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Abstract. A mathematical topic using the property of resolvability and a‰ne

resolvability was introduced in 1850 and the designs having such concept have been

statistically discussed since 1939. Their combinatorial structure on existence has been

discussed richly since 1942. This concept was generalized to a-resolvability and a‰ne

a-resolvability in 1963. These arguments are mostly done for a class of balanced

incomplete block designs. The present paper will make the combinatorial investigation

on a‰ne a-resolvable partially balanced incomplete block designs with two associate

classes. The characterization of parameters in a closed form will be given and then

existence problems with construction methods will be discussed. Comprehensive and

useful results on combinatorics are obtained. Several methods of construction are

newly presented with some illustrations.

1. Introduction

Though Yates [45, 46] has pointed out some statistical advantages of

resolvable designs and their original form had appeared earlier in the math-

ematical literature as the Kirkman school girl problem [33] formulated in 1850,

the interest in resolvable balanced incomplete block (BIB) designs was greatly

enhanced by a combinatorial paper by Bose [4]. Further statistical usefulness

of a‰ne resolvable block designs can be found in Bailey, Monod and Morgan

[1], and Caliński and Kageyama [9, 11].

Such concept was generalized to a-resolvability and a‰ne a-resolvability by

Shrikhande and Raghavarao [41]. A block design BDðv; b; r; kÞ is said to be

a-resolvable if the b blocks of size k each can be grouped into t sets (called a-

resolution sets) of b blocks each ðb ¼ btÞ such that in each a-resolution set

every treatment (or point) is replicated a times ðr ¼ atÞ. An a-resolvable BD is

said to be a‰ne a-resolvable if every two distinct blocks from the same a-

resolution set intersect in the same number, say, q1, of treatments, whereas

every two blocks belonging to di¤erent a-resolution sets intersect in the same
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number, say, q2, of treatments. It follows (see [22, 42]) that for an a‰ne a-

resolvable BDðv; b ¼ bt; r ¼ at; kÞ with block intersection numbers q1 and

q2, the following relations q1 ¼ kða� 1Þ=ðb � 1Þ and q2 ¼ ka=b ¼ k2=v hold.

Note that both of q1 and q2 must be nonnegative integers. An integral

expression of q1 without a and b in terms of design parameters only is

meaningful.

When a ¼ 1, the definition of (a‰ne) 1-resolvability coincides with that by

Bose [4]. Hence a 1-resolvable or an a‰ne 1-resolvable design is simply called

a resolvable or an a‰ne resolvable design, respectively.

The constructions of (a‰ne) a-resolvable BIB designs or partially balanced

incomplete block (PBIB) designs with their combinatorial properties have been

discussed in literature (see, for example, [1, 2, 9, 10, 12, 14, 15, 22, 23, 29, 30,

37, 38, 41, 44]).

In this paper, some combinatorial investigation on a‰ne a-resolvable PBIB

designs are dealt with. Their topics are concerned with the characterization of

parameters in a closed form and existence problems with construction methods.

Comprehensive and useful results on combinatorics are obtained. Several

methods of construction are newly presented with practical a‰ne resolvable

block designs.

2. Preliminaries

Several definitions on technical terms are described in this section.

Definition 2.1. A balanced incomplete block (BIB) design with param-

eters v, b, r, k, l is defined as an arrangement of v treatments into b blocks of k

ð< vÞ treatments each such that

(1) each treatment occurs at most once in a block,

(2) each treatment occurs in exactly r di¤erent blocks,

(3) every pair of treatments occurs together in exactly l blocks.

This is denoted by BIBðv; b; r; k; lÞ or BIBðv; k; lÞ. The parameter l is called a

coincidence number of the design.

It is known that vr ¼ bk, lðv� 1Þ ¼ rðk � 1Þ and bb v hold. In partic-

ular, when b ¼ v, the BIB design is said to be symmetric. It is also known

that in an a-resolvable BIB design with b ¼ bt and r ¼ at, bb vþ t� 1 holds,

and b ¼ vþ t� 1 is a necessary and su‰cient condition for an a-resolvable

BIB design to be a‰ne a-resolvable with the block intersection number q1 ¼
kða� 1Þ=ðb � 1Þ ¼ k þ l� r (cf. [22, 42]).

In defining a 2-associate PBIB design with two distinct coincidence

numbers l1 and l2 di¤erent from a BIB design, the concept of an association

scheme for a set of v treatments is needed.
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Given v treatments 1; 2; . . . ; v, a relation satisfying the following conditions

is said to have an association scheme with two associate classes:

(1) Any two treatments are either 1st or 2nd associates, the relation of

association being symmetric, that is, if the treatment x is ith associate

of the treatment y, then y is ith associate of x, i ¼ 1; 2.

(2) Each treatment x has ni ith associates, the number ni being inde-

pendent of x, i ¼ 1; 2.

(3) If any two treatments x and y are ith associates, then the number of

treatments that are jth associates of x and lth associates of y is pi
jl

and is independent of the pair of ith associates x and y, i; j; l ¼ 1; 2.

Definition 2.2. Given an association scheme with two associate classes

for a set of v treatments, a 2-associate PBIB design is defined as an arrange-

ment of v treatments into b blocks of size k ð< vÞ each such that

(1) each treatment occurs at most once in a block,

(2) each treatment occurs in exactly r di¤erent blocks,

(3) if two treatments are ith associates, then they occur together in

exactly li blocks, the number li being independent of the particular

pair of ith associates, i ¼ 1; 2.

Like a BIB design, when b ¼ v, the PBIB design is said to be symmetric.

It holds that in a 2-associate PBIB design, vr ¼ bk, n1 þ n2 ¼ v� 1, n1l1 þ
n2l2 ¼ rðk � 1Þ. Conventionally let every treatment be the 0th associate of

itself and of no other treatment, and then it is seen that n0 ¼ 1 and l0 ¼ r.

From Definitions 2.1 and 2.2, when l1 ¼ l2, a PBIB design becomes a BIB

design. Though a symmetric BIB design cannot possess a property of a‰ne a-

resolvability, it is remarkable that there exists an a‰ne a-resolvable symmetric

PBIB design.

The known ‘‘2-associate’’ PBIB designs have been mainly classified into the

following types depending on association schemes, i.e., group divisible, trian-

gular, Latin-square (L2), cyclic (see [7]).

Definition 2.3. A 2-associate PBIB design is said to be group divisible

(GD) if there are v ¼ mn treatments which can be divided into m groups of

n treatments each, such that any two treatments of the same group are 1st

associates and any two treatments from di¤erent groups are 2nd associates.

