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Abstract. We study periodic travelling wave solutions of a derivative non-linear

Schrödinger equation and show the existence of infinitely many families of semi-trivial

solutions (Theorem 2). Each of the families constitutes a branch of travelling waves

corresponding to a non-zero integer called the winding number. A su‰cient condition

for the orbital stability of travelling waves on the branches with positive winding

number is given in terms of the wave speed and winding number of the solution

(Theorem 3). Bifurcation points are found on each semi-trivial branch of travelling

wave solutions (Theorem 4), and the qualitative, and approximately quantitative, orbit-

shapes of the bifurcated solutions are given. The stability of the semi-trivial solutions

under subharmonic perturbations is studied in Theorem 6, and subharmonic bifurcations

are established in Theorem 7.

1. Introduction and main results

In this paper we study the derivative non-linear Schrödinger equation

iut þ uxx þ ijuj2ux ¼ 0; ð1:1Þ

where uðt; xÞ is a complex-valued function, i ¼
ffiffiffiffiffiffiffi
�1

p
, and the subscripts stand

for partial di¤erentiation. This equation is treated under the 2p-periodic

boundary condition for the spatial variable x, namely, with x A S1 ¼ R=ð2pZÞ,
and t A R.

The following equation related to (1.1),

iut þ uxx þ iðjuj2uÞx ¼ 0 ð1:2Þ

was derived in [12] as a compatibility condition within a reductive pertur-

bation expansion. The well-posedness of the initial value problem for (1.2) on

HsðR;CÞ was studied by [9, 10, 5, 7, 8] for various values of s > 1=2. A

family of solitary wave solutions of (1.2), belonging to HsðR;CÞ ðs > 0Þ, was
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found by [11]. The orbital stability of these solitary waves was studied by [4]

and completely settled a‰rmatively by [1]. The method of proof in [1] is very

much interesting. The original equation (1.2) is first transformed into the form

of (1.1) by the so called gauge transformation. Then the authors of [1] use

ingenious variational techniques to establish the orbital stability of the solitary

waves found by [11].

One of the reasons of transforming (1.2) into the form of (1.1) is that the

latter has a nice (infinite dimensional) Hamiltonian structure. This structure

is usefully exploited to prove stability properties of solitary waves. Although

(1.2) also has a Hamiltonian structure, it is not easy to deal with in the sense

that the linearlized Hamiltonian is indefinite with infinite dimensional positive

and negative subspaces. As we will see below, (1.1) and (1.2) share families of

travelling wave solutions (the families shown in Theorem 2, below), but their

stability properties could be drastically di¤erent.

For more details of the origin and physical significance of (1.2), as well as

its basic relations to other types of derivative non-linear Schrödinger equation

posed on the spatial domain R, we refer to [12, 1, 7].

The local well-posedness of the initial value problem for (1.1) with periodic

boundary condition was obtained by Herr in the following theorem.

Theorem 1 (Herr, [6]). For each m > 0 there exists t0 ¼ t0ðmÞ > 0 such

that ð1:1Þ has a unique solution u A Cð½�t0; t0�;H 1ðS1ÞÞ satisfying the initial

condition uð0; xÞ ¼ u0ðxÞ for all u0 A H 1ðS1;CÞ with ku0kH 1 < m.

The well-posedness established in [6] is for the initial value problem of

(1.2) with periodic boundary condition. However, the method of proof applies

to (1.1) as well. In fact, (1.2) is first transformed by a periodic version of

gauge transform to an equation similar to (1.1), and then various estimates are

obtained for the transformed equation to establish well-posedness. Therefore,

we state the results in [6] as cited in Theorem 1 which is suitable for our

problem.

We are interested in the travelling wave solutions of (1.1) and their

stability properties. A solution of (1.1) of the form uðt; xÞ ¼ fðx� ctÞ with

c A R is called a 2p-periodic travelling wave with profile fð�Þ and velocity c,

when fðxÞ is 2p-periodic in x. The profile is governed by

0 ¼ �fxx þ iðc� jfj2Þfx; fðxþ 2pÞ ¼ fðxÞ Ex A R: ð1:3Þ

It will turn out that the set of solutions of (1.3) has a rich structure (cf.

Theorems 2, 4 and 7, below). We first state the existence of solutions with a

simple profile.

Theorem 2 (Existence). For each l A Znf0g, ð1:1Þ has a family of 2p-

periodic travelling wave solutions uðt; xÞ ¼ fc
lðx� ctÞ defined for c > l and given
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explicitly by

fc
lðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
c� l

p
eilx:

The proof of this theorem is easy. Just substitute uðt; xÞ ¼ fc
lðx� ctÞ into (1.1)

to find it is a solution.

Note that for each l A Rnf0g, fc
l (with c > l) remains a travelling wave

solution of (1.1). However, it is not 2p-periodic unless l is an integer.

The solutions fðxÞ of (1.3) satisfying fðxÞ0 0 for all x A R are expressed

as fðxÞ ¼ rðxÞeiyðxÞ, where rðxÞ > 0 and yðxÞ are real valued functions. The

2p-periodicity of fðxÞ implies that for x A R we have

rðxÞ ¼ rðxþ 2pÞ; yxðxÞ ¼ yxðxþ 2pÞ and yðxþ 2pÞ ¼ yðxÞ þ 2pl

for some integer l. The number l is called the winding number of f. If,

moreover, the minimal period of rðxÞ is 2p=k with k A N, or k ¼ 0 if rðxÞ1
constant, then the solution fðxÞ is said to have the amplitude modulation

number k, and in this case f is called an ðl; kÞ-type solution. Theorem 2

asserts the existence of the branches of ðl; 0Þ-type solutions for all l A Znf0g.
We call the family Bl :¼ ffc

l j c > lg the l-branch of solutions. Theorem 2

may be interpreted as follows. When c passes l A Znf0g, solutions with

winding number l of (1.1) bifurcate from the trivial solution u1 0 (cf. Remark

1 at the end of § 3).

