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Abstract. In this paper, we establish a fundamental asymptotic result for the solutions

to second order linear nonautonomous neutral delay di¤erential equations. By the use

of a solution of the corresponding generalized characteristic equation, we transform the

second order neutral delay di¤erential equation into a first order neutral delay di¤er-

ential equation and then we utilize its generalized characteristic equation.

1. Introduction and preliminaries

Our aim in this paper is to establish an asymptotic result for the solutions

to second order linear neutral delay di¤erential equations with variable

coe‰cients and constant delays. An analogous asymptotic criterion for the

solutions to second order linear nonautonomous (non-neutral) delay di¤erential

equations has recently been obtained by the authors [13]. Our work in the

present paper is essentially motivated by the results in the papers by Dix and

the authors [3, 4], the authors [9–13], and Yeniçerioğlu [14]. (Some more

details on the results in these papers may be found in [13].) For some results

closely related to the ones contained in the above mentioned articles, the reader

may look at the references cited in [11, 12].

The basic idea in the present work is essentially originated in an old but

very interesting asymptotic result due to Driver [5] concerning the solutions of

linear di¤erential systems with small delays (see, also, Arino and Pituk [1]).

Another idea employed in this paper is that of transforming the second order

neutral delay di¤erential equation into a first order neutral delay di¤erential

equation, by the use of a solution of the corresponding generalized charac-

teristic equation. In the case of second order linear autonomous delay

di¤erential equations, this idea is originated in [14] (see, also, [12]).
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For the basic theory of delay and neutral delay di¤erential equations, we

refer to the books by Diekmann et al. [2], Driver [6], Hale [7], and Hale and

Verduyn Lunel [8].

Consider the neutral delay di¤erential equation

x 00ðtÞ þ cðtÞx 00ðt� sÞ ¼ aðtÞxðtÞ þ bðtÞxðt� tÞ;ð1:1Þ

where c, a, and b are continuous real-valued functions on the interval ½0;yÞ, and
s and t are positive real constants. Throughout the paper, by r we will denote

the positive real number defined by r ¼ maxfs; tg.
By a solution of the neutral delay di¤erential equation (1.1), we mean a

continuously di¤erentiable real-valued function x defined on the interval

½�r;yÞ, which is twice continuously di¤erentiable on ½�s;yÞ and satisfies

(1.1) for all tb 0.

Together with the neutral delay di¤erential equation (1.1), we specify an

initial condition of the form

xðtÞ ¼ fðtÞ for �ra ta 0;ð1:2Þ

where the initial function f is a given continuously di¤erentiable real-valued

function on the initial interval ½�r; 0�.
The neutral delay di¤erential equation (1.1) together with the initial

condition (1.2) constitute an initial value problem (IVP, for short). It is

well-known (see, for example, Diekmann et al. [2], Hale [7], or Hale and

Verduyn Lunel [8]; see, also, Driver [6] for the non-neutral case) that there

exists a unique solution x of (1.1) which satisfies (1.2); this unique solution x

will be called the solution of the initial value problem (1.1) and (1.2) or, more

briefly, the solution of the IVP (1.1) and (1.2).

Along with the neutral delay di¤erential equation (1.1), we associate the

following equation

l 0ðtÞ þ l2ðtÞ þ cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ� exp �
ð t

t�s

lðsÞds
� �

ð1:3Þ

¼ aðtÞ þ bðtÞ exp �
ð t

t�t

lðsÞds
� �

;

which will be called the generalized characteristic equation of (1.1). Equation

(1.3) is obtained from (1.1) by looking for solutions of the form xðtÞ ¼
exp½

Ð t

0 lðsÞds� for tb�r, where l is a continuous real-valued function on the

interval ½�r;yÞ, which is continuously di¤erentiable on ½�s;yÞ.
A solution of the generalized characteristic equation (1.3) is a continuous

