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{0}\left(x, t ; y, c_{2} s\right) s^{k}\right]_{0}^{\infty} d y \\
&-\frac{c_{1}}{c_{2}} \int_{\mathbf{R}^{n}} \int_{0}^{\infty} \mathscr{D}_{t}^{k+1} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{0}\left(x, t ; y, c_{2} s\right) s^{k} d s d y
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{k}{c_{2}} \int_{\mathbf{R}^{n}} \int_{0}^{\infty} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{0}\left(x, t ; y, c_{2} s\right) s^{k-1} d s d y \\
= & -\frac{c_{1} \Gamma(k+1)}{c_{2}\left(c_{1}+c_{2}\right)^{k+1}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right)+\frac{k \Gamma(k)}{c_{2}\left(c_{1}+c_{2}\right)^{k}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right) \\
= & \frac{\Gamma(k+1)}{\left(c_{1}+c_{2}\right)^{k+1}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right) .
\end{aligned}
$$

Let $m \in \mathbf{N}$ be fixed, and assume that the equality (4.11) holds for all $k \in \mathbf{N}_{0}$. Then, (4.3) and the assumption imply that

$$
\begin{aligned}
& \int_{H} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m+1}\left(x, t ; y, c_{2} s\right) s^{k+m} d V(y, s) \\
&=-\frac{1}{c_{2}} \int_{\mathbf{R}^{n}}\left[\mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right) s^{k+m}\right]_{0}^{\infty} d y \\
&-\frac{c_{1}}{c_{2}} \int_{\mathbf{R}^{n}} \int_{0}^{\infty} \mathscr{D}_{t}^{k+1} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right) s^{k+m} d s d y \\
&+\frac{k+m}{c_{2}} \int_{\mathbf{R}^{n}} \int_{0}^{\infty} \mathscr{D}_{t}^{k} u^{\delta}\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right) s^{k+m-1} d s d y \\
&=-\frac{c_{1} \Gamma(k+m+1)}{c_{2}\left(c_{1}+c_{2}\right)^{k+m+1}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right) \\
&+\frac{(k+m) \Gamma(k+m)}{c_{2}\left(c_{1}+c_{2}\right)^{k+m}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right) \\
&= \frac{\Gamma(k+m+1)}{\left(c_{1}+c_{2}\right)^{k+m+1}}\left(u^{\delta}(x, t)-u^{\delta}(0,1)\right) .
\end{aligned}
$$

Hence, this completes the proof.
We give a reproducing formula for $u \in \mathscr{B}_{\alpha}(\sigma)$. The following theorem is the main result of this section, which gives Theorem 2.

Theorem 4.5. Let $0<\alpha \leq 1$ and $\sigma>-m(\alpha)$. If $k, m \in \mathbf{N}_{0}$ satisfy $m>\sigma$ and $k+m>0$, then

$$
u(x, t)-u(0,1)=\frac{\left(c_{1}+c_{2}\right)^{k+m}}{\Gamma(k+m)} \int_{H} \mathscr{D}_{t}^{k} u\left(y, c_{1} s\right) \omega_{\alpha}^{m}\left(x, t ; y, c_{2} s\right) s^{k+m-1} d V(y, s)
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma),(x, t) \in H$, and real numbers $c_{1}, c_{2}>0$.
Proof. By (3) of Lemma 4.3 and Proposition 4.4, the theorem immediately follows from the Lebesgue dominated convergence theorem.

5. Reproducing formulae by fractional derivatives on $\mathscr{B}_{\alpha}(\sigma)$

In this section, we give reproducing formulae by fractional derivatives on $\tilde{\mathscr{B}}_{\alpha}(\sigma)$. First, we recall the definitions of the fractional integral and differential operators for functions on $\mathbf{R}_{+}=(0, \infty)$. (For details, see [2].) For a real number $\kappa>0$, let

$$
\begin{equation*}
\mathscr{F} \mathscr{C} \mathscr{C}^{-\kappa}:=\left\{\varphi \in C\left(\mathbf{R}_{+}\right) ; \exists \kappa^{\prime}>\kappa \text { s.t. } \varphi(t)=O\left(t^{-\kappa^{\prime}}\right)(t \rightarrow \infty)\right\} . \tag{5.1}
\end{equation*}
$$

For a function $\varphi \in \mathscr{F} \mathscr{C}^{-\kappa}$, we can define the fractional integral $\mathscr{D}_{t}^{-\kappa} \varphi$ of φ by

$$
\begin{equation*}
\mathscr{D}_{t}^{-\kappa} \varphi(t):=\frac{1}{\Gamma(\kappa)} \int_{0}^{\infty} \tau^{\kappa-1} \varphi(\tau+t) d \tau, \quad t \in \mathbf{R}_{+} . \tag{5.2}
\end{equation*}
$$

In particular, put $\mathscr{F} \mathscr{C}^{0}:=C\left(\mathbf{R}_{+}\right)$and $\mathscr{D}_{t}^{0} \varphi:=\varphi$. Moreover, let

$$
\begin{equation*}
\mathscr{F} \mathscr{C}^{\kappa}:=\left\{\varphi ; d_{t}^{[\kappa]} \varphi \in \mathscr{F} \mathscr{C} \mathscr{C}^{-([\kappa]-\kappa)}\right\}, \tag{5.3}
\end{equation*}
$$

where $d_{t}=d / d t$ and $\lceil\kappa\rceil$ is the smallest integer greater than or equal to κ. Then, we can also define the fractional derivative $\mathscr{D}_{t}^{\kappa} \varphi$ of $\varphi \in \mathscr{F} \mathscr{C}^{\kappa}$ by

$$
\begin{equation*}
\mathscr{D}_{t}^{\kappa} \varphi(t):=\mathscr{D}_{t}^{-([\kappa\rceil-\kappa)}\left(\left(-d_{t}\right)^{\lceil\kappa\rceil} \varphi\right)(t), \quad t \in \mathbf{R}_{+} . \tag{5.4}
\end{equation*}
$$

Clearly, when $\kappa \in \mathbf{N}_{0}$, the operator \mathscr{D}_{t}^{κ} coincides with the ordinary differential operator $\left(-d_{t}\right)^{\kappa}$. Some basic properties of the fractional differential operators are the following.

Lemma 5.1 (Proposition 2.1 of [2] and Proposition 2.2 of [3]). For real numbers $\kappa, v>0$, the following statements hold.
(1) If $\varphi \in \mathscr{F} \mathscr{C} \mathscr{C}^{-\kappa}$, then $\mathscr{D}_{t}^{-\kappa} \varphi \in C\left(\mathbf{R}_{+}\right)$.
(2) If $\varphi \in \mathscr{F} \mathscr{C} \mathscr{C}^{-\kappa-v}$, then $\mathscr{D}_{t}^{-\kappa} \mathscr{D}_{t}^{-v} \varphi=\mathscr{D}_{t}^{-\kappa-v} \varphi$.
(3) If $d_{t}^{k} \varphi \in \mathscr{F} \mathscr{C} \mathscr{C}^{-v}$ for all integers $0 \leq k \leq\lceil\kappa\rceil-1$ and $d_{t}^{\lceil\kappa\rceil} \varphi \in$ $\mathscr{F} \mathscr{C}^{-([\kappa]-\kappa)-v}$, then $\mathscr{D}_{t}^{\kappa} \mathscr{D}_{t}^{-v} \varphi=\mathscr{D}_{t}^{-v} \mathscr{D}_{t}^{\kappa} \varphi=\mathscr{D}_{t}^{\kappa-v} \varphi$.
(4) If $d_{t}^{k+\lceil\nu\rceil} \varphi \in \mathscr{F} \mathscr{C} \mathscr{C}^{-([\nu\rangle-v)}$ for all integers $0 \leq k \leq\lceil\kappa\rceil-1, \quad d_{t}^{[k\rceil+\ell} \varphi \in$ $\mathscr{F} \mathscr{C}^{-([\kappa\rceil-\kappa)}$ for all integers $0 \leq \ell \leq\lceil\nu\rceil-1$, and $d_{t}^{[\kappa\rceil+\lceil\nu\rceil} \varphi \in \mathscr{F} \mathscr{C}^{-([\kappa\rceil-\kappa)-([\nu\rangle-\nu)}$, then $\mathscr{D}_{t}^{\kappa} \mathscr{D}_{t}^{v} \varphi=\mathscr{D}_{t}^{\kappa+v} \varphi$.
(5) If $d_{t}^{\lceil\kappa\rceil} \varphi \in \mathscr{F} \mathscr{C} \mathscr{C}^{-\lceil\kappa\rceil}$ and $\lim _{t \rightarrow \infty} d_{t}^{k} \varphi(t)=0$ for all integers $0 \leq k \leq\lceil\kappa\rceil-1$, then $\mathscr{D}_{t}^{-\kappa} \mathscr{D}_{t}^{\kappa} \varphi=\varphi$.