Our next interest is the stability of the semi-trivial solutions fc
l with respect

to (1.1). Before we state our results, let us give a formal definition of orbital

stability.

Definition 1. A periodic travelling wave solution uðt; xÞ ¼ Uðx� ctÞ of

ð1:1Þ is orbitally stable for ð1:1Þ, if for any e > 0 there exists d > 0 such that

if u0 A H 1ðS1Þ satisfies infx ARku0 �Uð� � xÞkH 1 < d, then the solution uðt; xÞ of
(1.1) with uð0; xÞ ¼ u0ðxÞ exists globally in time and satisfies

sup
tb0

inf
x AR

kuðtÞ �Uð� � xÞkH 1 < e: ðOSÞ

When Uðx� ctÞ is not orbitally stable, it is called orbitally unstable.

The meaning of this definition is as follows. If a solution of (1.1) starts

from a su‰ciently small neighborhood of the orbitfUð� � xÞ A H 1 j x A Rg of

the wave profile U , then the solution exists globally in time and remains in a

small neighborhood of the orbit. Note that for U ¼ fc
l the condition (OS) in

the last definition may be replaced by

sup
tb0

inf
ðy;xÞ AR2

kuðtÞ � eiyUð� � xÞkH 1 < e; ðOS 0Þ

because eiyUð� � xÞ ¼ Uð� � ðx� y=lÞÞ in this case.
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Our result on the stability is given by

Theorem 3 (Stability). For each integer lb 1, the semi-trivial solution fc
l

is orbitally stable if c > lþ l2 � 1

2l
.

This theorem says that for each positive integer l the solution on the

branch Bl is stable if its travelling speed is su‰ciently large. In particular,

solutions on B1 are always stable. At present, we do not know whether

solutions with slower speed (for lb 2) or solutions on Bl with la�1 are

stable or not. The stability and instability theorems in [2, 3], which are mainly

developed for solitary pulse waves, are not powerful enough to deal with other

cases omitted in Theorem 3. It is easy to verify that fc
l is also a travelling

wave solution of (1.2). However, we do not have any information on the

stability properties of fc
l under the flow of (1.2).

Theorem 4 (Bifurcation). For l A Znf0; 1g, solutions of ð1:3Þ bifurcate

from the branch Bl.

( i ) For lb 2 and for each k A f1; . . . ; l� 1g, ðl; kÞ-type solutions bifur-

cate from Bl at c ¼ lþ ðl2 � k2Þ=ð2lÞ. The bifurcated branch exists

locally for c > lþ ðl2 � k2Þ=ð2lÞ.
(ii) For la�1 and for each k A N ðk > jljÞ, ðl; kÞ-type solutions bifurcate

from Bl at c ¼ lþ ðl2 � k2Þ=ð2lÞ. The bifurcated branch exists

locally

for c > lþ ðl2 � k2Þ=ð2lÞ if jlj < k <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
jlj; and

for c < lþ ðl2 � k2Þ=ð2lÞ if k >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
jlj:

The bifurcated ðl; kÞ-type solution is expressed as

fðxÞ ¼ rðxÞeiðlxþyðxÞÞ:

For the approximate shapes of rðxÞ and yðxÞ, we refer to § 4.

There is no bifurcation point on B1. On each branch Bl with positive

winding number l ðlb 2Þ, there are finitely many bifurcation points and the

solutions on these branches eventually become orbitally stable. On the other

hand, on each branch with negative winding number, there are infinitely many

bifurcation points. It is very much likely that the l-winding number solutions

in the cases not covered by Theorem 3 are all unstable. As regard to stability

of, and bifurcation from, the branches Bl, we will give additional comments

in § 5.
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2. Abstract formulation of the problem

The equation (1.1) is also written as

ut ¼ iuxx � juj2ux ¼ �ið�uxx � ijuj2uxÞ;

which suggests to express the equation as a Hamiltonian PDE;

ut ¼ JE 0ðuÞ ¼ �iE 0ðuÞ; ð2:1Þ

where J ¼ �i and E is a C2-functional defined on a real Hilbert space. To

cast (1.1) in this formalism is useful to determine orbital stability of travelling

wave solutions of (1.1) within the framework developed by Grillakis-Shatah-

Strauss [2, 3]. An appropriate Hilbert space in this context is H 1 ¼ H 1ðS1;CÞ,
considered as a real Hilbert space with the inner product defined by

ðu; vÞ :¼ Re

ð
S 1

uxvx þRe

ð
S 1

uv: ð2:2Þ

The dual space of H 1 is H�1 ¼ H�1ðS1;CÞ, and we denote by h f ; ui the

pairing between f A H�1 and u A H 1. Then, thanks to the Riesz’ represen-

tation theorem, there is a natural isomorphism I : H 1 ! H�1, formally defined

by Iu ¼ �uxx þ u, so that

hIu; vi ¼ ðu; vÞ Eu; v A H 1; ð2:3Þ

and for each f A H�1 there exists a unique u that satisfies f ¼ Iu. For

f A H�1 with f ¼ Iu A L2 ¼ L2ðS1;CÞ, we have

h f ; vi ¼ Re

ð
S 1

ðuxvx þ uvÞ ¼ Re

ð
S 1

ð�uxx þ uÞv ¼ Re

ð
S 1

f v: ð2:4Þ

Let us now define the C2-functional E : H 1 ! R by

EðuÞ ¼ 1

2

ð
S 1

juxj2 þ
1

4
Im

ð
S 1

juj2uux: ð2:5Þ

By the Sobolev embedding theorem the functional EðuÞ is well-defined for

u A H 1, and it is then easy to verify that the derivative E 0 : H 1 ! H�1 is given

by

E 0ðuÞ ¼ Iu� u� ijuj2ux ¼ �uxx � ijuj2ux:

Note that J : H�1 ! H 1 defined by Jf ¼ �if with f A DðJÞ ¼ H 1 is skew-

symmetric in the following sense;

hg; Jf i ¼ �h f ; Jgi Ef ; g A H 1 ¼ DðJÞ:
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This is an easy consequence of (2.4). Therefore, (1.1) is indeed written as the

Hamiltonian PDE (2.1).

A travelling wave solution for (1.1) with velocity c A R is a solution of

the form uðt; xÞ ¼ fðx� ctÞ, in which f is called a wave profile. If a one-

parameter group of unitary operators fTðsÞ; s A Rg on H 1 is defined by

ðTðsÞuÞðxÞ ¼ uðx� sÞ; ð2:6Þ

then a travelling wave solution with profile f corresponds to a group orbit

through f, namely, uðt; xÞ ¼ ðTðctÞfÞðxÞ. We call such a solution a bound

state of (1.1), according to the terminology in [2, 3]. Then, f is a profile of a

bound state if and only if it satisfies E 0ðfÞ þ cQ 0ðfÞ ¼ 0, where Q : H 1 ! R is

defined by

QðuÞ ¼ 1

2
Im

ð
S 1

uux for u A H 1 and Q 0ðuÞ ¼ iux: ð2:7Þ

That is to say, f is the profile of a bound state, if and only if it is a critical

point of the functional H 1 C u 7! EðuÞ þ cQðuÞ. The critical points are to

satisfy

0 ¼ �fxx þ iðc� jfj2Þfx; f A H 1ðS1;CÞ; ð2:8Þ

which is equivalent to (1.3). It is easy to verify that fc
l (given in Theorem 2)

satisfies (2.8), or (1.3). The value of the functional EðuÞ þ cQðuÞ on the critical

point is given, as verified by a direct computation, by

dlðcÞ :¼ Eðfc
lÞ þ cQðfc

lÞ ¼ � p

2
lðc� lÞ2; ð2:9Þ

which plays an important role to determine stability or instability within the

framework of [2, 3]. Note that if l < 0 (resp. l > 0), dl is convex (resp.

concave) in c everywhere it is defined.

We will now confirm that conditions stated in the abstract setup of [2] are

valid for our problem. Since the group action TðsÞ is nothing but a spatial

translation by s, we have

EðTðsÞuÞ ¼ EðuÞ; QðTðsÞuÞ ¼ QðuÞ for s A R; u A H 1: ð2:10Þ

To verify

TðsÞJ ¼ JTð�sÞ�; ð2:11Þ
we have to show that

h f ;TðsÞJgi ¼ h f ; JTð�sÞ�gi

holds for all f A H�1 and g A DðJÞ ¼ H 1. Thanks to (2.4) and using change

of variables in the integration, this is certainly true for f A H�1 VL2. The
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density of L2 in H�1 now establishes (2.11). Note that the linear operator

B : H 1 ! H�1 defined by Bu :¼ Q 0ðuÞ ¼ iux is bounded and self-adjoint

(B� ¼ B). Since T 0ð0Þu ¼ �ux with DðT 0ð0ÞÞ ¼ H 2, and our Q corresponds

to �Q in [2], we also have that

�JB is an extension of T 0ð0Þ: ð2:12Þ

This follows from

�JBu ¼ �JQ 0ðuÞ ¼ �ð�iÞðiuxÞ ¼ �ux ¼ T 0ð0Þu Eu A H 2:

Thanks to (2.10), (2.11), (2.12) and Theorem 2, all of the standing hypotheses

in [2] are fulfilled in our problem for each l A Znf0g.

3. Linearized Hamiltonian

In this section we give a proof of Theorem 3. To study stability of

the bound state fc
l , we linearize f 7! E 0ðfÞ þ cQ 0ðfÞ, not JðE 0ðfÞ þ cQ 0ðfÞÞ,

around f ¼ fc
l . This linearization, denoted by H, is called the linearized

Hamiltonian, given by

H ¼ Hc
l :¼ E 00ðfc

lÞ þ cQ 00ðfc
lÞ : H 1 ! H�1:

This is a self-adjoint operator in the sense that

hHu; vi ¼ hHv; ui Eu; v A H 1; ð3:1Þ

which directly follows from the fact that H is the second derivative of the

C2-functional EðuÞ þ cQðuÞ. Eigenvalues l of H are real and satisfy, to-

gether with the corresponding eigenfunctions u A H 1 ðu2 0Þ, the following

equation

lu ¼ �uxx þ iðc� r2Þux þ lr2uþ lr2e2ilxu; ð3:2Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffi
c� l

p
. Since the operator H is self-adjoint, its spectrum consists

entirely of real eigenvalues. For more details, we have the following prop-

osition.

Proposition 1. For each l A Znf0g and c > l, the eigenvalues l of Hc
l are

given by

l ¼ lc;n
l;G :¼ ðn� lÞ2 þ lðc� lÞG l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� lÞ2 þ ðc� lÞ2

q
; n A Z;

and the following items are true.