Here m; nb 2, n1 ¼ n� 1 and n2 ¼ nðm� 1Þ.
The GD designs are further classified into three subclasses: Singular (S) if

r� l1 ¼ 0; Semi-Regular (SR) if r� l1 > 0 and rk � vl2 ¼ 0; Regular if

r� l1 > 0 and rk � vl2 > 0. By a relation n1l1 þ n2l2 ¼ rðk � 1Þ, it holds

that ðrk � vl2Þ � ðr� l1Þ ¼ nðl1 � l2Þ. The last relation shows that for an

SGD design l1 > l2, while for an SRGD design l2 > l1.
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Definition 2.4. A 2-associate PBIB design is said to be triangular if there

are v ¼ nðn� 1Þ=2 treatments which are arranged into an n� n array such that

(1) the position in the principal diagonal are left blank,

(2) the nðn� 1Þ=2 positions above the principal diagonal are filled by the

numbers 1; 2; . . . ; nðn� 1Þ corresponding to the treatments,

(3) the nðn� 1Þ=2 positions below the principal diagonal are filled so that

the array is symmetric about the principal diagonal,

(4) for any treatment x 1st associates are exactly those that occur in the

same row or in the same column as x, otherwise they are 2nd

associates.

Here nb 4, n1 ¼ 2ðn� 2Þ and n2 ¼ ðn� 2Þðn� 3Þ=2.

Definition 2.5. A 2-associate PBIB design is said to be L2 (Latin-sqaure)

if there are v ¼ s2 treatments which are arranged into an s� s array such that

any two treatments in the same row or in the same column of the array are 1st

associates, otherwise they are 2nd associates. Here sb 2, n1 ¼ 2ðs� 1Þ and

n2 ¼ ðs� 1Þ2.

Definition 2.6. A 2-associate PBIB design with v treatments is said to be

cyclic if the set of 1st associates of ith treatment is ði þ d1; i þ d2; . . . ; i þ dn1Þ
mod v, where the elements dj satisfy the following conditions:

(1) The elements dj are all di¤erent and 0 < dj < v for j ¼ 1; 2; . . . ; n1.

(2) Among the n1ðn1 � 1Þ di¤erences dj � dj 0 each of the d1; d2; . . . ; dn1
occurs p111 times and each of the e1; e2; . . . ; en2 occurs p211 times, where

dj, ej 0 are all nonzero distinct and fd1; d2; . . . ; dn1 ; e1; e2; . . . ; en2gJ
f1; 2; . . . ; vg.

(3) For each di in a set D ¼ ðd1; d2; . . . ; dn1Þ, there exists dk in D such that

dk ¼ �di.

Here n1 ¼ n2 ¼ ðv� 1Þ=2.

It is shown ([36]) that all cyclic association schemes have the param-

eters v ¼ 4tþ 1 being a prime and n1 ¼ n2 ¼ 2t for a positive integer

t. Thus the cyclic design may exist only for a prime v being the number

of treatments.

Definition 2.7. In a BDðv; b; r; kÞ, the v� b incidence matrix N ¼ ðnijÞ is

defined such that nij is the number of times ith treatment occurs in jth block.

Hence r ¼
Pb

j¼1 nij for all i and k ¼
Pv

i¼1 nij for all j. In this paper nij ¼ 0 or

1 for all i ¼ 1; 2; . . . ; v and j ¼ 1; 2; . . . ; b (called a binary design) as seen, for

example, from (1) of Definitions 2.1 and 2.2.

Two results will be needed for our further argument.
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Lemma 2.1 (cf. [26, 42]). In an a‰ne a-resolvable BDðv; b ¼ bt; r ¼ at; kÞ
with the incidence matrix N, the matrix N 0N has eigenvalues rk, kf1� ða� 1Þ=
ðb � 1Þg and 0, with multiplicities 1, b� t and t� 1, respectively.

Lemma 2.2 (cf. [35]). The matrices XY and YX have the same nonzero

eigenvalues with the same multiplicities, where the matrices X and Y are of

appropriate sizes.

Finally, a known equivalence result on existence of an a‰ne a-resolvable

BD is described. This can be seen from the complementation of a design.

Lemma 2.3. The existence of an a‰ne a-resolvable BDðv; b ¼ bt; r ¼ at; kÞ
with block intersection numbers q1 and q2 is equivalent to the existence of an

a‰ne ðb � aÞ-resolvable BDðv� ¼ v; b� ¼ b; r� ¼ ðb � aÞt; k � ¼ v� kÞ with block

intersection numbers q�
1 ¼ v� 2k þ q1 and q�

2 ¼ v� 2k þ q2.

3. A‰ne a-resolvable PBIB designs

The present section is devoted to the comprehensive combinatorial inves-

tigation on a property of a‰ne a-resolvability in a 2-associate PBIB design.

In literature there are much combinatorial discussions on a-resolvable

PBIB designs (see, for example, [5, 24, 25, 26, 27, 30]). However, there are not

many papers on ‘‘a‰ne’’ a-resolvable PBIB designs. As was mentioned in

Section 2, there are several types of 2-associate PBIB designs. Among them,

two types are at first considered here.

Let us take a class of cyclic PBIB designs (see Definition 2.6). In this case

the following can be seen.

Theorem 3.1. There does not exist an a‰ne a-resolvable cyclic 2-associate

PBIB design for any ab 1.

Proof. In the cyclic design, it is known (see a few lines after Definition

2.6) that the number of treatments is v ¼ 4tþ 1 being a prime. On the other

hand, the a‰ne a-resolvability requires that q2 ¼ k2=v is an integer. Now

since v is a prime and v > k, q2 is not an integer. Hence the proof is

complete. 9

Next take a class of triangular PBIB designs with v ¼ nðn� 1Þ=2 (see

Definition 2.4). No example has been found for an a‰ne a-resolvable trian-

gular design for ab 1 in literature. Recently the following has been shown.

Theorem 3.2 ([25, 27]). There does not exist an a‰ne a-resolvable trian-

gular design for 1a aa 10.
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Then Kageyama [25] has conjectured that there does not exist an a‰ne

a-resolvable triangular design for any ab 1. Since the attractive result on

existence could not be further obtained, the existence problem of a‰ne a-

resolvable triangular designs will not be discussed in this paper.

As of today, a cyclic design forms the only class of 2-associate PBIB

designs which do not possess entirely a property of a‰ne a-resolvability in

design theory. A class of triangular designs may be the next such candidate.

For further argument, the following lemma is useful. This can be derived

by use of Lemmas 2.1 and 2.2.

Lemma 3.1 (cf. [25]). In a 2-associate PBIB design, having the incidence

matrix N, with parameters v, b, r, k, li, yi , ri, i ¼ 0; 1; 2, where l0 ¼ r, y0 ¼ rk,

r0 ¼ 1, y1 and y2 are the nonnegative eigenvalues (other than rk) of NN 0 with

respective multiplicities r1 and r2, when y1 > 0 and y2 > 0, the design does not

possess a property of a‰ne a-resolvability.