real-valued function l defined on the interval ½�r;yÞ, which is continuously

di¤erentiable on ½�s;yÞ and satisfies (1.3) for all tb 0.
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For a given solution l of the generalized characteristic equation (1.3), we

consider the (first order) neutral delay di¤erential equation

z 0ðtÞ þ cðtÞz 0ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

ð1:4Þ

þ 2lðtÞzðtÞ þ 2cðtÞlðt� sÞzðt� sÞ exp �
ð t

t�s

lðsÞds
� �

¼ cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�
ð t

t�s

zðsÞds
� �

exp �
ð t

t�s

lðsÞds
� �

� bðtÞ
ð t

t�t

zðsÞds
� �

exp �
ð t

t�t

lðsÞds
� �

:

By a solution of the neutral delay di¤erential equation (1.4), we mean a

continuous real-valued function z defined on the interval ½�r;yÞ, which is

continuously di¤erentiable on ½�s;yÞ and satisfies (1.4) for all tb 0.

With the neutral delay di¤erential equation (1.4), we associate the equation

mðtÞ þ 2lðtÞ þ cðtÞ½mðt� sÞ þ 2lðt� sÞ� exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

ð1:5Þ

¼ cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�
ð t

t�s

exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

� bðtÞ
ð t

t�t

exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� �

;

which is said to be the generalized characteristic equation of (1.4). The last

equation is obtained from (1.4) by seeking solutions of the form zðtÞ ¼
exp½

Ð t

0 mðsÞds� for tb�r, where m is a continuous real-valued function on

the interval ½�r;yÞ.
A solution of the generalized characteristic equation (1.5) is a continuous

real-valued function m defined on the interval ½�r;yÞ, which satisfies (1.5) for

all tb 0.

The main result of the paper (Theorem 3.1) is established in Section 3.

An auxiliary result (Proposition 2.1) used in proving Theorem 3.1, is given in

Section 2. In Section 4, an example demonstrating the applicability of our

main result is presented. The possibility of extending our results to more

general second order linear nonautonomous neutral delay di¤erential equations

is discussed in Section 5.

49An asymptotic result for neutral equations



2. An auxiliary result

For our convenience, we introduce some notation. For a given solution l

of the generalized characteristic equation (1.3), we define

Fðl; fÞðtÞ ¼ fðtÞ exp �
ð t

0

lðsÞds
� �� �0

for �ra ta 0:ð2:1Þ

Clearly, Fðl; fÞ is a continuous real-valued function on the initial interval

½�r; 0�.
Proposition 2.1 below will be used in proving the main result of the paper,

i.e., Theorem 3.1 given in the next section. This proposition essentially

establishes a transformation (via a solution of the generalized characteristic

equation (1.3)) of the second order neutral delay di¤erential equation (1.1) into

the first order neutral delay di¤erential equation (1.4).

Proposition 2.1. Let l be a solution of the generalized characteristic

equation (1.3), and define Fðl; fÞ by (2.1).

Then a continuously di¤erentiable real-valued function x defined on the

interval ½�r;yÞ is the solution of the IVP (1.1) and (1.2) if and only if the

function z defined by

zðtÞ ¼ xðtÞ exp �
ð t

0

lðsÞds
� �� �0

for tb�rð2:2Þ

is the solution of the neutral delay di¤erential equation (1.4) which satisfies the