( i ) The eigenvalue lc;l
l;� ¼ 0 corresponds to an eigenfunction given by

fc;l
l;�ðxÞ ¼ ieilx which comes from dfc

lðxÞ=dx;
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while the eigenvalue lc;l
l;þ ¼ 2lðc� lÞ corresponds to an eigenfunction

given by

fc;l
l;þðxÞ ¼ eilx which comes from qfc

lðxÞ=qc:

( ii ) For each n0 l, eigenfunctions cc;n
l;G corresponding to lc;n

l;G are given

by

cc;n
l;þ; rðxÞ ¼ ðc� lÞeinx þ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� lÞ2 þ ðc� lÞ2

q
þ ðl� nÞ�eið2l�nÞx;

cc;n
l;þ; iðxÞ ¼ �iðc� lÞeinx þ i½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� lÞ2 þ ðc� lÞ2

q
þ ðl� nÞ�eið2l�nÞx;

cc;n
l;�; rðxÞ ¼ ðc� lÞeinx þ ½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� lÞ2 þ ðc� lÞ2

q
þ ðl� nÞ�eið2l�nÞx;

cc;n
l;�; iðxÞ ¼ �iðc� lÞeinx þ i½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� lÞ2 þ ðc� lÞ2

q
þ ðl� nÞ�eið2l�nÞx;

and the geometric, as well as algebraic, multiplicity of these eigen-

values is 2.

( iii ) For each lb 1;

(iii-a) lc;n
l;þ b lc;l

l;þ ¼ 2lðc� lÞ > 0 for all n A Z, c > l.

(iii-b) If c > lþ l2 � 1

2l
, then lc;n

l;� > 0 for all n A Znflg.

( iv ) For lb 2 and k A f1; . . . ; l� 1g, there are two zero eigenvalues

lc;l�k
l;� ¼ 0 ¼ lc;lþk

l;� at c ¼ lþ l2 � k2

2l
, except for the trivial one

lc;l
l;� ¼ 0. In this case, the 0-eigenvalue has geometric, as well as

algebraic, multiplicity 3, and the eigenspace is spanned by

ieilx;

ðlþ kÞeiðl�kÞx � ðl� kÞeiðlþkÞx;

iðlþ kÞeiðl�kÞx þ iðl� kÞeiðlþkÞx:

( v ) For each lb 2 and k A f1; . . . ; l� 1g, if the wave speed satisfies

lþ l2 � k2

2l
> c > lþ l2 � ðk þ 1Þ2

2l
;

then there is no 0-eigenvalue except for the trivial one lc;l
l;� and there

are 2k negative eigenvalues (counted with multiplicity) lc;lGm
l;� with

m ¼ 1; . . . ; k.

( vi ) If la�1, then lc;n
l;� > lc;l

l;� ¼ 0 for all n A Znflg and there are at

least 2jlj þ 1 negative eigenvalues lc;lGk
l;þ < 0 with k ¼ 0; 1; . . . ;
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�l. The dimension of the sum of the eigenspaces corresponding to

these eigenvalues equals 2jlj þ 1.

( vii ) If la�1 and N C k > jlj, then lc;lGk
l;þ ¼ 0 at c ¼ lþ l2 � k2

2l
. The

dimension of the 0-eigenspace is 3 and it is spanned by

ieilx;

ðlþ kÞeiðl�kÞx � ðl� kÞeiðlþkÞx;

iðlþ kÞeiðl�kÞx þ iðl� kÞeiðlþkÞx:

(viii) If la�1;N C k > jlj and lþ l2 � ðk þ 1Þ2

2l
> c > lþ l2 � k2

2l
, then

lc;n
l;þ 0 0 for all n A Z, and there are 2k þ 1 negative eigenvalues

lc;lGm
l;þ < 0 with m ¼ 0; . . . ; k. The dimension of the sum of the

eigenspaces corresponding to these negative eigenvalues is 2k þ 1.

The proposition will be proven at the end of the present section.

We are now ready to prove Theorem 3 by applying the stability criterion

in [2], which is stated as follows.

Theorem 5 (Theorem 1 in [2]). Assume that the initial value problem

for ð1:1Þ is locally well-posed on H 1. If the operator Hc
l has the following

properties, then the travelling wave solution fc
l is orbitally stable.

( i ) The kernel of Hc
l is spanned by T 0ð0Þfc

l , and 0 is a simple eigenvalue

of Hc
l .

(ii) The spectrum of Hc
l other than 0 is positive and bounded away from

zero.

We roughly show the outline of proof of this theorem, since it is proven as a

special case of a more general stability criterion in [2]. However, the idea is

simple and clear. The conditions (i) and (ii) in Theorem 5 say that in the

orthogonal complement of the kernel of Hc
l (Ker Hc

l is one-dimensional and

parallel to the orbit of fc
l), the linearized Hamiltonian Hc

l is positive definite.

Since fc
l is a critical point of the functional f 7! EðfÞ þ cQðfÞ, this positivity

implies the existence of a constant C > 0 such that for a su‰ciently small

neighborhood U of the orbit through fc
l ,

EðvÞ þ cQðvÞ � ðE þ cQÞjOðf c
l Þ bC½distH 1ðv;Oðfc

lÞÞ�
2 Ev A U; ðCOEÞ

where OðfÞ stands for the orbit of f under the group action of TðsÞ and distH 1

is the distance measured by H 1-norm. Note also that the value of the

functional E þ cQ is constant on Oðfc
lÞ. Since the functionals E and Q

are conserved under the flow of (1.1), if the solution starts from the neigh-
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borhood U, then it cannot escape from the e-neighborhood of Oðfc
lÞ because of

the condition (COE), where e > 0 is defined by

e2 :¼ 1

C
supfEðvÞ þ cQðvÞ � ½E þ cQ�jOðf c

l Þ j v A Ug:

Probably, Theorem 5 had been known to many people even before [2].