Remark 3.1. Similarly to li as in Definition 2.2 (3), the eigenvalues yi are

corresponding to ith associates of an association scheme, i ¼ 0; 1; 2 (cf. [10,

39]). Since in a cyclic 2-associate PBIB design all the eigenvalues of NN 0 are

positive (see, pp. 126 and 129 in [39]), Lemma 3.1 can yield the same result as

in Theorem 3.1.

The following result plays a crucial role to characterize a‰ne a-resolvable

2-associate PBIB designs in this paper.

Theorem 3.3. Let N be the v� b incidence matrix of an a‰ne a-

resolvable 2-associate PBIB design with parameters v, b ¼ bt, r ¼ at, k, l1,

l2, q1 ¼ kða� 1Þ=ðb � 1Þ and q2 ¼ k2=v, and further let yi be eigenvalues of

NN 0 with multiplicities ri, i ¼ 0; 1; 2, where y0 ¼ rk and r0 ¼ 1. Then, when

yi > 0 and yi 0 ¼ 0, i0 i 0 A f1; 2g, q1 ¼ k � yi and b ¼ tþ ri hold.

Proof. By Lemma 2.1, N 0N has the only nonzero eigenvalue (other than

rk) kf1� ða� 1Þ=ðb � 1Þg, which is equal to k � q1, with multiplicity b� t.

Then (i) when y1 > 0 and y2 ¼ 0, Lemma 2.2 implies that k � q1 ¼ y1 and

b� t ¼ r1, while (ii) when y1 ¼ 0 and y2 > 0, Lemma 2.2 implies that

k � q1 ¼ y2 and b� t ¼ r2. On account of Lemma 3.1 note that a case of

y1 > 0 and y2 > 0 does not occur in this design. 9

Remark 3.2. In Theorem 3.3, if y1 ¼ y2 ¼ 0, i.e., NN 0 has the only one

nonzero eigenvalue rk, then the design is orthogonal and hence N ¼ 1v1
0
b,

which is not incomplete (cf. [10, Chapters 6 and 7]), where 1s is an s� 1

column vector all of whose elements are 1. Hence the orthogonal design is not

a PBIB design, but a randomized block design.
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Remark 3.3. In 2-associate PBIB designs, the PBIB design with l1 ¼ l2
becomes a BIB design and hence, as eigenvalues of NN 0, y1 ¼ r� l only other

than rk. Therefore, by Theorem 3.3, in an a‰ne a-resolvable BIB design

q1 ¼ k þ l� r holds (see the statements after Definition 2.1).

The largest, simplest and perhaps most important class of 2-associate PBIB

designs is known as GD (group divisible). In a GD design the eigenvalues

of NN 0 have y1 ¼ rk � vl2 and y2 ¼ r� l1 (other than rk) with respective

multiplicities r1 ¼ m� 1 and r2 ¼ mðn� 1Þ. Hence by Definition 2.3 and

Lemma 3.1 the following has been provided.

Theorem 3.4 (cf. [26]). There does not exist an a‰ne a-resolvable regular

GD design for any ab 1.

By Remark 3.2, other two subclasses (i.e., SGD and SRGD) of GD

designs will be discussed in subsequent Sections 3.1 to 3.4 below.

3.1. A‰ne a-resolvable SGD designs

By Definition 2.3, the present section is devoted to a GD design with

r ¼ l1, i.e., of singular type. Note that l1 > l2 in an SGD design.

It is known ([6]) that the existence of an SGDðv ¼ mn; b; r ¼ l1; k; l1; l2Þ is
equivalent to the existence of a BIBðv�; b�; r�; k �; l�Þ, where v ¼ nv�, b ¼ b�,

r ¼ r�, k ¼ nk �, l1 ¼ r�, l2 ¼ l�, m ¼ v�, n ¼ n. This result can be obtained

from replacing each treatment of the BIB design by a group of n treatments

for nb 2. It is obvious that the present replacement procedure preserves a

property of a‰ne a-resolvability between a BIB design and an SGD design.

Hence the following result has been established.

Theorem 3.1.1. The existence of an a‰ne a-resolvable SGDðv ¼ nv�;

b ¼ b� ¼ bt; r ¼ r� ¼ at; k ¼ nk �; l1 ¼ r�; l2 ¼ l�;m ¼ v�; n ¼ nÞ with q1 ¼
nk �ða� 1Þ=ðb � 1Þ and q2 ¼ nðk �Þ2=v� is equivalent to the existence of an

a‰ne a-resolvable BIBðv�; b� ¼ bt; r� ¼ at; k �; l�Þ with q�
1 ¼ kða� 1Þ=ðb � 1Þ

and q�
2 ¼ k2=v.

Now an integral expression of q1 is derived like q1 ¼ k þ l� r in an a‰ne

a-resolvable BIB design as in Remark 3.3.

Corollary 3.1.1. In an a‰ne a-resolvable SGD design, q1 ¼ kða� 1Þ=
ðb � 1Þ ¼ k � l1k þ vl2 holds.

Proof. Since y1 ¼ rk � vl2 and y2 ¼ r� l1 ¼ 0, by Theorem 3.3 we have

q1 ¼ k � y1 ¼ k � rk þ vl2. 9
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Now the parameters of an a‰ne a-resolvable SGD design with parameters

v ¼ mn, b ¼ bt, r ¼ at, k, l1, l2, q1 ¼ kða� 1Þ=ðb � 1Þ and q2 ¼ k2=v are

characterized. The following can be shown.

Theorem 3.1.2. The parameters of an a‰ne a-resolvable SGD design are

given by

v ¼ mn; b ¼ bðm� 1Þ
b � 1

; r ¼ aðm� 1Þ
b � 1

; k ¼ amn

b
; l1 ¼

aðm� 1Þ
b � 1

;

l2 ¼
aðam� bÞ
bðb � 1Þ ; t ¼ m� 1

b � 1
; q2 ¼

a2mn

b2
;

where am=b is an integer.

Proof. Since eigenvalues of NN 0 are rk � vl2 and r� l1 ¼ 0 with

respective multiplicities m� 1 and mðn� 1Þ, it follows from Theorem 3.3 that

b� t ¼ m� 1, i.e., t ¼ ðm� 1Þ=ðb � 1Þ which also implies that m > b. Then

we obtain the expression of parameters as v ¼ mn, b ¼ bt ¼ bðm� 1Þ=ðb � 1Þ,
r ¼ at ¼ aðm� 1Þ=ðb � 1Þ, k ¼ vr=b ¼ amn=b, l1 ¼ r ¼ aðm� 1Þ=b. Further-

more, by a relation rðk � 1Þ ¼ n1l1 þ n2l2, we get l2 ¼ aðam� bÞ=½bðb � 1Þ�.
Also by Theorem 3.1.1, k=n ¼ am=b must be an integer. 9

Thus, all parameters of an a‰ne a-resolvable SGD design can be expressed

in terms of m, n, a and b.