initial condition

zðtÞ ¼ Fðl; fÞðtÞ for �ra ta 0:ð2:3Þ

Proof. Consider the solution x of the IVP (1.1) and (1.2), and define

yðtÞ ¼ xðtÞ exp �
ð t

0

lðsÞds
� �

for tb�r:ð2:4Þ

Then, by taking into account the fact that l is a solution of the generalized

characteristic equation (1.3), we obtain, for every tb 0,

½x 00ðtÞ þ cðtÞx 00ðt� sÞ � aðtÞxðtÞ � bðtÞxðt� tÞ� exp �
ð t

0

lðsÞds
� �

¼ fy 00ðtÞ þ 2lðtÞy 0ðtÞ þ ½l 0ðtÞ þ l2ðtÞ�yðtÞg

þ cðtÞfy 00ðt� sÞ þ 2lðt� sÞy 0ðt� sÞ þ ½l 0ðt� sÞ þ l2ðt� sÞ�yðt� sÞg

� exp �
ð t

t�s

lðsÞds
� �

� aðtÞyðtÞ � bðtÞyðt� tÞ exp �
ð t

t�t

lðsÞds
� �
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¼ y 00ðtÞ þ 2lðtÞy 0ðtÞ þ ½l 0ðtÞ þ l2ðtÞ � aðtÞ�yðtÞ

þ cðtÞfy 00ðt� sÞ þ 2lðt� sÞy 0ðt� sÞ þ ½l 0ðt� sÞ þ l2ðt� sÞ�yðt� sÞg

� exp �
ð t

t�s

lðsÞds
� �

� bðtÞyðt� tÞ exp �
ð t

t�t

lðsÞds
� �

¼ y 00ðtÞ þ cðtÞy 00ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

þ 2lðtÞy 0ðtÞ þ 2cðtÞlðt� sÞy 0ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

þ
�
�cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ� exp �

ð t

t�s

lðsÞds
� �

þ bðtÞ exp �
ð t

t�t

lðsÞds
� ��

yðtÞ

þ cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�yðt� sÞ exp �
ð t

t�s

lðsÞds
� �

� bðtÞyðt� tÞ exp �
ð t

t�t

lðsÞds
� �

¼ y 00ðtÞ þ cðtÞy 00ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

þ 2lðtÞy 0ðtÞ þ 2cðtÞlðt� sÞy 0ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

� cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�½yðtÞ � yðt� sÞ� exp �
ð t

t�s

lðsÞds
� �

þ bðtÞ½yðtÞ � yðt� tÞ� exp �
ð t

t�t

lðsÞds
� �

:

Thus, the fact that x satisfies (1.1) for all tb 0 is equivalent to the fact that y

satisfies

y 00ðtÞ þ cðtÞy 00ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

ð2:5Þ

þ 2lðtÞy 0ðtÞ þ 2cðtÞlðt� sÞy 0ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

¼ cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�½yðtÞ � yðt� sÞ� exp �
ð t

t�s

lðsÞds
� �

� bðtÞ½yðtÞ � yðt� tÞ� exp �
ð t

t�t

lðsÞds
� �
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for all tb 0. Moreover, we observe that, in terms of the function y, the initial

condition (1.2) is equivalently written as

yðtÞ ¼ fðtÞ exp �
ð t

0

lðsÞds
� �

for �ra ta 0:ð2:6Þ

Furthermore, we see that y satisfies (2.5) for all tb 0 if and only if it satisfies

the equation

y 00ðtÞ þ cðtÞy 00ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

ð2:7Þ

þ 2lðtÞy 0ðtÞ þ 2cðtÞlðt� sÞy 0ðt� sÞ exp �
ð t

t�s

lðsÞds
� �

¼ cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�
ð t

t�s

y 0ðsÞds
� �

exp �
ð t

t�s

lðsÞds
� �

� bðtÞ
ð t

t�t

y 0ðsÞds
� �

exp �
ð t

t�t

lðsÞds
� �

for all tb 0. Next, we set

zðtÞ ¼ y 0ðtÞ for tb�r:ð2:8Þ

Then we observe that y satisfies (2.7) for all tb 0 if and only if z satisfies (1.4)

for all tb 0, i.e., if and only if z is a solution of the neutral delay di¤erential

equation (1.4). Moreover, by the use of the function z, the initial condition

(2.6) takes the following equivalent form

zðtÞ ¼ fðtÞ exp �
ð t

0

lðsÞds
� �� �0

for �ra ta 0:ð2:9Þ

Hence, it has been established that x is the solution of the IVP (1.1) and

(1.2) if and only if z is the solution of the neutral delay di¤erential equation

(1.4) which satisfies the initial condition (2.9). Because of (2.4), it is clear that

(2.8) coincides with (2.2). Also, by taking into account the definition of

Fðl; fÞ by (2.1), we see that (2.9) coincides with the initial condition (2.3).