However, the true merit of [2] is that it gives stability and instability criteria

when the linearized Hamiltonian has exactly one negative eigenvalue. In this

case [2] says that the travelling wave solution with profile fc
l is stable if

d 00
l ðcÞb 0, and that it is unstable if d 00

l ðcÞ < 0, where dlðcÞ is the quantity

defined in (2.9). However, in our case not covered by Theorem 3 with lb 2,

the linearized Hamiltonian has more than one negative eigenvalues (cf. Prop-

osition 1) and d 00
l ðcÞ < 0 (cf. (2.9)). The Instability Theorem in [3] is of

more general character which states that if the di¤erence between the number of

negative eigenvalues of H and the number of positive eigenvalue of d 00
l ðcÞ is odd,

then the bound state is unstable. However, this theorem fails to apply to our

situation not covered by Theorem 3, because the di¤erence between the number

of negative eigenvalues of H and the number of positive eigenvalues of d 00
l ðcÞ is

even. This is foreseen, because the instability criterion in [3] is nothing but a

su‰cient condition for �iH to have eigenvalue with non-zero real part, while

�iH has only pure imaginary eigenvalues in our case.

Thanks to Theorems 1 and 2 in § 1, together with the properties (2.10),

(2.11), (2.12), and fc
l A CyðS1Þ, the standing hypotheses of [2] are all sat-

isfied. Now, Proposition 1 (i) and (iii) say that the linearized Hamiltonian has

its kernel spanned by T 0ð0Þfc
l ¼ �lieilx 0 0 and the rest of its spectrum is

positive and bounded away from zero for c > lþ l2 � 1

2l
with lb 1. Theorem

5 now applies to prove Theorem 3.

To prove Proposition 1, we substitute the Fourier expansion u ¼
P

ane
inx

with an A C into (3.2). Comparing the coe‰cients of einx in the resulting

equation, we obtain for n A Z,

ðl� ðn� lÞ2 � lðc� lÞ þ lðl� nÞÞan � lðc� lÞa2l�n ¼ 0:

Taking the complex conjugate of this equation and then replacing n by 2l� n,

and noting l A R, (3.2) is found to be equivalent to

½l� ðn� lÞ2 � lðc� lÞ þ lðl� nÞ�an � lðc� lÞa2l�n ¼ 0;

�lðc� lÞan þ ½l� ðn� lÞ2 � lðc� lÞ � lðl� nÞ�a2l�n ¼ 0:

(
ð3:3Þ

This immediately gives the eigenvalue lc;n
l;G given in Proposition 1. The

remaining parts of Proposition 1 follow from this and (3.3) by elementary

computations, and hence the details are omitted.
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Remark 1. If we linearlize the Hamiltonian around the trivial solution

u ¼ 0, then Hu ¼ �uxx þ icux. The eigenvalues of this operator are given by

lðn; cÞ ¼ n2 � cn, n A Z. Therefore, as the wave speed c passes integer points

l A Znf0g, the eigenvalue crosses l ¼ 0. The crossing of eigenvalue causes the

bifurcation of l-branch Bl from the zero solution.

4. Bifurcation analysis

Theorem 4 is proven by Proposition 1 and the Lyapunov-Schmidt

Reduction.

4.1. Lyapunov-Schmidt Reduction. We now apply the Lyapunov-Schmidt

decomposition. For each l A Znf0; 1g, we denote by c0 the possible bifurca-

tion point;

c0 ¼ lþ l2 � k2

2l
for

k A f1; . . . ; l� 1g if lb 2

k A N; k > jlj if la�1

�

and the corresponding amplitude by r0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 � l

p
: We then write (1.3) as a

perturbation around ðf; cÞ ¼ ðfc0
l ; c0Þ by introducing the new unknown c and

the new wave speed parameter ~cc;

f ¼ fc0
l þ c; c ¼ c0 þ ~cc: ð4:1Þ

Substituting these into (1.3), we obtain

0 ¼ HcþNð~cc;cÞ; ð4:2Þ

where H is the linearization of (1.3) at f ¼ fc0
l and N is the non-linear

perturbation;

Hc :¼ �cxx þ ilcx þ lr20cþ lr20e
2ilxc;

Nð~cc;cÞ :¼ lr0e
ilxð�~ccþ jcj2Þ þ i~cccx

� ir0e
�ilxccx � ir0e

ilxccx � ijcj2cx:

In this section, the operators H and Nð~cc; �Þ are treated as a mapping from

H 2 to L2. We now decompose (4.2) in terms of the kernel of H and its

orthogonal complement. The kernel of H is three-dimensional (cf. Proposi-

tion 1 (iv) and (vii)) spanned by ieilx and

c1 ¼ ðlþ kÞeiðl�kÞx � ðl� kÞeiðlþkÞx;

c2 ¼ iðlþ kÞeiðl�kÞx þ iðl� kÞeiðlþkÞx:
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The 0-eigenfunction ieilx comes from the group action (the spatial translations)

on the solution fc0
l . In order to eliminate the translational freedom, we

introduce two function spaces X and Y , defined by

X :¼
X
n AZ

ane
inx A H 2

����an A R

( )
; Y :¼

X
n AZ

ane
inx A L2

����an A R

( )
:

The space X is chosen because of the following reason.

X H ff A H 2ðS1;CÞ j fð0Þ A Rg:

This inclusion means that the phase of each element f A X is fixed by requiring

fð0Þ A R, while in general fð0Þ A R may not be true for each element f A H 2.