3.2. Table of a‰ne resolvable SGD designs with va 100 and r; ka 20

There are a number of a‰ne a-resolvable SGD designs with parameters

v ¼ mn, b ¼ bt, r ¼ at, k, l1, l2, q1, q2. We here restrict ourselves to the case

of a ¼ 1. Even so, by Lemma 2.3, some of other a‰ne a-resolvable SGD

designs can be constructed for some ab 2. Now, since q2 ¼ k2=v, by Theorem

3.1.2 we have the expression of parameters as

v ¼ mn; b ¼ bðm� 1Þ
b � 1

; r ¼ m� 1

b � 1
; k ¼ mn

b
;

l1 ¼
m� 1

b � 1
; l2 ¼

m� b

bðb � 1Þ ; q2 ¼
mn

b2
;

where m=b is an integer. Since m > b, according to the value m=bðb 2Þ,
we now systematically search the designs with admissible parameters (i.e., of

satisfying necessary conditions for the existence) within the scope of va 100

and r; ka 20. (Note that in Clatworthy [12] r; ka 10.) In fact, there are
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Table 3.2. A‰ne resolvable SGD designs

No. m n v b r k l1 l2 q2 Source 1 Source 2 Remark

1 4 2 8 6 3 4 3 1 2 K1þ f2g S6

2 4 3 12 6 3 6 3 1 3 K1þ f3g S27

3 4 4 16 6 3 8 3 1 4 K1þ f4g S61

4 4 5 20 6 3 10 3 1 5 K1þ f5g S106

5 4 6 24 6 3 12 3 1 6 K1þ f6g
6 4 7 28 6 3 14 3 1 7 K1þ f7g
7 4 8 32 6 3 16 3 1 8 K1þ f8g
8 4 9 36 6 3 18 3 1 9 K1þ f9g
9 4 10 40 6 3 20 3 1 10 K1þ f10g
10 6 2 12 10 5 6 5 2 3 Non-E BIBð6; 3; 2Þ þ f2g X1

11 6 4 24 10 5 12 5 2 6 Non-E BIBð6; 3; 2Þ þ f4g X1

12 6 6 36 10 5 18 5 2 9 Non-E BIBð6; 3; 2Þ þ f6g X1

13 8 2 16 14 7 8 7 3 4 K5þ f2g S63

14 8 3 24 14 7 12 7 3 6 K5þ f3g
15 8 4 32 14 7 16 7 3 8 K5þ f4g
16 8 5 40 14 7 20 7 3 10 K5þ f5g
17 9 2 18 12 4 6 4 1 2 K6þ f2g S37

18 9 3 27 12 4 9 4 1 3 K6þ f3g S91

19 9 4 36 12 4 12 4 1 4 K6þ f4g
20 9 5 45 12 4 15 4 1 5 K6þ f5g
21 9 6 54 12 4 18 4 1 6 K6þ f6g
22 10 2 20 18 9 10 9 4 5 Non-E BIBð10; 5; 4Þ þ f2g X1

23 10 4 40 18 9 20 9 4 10 Non-E BIBð10; 5; 4Þ þ f4g X1

24 12 2 24 22 11 12 11 5 6 K12þ f2g
25 12 3 36 22 11 18 11 5 9 K12þ f3g
26 14 2 28 26 13 14 13 6 7 Non-E BIBð14; 7; 6Þ þ f2g X1

27 15 3 45 21 7 15 7 2 5 Non-E Non-E X2

28 16 2 32 20 5 8 5 1 2 K17þ f2g S74

29 16 2 32 30 15 16 15 7 8 K18þ f2g
30 16 3 48 20 5 12 5 1 3 K17þ f3g
31 16 4 64 20 5 16 5 1 4 K17þ f4g
32 16 5 80 20 5 20 5 1 5 K17þ f5g
33 18 2 36 34 17 18 17 8 9 Non-E BIBð18; 9; 8Þ þ f2g X1

34 20 2 40 38 19 20 19 9 10 K25þ f2g
35 25 2 50 30 6 10 6 1 2 K28þ f2g S121

36 25 3 75 30 6 15 6 1 3 K28þ f3g
37 25 4 100 30 6 20 6 1 4 K28þ f4g
38 27 2 54 39 13 18 13 4 6 K30þ f2g
39 36 2 72 42 7 12 7 1 2 Non-E Non-E X3

40 40 2 80 52 13 20 13 3 5 Non-E BIBð40; 10; 3Þ ? X4

41 49 2 98 56 8 14 8 1 2 K40þ f2g
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41 parameters’ combinations, all of which have explicit information on the

existence of a‰ne a-resolvability. By Theorem 3.1.1 the existence problem

completely depends on the existence status of the corresponding a‰ne resolv-

able BIBðv� ¼ v=n; b� ¼ b; r� ¼ r ¼ l1; k
� ¼ k=n; l� ¼ l2Þ whose combinatorics

has been discussed widely in literature (cf. [14, 21, 40]). For example, the

existence of a ‘‘self-complementary’’ (i.e., v ¼ 2k) a‰ne resolvable SGD de-

sign with parameters v ¼ mn, b ¼ 2ðm� 1Þ, r ¼ m� 1, k ¼ mn=2, l1 ¼ m� 1,

l2 ¼ ðm� 2Þ=2, q1 ¼ 0, q2 ¼ mn=4 is equivalent to the existence of an a‰ne re-

solvable BIBðv� ¼ m; b� ¼ 2ðm� 1Þ; r� ¼ m� 1; k � ¼ m=2; l� ¼ ðm� 2Þ=2Þ for

even m.

In Table 3.2, the admissible parameters of a‰ne resolvable SGD designs

are listed along with existence information. The designs are numbered in the

ascending order of m and for the same m in the order of n. Since q1 ¼ 0, the

parameter is not listed. ‘‘Non-E’’ means the nonexistence of the design,

Kxþ fyg in Source 1 means that the design is constructed through an a‰ne

resolvable BIB design of No. x in Kageyama [21] in which each treatment

is replaced by a group of y new treatments. In Source 2, when an a‰ne

resolvable SGD design does not exist, the status on existence of the corre-

sponding BIB design, i.e., an SGD design, which is not a‰ne resolvable, is

described.