Here, we give some examples of fractional derivatives of elementary functions.

Example 5.2. Let $\kappa>0$ be a real number. Then, the following statements hold.
(1) For every real number v, we have $\mathscr{D}_{t}^{v} e^{-\kappa t}=\kappa^{v} e^{-\kappa t}$ for all $t \in \mathbf{R}_{+}$.
(2) For every real number $v>-\kappa$, we have $\mathscr{D}_{t}^{v} t^{-\kappa}=\frac{\Gamma(\kappa+v)}{\Gamma(\kappa)} t^{-\kappa-v}$ for all $t \in \mathbf{R}_{+}$.

We present some properties of fractional derivatives of fundamental solution $W^{(\alpha)}$. By (2.8), we note that for each $x \in \mathbf{R}^{n}$, the function $W^{(\alpha)}(x, \cdot)$ belongs to $\mathscr{F} \mathscr{C}^{\kappa}$ for $\kappa>-\frac{n}{2 \alpha}$. The following lemma is Theorem 3.1 of [2].

Lemma 5.3 (Theorem 3.1 of [2]). Let $0<\alpha \leq 1$, and let $\gamma \in \mathbf{N}_{0}^{n}$ be a multiindex and v a real number such that $v>-\frac{n}{2 \alpha}$. Then, the following statements hold.
(1) The derivatives $\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} W^{(\alpha)}(x, t)$ and $\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} W^{(\alpha)}(x, t)$ can be defined, and the equation $\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x, t)=\mathscr{D}_{t}^{v} \partial_{x}^{\gamma} W^{(\alpha)}(x, t)$ holds. Furthermore, there exists a constant $C=C(n, \alpha, \gamma, \nu)>0$ such that

$$
\left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x, t)\right| \leq C\left(t+|x|^{2 \alpha}\right)^{-((n+|y|) / 2 \alpha+v)}
$$

for all $(x, t) \in H$.
(2) If a real number κ satisfies the condition $\kappa+v>-\frac{n}{2 \alpha}$, then the derivative $\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x, t)$ is well-defined, and

$$
\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x, t)=\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa+v} W^{(\alpha)}(x, t) .
$$

(3) The derivative $\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x, t)$ is $L^{(\alpha)}$-harmonic on H.

We also give basic properties of fractional derivatives of functions in $\mathscr{B}_{\alpha}(\sigma)$.

Proposition 5.4. Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and let $\gamma \in \mathbf{N}_{0}^{n}$ be a multiindex and κ a real number such that $\kappa=0$ or $\kappa>\max \{0,-\sigma\}$. If $u \in \mathscr{B}_{\alpha}(\sigma)$, then the following statements hold.
(1) The derivatives $\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u(x, t)$ and $\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u(x, t)$ can be defined, and the equation $\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u(x, t)=\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u(x, t)$ holds. Furthermore, if $(\gamma, \kappa) \neq(0,0)$, then there exists a constant $C=C(n, \alpha, \sigma, \gamma, \kappa)>0$ such that

$$
\left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u(x, t)\right| \leq C t^{-(|\gamma| / 2 \alpha+\kappa+\sigma)}\|u\|_{\mathscr{S}_{x}(\sigma)}
$$

for all $(x, t) \in H$.
(2) If $v=0$ or $v>\max \{0,-\sigma\}$, then

$$
\begin{equation*}
\mathscr{D}_{t}^{V} \partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u(x, t)=\partial_{x}^{\gamma} \mathscr{D}_{t}^{v+\kappa} u(x, t) \tag{5.5}
\end{equation*}
$$

Furthermore, if $v<0$, then (5.5) also holds whenever $v<\sigma$ and $v+\kappa>$ $\max \{0,-\sigma\}$.
(3) The derivative $\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u$ is $L^{(\alpha)}$-harmonic on H.

Proof. (1) Let $\kappa>\max \{0,-\sigma\}$. Then, by (4) of Theorem 3.2, we have $\left|\mathscr{D}_{t}^{[\kappa]} u(x, t)\right| \leq C t^{-(\lceil\kappa\rceil+\sigma)}$, because $\lceil\kappa\rceil \in \mathbf{N}$. Since $\kappa>-\sigma, \mathscr{D}_{t}^{[\kappa\rceil} u(x, \cdot)$ belongs to $\mathscr{F} \mathscr{C} \mathcal{C}^{-([\kappa]-\kappa)}$ for every $x \in \mathbf{R}^{n}$. Thus, $\mathscr{D}_{t}^{\kappa} u(x, t)$ is well-defined. Similarly, $\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u(x, t)$ is well-defined, and differentiating through the integral, we obtain

$$
\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u=\mathscr{D}_{t}^{-([\kappa]-\kappa)} \partial_{x}^{\gamma} \mathscr{D}_{t}^{[\kappa]} u=\mathscr{D}_{t}^{-([\kappa]-\kappa)} \mathscr{D}_{t}^{[\kappa]} \partial_{x}^{\gamma} u=\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u .
$$

Therefore, $\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u$ is well-defined and $\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u=\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u$. Furthermore, (4) of Theorem 3.2 and (2) of Example 5.2 imply that

$$
\begin{aligned}
\left|\partial_{x}^{\gamma} \partial_{t}^{\kappa} u(x, t)\right| & =\left|\mathscr{D}_{t}^{-(\lceil\kappa]-\kappa)} \partial_{x}^{\gamma} \mathscr{D}_{t}^{[\kappa]} u(x, t)\right| \\
& \leq C\left(\mathscr{D}_{t}^{-([\kappa]-\kappa)} t^{-(|\gamma| / 2 \alpha+\lceil\kappa\rceil+\sigma)}\right)\|u\|_{\mathscr{S}_{x}(\sigma)}=C t^{-(|y| / 2 \alpha+\kappa+\sigma)}\|u\|_{\mathscr{S}_{x}(\sigma)} .
\end{aligned}
$$

(2) By (1) of Proposition 5.4, it suffices to show that $\mathscr{D}_{t}^{v} \mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u=$ $\mathscr{D}_{t}^{v+\kappa} \partial_{x}^{v} u$. We may suppose $\kappa, v \neq 0$. Assume that the real number $v>0$ satisfies the condition $v>-\sigma$. We claim that (4) of Lemma 5.1 can be applied to $\partial_{x}^{\gamma} u$. In fact, $\left|\mathscr{D}_{t}^{m} \partial_{x}^{\gamma} u(x, t)\right| \leq C t^{-(|y| / 2 \alpha+m+\sigma)}$ for all integers $m \geq 1$ by (1) of Proposition 5.4. Thus, the condition $\kappa>-\sigma$ implies that $\mathscr{D}_{t}^{\ell+[\kappa]} \partial_{x}^{\gamma} u(x, \cdot) \in$ $\mathscr{F} \mathscr{C} \mathscr{C}^{-([\kappa]-\kappa)}$ for all integers $\ell \geq 0$, and the assumption $v>-\sigma$ implies that $\mathscr{D}_{t}^{[v]+k} \partial_{x}^{\gamma} u(x, \cdot) \in \mathscr{F} \mathscr{C}^{-([v\rangle-v)}$ for all integers $k \geq 0$. Also, the condition $v+\kappa>$ $-\sigma$ implies that $\mathscr{D}_{t}^{[\nu]+\lceil\kappa]} \partial_{x}^{\gamma} u(x, \cdot) \in \mathscr{F} \mathscr{C}^{-([v]-v)-([\kappa]-\kappa)}$. Hence, we can apply (4) of Lemma 5.1 to $\partial_{x}^{\gamma} u$, and we obtain $\mathscr{D}_{t}^{v} \mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u=\mathscr{D}_{t}^{v+\kappa} \partial_{x}^{\gamma} u$.