From the definition of the operators H;Nð~cc; �Þ and that of the spaces X , Y , it

follows that

H : X ! Y ; Nð~cc; �Þ : X ! Y :

From now on, we always treat H;Nð~cc; �Þ as mappings in this sense. The

kernel of H is now 1-dimensional, spanned by c1.

Now, in terms of the inner product on L2ðS1;CÞ, we have

ðc1;c1Þ ¼ Re

ð
S 1

c1ðxÞc1ðxÞdx ¼ 4pðl2 þ k2Þ:

Let P be defined by

ðI � PÞc ¼ 1

4pðl2 þ k2Þ
ðc1;cÞc1 ¼ A1c1 with A1 A R;

and decompose c A X as c ¼ ðI � PÞcþ Pc. By using j :¼ ðI � PÞc,
C :¼ Pc, one can rewrite (4.2) as follows.

ðI � PÞNð~cc; jþCÞ ¼ 0; HC þ PNð~cc; jþCÞ ¼ 0: ð4:3Þ

Thanks to Proposition 1, the linear operator H is invertible on PX , and hence

the implicit function theorem applied to the second equation of (4.3) implies the

existence of a function C ¼ Cð~cc; jÞ ¼ Cð~cc;A1Þ defined for ð~cc;A1Þ in a neigh-

borhood O of ð0; 0Þ A R2 such that

01HCð~cc;A1Þ þN ~cc;A1c1 þCð~cc;A1Þð Þ on O:

Substituting C ¼ Cð~cc;A1Þ into the first equation of (4.3), we now find that

(4.2) is equivalent to

0 ¼ ðI � PÞMð~cc;A1Þ; ð4:4Þ
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where

Mð~cc;A1Þ :¼ Nð~cc;A1c1 þCð~cc;A1ÞÞ: ð4:5Þ

The bifurcation function in (4.4) is explicitly given in terms of ð~cc;A1Þ as

follows.

Proposition 2. Let gð~cc;A1Þ ¼ ðc1;Mð~cc;A1ÞÞ=ð4pÞ. Then we have

gð~cc;A1Þ ¼ ½ða~ccþ b~cc2Þ � gA2
1 þOð3Þ�A1; ð4:6Þ

where

a ¼ 2k2l; b ¼ � 8l4k2

ðl2 þ k2Þ2
; g ¼ k2

l
ð3l4 þ 6k2l2 � k4Þ;

and Oð3Þ stands for the terms of order higher than or equal to 3 in ð~cc;A1Þ.

The proof of Proposition 2 is lengthy and explicit computations will

be given in § 4.2. We give here only some comments on the specific form

of (4.6). It is easy to verify Cð~cc; 0Þ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ccþ c0 � l

p
� r0Þeilx and Mð~cc; 0Þ A

span½eilx�. Therefore, ðI � PÞMð~cc; 0Þ ¼ 0 and gð~cc;A1Þ ¼ OðjA1jÞ. This ex-

plains why there is no Oð1Þ-term in A1 on the right hand side of (4.6). More-

over, A1 ¼ 0 corresponds to the semi-trivial solution f~ccþc0
l ¼ fc0

l þCð~cc; 0Þ.
By using (4.6), we prove Theorem 4 as follows. We have found via (4.2),

(4.3) and (4.4) that the solutions of (1.3) near the bifurcation points ðf; cÞ ¼
ðfc0

l ; c0Þ correspond, in one-to-one fashion, to the solutions of the equation

gð~cc;A1Þ ¼ 0 for ð~cc;A1Þ A O:

From (4.6), we find that the equation g ¼ 0 possesses trivial solutions ð~cc; 0Þ A O

which, as mentioned above, correspond to the semi-trivial solutions fc
l for c

near c0. The formula (4.6) also reveals the existence of nontrivial solutions

given by

c� c0 ¼ ~cc ¼ g

a
A2

1 þOð3Þ for A1 0 0;

where Oð3Þ stands for the terms of order higher than or equal to 3 in A1. The

sign of the ratio g=a determines the direction of the bifurcations, and one easily

verifies the statements concerning the direction of bifurcation in Theorem 4.

The shape of bifurcated solution is also given by

fðxÞ ¼ rðxÞeiðlxþyðxÞÞ; ð4:7Þ

where the amplitude rðxÞ ¼ r0 þOð
ffiffiffiffiffi
j~ccj

p
Þ is given by

rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 � l

p
þ 2k

ffiffiffiffiffiffiffiffiffiffiffiffi
ja~cc=gj

p
cos kxÞ2 þ 4l2ja~cc=gj sin2 kx

q
þOðj~ccjÞ
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and the phase modulation yðxÞ ¼ Oð
ffiffiffiffiffi
j~ccj

p
Þ is determined by

tan yðxÞ ¼ �2l
ffiffiffiffiffiffiffiffiffiffiffiffi
ja~cc=gj

p
sin kxffiffiffiffiffiffiffiffiffiffiffiffiffi

c0 � l
p

þ 2k
ffiffiffiffiffiffiffiffiffiffiffiffi
ja~cc=gj

p
cos kx

þOðj~ccjÞ:

From these expressions, we find that rðxÞ and yðxÞ are 2p=k-periodic and that

the statements in Theorem 4 follow in view of (4.7).

4.2. Computation of bifurcation function. The proof of (4.6) consists mostly

of lengthy computations. Therefore, we will not exhibit the full detail, but

only give a main flow of computations. In the sequel, we will compute the

partial derivatives of Cð~cc;A1Þ and Mð~cc;A1Þ with respect to ~cc and A1. These

di¤erentiations are respectively denoted by q0 and q1.