The column of Remark shows some information below:

For example, S6 denotes an SGD design number from Table IV of

Clatworthy [12]. An actual a‰ne resolvable solution is also given there.

X1: Though a BIBðv� ¼ v=n; b� ¼ b; r� ¼ r; k � ¼ k=n; l� ¼ l2Þ exists, ðk �Þ2=v� is
not an integer. Hence the corresponding a‰ne resolvable solution does

not exist.

X2: A BIBðv ¼ 15; b ¼ 21; r ¼ 7; k ¼ 5; l ¼ 2Þ does not exist ([43]). Hence an

a‰ne resolvable solution does not exist.

X3: A BIBðv ¼ 36; b ¼ 42; r ¼ 7; k ¼ 6; l ¼ 1Þ does not exist ([43]). Hence an

a‰ne resolvable solution does not exist.

X4: In a BIBðv ¼ 40; b ¼ 52; r ¼ 13; k ¼ 10; l ¼ 3Þ, k2=v is not an integer and

hence such an a‰ne resolvable solution of a design of No. 40 does not

exist, but the existence as a BIB design (or an SGD design) is in doubt.

3.3. A‰ne a-resolvable SRGD designs

In this section an a‰ne a-resolvable SRGD design with parameters

v ¼ mn, b ¼ bt, r ¼ at, k, l1, l2, q1 ¼ kða� 1Þ=ðb � 1Þ and q2 ¼ k2=v, in

which rk � vl2 ¼ 0, is considered. Note that l2 > l1 in an SRGD design.

Now an integral expression of q1 is derived like q1 ¼ k þ l� r in an a‰ne

a-resolvable BIB design and as in Corollary 3.1.1.
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Corollary 3.3.1. In an a‰ne a-resolvable SRGD design, q1 ¼ kða� 1Þ=
ðb � 1Þ ¼ k þ l1 � r holds.

Proof. Since y1 ¼ rk � vl2 ¼ 0 and y2 ¼ r� l1, Theorem 3.3 implies that

q1 ¼ k þ l1 � r. 9

Furthermore, a typical result is remarked.

Lemma 3.3.1 ([6]). In an SRGD design, k is divisible by m.

Next the following characterization of design parameters is obtained.

Theorem 3.3.1. The parameters of an a‰ne a-resolvable SRGD design are

given by

v ¼ mn; b ¼ bmðn� 1Þ
b � 1

; r ¼ amðn� 1Þ
b � 1

; k ¼ amn

b
; l1 ¼

amðan� bÞ
bðb � 1Þ ;

l2 ¼
a2mðn� 1Þ
bðb � 1Þ ; t ¼ mðn� 1Þ

b � 1
; q2 ¼

a2mn

b2
;

where an=b is an integer.

Proof. Since eigenvalues of NN 0 are rk � vl2 ¼ 0 and r� l1 with

respective multiplicities m� 1 and mðn� 1Þ, by Theorem 3.3 it holds that

b� t ¼ mðn� 1Þ, i.e., b ¼ vþ t�m which also implies that t ¼ mðn� 1Þ=
ðb � 1Þ. Then it follows that v ¼ mn, b ¼ bt ¼ bmðn� 1Þ=ðb � 1Þ, r ¼ at ¼
amðn� 1Þ=ðb � 1Þ, k ¼ vr=b ¼ amn=b, l2 ¼ rk=v ¼ a2mðn� 1Þ=½bðb � 1Þ�.
Furthermore, from a relation rðk � 1Þ ¼ n1l1 þ n2l2, we get l1 ¼ amðan� bÞ=
½bðb � 1Þ�. Also by Lemma 3.3.1, k=m ¼ an=b must be an integer. 9

Thus, all parameters of an a‰ne a-resolvable SRGD design can be

expressed in terms of m, n, a and b.

There are 14 a‰ne resolvable SRGD designs listed by Clatworthy [12],

among of which 12 designs are symmetric. That is, only two a‰ne resolvable

‘‘nonsymmetric’’ SRGD designs are available within the scope of parameters

(i.e., r; ka 10) in Clatworthy [12].

When the SRGD design is symmetric, we have t ¼ m and n ¼ b. Hence

Theorem 3.3.1 yields the following.

Corollary 3.3.2. The parameters of an a‰ne a-resolvable symmetric

SRGD design are given by

v ¼ b ¼ mn; r ¼ k ¼ am; l1 ¼
amða� 1Þ

n� 1
; l2 ¼

a2m

n
;

t ¼ m; b ¼ n:
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All the existing a‰ne a-resolvable symmetric SRGD designs satisfy m ¼ n.

In this case Corollary 3.3.2 yields the following since n ¼ b.

Corollary 3.3.3. The parameters of an a‰ne a-resolvable symmetric

SRGD design with m ¼ n are given by

v ¼ b ¼ m2; r ¼ k ¼ am; l1 ¼
amða� 1Þ
m� 1

; l2 ¼ a2; t ¼ b ¼ m:

Note that in Corollary 3.3.3

l1 ¼ aða� 1Þ þ aða� 1Þ
m� 1

which causes some restriction on the values of aðb 2Þ for given m in v ¼ mn.

As a method of construction of an SRGD design belonging to Corollary

3.3.3, Kageyama and Mohan [30; Corollary 2.1] show that when v� is a prime,

the existence of a symmetric BIBðv� ¼ b�; r� ¼ k �; l�Þ implies the existence of

an a‰ne a-resolvable symmetric SRGD design with parameters v ¼ b ¼ ðv�Þ2,
r ¼ k ¼ v�k �, l1 ¼ l�v�, l2 ¼ ðk �Þ2, q1 ¼ l�v�, q2 ¼ ðk �Þ2, a ¼ r�, t ¼ b ¼ v�

for m ¼ n ¼ v�. By use of this result, for example, the following can be

given. (i) Since a symmetric BIBð3; 3; 2; 2; 1Þ exists, we get a design of No. 6

of Table 3.4, i.e., SR23. (ii) Since a symmetric BIBð5; 5; 4; 4; 3Þ exists, we get

an a‰ne 4-resolvable SRGD design with parameters v ¼ b ¼ 25, r ¼ k ¼ 20,

l1 ¼ 15, l2 ¼ 16, t ¼ b ¼ 5; m ¼ n ¼ 5, whose complement is, by Lemma 2.3,

an a‰ne resolvable SRGD design with parameters v ¼ b ¼ 25, r ¼ k ¼ 5,

l1 ¼ 0, l2 ¼ 1; m ¼ n ¼ 5, i.e., a design of No. 13, which may be di¤erent

from SR60. (iii) Since a symmetric BIBð7; 7; 3; 3; 1Þ exists (cf. [43]), we get

an a‰ne 3-resolvable SRGD design with parameters v ¼ b ¼ 49, r ¼ k ¼ 21,

l1 ¼ 7, l2 ¼ 9, t ¼ b ¼ 7 for m ¼ n ¼ 7.