The proof of our proposition is complete.

3. The main result

Our main result in the present paper is the following theorem.

Theorem 3.1. Let l be a solution of the generalized characteristic equation

(1.3). Furthermore, let m be a solution of the generalized characteristic equation

(1.5). Assume that
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lim sup
t!y

�
jcðtÞj½1þ jmðt� sÞ þ 2lðt� sÞjs� exp �

ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

ð3:1Þ

þ jcðtÞj jl 0ðt� sÞ þ l2ðt� sÞj
ð t

t�s

ðt� sÞ exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

þ jbðtÞj
ð t

t�t

ðt� sÞ exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� ��

< 1:

Then the solution x of the IVP (1.1) and (1.2) satisfies

lim
t!y

xðtÞ exp �
ð t

0

lðsÞds
� �� �0

exp �
ð t

0

mðsÞds
� �� �

¼ Lðl; m; fÞ;ð3:2Þ

where Lðl; m; fÞ is some real number depending on l, m and determined by f, and

lim
t!y

xðtÞ exp �
ð t

0

lðsÞds
� �� �0

exp �
ð t

0

mðsÞds
� �� �0

¼ 0:ð3:3Þ

Before we proceed to the proof of Theorem 3.1, we will present a

particular result, as a consequence of this theorem. Let l and m be as in

Theorem 3.1, and assume that (3.1) holds. Then from Theorem 3.1 it follows

that the solution x of the IVP (1.1) and (1.2) is such that

lim
t!y

½x 0ðtÞ � lðtÞxðtÞ� exp �
ð t

0

½lðsÞ þ mðsÞ�ds
� �� �

exists (as a real number). Hence, the solution x satisfies

jx 0ðtÞ � lðtÞxðtÞjaKðl; m; fÞ exp
ð t

0

½lðsÞ þ mðsÞ�ds
� �

for all tb�r;

where Kðl; m; fÞ is some positive real constant. Thus, we have arrived at the

next result:

Let l and m be as in Theorem 3.1, and assume that (3.1) holds. Then, for

the solution x of the IVP (1.1) and (1.2), we have:

( i ) x 0 � lx is bounded if lim sup
t!y

Ð t

0½lðsÞ þ mðsÞ�ds < y;

(ii) x 0 � lx tends to zero at y if lim
t!y

Ð t

0½lðsÞ þ mðsÞ�ds ¼ �y.

Proof of Theorem 3.1. Let x be the solution of the IVP (1.1) and (1.2),

and define the function z by (2.2). By Proposition 2.1, the fact that x is the

solution of the IVP (1.1) and (1.2) is equivalent to the fact that z is the
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solution of the neutral delay di¤erential equation (1.4) which satisfies the initial

condition (2.3), where Fðl; fÞ is defined by (2.1).

Set

wðtÞ ¼ zðtÞ exp �
ð t

0

mðsÞds
� �

for tb�r:ð3:4Þ

Then, as m is a solution of the generalized characteristic equation (1.5), we

derive, for every tb 0,�
z 0ðtÞ þ cðtÞz 0ðt� sÞ exp �

ð t

t�s

lðsÞds
� �

þ 2lðtÞzðtÞ þ 2cðtÞlðt� sÞzðt� sÞ exp �
ð t

t�s

lðsÞds
� �

� cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�
ð t

t�s

zðsÞds
� �

exp �
ð t

t�s

lðsÞds
� �

þ bðtÞ
ð t

t�t

zðsÞds
� �

exp �
ð t

t�t

lðsÞds
� ��

exp �
ð t

0

mðsÞds
� �

¼ ½w 0ðtÞ þ mðtÞwðtÞ� þ cðtÞ½w 0ðt� sÞ þ mðt� sÞwðt� sÞ�

� exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ 2lðtÞwðtÞ þ 2cðtÞlðt� sÞwðt� sÞ

� exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

� cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�

�
ð t

t�s

wðsÞ exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�s

lðsÞds
� �

þ bðtÞ
ð t

t�t

wðsÞ exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� �

¼ w 0ðtÞ þ cðtÞw 0ðt� sÞ exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ ½mðtÞ þ 2lðtÞ�wðtÞ

þ cðtÞ½mðt� sÞ þ 2lðt� sÞ�wðt� sÞ exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

� cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�
ð t

t�s

wðsÞ exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

þ bðtÞ
ð t

t�t

wðsÞ exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� �
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¼ w 0ðtÞ þ cðtÞw 0ðt� sÞ exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ
�
�cðtÞ½mðt� sÞ þ 2lðt� sÞ� exp �

ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�
ð t

t�s

exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

� bðtÞ
ð t

t�t

exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� ��

wðtÞ

þ cðtÞ½mðt� sÞ þ 2lðt� sÞ�wðt� sÞ exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

� cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�
ð t

t�s

wðsÞ exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

þ bðtÞ
ð t

t�t

wðsÞ exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� �

¼ w 0ðtÞ þ cðtÞw 0ðt� sÞ exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

� cðtÞ½mðt� sÞ þ 2lðt� sÞ�½wðtÞ � wðt� sÞ� exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�
ð t

t�s

½wðtÞ � wðsÞ� exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

� bðtÞ
ð t

t�t

½wðtÞ � wðsÞ� exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� �

:

So, z is a solution of the neutral delay di¤erential equation (1.4) if and only if

w satisfies
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w 0ðtÞ þ cðtÞw 0ðt� sÞ exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

ð3:5Þ

¼ cðtÞ½mðt� sÞ þ 2lðt� sÞ�½wðtÞ � wðt� sÞ�

� exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

� cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�

�
ð t

t�s

½wðtÞ � wðsÞ� exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�s

lðsÞds
� �

þ bðtÞ
ð t

t�t

½wðtÞ � wðsÞ� exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� �

for all tb 0. Moreover, we see that the initial condition (2.3) can be written

in the following equivalent form

wðtÞ ¼ Fðl; fÞðtÞ exp �
ð t

0

mðsÞds
� �

for �ra ta 0:ð3:6Þ

We have thus proved that x is the solution of the IVP (1.1) and (1.2) if and

only if w satisfies (3.5) for all tb 0 and also w satisfies the initial condition

(3.6).

By the definitions of the functions z and w by (2.2) and (3.4), respectively,

we have

wðtÞ ¼ xðtÞ exp �
ð t

0

lðsÞds
� �� �0

exp �
ð t

0

mðsÞds
� �

for tb�r:

Thus, by taking into account (3.2) and (3.3), we conclude that all we have to

prove is that

lim
t!y

wðtÞ exists ðas a real numberÞð3:7Þ

and

lim
t!y

w 0ðtÞ ¼ 0:ð3:8Þ

We notice that, when (3.7) is true, lim
t!y

wðtÞ depends on l, m and is determined

by the solution x, i.e., it is determined by the initial function f. The proof

of the theorem will be accomplished by establishing (3.7) and (3.8).
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From (3.5) it follows immediately that

w 0ðtÞ þ cðtÞw 0ðt� sÞ exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

ð3:9Þ

¼ cðtÞ½mðt� sÞ þ 2lðt� sÞ�
ð t

t�s

w 0ðsÞds
� �

� exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

� cðtÞ½l 0ðt� sÞ þ l2ðt� sÞ�

�
ð t

t�s

ð t

s

w 0ðuÞdu
� �

exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�s

lðsÞds
� �

þ bðtÞ
ð t

t�t

ð t

s

w 0ðuÞdu
� �

exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� �

for all tb r� s. Assumption (3.1) implies the existence of an integer mb 1

such that

yðl; mÞ1 sup
tbmr�s

�
jcðtÞj½1þ jmðt� sÞ þ 2lðt� sÞjs� exp �

ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ jcðtÞj jl 0ðt� sÞ þ l2ðt� sÞj
ð t

t�s

ðt� sÞ exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

þ jbðtÞj
ð t

t�t

ðt� sÞ exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� ��

< 1:

Clearly, yðl; mÞb 0. Assume that yðl; mÞ ¼ 0. Then from the definition of

yðl; mÞ it follows immediately that cðtÞ ¼ bðtÞ ¼ 0 for tbmr� s, and conse-

quently (3.9) guarantees that w 0 ¼ 0 on ½mr� s;yÞ. This means that w is

equal to a real constant on ½mr� s;yÞ. In this case, (3.7) and (3.8) are

always valid. So, in what follows, we may (and do) suppose that yðl; mÞ > 0.

Hence, we have

0 < yðl; mÞ < 1:ð3:10Þ

Furthermore, we see that the maximum of jw 0j on the interval

½ðm� 1Þr� s;mr� s� depends on l, m, and x; so, it depends on l, m, and f.

Define

Mðl; m; fÞ ¼ maxfjw 0ðtÞj : ðm� 1Þr� sa tamr� sg:
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Then

jw 0ðtÞjaMðl; m; fÞ for ðm� 1Þr� sa tamr� s:ð3:11Þ

We shall prove that Mðl; m; fÞ is a bound of w 0 on the whole interval

½ðm� 1Þr� s;yÞ, i.e., that

jw 0ðtÞjaMðl; m; fÞ for all tb ðm� 1Þr� s:ð3:12Þ

For this purpose, we consider an arbitrary positive real number e. Then (3.11)

gives

jw 0ðtÞj < Mðl; m; fÞ þ e for ðm� 1Þr� sa tamr� s:ð3:13Þ

We claim that

jw 0ðtÞj < Mðl; m; fÞ þ e for every tb ðm� 1Þr� s:ð3:14Þ

Otherwise, because of (3.13), there exists a point x > mr� s so that

jw 0ðtÞjaMðl; m; fÞ þ e for ðm� 1Þr� sa t < x; and

jw 0ðxÞj ¼ Mðl; m; fÞ þ e:

Then, by taking into account the definition of yðl; mÞ and by using (3.10), from

(3.9) we get

Mðl; m; fÞ þ e

¼ jw 0ðxÞj

a jcðxÞj jw 0ðx� sÞj exp �
ð x

x�s

½lðsÞ þ mðsÞ�ds
� �

þ jcðxÞj jmðx� sÞ þ 2lðx� sÞj
ð x

x�s

jw 0ðsÞjds
� �

exp �
ð x

x�s

½lðsÞ þ mðsÞ�ds
� �

þ jcðxÞj jl 0ðx� sÞ þ l2ðx� sÞj
ð x

x�s

ð x

s

jw 0ðuÞjdu
� �

exp �
ð x

s

mðuÞdu
� �

ds

� �

� exp �
ð x

x�s

lðsÞds
� �

þ jbðxÞj
ð x

x�t

ð x

s

jw 0ðuÞjdu
� �

exp �
ð x

s

mðuÞdu
� �

ds

� �
exp �

ð x

x�t

lðsÞds
� �
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a

�
jcðxÞj½1þ jmðx� sÞ þ 2lðx� sÞjs� exp �

ð x

x�s

½lðsÞ þ mðsÞ�ds
� �

þ jcðxÞj jl 0ðx� sÞ þ l2ðx� sÞj
ð x

x�s

ðx� sÞ exp �
ð x

s

mðuÞdu
� �

ds

� �

� exp �
ð x

x�s

lðsÞds
� �

þ jbðxÞj
ð x

x�t

ðx� sÞ exp �
ð x

s

mðuÞdu
� �

ds

� �

� exp �
ð x

x�t

lðsÞds
� ��

½Mðl; m; fÞ þ e�

a yðl; mÞ½Mðl; m; fÞ þ e�

< Mðl; m; fÞ þ e:

This is a contradiction, which establishes our claim, i.e., that (3.14) holds true.