We first give the formulae of the partial derivatives of Nð~cc;cÞ. Note that

Nð0; 0Þ ¼ 0 and we will only need the derivatives evaluated at ð~cc;cÞ ¼ ð0; 0Þ.
These are given by

q0Nð0; 0Þ ¼ �r0le
ilx; qm

0 Nð0; 0Þ ¼ 0 for mb 2;

q0qcNð0; 0Þ½u� ¼ iux; q0q
m
cNð0; 0Þ ¼ 0 for mb 2;

qcNð0; 0Þ½u� ¼ 0½u� ¼ 0;

q2cNð0; 0Þ½u; v� ¼ r0le
ilxðuvþ vuÞ � ir0e

�ilxðuvx þ vuxÞ � ir0e
ilxðuvx þ vuxÞ;

q3cNð0; 0Þ½u; v;w� ¼ �iðuvþ vuÞwx � iðuwþ wuÞvx � iðvwþ wvÞux;

qm
cNð0; 0Þ ¼ 0 for mb 4:

We now compute derivatives of Cð~cc;A1Þ at ð~cc;A1Þ ¼ ð0; 0Þ by the implicit

di¤erentiation of the defining relation of Cð~cc;A1Þ;

HC þ PNð~cc; A1c1 þCÞ ¼ 0:

From Nð0; 0Þ ¼ 0, we easily see that Cð0; 0Þ ¼ 0. By di¤erentiating the

defining equation with respect to ~cc, we have

Hðq0Cð0; 0ÞÞ þ Pð�r0le
ilxÞ ¼ 0:

Since Pð�r0le
ilxÞ ¼ �r0le

ilx and Heilx ¼ 2lðc0 � lÞeilx (cf. Proposition 1 (i)),

we have q0Cð0; 0Þ ¼ eilx=ð2r0Þ. Similar computations lead to

q1Cð0; 0Þ ¼ 0; q20Cð0; 0Þ ¼ � eilx

4r30
:

For the mixed derivative q0q1C , we have

0 ¼ Hðq0q1Cð0; 0ÞÞ þ 2l2k

l2 þ k2
½ðl� kÞeiðl�kÞx þ ðlþ kÞeiðlþkÞx�;
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and observing that (cf. Proposition 1 (iv) and (vii))

ðl� kÞeiðl�kÞx þ ðlþ kÞeiðlþkÞx

is the eigenfunction of H corresponding to the eigenvalue l2 þ k2, we find

q0q1Cð0; 0Þ ¼ � 2l2k

ðl2 þ k2Þ2
½ðl� kÞeiðl�kÞx þ ðlþ kÞeiðlþkÞx�:

The equation of the derivative q21C is given by

0 ¼ Hðq21Cð0; 0ÞÞ þ 4lr0ðl2 þ k2Þeilx

� 2r0ðl2 � k2Þ½ðl� 2kÞeiðl�2kÞx þ ðlþ 2kÞeiðlþ2kÞx�:

Since H maps the subspace span½eilx; eiðl�2kÞx; eiðlþ2kÞx� into itself and is

invertible on it, applying H�1, we obtain

q21Cð0; 0Þ ¼ � 2ðl2 þ k2Þ
r0

eilx � r0ðl2 � k2Þ
k

½eiðl�2kÞx � eiðlþ2kÞx�:

We are now ready to compute derivatives of M up to third order by using

the derivatives of C , exhibited above, and the defining equation (4.5) of M. It

is easy to see Mð0; 0Þ ¼ 0 and

q0Mð0; 0Þ ¼ �r0le
ilx; q1Mð0; 0Þ ¼ 0:

The second derivatives of M are given by

q20Mð0; 0Þ ¼ l

2r0
eilx; q0q1Mð0; 0Þ ¼ 2kl½eiðl�kÞx þ eiðlþkÞx�;

q21Mð0; 0Þ ¼ 4r0lðl2 þ k2Þeilx

� 2r0ðl2 � k2Þ½ðl� 2kÞeiðl�2kÞx þ ðlþ 2kÞeiðlþ2kÞx�:

From these expressions, we find that the projection of the derivatives of M up

to the second order vanish, except for the following one term;

ðc1; q0q1Mð0; 0ÞÞ ¼ 8pk2l: ð4:8Þ

There are four third derivatives of M to be computed, and some of

them have a very lengthy expression. The simplest one is q30Mð0; 0Þ ¼
�3leilx=ð2r30Þ, from which it follows that ðI � PÞq30Mð0; 0Þ ¼ 0. A little

more complicated is the following one:

q20q1Mð0; 0Þ ¼ � 8l4k

ðl2 þ k2Þ2
½eiðl�kÞx þ eiðlþkÞx�:
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By using this expression, it is not so di‰cult to show

ðc1; q
2
0q1Mð0; 0ÞÞ ¼ 4pb: ð4:9Þ

The derivative q0q
2
1Mð0; 0Þ has a lengthy expression which is a linear com-

bination of eilx; eiðl�2kÞx with real coe‰cients. Therefore, it is projected to 0

by I � P.

There is one more third order derivative of M. The computation of this

derivative involves lengthy terms, and we only exhibit the final result.

q31Mð0; 0Þ

¼ 6ðl2 � k2Þ2 � 24klðl2 þ k2Þ � 3ðl2 � k2Þ2

kl
ðl� kÞðlþ 2kÞ

" #
eiðl�kÞx

� 6ðl2 � k2Þ2 þ 24klðl2 þ k2Þ þ 3ðl2 � k2Þ2

kl
ðlþ kÞðl� 2kÞ

" #
eiðlþkÞx

þ feiðl�3kÞx; eiðlþ3kÞxg;

where feiðl�3kÞx; eiðlþ3kÞxg stands for real linear combinations of eiðl�3kÞx and

eiðlþ3kÞx. It is also not so di‰cult to find

ðc1; q
3
1Mð0; 0ÞÞ ¼ � 24p

l
k2ð3l4 þ 6k2l2 � k4Þ: ð4:10Þ

The expressions (4.8), (4.9) and (4.10) prove (4.6) in Proposition 2.