For the next section the case of a ¼ 1 will be investigated in detail. For

an a‰ne resolvable SRGD design, t ¼ r and then Theorem 3.3.1 with q2 ¼
k2=v shows the expression of design parameters as

v ¼ mn; b ¼ bmðn� 1Þ
b � 1

; r ¼ mðn� 1Þ
b � 1

; k ¼ mn

b
; l1 ¼

mðn� bÞ
bðb � 1Þ ;

l2 ¼
mðn� 1Þ
bðb � 1Þ ; q1 ¼ 0; q2 ¼

mn

b2
;

k

m
¼ n

b
:

Then it holds that l2 � l1 ¼ m=b. Therefore, there exist positive integers x

and y such that

m ¼ xb and n ¼ yb:
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These x and y can be used to express the required parameters as

v ¼ xyb2; b ¼ xb2ðyb � 1Þ
b � 1

; r ¼ xbðyb � 1Þ
b � 1

; k ¼ xyb;ð3:3:1Þ

l1 ¼
xbðy� 1Þ
b � 1

; l2 ¼
xðyb � 1Þ
b � 1

; q1 ¼ 0; q2 ¼ xy;
k

m
¼ y:ð3:3:2Þ

In this case l2 � l1 ¼ x and l1 ¼ bðl2 � xyÞ ðb 0Þ. Note that l1 ¼ 0 if and

only if y ¼ 1, i.e., the design is symmetric.

Now a way of presentation of the design parameters is made according to

four patterns on the values of positive integers x and y.

Case 1: x ¼ y ¼ 1, i.e., m ¼ n ¼ b. Then the design parameters are

shown as

v ¼ b ¼ b2; r ¼ k ¼ b; l1 ¼ 0; l2 ¼ 1; q2 ¼ 1;
k

m
¼ 1;

which is symmetric. In fact, the existing SR1, SR23, SR44, SR60, SR87,

SR97 and SR105 in Table VI of Clatworthy [12] belong to this class. By

Lemma 2.3, note that the complement of the design of Case 1 is an a‰ne

ðb � 1Þ-resolvable symmetric SRGD design with parameters v� ¼ b� ¼ b2,

r� ¼ k � ¼ bðb � 1Þ, l�
1 ¼ bðb � 2Þ, l�

2 ¼ bðb � 2Þ þ 1, q�
1 ¼ bðb � 2Þ, q�

2 ¼
bðb � 2Þ þ 1, and vice versa. For the present case a construction result can

be provided.

Theorem 3.3.2. When b is a prime or a prime power, there exists an a‰ne

resolvable symmetric SRGD design with parameters

v ¼ b ¼ b2; r ¼ k ¼ b; l1 ¼ 0; l2 ¼ 1; q1 ¼ 0; q2 ¼ 1; m ¼ n ¼ b:

Proof. It is well known (cf. [10; Chapter 6]) that when b is a prime

or a prime power, an a‰ne resolvable BIBðv� ¼ b2; b� ¼ bðb þ 1Þ; r� ¼ b þ 1;

k � ¼ b; l� ¼ 1Þ can be constructed by use of an a‰ne plane. The dual of this

design can yield an SRGD design with parameters v ¼ bðb þ 1Þ, b ¼ b2, r ¼ b,

k ¼ b þ 1, l1 ¼ 0, l2 ¼ 1. In this design by deleting a group of b treatments

corresponding to a partition for the a‰ne resolvability of the original BIB

design, we can obtain an SRGD design with parameters v ¼ b ¼ b2, r ¼ k ¼ b,

l1 ¼ 0, l2 ¼ 1. The remaining problem is to introduce the a‰ne resolvability

for the present design. It can be shown that this a‰ne resolvability is naturally

given when the incidence structure corresponding to b treatments of the group

deleted in the dual design is

Ib n 1 0
b;
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where AnB denotes the Kronecker product of matrices A and B, and Ib is the

identity matrix of order b. 9

Remark 3.3.1. From the combinatorial structure on incidence in the

construction process given in the proof of Theorem 3.3.2, it is obvious that

the existence of an ‘‘a‰ne resolvable’’ SRGD design as in Theorem 3.3.2 is

equivalent to the existence of an a‰ne plane of order b.

Case 2: y ¼ 1, i.e., n ¼ b. The the design parameters can be shown as

v ¼ b ¼ xb2; r ¼ k ¼ xb; l1 ¼ 0; l2 ¼ x; q2 ¼ x;
k

m
¼ 1;

which is symmetric. When x ¼ 1, this case coincides with Case 1 and then

x > 1 is mainly considered. In fact, the existing SR36, SR72, SR92, SR95 and

SR102 in Table VI of Clatworthy [12] belong to this class for x ¼ 2; 2; 4; 2

and 3, respectively. By Lemma 2.3 note that the complement of the design

of Case 2 is an a‰ne ðb � 1Þ-resolvable symmetric SRGD design with param-

eters v� ¼ b� ¼ xb2, r� ¼ k � ¼ xbðb � 1Þ, l�
1 ¼ xbðb � 2Þ, l�

2 ¼ x½bðb � 2Þ þ 1�,
q�
1 ¼ xbðb � 2Þ, q�

2 ¼ x½bðb � 2Þ þ 1�.
As a method of construction of a design for Case 2, Bose, Shrikhande and

Bhattacharya [8] show that when s is a prime or a prime power, there exists

an a‰ne resolvable symmetric SRGD design with parameters v ¼ b ¼ s3, r ¼
k ¼ s2, l1 ¼ 0, l2 ¼ s, q2 ¼ s; m ¼ s2, n ¼ s. Here x ¼ s and y ¼ 1. When

s ¼ 2 and 3, we have designs of Nos. 8 and 23 in Table 3.4, respectively.

When s ¼ 4, we can obtain a solution of an a‰ne resolvable SRGD design of

No. 37 with parameters v ¼ b ¼ 64, r ¼ k ¼ 16, l1 ¼ 0, l2 ¼ 4, q2 ¼ 4; m ¼ 16,

n ¼ 4.

Furthermore, to construct a‰ne resolvable symmetric SRGD designs of

Case 2, a special type of a di¤erence scheme (cf. [17]) will be utilized.

An m�m matrix A with entries from a set S ¼ f0; 1; . . . ; s� 1g for sb 2

is here called a di¤erence scheme, denoted by DSðm; s; xÞ, if on a vector

di¤erence in any two columns of A every entry of S occurs x times.