Assume $v<0$. If $v<\sigma$ and $v+\kappa>\max \{0,-\sigma\}$, then $v_{1}:=-v>0$ and $\kappa_{1}:=v+\kappa>0$. Also, we have $v_{1}>-\sigma, \kappa_{1}>-\sigma$, and $v_{1}+\kappa_{1}>-\sigma$. Therefore, the above argument implies that

$$
\mathscr{D}_{t}^{v} \mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u=\mathscr{D}_{t}^{v} \mathscr{D}_{t}^{v_{1}+\kappa_{1}} \partial_{x}^{\gamma} u=\mathscr{D}_{t}^{v} \mathscr{D}_{t}^{v_{1}} \mathscr{D}_{t}^{\kappa_{1}} \partial_{x}^{\gamma} u=\mathscr{D}_{t}^{v} \mathscr{D}_{t}^{-v} \mathscr{D}_{t}^{v+\kappa} \partial_{x}^{v} u .
$$

Since (5) of Lemma 5.1 can be applied to $\mathscr{D}_{t}^{v+\kappa} \partial_{x}^{y} u$ by the condition $v+\kappa>$ $\max \{0,-\sigma\}$, we obtain $\mathscr{D}_{t}^{v} \mathscr{D}_{t}^{-v} \mathscr{D}_{t}^{v+\kappa} \partial_{x}^{\gamma} u=\mathscr{D}_{t}^{v+\kappa} \partial_{x}^{\gamma} u$.
(3) Since when $\kappa \in \mathbf{N}_{0}$, the assertion was already obtained by (4) of Theorem 3.2, we assume that $\kappa \notin \mathbf{N}_{0}$. Let $(\gamma, \kappa) \neq(0,0)$. And let $\psi \in C_{c}^{\infty}(H)$. Then, by (2.2) and (2.3), there exist $0<t_{1}<t_{2}<\infty$ and $C>0$ such that

$$
\left|\tilde{L}^{(\alpha)} \psi(x, t)\right| \leq C(1+|x|)^{-n-2 \alpha} \cdot \chi_{\left[t_{1}, t_{2}\right]}(t)
$$

for all $(x, t) \in H$, where $\chi_{\left[t_{1}, t_{2}\right]}$ is the characteristic function of the interval $\left[t_{1}, t_{2}\right]$. Therefore, by (4) of Theorem 3.2, we have

$$
\begin{aligned}
& \int_{0}^{\infty} \tau^{[\kappa]-\kappa-1} \int_{H}\left|\mathscr{D}_{t}^{[\kappa]} \partial_{x}^{\gamma} u(x, t+\tau) \tilde{L}^{(\alpha)} \psi(x, t)\right| d V(x, t) d \tau \\
& \quad \leq C \int_{0}^{\infty} \tau^{[\kappa]-\kappa-1} \int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{n}}(t+\tau)^{-(|\gamma| / 2 \alpha+\lceil\kappa]+\sigma)}(1+|x|)^{-n-2 \alpha} d x d t d \tau \\
& \quad \leq C \int_{0}^{\infty} \tau^{[\kappa]-\kappa-1}(1+\tau)^{-(|\gamma| / 2 \alpha+\lceil\kappa]+\sigma)} d \tau<\infty .
\end{aligned}
$$

Since $\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u=\mathscr{D}_{t}^{\kappa} \partial_{x}^{\gamma} u$, the Fubini theorem implies $\partial_{x}^{\gamma} \mathscr{D}_{t}^{\kappa} u$ is $L^{(\alpha)}$-harmonic.

It is known that the parabolic Bergman functions satisfy the following reproducing formulae, which are shown in Theorem 5.2 of [2].

Lemma 5.5 (Theorem 5.2 of [2]). Let $0<\alpha \leq 1,1 \leq p<\infty$, and $\lambda>-1$. If real numbers κ and v satisfy $\kappa>-\frac{\lambda+1}{p}$ and $v>\frac{\lambda+1}{p}$, then

$$
\begin{equation*}
u(x, t)=\frac{2^{\kappa+v}}{\Gamma(\kappa+v)} \int_{H} \mathscr{D}_{t}^{\kappa} u(y, s) \mathscr{D}_{t}^{v} W^{(\alpha)}(x-y, t+s) s^{\kappa+v-1} d V(y, s) \tag{5.6}
\end{equation*}
$$

for all $u \in \boldsymbol{b}_{\alpha}^{p}(\lambda)$ and $(x, t) \in H$. Furthermore, (5.6) also holds for $v=\lambda+1$ when $p=1$.

We shall give reproducing formulae by fractional derivatives on $\tilde{\mathscr{B}}_{\alpha}(\sigma)$, which are generalizations of Theorem 2 in section 1 . First, we generalize the function defined in (4.1) as follows. For a multi-index $\gamma \in \mathbf{N}_{0}^{n}$ and a real number $v>-\frac{n}{2 \alpha}$, Lemma 5.3 implies that a function $\omega_{\alpha}^{\gamma, v}$ on $H \times H$ can be defined by

$$
\omega_{\alpha}^{\gamma, v}(x, t ; y, s)=\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x-y, t+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(-y, 1+s)
$$

for all $(x, t),(y, s) \in H$. We shall also write $\omega_{\alpha}^{v}=\omega_{\alpha}^{0, v}$. We give basic properties of the function $\omega_{\alpha}^{\gamma, \nu}$.

Lemma 5.6. Let $0<\alpha \leq 1, \sigma>-m(\alpha), \gamma \in \mathbf{N}_{0}^{n}$, and $v>-\frac{n}{2 \alpha}$. Then, the following statements hold.
(1) For every $(x, t) \in H$, there exists a constant $C=C(n, \alpha, \gamma, \nu, x, t)>0$ such that

$$
\left|\omega_{\alpha}^{\nu, v}(x, t ; y, s)\right| \leq C\left(1+s+|y|^{2 \alpha}\right)^{-(n+|y|) / 2 \alpha-v-m(\alpha)}
$$

for all $(y, s) \in H$.
(2) If $\rho>-1$ and $\eta:=\frac{|\gamma|}{2 \alpha}+v-\rho-1>-m(\alpha)$, then there exists a constant $C=C(n, \alpha, \gamma, \nu, \rho)>0$ such that

$$
\int_{H}\left|\omega_{\alpha}^{\nu, v}(x, t ; y, s)\right| s^{\rho} d V(y, s) \leq C F_{\alpha, \eta}(x, t)
$$

for all $(x, t) \in H$, where the function $F_{\alpha, \eta}$ is defined in (3.2).
(3) If $\frac{n+|y|}{2 \alpha}+v+m(\alpha)>\sigma$, then for every $(x, t) \in H$, the function $\omega_{\alpha}^{\gamma, v}(x, t ; \cdot, \cdot)$ belongs to $\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$.