5. E¤ects of subharmonic perturbation

In this paper, we have studied the stability of the solutions fc
l A Bl and the

bifurcations from Bl under the class of perturbations belonging to

H 1
2p :¼ H 1ðR=ð2pZÞ;CÞ:

Subject to a larger class of perturbations, these solutions may become less

stable and there may be more possibilities of bifurcations. To see this, let us

take a positive integer j and consider

H 1
2jp :¼ H 1ðR=ð2jpZÞ;CÞ

as a class of perturbations. The perturbation class H 1
2jp is called the j-th

subharmonic class relative to H 1
2p. Obviously, each solution fc

l belongs to H 1
2jp

for any j A N, since H 1
2p HH 1

2jp. Moreover, we have that H 1
2jp is spanned by

feiðn=jÞx j n A Zg:
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Therefore, we can consider that (1.1) is posed on H 1
2jp, and Theorem 2 is valid

on this phase space. Then, dealing with the eigenvalue problem for Hc
l on

H 1
2jp, we obtain an analogue of Proposition 1.

Proposition 3. For each l A Znf0g and 2a j A N, the eigenvalues of Hc
l

on H 1
2jp are given by

l ¼ l
c;n=j
l;G :¼ n

j
� l

� �2

þ lðc� lÞG l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

j
� l

� �2

þ ðc� lÞ2
s

for n A Z, and items similar to those in Proposition 1 are true.

( i ) For each lb 1,

l
c;n=j
l;þ b lc;l

l;þ ¼ 2lðc� lÞ > 0 En A Z;

l
c;n=j
l;� > 0 En A Znf jlg; if c > lþ l2 � ð1=jÞ2

2l
:

( ii ) For each lb 1 and k A f1; . . . ; jl� 1g, there are two zero eigenvalues

l
c;lGðk=jÞ
l;� ¼ 0 at c ¼ lþ l2 � ðk=jÞ2

2l
;

except for the trivial one lc;l
l;� ¼ 0.

(iii) For each la�1, l
c;n=j
l;� > lc;l

l;� ¼ 0 En A Znf jlg and there are

2jjlj þ 1 negative eigenvalues l
c;lGðk=jÞ
l;þ < 0 corresponding to k ¼ 0;

1; . . . ;�jl.

(iv) For each la�1 and N C k > jjlj, there are two zero eigenvalues

l
c;lGðk=jÞ
l;þ ¼ 0 at c ¼ lþ l2 � ðk=jÞ2

2l
;

except for the trivial one lc;l
l;� ¼ 0.

By using Proposition 3, together with the arguments employed in §§ 2, 3

and 4 with H 1
2p being replaced by H 1

2jp, we now obtain results similar to

Theorem 3 and Theorem 4.

Theorem 6 (Stability under subharmonic perturbation). For each l; j A N,

the travelling wave solution fc
l appeared in Theorem 2 is orbitally stable in H 1

2jp

if c > lþ l2 � j�2

2l
.

When j ¼ 1, Theorem 6 is nothing but Theorem 3. We recognize that

as j A N increases, the guaranteed stability region of the wave speed parameter

c becomes smaller. In particular, fc
l is stable on H 1

2jp for all j A N, if

c > 3l=2. In this sense, the orbital stability of fc
l for c > 3l=2 is much
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stronger than the other cases. However, it is not clear how this strong type of

stability is related to the stability under the perturbation class H 1ðR;CÞ.

Theorem 7 (Subharmonic bifurcation). For each N C jb 2, 2jp-periodic

travelling wave solutions of ð1:1Þ bifurcate from Bl for l A Znf0g.
( i ) For lb 1 and for each k A f1; . . . ; jl� 1g, 2jp-periodic solutions of

ð jl; kÞ-type bifurcate from Bl at c ¼ lþ ðl2 � ðk=jÞ2Þ=ð2lÞ. The

bifurcated branch exists locally for c > lþ ðl2 � ðk=jÞ2Þ=ð2lÞ.
(ii) For la�1 and for each k A N ðk > jjljÞ, 2jp-periodic solutions of

ð jl; kÞ-type bifurcate from Bl at c ¼ lþ ðl2 � ðk=jÞ2Þ=ð2lÞ. The

bifurcated branch exists locally for

c > lþ ðl2 � ðk=jÞ2Þ=ð2lÞ if jlj < k=j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
jlj;

c < lþ ðl2 � ðk=jÞ2Þ=ð2lÞ if k=j >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
jlj:

We observe that the larger the order of subharmonicity j is, the more

bifurcation points appear. Indeed, we can easily prove that for lb 1 the

bifurcation set

6
jb1

lþ l2 � ðk=jÞ2

2l

����k ¼ 1; . . . ; jl� 1

( )

of wave speed c is dense in the interval ðl; 3l=2Þ and there is no bifurcation

point in ð3l=2;yÞ. Similarly, for la�1, the bifurcation set

6
jb1

lþ l2 � ðk=jÞ2

2l

����N C k > jjlj
( )

is dense in ðl;yÞ. In dissipative systems, bifurcations indicate inherent

instabilities. Although our system is not dissipative, we may well suppose

that for the wave speed parameter c in the range not covered by Theorem 3 the

solution fc
l is orbitally unstable. However, to prove or disprove this statement

remains a mathematically challenging problem.
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