Since (3.14) is valid for all real numbers e > 0, we conclude that (3.12) is

always satisfied. Furthermore, by using (3.12), from (3.9) we obtain, for every

tbmr� s,

jw 0ðtÞja jcðtÞj jw 0ðt� sÞj exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ jcðtÞj jmðt� sÞ þ 2lðt� sÞj
ð t

t�s

jw 0ðsÞjds
� �

exp �
ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ jcðtÞj jl 0ðt� sÞ þ l2ðt� sÞj
ð t

t�s

ð t

s

jw 0ðuÞjdu
� �

exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

þ jbðtÞj
ð t

t�t

ð t

s

jw 0ðuÞjdu
� �

exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� �

a

�
jcðtÞj½1þ jmðt� sÞ þ 2lðt� sÞjs� exp �

ð t

t�s

½lðsÞ þ mðsÞ�ds
� �

þ jcðtÞj jl 0ðt� sÞ þ l2ðt� sÞj
ð t

t�s

ðt� sÞ exp �
ð t

s

mðuÞdu
� �

ds

� �

� exp �
ð t

t�s

lðsÞds
� �

þ jbðtÞj
ð t

t�t

ðt� sÞ exp �
ð t

s

mðuÞdu
� �

ds

� �
exp �

ð t

t�t

lðsÞds
� ��

Mðl; m; fÞ:
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So, in view of the definition of yðl; mÞ, it holds that

jw 0ðtÞja yðl; mÞMðl; m; fÞ for all tbmr� s:ð3:15Þ

By using (3.9) and taking into account the definition of yðl; mÞ as well as having
in mind (3.12) and (3.15), one can prove, by an easy induction, that

ð3:16Þ jw 0ðtÞja ½yðl; mÞ�nMðl; m; fÞ

for all tb ðm� 1þ nÞr� s ðn ¼ 0; 1; 2; . . .Þ:

In particular, from (3.16) it follows that

ð3:17Þ jw 0ðtÞja ½yðl; mÞ�nMðl; m; fÞ

for all tb ðm� 1þ nÞr ðn ¼ 0; 1; 2; . . .Þ:

Working exactly as in the last part of the proof of the main result in the

previous authors’ paper [13] (see, also, the proofs of the main results in [3, 4]),

we can take into account (3.10) and use (3.17) to conclude that (3.7) and (3.8)

hold true.

The proof of the theorem is completed.

4. An example

In this section, we will present an example, which demonstrates the

applicability of our main result, i.e., of Theorem 3.1.

Example 4.1. Consider the neutral delay di¤erential equation (1.1) with

cðtÞ ¼ � 1

2
; aðtÞ ¼ 1

2ðtþ 3Þ ; bðtÞ ¼ � 1

2ðtþ 1Þ ; for tb 0

and

s ¼ 1; t ¼ 2;

i.e., the neutral equation

x 00ðtÞ � 1

2
x 00ðt� 1Þ ¼ 1

2ðtþ 3Þ xðtÞ �
1

2ðtþ 1Þ xðt� 2Þ:ð4:1Þ

In this case, the generalized characteristic equation (1.3) becomes

l 0ðtÞ þ l2ðtÞ � 1

2
½l 0ðt� 1Þ þ l2ðt� 1Þ� exp �

ð t

t�1

lðsÞds
� �

ð4:2Þ

¼ 1

2ðtþ 3Þ �
1

2ðtþ 1Þ exp �
ð t

t�2

lðsÞds
� �

:
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We immediately see that (4.2) has the solution

lðtÞ ¼ 1

tþ 3
for tb�2:

For this solution l of (4.2), the generalized characteristic equation (1.5) is

written as follows

mðtÞ þ 2

tþ 3
� 1

2
mðt� 1Þ þ 2

tþ 2

� �
tþ 2

tþ 3
exp �

ð t

t�1

mðsÞds
� �

ð4:3Þ

¼ 1

2ðtþ 3Þ

ð t

t�2

exp �
ð t

s

mðuÞdu
� �

ds:

It is easy to verify that (4.3) admits the solution

mðtÞ ¼ 0 for tb 0:

Furthermore, we see that assumption (3.1) takes the form

lim sup
t!y

1

2
1þ 2

tþ 2

� �
tþ 2

tþ 3
þ 1

tþ 3

� �
< 1:

This inequality holds true, i.e., condition (3.1) is always satisfied. Now, with

the neutral delay di¤erential equation (4.1), we associate the initial condition

xðtÞ ¼ fðtÞ for �2a ta 0;ð4:4Þ

where f is a given continuously di¤erentiable real-valued function on ½�2; 0�.
By applying Theorem 3.1, we conclude that the solution x of the IVP (4.1) and

(4.4) satisfies

lim
t!y

xðtÞ
tþ 3

� �0
¼ lðfÞ;

where lðfÞ is some real number determined by f, and

lim
t!y

xðtÞ
tþ 3

� �00
¼ 0:

5. Discussion

Let us consider the case of second order linear nonautonomous neutral

delay di¤erential equations involving the first order derivative of the unknown

function. More precisely, consider the neutral delay di¤erential equation

x 00ðtÞ þ cðtÞx 00ðt� sÞ þ pðtÞx 0ðtÞ þ qðtÞx 0ðt� rÞ ¼ aðtÞxðtÞ þ bðtÞxðt� tÞ;ð5:1Þ
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where c, p, q, a, and b are continuous real-valued functions on the interval

½0;yÞ, and s, r, and t are positive real constants. As it concerns equation

(5.1), r stands for the positive real number defined by r ¼ maxfs; r; tg. The

techniques applied in proving our results (i.e., Proposition 2.1 and Theorem

3.1) can equally well be employed to prove analogous results for the more

general case of the initial value problem (5.1) and (1.2).

Next, we consider the more general case of the second order linear

nonautonomous neutral delay di¤erential equation

x 00ðtÞ þ
X
i A I

ciðtÞx 00ðt� siÞ þ pðtÞx 0ðtÞ þ
X
j A J

qjðtÞx 0ðt� rjÞð5:2Þ

¼ aðtÞxðtÞ þ
X
k AK

bkðtÞxðt� tkÞ;

where I , J, and K are initial segments of natural numbers, ci for i A I , p, qj for

j A J, a, and bk for k A K are continuous real-valued functions on the interval

½0;yÞ, and si for i A I , rj for j A J, and tk for k A K are positive real constants.

As customary, it is assumed that si1 0 si2 for i1; i2 A I with i1 0 i2, rj1 0 rj2 for

j1; j2 A J with j1 0 j2, and tk1 0 tk2 for k1; k2 A K with k1 0 k2. As it

concerns the neutral delay di¤erential equation (5.2), we use the notation r ¼

max max
i A I

si;max
j A J

rj;max
k AK

tk

� �
(r is a positive real number). By using the

methods applied in obtaining the results in this paper, we can derive analogous

results for the solution of the more general initial value problem (5.2) and (1.2).

We would be especially interested in the possibility of generalizing our

results in the case of second order linear neutral delay di¤erential equations

with variable coe‰cients and variable delays. In case the delays are variable

and bounded, this seems easy to be achieved. However, the general case of

variable delays seems to be somewhat more di‰cult. Furthermore, it would be

interesting to generalize our results for second order linear nonautonomous

neutral delay di¤erential equations with infinitely many distributed type delays.
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