Remark 3.3.2. The same concept as the di¤erence scheme has been

discussed under other names of a di¤erence matrix Dðm;m; sÞ or a generalized

Hadamard matrix GHðs; xÞ by interchanging roles of rows and columns (see

[3, 13]).

It is easily seen that (i) all entries in the first row and first column of

a DSðm; s; xÞ can be set 0, and (ii) in each of columns except for the first,

every entry of S occurs x times. The property (ii) implies that m ¼ xs in a

DSðm; s; xÞ.
Furthermore, the following properties can be derived (see [3; pp. 532–534,

especially, Remark 3.9(a)], or [17; p. 115]).
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(iii) In each of rows except for the first one of a DSðm; s; xÞ, every entry

of S occurs x times.

(iv) On a vector di¤erence in any two rows of a DSðm; s; xÞ, every entry

of S occurs x times.

Now the following construction result can be shown.

Theorem 3.3.3. The existence of a DSðm; s; xÞ implies the existence of an

a‰ne resolvable symmetric SRGD design with parameters

v ¼ b ¼ xs2; r ¼ k ¼ xs; l1 ¼ 0; l2 ¼ x; q1 ¼ 0; q2 ¼ x; m ¼ xs; n ¼ s

for sb 2.

Proof. Replace the entries 0; 1; . . . ; s� 1 in an m�m matrix as a

DSðm; s; xÞ by s� s matrices p iIs, i ¼ 0; 1; . . . ; s� 1, respectively, where p is

a row permutation such that pRl ¼ Rlþ1 and Rl is the lth row of Is. Then

from m ¼ xs such replacement can show the required design with a GD

association scheme on an xs� s array. In fact, under the property (ii),

parameters v ¼ b ¼ xs2, k ¼ xs, l1 ¼ 0, m ¼ xs and n ¼ s are obvious. The

property (iii) with m ¼ xs implies r ¼ xs. It is also clear that the replacement

of s� s ð0; 1Þ-matrices shows the resolvability consisting of m resolution sets of

s blocks each, and then q1 ¼ 0. Furthermore, the properties (i) and (ii) of the

DSðm; s; xÞ with properties (iii) and (iv) can yield l2 ¼ x and q2 ¼ x (a‰ne

resolvability). 9

When s ¼ 5 and x ¼ 2 in Theorem 3.3.3, it is illustrated by use of a

DSð10; 5; 2Þ given as follows (see Table 6.35 in [17]).

0 0 0 0 0 0 0 0 0 0

0 4 3 1 2 1 0 4 2 3

0 3 1 2 4 4 2 0 1 3

0 1 2 4 3 1 2 3 0 4

0 2 4 3 1 4 1 3 2 0

0 2 3 2 3 0 4 1 4 1

0 1 1 3 0 2 4 4 3 2

0 0 4 4 2 3 3 1 1 2

0 3 0 1 1 2 3 2 4 4

0 4 2 0 4 3 1 2 3 1

2
666666666666666664

3
777777777777777775

which obviously satisfies the above properties (i) to (iv).

Example 3.3.1. There exists an a‰ne resolvable symmetric SRGD design

with parameters v ¼ b ¼ 50, r ¼ k ¼ 10, l1 ¼ 0, l2 ¼ 2, q2 ¼ 2; m ¼ 10, n ¼ 5,

whose GD association scheme of 50 treatments is
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

2
666666666666666664

3
777777777777777775

:

Now, replace 0, 1, 2, 3, 4 in the above DSð10; 5; 2Þ by the following five

matrices of order 5:

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
;

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

2
6666664

3
7777775
;

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

2
6666664

3
7777775
;

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

2
6666664

3
7777775
;

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

2
6666664

3
7777775
;

respectively. Then the 50 blocks of 10 resolution sets (i.e., each resolution set

showing a bracket ½ � below) of 5 blocks each are given by

[(1, 6, 11, 16, 21, 26, 31, 36, 41, 46), (2, 7, 12, 17, 22, 27, 32, 37, 42, 47),

(3, 8, 13, 18, 23, 28, 33, 38, 43, 48), (4, 9, 14, 19, 24, 29, 34, 39, 44, 49), (5, 10,

15, 20, 25, 30, 35, 40, 45, 50)],

[(1, 10, 14, 17, 23, 28, 32, 36, 44, 50), (2, 6, 15, 18, 24, 29, 33, 37, 45, 46),

(3, 7, 11, 19, 25, 30, 34, 38, 41, 47), (4, 8, 12, 20, 21, 26, 35, 39, 42, 48), (5, 9,

13, 16, 22, 27, 31, 40, 43, 49)],

[(1, 9, 12, 18, 25, 29, 32, 40, 41, 48), (2, 10, 13, 19, 21, 30, 33, 36, 42, 49),

(3, 6, 14, 20, 22, 26, 34, 37, 43, 50), (4, 7, 15, 16, 23, 27, 35, 38, 44, 46), (5, 8,

11, 17, 24, 28, 31, 39, 45, 47)],

[(1, 7, 13, 20, 24, 28, 34, 40, 42, 46), (2, 8, 14, 16, 25, 29, 35, 36, 43, 47),

(3, 9, 15, 17, 21, 30, 31, 37, 44, 48), (4, 10, 11, 18, 22, 26, 32, 38, 45, 49), (5, 6,

12, 19, 23, 27, 33, 39, 41, 50)],

[(1, 8, 15, 19, 22, 29, 31, 38, 42, 50), (2, 9, 11, 20, 23, 30, 32, 39, 43, 46),
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(3, 10, 12, 16, 24, 26, 33, 40, 44, 47), (4, 6, 13, 17, 25, 27, 34, 36, 45, 48), (5, 7,

14, 18, 21, 28, 35, 37, 41, 49)],

[(1, 7, 15, 17, 25, 26, 33, 39, 43, 49), (2, 8, 11, 18, 21, 27, 34, 40, 44, 50),

(3, 9, 12, 19, 22, 28, 35, 36, 45, 46), (4, 10, 13, 20, 23, 29, 31, 37, 41, 47), (5, 6,

14, 16, 24, 30, 32, 38, 42, 48)],

[(1, 6, 13, 18, 22, 30, 35, 39, 44, 47), (2, 7, 14, 19, 23, 26, 31, 40, 45, 48),

(3, 8, 15, 20, 24, 27, 32, 36, 41, 49), (4, 9, 11, 16, 25, 28, 33, 37, 42, 50), (5, 10,

12, 17, 21, 29, 34, 38, 43, 46)],

[(1, 10, 11, 19, 24, 27, 35, 37, 43, 48), (2, 6, 12, 20, 25, 28, 31, 38, 44, 49),

(3, 7, 13, 16, 21, 29, 32, 39, 45, 50), (4, 8, 14, 17, 22, 30, 33, 40, 41, 46), (5, 9,

15, 18, 23, 26, 34, 36, 42, 47)],

[(1, 8, 12, 16, 23, 30, 34, 37, 45, 49), (2, 9, 13, 17, 24, 26, 35, 38, 41, 50),

(3, 10, 14, 18, 25, 27, 31, 39, 42, 46), (4, 6, 15, 19, 21, 28, 32, 40, 43, 47), (5, 7,

11, 20, 22, 29, 33, 36, 44, 48)],

[(1, 9, 14, 20, 21, 27, 33, 38, 45, 47), (2, 10, 15, 16, 22, 28, 34, 39, 41, 48),

(3, 6, 11, 17, 23, 29, 35, 40, 42, 49), (4, 7, 12, 18, 24, 30, 31, 36, 43, 50), (5, 8,

13, 19, 25, 26, 32, 37, 44, 46)].