Proof. The assertion (1) is (2) of Proposition 3.1 of [3]. (2) Let $c>0$ be an arbitrary real number. Then, (1) of Lemma 5.3 and Lemma 2.3 imply that

$$
\begin{align*}
& \int_{H}\left|\omega_{\alpha}^{\gamma, v}(x, t ; y, s)\right| s^{\rho} d V(y, s) \tag{5.7}\\
& \leq \int_{H}\left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x-y, t+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x-y, c+s)\right| s^{\rho} d V(y, s) \\
&+\int_{H}\left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(x-y, c+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(-y, c+s)\right| s^{\rho} d V(y, s) \\
&+\int_{H}\left|\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(-y, c+s)-\partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(-y, 1+s)\right| s^{\rho} d V(y, s) \\
& \leq\left|\int_{c}^{t} \int_{H}\right| \partial_{x}^{\gamma} \mathscr{D}_{t}^{v+1} W^{(\alpha)}(x-y, \tau+s)\left|s^{\rho} d V(y, s) d \tau\right| \\
&+\int_{0}^{1}|x| \int_{H}\left|\nabla_{x} \partial_{x}^{\gamma} \mathscr{D}_{t}^{v} W^{(\alpha)}(r x-y, c+s)\right| s^{\rho} d V(y, s) d r \\
&+\left|\int_{1}^{c} \int_{H}\right| \partial_{x}^{\gamma} \mathscr{D}_{t}^{v+1} W^{(\alpha)}(-y, \tau+s)\left|s^{\rho} d V(y, s) d \tau\right| \\
& \leq C\left(\left|\int_{c}^{t} \tau^{\rho-|y| / 2 \alpha-v} d \tau\right|+|x| c^{\rho-(|\gamma|+1) / 2 \alpha-v+1}+\left|\int_{1}^{c} \tau^{\rho-|y| / 2 \alpha-v} d \tau\right|\right) \\
&= C\left(\left|\int_{c}^{t} \tau^{-\eta-1} d \tau\right|+|x| c^{-\eta-1 / 2 \alpha}+\left|\int_{1}^{c} \tau^{-\eta-1} d \tau\right|\right) .
\end{align*}
$$

Assume $\eta=0$, then

$$
\int_{H}\left|\omega_{\alpha}^{\gamma, v}(x, t ; y, s)\right| s^{\rho} d V(y, s) \leq C\left(I_{x}(c)+|\log t|\right)
$$

where $I_{x}(c)=|\log c|+|x| c^{-1 / 2 \alpha}$. Thus, as in the proof of (1) of Theorem 3.2, putting $c=(1+|x|)^{2 \alpha}$, we obtain

$$
\int_{H}\left|\omega_{\alpha}^{\gamma, v}(x, t ; y, s)\right| s^{\rho} d V(y, s) \leq C(1+\log (1+|x|)+|\log t|) .
$$

Assume $\eta \neq 0$, then (5.7) implies

$$
\int_{H}\left|\omega_{\alpha}^{\gamma, v}(x, t ; y, s)\right| s^{\rho} d V(y, s) \leq C\left(1+J_{x, \eta}(c)+t^{-\eta}\right)
$$

where $J_{x, \eta}(c)=c^{-\eta}+|x| c^{-\eta-1 / 2 \alpha}$. Therefore, the same argument as in the proof of (1) of Theorem 3.2 shows the desired estimates.
(3) Let $(x, t) \in H$ be fixed. Then, by (3) of Lemma 5.3, the function $\omega_{\alpha}^{\gamma, v}(x, t ; \cdot, \cdot)$ is $L^{(\alpha)}$-harmonic. Furthermore, (1) of Lemma 5.6 implies that for $j=1, \ldots, n$,

$$
\left|\partial_{y_{j}} \omega_{\alpha}^{\gamma, v}(x, t ; y, s)\right| \leq C\left(1+s+|y|^{2 \alpha}\right)^{-(n+|y|+1) / 2 \alpha-v-m(\alpha)}
$$

and

$$
\left|\mathscr{D}_{s} \omega_{\alpha}^{\gamma, v}(x, t ; y, s)\right| \leq C\left(1+s+|y|^{2 \alpha}\right)^{-(n+|y|) / 2 \alpha-v-1-m(\alpha)}
$$

for all $(y, s) \in H$. Hence, we obtain the function $\omega_{\alpha}^{\gamma, v}(x, t ; \cdot, \cdot)$ belongs to $\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$.

We define an auxiliary function on \mathbf{R}, which is used later. For $v \in \mathbf{R}$, let

$$
\mathscr{N}(v)= \begin{cases}\lceil v\rceil & (v \geq 0) \\ 0 & (v<0) .\end{cases}
$$

Now, we give reproducing formulae by fractional derivatives on $\mathscr{B}_{\alpha}(\sigma)$.
Theorem 5.7. Let $0<\alpha \leq 1$ and $\sigma>-m(\alpha)$. If real numbers $\kappa \in \mathbf{R}_{+}$and $v \in \mathbf{R}$ satisfy $\kappa>-\sigma$ and $v>\sigma$, then

$$
\begin{equation*}
u(x, t)-u(0,1)=\frac{2^{\kappa+v}}{\Gamma(\kappa+v)} \int_{H} \mathscr{D}_{t}^{\kappa} u(y, s) \omega_{\alpha}^{\nu}(x, t ; y, s) s^{\kappa+v-1} d V(y, s) \tag{5.8}
\end{equation*}
$$

for all $u \in \mathscr{B}_{\alpha}(\sigma)$ and $(x, t) \in H$. If $\kappa=0$ and $v>\max \{0, \sigma\}$, then (5.8) also holds.

Proof. Let $u \in \mathscr{B}_{\alpha}(\sigma)$ and $(x, t) \in H$. And, let $\kappa \in \mathbf{R}_{+}$and $v \in \mathbf{R}$ be real numbers with $\kappa>-\sigma$ and $v>\sigma$.

Suppose first that $\kappa \notin \mathbf{N}$ and $v \notin \mathbf{N}_{0}$. Then, the definitions of the fractional derivative (5.2) and (5.4) imply that

$$
\begin{align*}
& \int_{H} \mathscr{D}_{t}^{\kappa} u(y, s) \omega_{\alpha}^{v}(x, t ; y, s) s^{\kappa+v-1} d V(y, s) \tag{5.9}\\
&= \int_{H} \frac{1}{\Gamma(\lceil\kappa\rceil-\kappa)} \int_{0}^{\infty} \tau_{1}^{[\kappa\rceil-\kappa-1} \mathscr{D}_{t}^{[\kappa]} u\left(y, s+\tau_{1}\right) d \tau_{1} \\
& \times \frac{1}{\Gamma(\mathscr{N}(v)-v)} \int_{0}^{\infty} \tau_{2}^{\mathcal{N}(v)-v-1} \omega_{\alpha}^{\mathcal{S}(v)}\left(x, t ; y, s+\tau_{2}\right) d \tau_{2} s^{\kappa+v-1} d V(y, s) \\
&= \int_{H} \frac{1}{\Gamma(\lceil\kappa\rceil-\kappa)} \int_{0}^{\infty} \tau_{1}^{[\kappa\rceil-\kappa-1} \mathscr{D}_{t}^{\lceil\kappa]} u\left(y,\left(1+\tau_{1}\right) s\right) d \tau_{1} \\
& \times \frac{1}{\Gamma(\mathscr{N}(v)-v)} \int_{0}^{\infty} \tau_{2}^{\mathcal{N}(v)-v-1} \omega_{\alpha}^{\mathcal{X}(v)}\left(x, t ; y,\left(1+\tau_{2}\right) s\right) d \tau_{2} \\
& \times s^{[\kappa\rceil+\mathscr{N}(v)-1} d V(y, s) .
\end{align*}
$$

Furthermore, (4) of Theorem 3.2 and Lemma 4.1 imply that

$$
\begin{aligned}
& \int_{H} \int_{0}^{\infty} \tau_{1}^{[\kappa]-\kappa-1}\left|\mathscr{D}_{t}^{[\kappa]} u\left(y,\left(1+\tau_{1}\right) s\right)\right| d \tau_{1} \\
& \times \int_{0}^{\infty} \tau_{2}^{\mathcal{N}(v)-v-1}\left|\omega_{\alpha}^{\mathcal{N}(v)}\left(x, t ; y,\left(1+\tau_{2}\right) s\right)\right| d \tau_{2} s^{[\kappa]+\mathcal{N}(v)-1} d V(y, s) \\
& \leq C \int_{H} \int_{0}^{\infty} \frac{\tau_{1}^{[\kappa]-\kappa-1}}{\left(\left(1+\tau_{1}\right) s\right)^{[\kappa]+\sigma}} d \tau_{1} \\
& \times \int_{0}^{\infty} \frac{\tau_{2}^{\mathcal{N}(v)-v-1}}{\left(1+\left(1+\tau_{2}\right) s+|y|^{2 \alpha}\right)^{n / 2 \alpha+\mathcal{N}(v)+m(\alpha)}} d \tau_{2} s^{[\kappa]+\mathcal{N}(v)-1} d V(y, s) \\
&= C \int_{0}^{\infty} \frac{\tau_{1}^{[\kappa]-\kappa-1}}{\left(1+\tau_{1}\right)^{[\kappa]+\sigma}} d \tau_{1} \int_{0}^{\infty} \frac{\tau_{2}^{\mathcal{N}(v)-v-1}}{\left(1+\tau_{2}\right)^{-\sigma+\mathcal{N}(v)}} d \tau_{2} \\
& \times \int_{H} \frac{s^{-\sigma+\mathcal{N}(v)-1}}{\left(1+s+|y|^{2 \alpha}\right)^{n / 2 \alpha+\mathcal{N}(v)+m(\alpha)}} d V(y, s) .
\end{aligned}
$$

Since $\kappa>-\sigma$ and $v>\sigma$, we have

$$
\int_{0}^{\infty} \frac{\tau_{1}^{[\kappa]-\kappa-1}}{\left(1+\tau_{1}\right)^{[\kappa]+\sigma}} d \tau_{1}<\infty
$$

and

$$
\int_{0}^{\infty} \frac{\tau_{2}^{\mathcal{N}(v)-v-1}}{\left(1+\tau_{2}\right)^{-\sigma+\mathcal{N}(v)}} d \tau_{2}<\infty,
$$

respectively. Moreover, by the conditions $v>\sigma$ and $\sigma>-m(\alpha)$, Lemma 2.3 implies that

$$
\int_{H} \frac{s^{-\sigma+\mathcal{N}(v)-1}}{\left(1+s+|y|^{2 \alpha}\right)^{n / 2 \alpha+\mathcal{N}(v)+m(\alpha)}} d V(y, s)<\infty .
$$

Hence, by the Fubini theorem, (5.9) and Theorem 4.5 show that

$$
\begin{aligned}
& \int_{H} \mathscr{D}_{t}^{\kappa} u(y, s) \omega_{\alpha}^{v}(x, t ; y, s) s^{\kappa+v-1} d V(y, s) \\
&= \frac{1}{\Gamma(\lceil\kappa\rceil-\kappa) \Gamma(\mathscr{N}(v)-v)} \int_{0}^{\infty} \tau_{1}^{[\kappa]-\kappa-1} \int_{0}^{\infty} \tau_{2}^{\mathcal{N}(v)-v-1} \\
& \times \int_{H} \mathscr{D}_{t}^{[\kappa]} u\left(y,\left(1+\tau_{1}\right) s\right) \omega_{\alpha}^{\mathcal{X}(v)}\left(x, t ; y,\left(1+\tau_{2}\right) s\right) s^{[\kappa]+\mathcal{N}(v)-1} d V(y, s) d \tau_{1} d \tau_{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{\Gamma(\lceil\kappa\rceil-\kappa) \Gamma(\mathscr{N}(v)-v)} \int_{0}^{\infty} \tau_{1}^{\lceil\kappa\rceil-\kappa-1} \int_{0}^{\infty} \tau_{2}^{\mathcal{N}(v)-v-1} \\
& \times \frac{\Gamma(\lceil\kappa\rceil+\mathscr{N}(v))}{\left(2+\tau_{1}+\tau_{2}\right)^{[\kappa\rceil+\mathcal{N}(v)}}(u(x, t)-u(0,1)) d \tau_{1} d \tau_{2} \\
= & \frac{\Gamma(\kappa+v)}{2^{\kappa+v}}(u(x, t)-u(0,1)) .
\end{aligned}
$$

Next, we remark that the proof can be done similarly when $\kappa \in \mathbf{N}$ or $v \in \mathbf{N}_{0}$. Thus, we omit it. (When $\kappa \in \mathbf{N}$ and $v \in \mathbf{N}_{0}$, the assertion of the theorem follows from Theorem 4.5.)

Finally, we assume that $\kappa=0$ and $v>\max \{0, \sigma\}$. When $\kappa=0$ and $v \in \mathbf{N}$, the assertion of the theorem follows from Theorem 4.5. Therefore, we suppose $\kappa=0$ and $v \notin \mathbf{N}$. Since

$$
\begin{align*}
& \int_{H} u(y, s) \omega_{\alpha}^{v}(x, t ; y, s) s^{v-1} d V(y, s) \tag{5.10}\\
& \quad=\int_{H} u(y, s) \frac{1}{\Gamma(\lceil v\rceil-v)} \\
& \quad \quad \times \int_{0}^{\infty} \tau^{[v\rangle-v-1} \omega_{\alpha}^{[\nu]}(x, t ; y,(1+\tau) s) d \tau s^{[v\rceil-1} d V(y, s),
\end{align*}
$$

it suffices to show that we can apply the Fubini theorem to the right-hand side of the equality (5.10). Since $v>0$, we can choose a constant ε with $0<\varepsilon<$ $\min \{v, m(\alpha)\}$. Then, (1) of Lemma 4.3 implies that $|u(y, s)| \leq C M_{\alpha, \sigma, \varepsilon}(y, s)$ for all $(y, s) \in H$, where $M_{\alpha, \sigma, \varepsilon}$ is the function defined in (4.2). Therefore, Lemma 4.1 shows that

$$
\begin{align*}
\int_{H}|u(y, s)| & \int_{0}^{\infty} \tau^{[\nu]-v-1}\left|\omega_{\alpha}^{[\nu]}(x, t ; y,(1+\tau) s)\right| d \tau s^{[\nu]-1} d V(y, s) \tag{5.11}\\
\leq & C \int_{H} M_{\alpha, \sigma, \varepsilon}(y, s) \\
& \times \int_{0}^{\infty} \frac{\tau^{[\nu]-v-1}}{\left(1+(1+\tau) s+|y|^{2 \alpha}\right)^{n / 2 \alpha+[\nu]+m(\alpha)}} d \tau s^{[\nu]-1} d V(y, s) \\
= & C \int_{0}^{\infty} \frac{\tau^{[\nu \gamma-v-1}}{(1+\tau)^{[\nu]}} \int_{H} \frac{M_{\alpha, \sigma, \varepsilon}\left(y,(1+\tau)^{-1} s\right) s^{[\nu]-1}}{\left(1+s+|y|^{2 \alpha}\right)^{n / 2 \alpha+[\nu]+m(\alpha)}} d V(y, s) d \tau .
\end{align*}
$$

If $0>\sigma>-m(\alpha)$, then the right-hand side of the equality (5.11) is less than or equal to

$$
\begin{equation*}
C \int_{0}^{\infty} \frac{\tau^{[\nu]-v-1}}{(1+\tau)^{[v]}} d \tau \int_{H} \frac{s^{[\nu]-1}}{\left(1+s+|y|^{2 \alpha}\right)^{n / 2 \alpha+[\lceil\nu]+m(\alpha)+\sigma}} d V(y, s), \tag{5.12}
\end{equation*}
$$

and by the conditions $v>0$ and $-m(\alpha)-\sigma<0$, Lemma 2.3 implies that (5.12) is finite. If $\sigma=0$, then the right-hand side of the equality (5.11) is less than or equal to

$$
\begin{align*}
& C \int_{0}^{\infty} \frac{\tau^{[\nu]-v-1}}{(1+\tau)^{[v\rceil}} d \tau \int_{H} \frac{s^{[\nu]-1}}{\left(1+s+|y|^{2 \alpha}\right)^{n / 2 \alpha+[\nu]+m(\alpha)-\varepsilon}} d V(y, s) \tag{5.13}\\
& \quad+C \int_{0}^{\infty} \frac{\tau^{[\nu]-v-1}}{(1+\tau)^{[\nu\rceil-\varepsilon}} d \tau \int_{H} \frac{s^{[\nu]-1-\varepsilon}}{\left(1+s+|y|^{2 \alpha}\right)^{n / 2 \alpha+[\nu]+m(\alpha)}} d V(y, s) .
\end{align*}
$$

Here, the first term of (5.13) is finite because $v>0$ and $-m(\alpha)+\varepsilon<0$, and the second term of (5.13) is finite because $v-\varepsilon>0$ and $-\varepsilon-m(\alpha)<0$, respectively. If $\sigma>0$, then the right-hand side of the equality (5.11) is less than or equal to

$$
\begin{align*}
& C \int_{0}^{\infty} \frac{\tau^{[\nu]-v-1}}{(1+\tau)^{[\nu]}} d \tau \int_{H} \frac{s^{[\nu]-1}}{\left(1+s+|y|^{2 \alpha}\right)^{n / 2 \alpha+[\nu]+m(\alpha)}} d V(y, s) \tag{5.14}\\
& \quad+C \int_{0}^{\infty} \frac{\tau^{[\nu]-v-1}}{(1+\tau)^{[\nu]-\sigma}} d \tau \int_{H} \frac{s^{[\nu]-1-\sigma}}{\left(1+s+|y|^{2 \alpha}\right)^{n / 2 \alpha+[\nu]+m(\alpha)}} d V(y, s),
\end{align*}
$$

and thus the first term of (5.14) is finite by the conditions $v>0$ and $-m(\alpha)<0$, and the second term of (5.14) is finite by the conditions $v-\sigma>0$ and $-\sigma-m(\alpha)<0$, respectively. Hence, this completes the proof of the theorem.

As an application of the reproducing formula, we give estimates of the normal derivative norms on $\tilde{\mathscr{B}}_{\alpha}(\sigma)$. The following operator is important for our estimates and is also used in the next section. For $0<\alpha \leq 1, \kappa>-\frac{n}{2 \alpha}$, and $\rho \in \mathbf{R}$, the integral operator $\Pi_{\alpha}^{\kappa, \rho}$ is defined by

$$
\begin{equation*}
\Pi_{\alpha}^{\kappa, \rho} f(x, t):=\int_{H} f(y, s) \omega_{\alpha}^{\kappa}(x, t ; y, s) s^{\rho} d V(y, s) \tag{5.15}
\end{equation*}
$$

for $(x, t) \in H$, whenever the integral is well-defined. We need the following.
Theorem 5.8. Let $0<\alpha \leq 1$ and $\sigma>-m(\alpha)$. Then, for every real number $v>0, \Pi_{\alpha}^{v+\sigma, v-1}$ is a bounded linear operator from L^{∞} onto $\tilde{\mathscr{B}}_{\alpha}(\sigma)$.

Proof. Let $f \in L^{\infty}$ and $(x, t) \in H$. Then, by (1) of Lemma 5.6 and Lemma 2.3, $\Pi_{\alpha}^{v+\sigma, v-1} f(x, t)$ is well-defined. Furthermore, we show $\Pi_{\alpha}^{v+\sigma, v-1} f \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$ and there exists a constant $C>0$ independent of f such
that $\left\|\Pi_{\alpha}^{v+\sigma, v-1} f\right\|_{\mathscr{B}_{\alpha}(\sigma)} \leq C\|f\|_{L^{\infty}}$. In fact, by (2) of Lemma 5.6, for every $0<t_{1}<t_{2}<\infty$, we have

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{n}}\left|\Pi_{\alpha}^{v+\sigma, v-1} f(x, t)\right|(1+|x|)^{-n-2 \alpha} d x d t \\
& \quad \leq C\|f\|_{L^{\infty}} \int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{n}} F_{\alpha, \sigma}(x, t)(1+|x|)^{-n-2 \alpha} d x d t<\infty
\end{aligned}
$$

where $F_{\alpha, \sigma}$ is the function defined in (3.2). Therefore, $\Pi_{\alpha}^{v+\sigma, v-1} f$ satisfies the condition (2.4). Thus, by the definition of $\omega_{\alpha}^{\kappa}(x, t ; y, s), \Pi_{\alpha}^{v+\sigma, v-1} f$ is $L^{(\alpha)}$ harmonic and $\Pi_{\alpha}^{v+\sigma, v-1} f(0,1)=0$. Moreover, Lemma 2.3 implies

$$
\left|\partial_{j} \Pi_{\alpha}^{v+\sigma, v-1} f(x, t)\right| \leq C t^{-(\sigma+1 / 2 \alpha)}\|f\|_{L^{\infty}}
$$

and

$$
\left|\partial_{t} \Pi_{\alpha}^{v+\sigma, v-1} f(x, t)\right| \leq C t^{-(\sigma+1)}\|f\|_{L^{\infty}}
$$

Hence, we have $\Pi_{\alpha}^{v+\sigma, v-1} f \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$ and $\left\|\Pi_{\alpha}^{v+\sigma, v-1} f\right\|_{\mathscr{B}_{\alpha}(\sigma)} \leq C\|f\|_{L^{\infty}}$.
Let $u \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$. Then, (4) of Theorem 3.2 implies $t^{1+\sigma} \mathscr{D}_{t} u \in L^{\infty}$. By Theorem 5.7 with $\kappa=1$, we have $u=\frac{2^{1+v+\sigma}}{\Gamma(1+v+\sigma)} \Pi_{\alpha}^{v+\sigma, v-1}\left(t^{1+\sigma} \mathscr{D}_{t} u\right)$. Thus, $\Pi_{\alpha}^{v+\sigma, v-1}$ is onto.

We give estimates of the normal derivative norms on $\tilde{\mathscr{B}}_{\alpha}(\sigma)$.
Theorem 5.9. Let $0<\alpha \leq 1$ and $\sigma>-m(\alpha)$. Then, for every real number $\kappa>\max \{0,-\sigma\}$, there exists a constant $C=C(n, \alpha, \sigma, \kappa)>0$ independent of u such that

$$
C^{-1}\|u\|_{\mathscr{B}_{x}(\sigma)} \leq\left\|t^{\kappa+\sigma} \mathscr{D}_{t}^{\kappa} u\right\|_{L^{\infty}} \leq C\|u\|_{\mathscr{B}_{x}(\sigma)}
$$

for all $u \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$.
Proof. Let $\kappa>\max \{0,-\sigma\}$ be a real number and $u \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$. Then, (1) of Proposition 5.4 implies that

$$
\left\|t^{\kappa+\sigma} \mathscr{D}_{t}^{\kappa} u\right\|_{L^{\infty}} \leq C\|u\|_{\mathscr{B}_{z}(\sigma)} .
$$

Furthermore, by Theorem 5.7, we have $u=\frac{2^{1+\kappa+\sigma}}{\Gamma(1+\kappa+\sigma)} \Pi_{\alpha}^{1+\sigma, 0}\left(t^{\kappa+\sigma} \mathscr{D}_{t}^{\kappa} u\right)$. Therefore, Theorem 5.8 with $v=1$ implies that

$$
\|u\|_{\mathscr{B}_{x}(\sigma)}=C\left\|\Pi_{\alpha}^{1+\sigma, 0}\left(t^{\kappa+\sigma} \mathscr{D}_{t}^{\kappa} u\right)\right\|_{\mathscr{B}_{x}(\sigma)} \leq C\left\|t^{\kappa+\sigma} \mathscr{D}_{t}^{\kappa} u\right\|_{L^{\infty}} .
$$

This completes the proof.

6. Dual spaces

In this section, we give the proofs of Theorems 3 and 4 . We begin with recalling the definition of the integral pairing (1.4) on $\boldsymbol{b}_{\alpha}^{1}(\lambda) \times \tilde{\mathscr{B}}_{\alpha}(\sigma)$. For $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$ and $v \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$, the integral pairing $\langle u, v\rangle_{\lambda, \sigma}$ in (1.4) is defined by

$$
\langle u, v\rangle_{\lambda, \sigma}=\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(y, s) \mathscr{D}_{t} v(y, s) s^{\lambda+\sigma+1} d V(y, s) .
$$

By the definition, we clearly have there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|\langle u, v\rangle_{\lambda, \sigma}\right| \leq C\|u\|_{L^{1}(\lambda)}\|v\|_{\mathscr{B}_{\alpha}(\sigma)} \tag{6.1}
\end{equation*}
$$

for all $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$ and $v \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$.
Theorem 6.1. Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $\lambda>-1$. Then, $\left(\boldsymbol{b}_{\alpha}^{1}(\lambda)\right)^{*} \cong$ $\tilde{\mathscr{B}}_{\alpha}(\sigma)$ under the pairing

$$
\Phi_{v}(u):=\langle u, v\rangle_{\lambda, \sigma}, \quad u \in \boldsymbol{b}_{\alpha}^{1}(\lambda),
$$

where Φ_{v} is the linear functional on $\boldsymbol{b}_{\alpha}^{1}(\lambda)$ induced by $v \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$. Furthermore, there exists a constant $C=C(n, \alpha, \sigma, \lambda)>0$ independent of v such that

$$
C^{-1}\|v\|_{\mathscr{B}_{x}(\sigma)} \leq\left\|\Phi_{v}\right\| \leq C\|v\|_{\mathscr{S}_{x}(\sigma)}
$$

for all $v \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$.
Proof. For every $v \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$, we define a mapping l by $l(v)=\Phi_{v}$. Then, the inequality (6.1) implies that $l: \tilde{\mathscr{B}}_{\alpha}(\sigma) \rightarrow\left(\boldsymbol{b}_{\alpha}^{1}(\lambda)\right)^{*}$ and $\left\|\Phi_{v}\right\| \leq C\|v\|_{\mathscr{B}_{\alpha}(\sigma)}$.

We show that l is injective. Thus, we assume that $v \in \mathscr{B}_{\alpha}(\sigma)$ and $\Phi_{v}=$ $l(v)=0$. Then, by (2) of Lemma 5.6, $\omega_{\alpha}^{\lambda+\sigma+1}(x, t ; \cdot, \cdot)$ belongs to $\boldsymbol{b}_{\alpha}^{1}(\lambda)$ for each $(x, t) \in H$. Therefore, by Theorem 5.7, we obtain

$$
\begin{aligned}
v(x, t) & =\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} \mathscr{D}_{t} v(y, s) \omega_{\alpha}^{\lambda+\sigma+1}(x, t ; y, s) s^{\lambda+\sigma+1} d V(y, s) \\
& =\Phi_{v}\left(\omega_{\alpha}^{\lambda+\sigma+1}(x, t ; \cdot, \cdot)\right)=0
\end{aligned}
$$

for each $(x, t) \in H$. Hence, l is injective.
We show that for each $\Phi \in\left(\boldsymbol{b}_{\alpha}^{1}(\lambda)\right)^{*}$, there exists $v \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$ such that $l(v)=\Phi$ and $\|v\|_{\mathscr{B}_{\alpha}(\sigma)} \leq C\|\Phi\|$. Therefore, let $\Phi \in\left(\boldsymbol{b}_{\alpha}^{1}(\lambda)\right)^{*}$. Then, the HahnBanach theorem and the Riesz representation theorem imply that there exists a function $f \in L^{\infty}$ such that

$$
\Phi(u)=\int_{H} u(y, s) f(y, s) s^{\lambda} d V(x, t)
$$

for all $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$ and $\|f\|_{L^{\infty}}=\|\Phi\|$. Put $v:=\Pi_{\alpha}^{\lambda+\sigma+1, \lambda} f$. Then, Theorem 5.8 implies that $v \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$ and $\|v\|_{\mathscr{B}_{\alpha}(\sigma)} \leq C\|\Phi\|$. We claim $l(v)=\Phi$. Indeed, differentiating through the integral, we have

$$
\mathscr{D}_{t} v(x, t)=\mathscr{D}_{t} \Pi_{\alpha}^{\lambda+\sigma+1, \lambda} f(x, t)=\int_{H} f(y, s) \mathscr{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-y, t+s) s^{\lambda} d V(y, s) .
$$

Therefore, the Fubini theorem and Lemma 5.5 imply that

$$
\begin{aligned}
\langle u, v\rangle_{\lambda, \sigma}= & \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(x, t) \mathscr{D}_{t} v(x, t) t^{\lambda+\sigma+1} d V(x, t) \\
= & \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(x, t) \int_{H} f(y, s) \mathscr{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-y, t+s) \\
& \times s^{\lambda} d V(y, s) t^{\lambda+\sigma+1} d V(x, t) \\
= & \int_{H} \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(x, t) \mathscr{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-y, t+s) \\
& \times t^{\lambda+\sigma+1} d V(x, t) f(y, s) s^{\lambda} d V(y, s) \\
= & \int_{H} u(y, s) f(y, s) s^{\lambda} d V(y, s)=\Phi(u)
\end{aligned}
$$

for all $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$. This completes the proof.
Next, we give the proof of Theorem 4. Let $C_{0}(H)$ be the set of all continuous functions which vanish continuously at $\partial H \cup\{\infty\}$. We need the following lemma.

Lemma 6.2. Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $v>0$. Then,

$$
\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)=\left\{u \in \tilde{\mathscr{B}}_{\alpha}(\sigma) ; t^{\sigma+1} \mathscr{D}_{t} u \in C_{0}(H)\right\}=\left\{\Pi_{\alpha}^{v+\sigma, v-1} f ; f \in C_{0}(H)\right\} .
$$

Proof. We show the first equality. Take $u \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$ with $t^{\sigma+1} \mathscr{D}_{t} u \in$ $C_{0}(H)$. Then, differentiating through the integral (5.8) with $\kappa=1$ and $v=$ $\sigma+1$, we have

$$
\partial_{j} u(x, t)=\frac{2^{\sigma+2}}{\Gamma(\sigma+2)} \int_{H} \mathscr{D}_{t} u(y, s) \partial_{j} \mathscr{D}_{t}^{\sigma+1} W^{(\alpha)}(x-y, t+s) s^{\sigma+1} d V(y, s) .
$$

For given $\varepsilon>0$, there exists a compact subset $K \subset H$ such that $\left|s^{\sigma+1} \mathscr{D}_{t} u(y, s)\right|$ $<\varepsilon$ for all $(y, s) \in H \backslash K$. Therefore, we obtain

$$
\begin{align*}
t^{\sigma+1 / 2 \alpha} & \left|\partial_{j} u(x, t)\right| \tag{6.2}\\
\leq & C t^{\sigma+1 / 2 \alpha} \varepsilon \int_{H \backslash K}\left|\partial_{j} \mathscr{D}_{t}^{\sigma+1} W^{(\alpha)}(x-y, t+s)\right| d V(y, s) \\
& +C t^{\sigma+1 / 2 \alpha}\|u\|_{\mathscr{B}_{\alpha}(\sigma)} \int_{K}\left|\partial_{j} \mathscr{D}_{t}^{\sigma+1} W^{(\alpha)}(x-y, t+s)\right| d V(y, s) .
\end{align*}
$$

The first term of the right-hand side of (6.2) is less than $C \varepsilon$ by (1) of Lemma 5.3 and Lemma 2.3. Furthermore, (1) of Lemma 5.3 implies that the second term of the right-hand side of (6.2) tends to 0 as $(x, t) \rightarrow \partial H \cup\{\infty\}$. It follows that $u \in \tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$. The converse inclusion is trivial by the definition of $\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$.

We show the second equality. Take $f \in C_{0}(H)$, and put $u=\Pi_{\alpha}^{v+\sigma, v-1} f$. Then, Theorem 5.8 implies $u \in \tilde{\mathscr{B}}_{\alpha}(\sigma)$. For given $\varepsilon>0$, there exists a compact subset $K \subset H$ such that $|f(y, s)|<\varepsilon$ for all $(y, s) \in H \backslash K$. Thus, differentiating through the integral, we have

$$
\begin{aligned}
t^{\sigma+1}\left|\mathscr{D}_{t} u(x, t)\right| \leq & t^{\sigma+1} \varepsilon \int_{H \backslash K}\left|\mathscr{D}_{t}^{v+\sigma+1} W^{(\alpha)}(x-y, t+s)\right| s^{v-1} d V(y, s) \\
& +t^{\sigma+1}\|f\|_{L^{\infty}} \int_{K}\left|\mathscr{D}_{t}^{v+\sigma+1} W^{(\alpha)}(x-y, t+s)\right| s^{v-1} d V(y, s) .
\end{aligned}
$$

Therefore, by the similar argument as above, we obtain $t^{\sigma+1} \mathscr{D}_{t} u \in C_{0}(H)$. We can easily show the converse inclusion by Theorem 5.7. This completes the proof.

We shall show an extended version of Theorem 4.
Theorem 6.3. Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $\lambda>-1$. Then, $\boldsymbol{b}_{\alpha}^{1}(\lambda) \cong$ $\left(\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)\right)^{*}$ under the pairing

$$
\Psi_{u}(v)=\langle u, v\rangle_{\lambda, \sigma}, \quad v \in \tilde{\mathscr{B}}_{\alpha, 0}(\sigma),
$$

where Ψ_{u} is the linear functional on $\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$ induced by $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$. Furthermore, there exists a constant $C=C(n, \alpha, \sigma, \lambda)>0$ independent of u such that

$$
C^{-1}\|u\|_{L^{1}(\lambda)} \leq\left\|\Psi_{u}\right\| \leq C\|u\|_{L^{1}(\lambda)}
$$

for all $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$.
Proof. For every $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$, we define a mapping π by $\pi(u)=\Psi_{u}$. Then, the inequality (6.1) implies that $\left|\Psi_{u}(v)\right| \leq C\|u\|_{L^{1}(\lambda)}\|v\|_{\mathscr{B}_{\alpha}(\sigma)}$ for all $v \in \tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$. Thus, we can consider $\pi: \boldsymbol{b}_{\alpha}^{1}(\lambda) \rightarrow\left(\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)\right)^{*}$ and we also have $\left\|\Psi_{u}\right\| \leq$ $C\|u\|_{L^{1}(\lambda)}$.

We show that π is injective. We assume that $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$ and $\Psi_{u}=\pi(u)=0$. Then, by (3) of Lemma 5.6, $\omega_{\alpha}^{\lambda+\sigma+1}(x, t ; \cdot, \cdot)$ belongs to $\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$ for each $(x, t) \in H$. Therefore, by Lemma 5.5, we obtain

$$
\begin{aligned}
u(x, t) & =\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(y, s) \mathscr{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-y, t+s) s^{\lambda+\sigma+1} d V(y, s) \\
& =\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(y, s) \mathscr{D}_{t} \omega_{\alpha}^{\lambda+\sigma+1}(x, t ; y, s) s^{\lambda+\sigma+1} d V(y, s) \\
& =\Psi_{u}\left(\omega_{\alpha}^{\lambda+\sigma+1}(x, t ; \cdot, \cdot)\right)=0
\end{aligned}
$$

for each $(x, t) \in H$. Hence, π is injective.
We show that for each $\Psi \in\left(\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)\right)^{*}$, there exists $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$ such that $\pi(u)=\Psi$ and $\|u\|_{L^{1}(\lambda)} \leq C\|\Psi\|$. Let $\Psi \in\left(\tilde{\mathscr{B}}_{\alpha, 0}(\sigma)\right)^{*}$. We define a mapping Λ by

$$
\Lambda(f)=\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \Psi\left(\Pi_{\alpha}^{\lambda+\sigma+1, \lambda} f\right), \quad f \in C_{0}(H)
$$

Then, Theorem 5.8 and Lemma 6.2 imply that Λ is a bounded linear functional on $C_{0}(H)$ and $\|\Lambda\| \leq C\|\Psi\|$. Thus, the Riesz representation theorem shows that there exists a bounded signed measure μ on H such that

$$
\Lambda(f)=\int_{H} f(x, t) d \mu(x, t), \quad f \in C_{0}(H)
$$

and $\|\mu\|=\|\Lambda\|$. We define a function u on H by

$$
u(y, s)=\int_{H} \mathscr{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-y, t+s) t^{\sigma+1} d \mu(x, t)
$$

Then, (1) of Lemma 5.3 and Lemma 2.3 imply that

$$
\begin{aligned}
\|u\|_{L^{1}(\lambda)} & \leq \int_{H} \int_{H}\left|\mathscr{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-y, t+s)\right| s^{\lambda} d V(y, s) t^{\sigma+1} d|\mu|(x, t) \\
& \leq C \int_{H} t^{-(\sigma+1)} t^{\sigma+1} d|\mu|(x, t)=C\|\mu\| .
\end{aligned}
$$

Hence, we have $\|u\|_{L^{1}(\lambda)} \leq C\|\mu\|=C\|\Lambda\| \leq C^{\prime}\|\Psi\|$ and $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$. We assert $\pi(u)=\Psi$. In fact, take $v \in \tilde{\mathscr{B}}_{\alpha, 0}(\sigma)$. Then, since

$$
v=\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \Pi_{\alpha}^{\lambda+\sigma+1, \lambda}\left(t^{\sigma+1} \mathscr{D}_{t} v\right)
$$

by Theorem 5.7, the definition of Λ implies

$$
\begin{aligned}
\Psi(v) & =\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \Psi\left(\Pi_{\alpha}^{\lambda+\sigma+1, \lambda}\left(t^{\sigma+1} \mathscr{D}_{t} v\right)\right)=\Lambda\left(t^{\sigma+1} \mathscr{D}_{t} v\right) \\
& =\int_{H} t^{\sigma+1} \mathscr{D}_{t} v(x, t) d \mu(x, t)
\end{aligned}
$$

On the other hand, the definition of u and the Fubini theorem show that

$$
\begin{aligned}
\langle u, v\rangle_{\lambda, \sigma}= & \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(y, s) \mathscr{D}_{t} v(y, s) s^{\lambda+\sigma+1} d V(y, s) \\
= & \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} \int_{H} \mathscr{D}_{t} v(y, s) \mathscr{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-y, t+s) \\
& \times s^{\lambda+\sigma+1} d V(y, s) t^{\sigma+1} d \mu(x, t)
\end{aligned}
$$

Since Theorem 5.7 again implies

$$
\begin{aligned}
& \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} \mathscr{D}_{t} v(y, s) \mathscr{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-y, t+s) s^{\lambda+\sigma+1} d V(y, s) \\
& \quad=\mathscr{D}_{t}\left(\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} \mathscr{D}_{t} v(y, s) \omega_{\alpha}^{\lambda+\sigma+1}(x, t ; y, s) s^{\lambda+\sigma+1} d V(y, s)\right) \\
& \quad=\mathscr{D}_{t} v(x, t),
\end{aligned}
$$

we obtain $\langle u, v\rangle_{\lambda, \sigma}=\Psi(v)$. It follows that $\pi(u)=\Psi$.

References

[1] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
[2] Y. Hishikawa, Fractional calculus on parabolic Bergman spaces, Hiroshima Math. J. 38(2008), 471-488.
[3] Y. Hishikawa, The reproducing formula with fractional orders on the parabolic Bloch space, J. Math. Soc. Japan 62 (2010), 1219-1255.
[4] H. Koo, K. Nam and H. Yi, Weighted harmonic Bergman functions on half-spaces, J. Korean Math. Soc. 42(2005), 975-1002.
[5] M. Nishio, K. Shimomura and N. Suzuki, α-parabolic Bergman spaces, Osaka J. Math. 42(2005), 133-162.
[6] M. Nishio, N. Suzuki and M. Yamada, Toeplitz operators and Carleson measures on parabolic Bergman spaces, Hokkaido Math. J. 36(2007), 563-583.
[7] W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348(1996), 633-660.
[8] M. Yamada, Harmonic conjugates of parabolic Bergman functions, Advanced Studies in Pure Mathematics 44, 391-402, Math. Soc. of Japan, Tokyo, 2006.
[9] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23(1993), 1143-1177.

Yôsuke Hishikawa
Department of General Education
Gifu National College of Technology
Kamimakuwa 2236-2
Motosu City, Gifu 501-0495, Japan
E-mail: yosuke-h@gifu-nct.ac.jp
Masahiro Yamada
Department of Mathematics
Faculty of Education
Gifu University
Yanagido 1-1, Gifu 501-1193, Japan
E-mail: yamada33@gifu-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 35K05; Secondary 31B10, 32A18.
 Key words and phrases. Bloch space, parabolic operator of fractional order, reproducing formula.