Six designs of Nos. 23, 29, 30, 33, 39 and 42 in Table 3.4 are also

constructed by use of Theorem 3.3.3 with DSð9; 3; 3Þ, DSð12; 3; 4Þ, DSð12; 22; 3Þ,
DSð14; 7; 2Þ, DSð18; 3; 6Þ and DSð20; 5; 4Þ, respectively. Many useful informa-

tion on the existence of a di¤erence scheme can be found in [3, 13] and [17;

Chapter 6].

Another characterization for Case 2 is provided. It is clear (see, for

example, [17; Theorem 7.6]) that a DSð2x; 2; xÞ exists i¤ a Hadamard matrix of

order 2x exists. Here Theorem 3.3.3 with s ¼ 2 can be especially expressed as

an equivalence existence.

Theorem 3.3.4. The existence of a Hadamard matrix of order 2x is

equivalent to the existence of an a‰ne resolvable symmetric SRGD design with

parameters

v ¼ b ¼ 4x; r ¼ k ¼ 2x; l1 ¼ 0; l2 ¼ x; q1 ¼ 0; q2 ¼ x; m ¼ 2x; n ¼ 2:

Proof. (Necessity) In a Hadamard matrix H of order 2x, replace þ1 and

�1 by I2 and 121
0
2 � I2 respectively. Then the relation HH 0 ¼ 2xI2x ¼ H 0H

can yield that l1 ¼ 0 and l2 ¼ x with the a‰ne resolvability. Thus the re-

quired design can be obtained. Or apply Theorem 3.3.3.

(Su‰ciency) Since v ¼ 2k, from the properties of the GD association

scheme on a 2x� 2 array, the resolvability and l1 ¼ 0, it follows that the

4x� 4x incidence matrix is partitioned into ð2xÞ2 submatrices of order 2, whose

pattern is either I2 or 121
0
2 � I2. Now replace I2 and 121

0
2 � I2 by þ1 and

�1 respectively. Then we get a 2x� 2x matrix H whose elements are þ1
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or �1. In the original incidence matrix of the design, each of four rows

(consisting of two columns each) corresponding to the replacement, which

follows the above partition of the incidence matrix, has one of four patterns as

ðI2; I2Þ0, ðI2; 121 0
2 � I2Þ0, ð121 0

2 � I2; 121
0
2 � I2Þ0, ð121 0

2 � I2; I2Þ0. Hence, on ac-

count of l2 ¼ x, it can be shown that HH 0 ¼ 2xI2x. 9

In Theorem 3.3.4, when x ¼ 6, by use of a Hadamard matrix H12 of order

12 as

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1

1 1 �1 1 �1 �1 �1 1 1 1 �1 1

1 1 1 �1 1 �1 �1 �1 1 1 1 �1

1 �1 1 1 �1 1 �1 �1 �1 1 1 1

1 1 �1 1 1 �1 1 �1 �1 �1 1 1

1 1 1 �1 1 1 �1 1 �1 �1 �1 1

1 1 1 1 �1 1 1 �1 1 �1 �1 �1

1 �1 1 1 1 �1 1 1 �1 1 �1 �1

1 �1 �1 1 1 1 �1 1 1 �1 1 �1

1 �1 �1 �1 1 1 1 �1 1 1 �1 1

1 1 �1 �1 �1 1 1 1 �1 1 1 �1

1 �1 1 �1 �1 �1 1 1 1 �1 1 1

2
66666666666666666666664

3
77777777777777777777775

;

an a‰ne resolvable symmetric SRGD design of No. 28 in Table 3.4 can be

obtained. This will be given in Example 3.3.2.

Example 3.3.2. There exists an a‰ne resolvable symmetric SRGD design

with parameters v ¼ b ¼ 24, r ¼ k ¼ 12, l1 ¼ 0, l2 ¼ 6, q2 ¼ 6; m ¼ 12, n ¼ 2,

whose GD association scheme of 24 treatments is given by the usual 12� 2

array. If the entries þ1 and �1 in H12 are replaced by

1 0

0 1

� �
and

0 1

1 0

� �

respectively, then the 24 blocks of 12 resolution sets of 2 blocks each are given

by

½ð1; 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23Þ; ð2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24Þ�,
½ð2; 3; 5; 8; 9; 11; 13; 16; 18; 20; 21; 24Þ; ð1; 4; 6; 7; 10; 12; 14; 15; 17; 19; 22; 23Þ�,
½ð2; 4; 5; 7; 10; 11; 13; 15; 18; 20; 22; 23Þ; ð1; 3; 6; 8; 9; 12; 14; 16; 17; 19; 21; 24Þ�,
½ð2; 3; 6; 7; 9; 12; 13; 15; 17; 20; 22; 24Þ; ð1; 4; 5; 8; 10; 11; 14; 16; 18; 19; 21; 23Þ�,
½ð2; 4; 5; 8; 9; 11; 14; 15; 17; 19; 22; 24Þ; ð1; 3; 6; 7; 10; 12; 13; 16; 18; 20; 21; 23Þ�,
½ð2; 4; 6; 7; 10; 11; 13; 16; 17; 19; 21; 24Þ; ð1; 3; 5; 8; 9; 12; 14; 15; 18; 20; 22; 23Þ�,
½ð2; 4; 6; 8; 9; 12; 13; 15; 18; 19; 21; 23Þ; ð1; 3; 5; 7; 10; 11; 14; 16; 17; 20; 22; 24Þ�,
½ð2; 3; 6; 8; 10; 11; 14; 15; 17; 20; 21; 23Þ; ð1; 4; 5; 7; 9; 12; 13; 16; 18; 19; 22; 24Þ�,
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½ð2; 3; 5; 8; 10; 12; 13; 16; 17; 19; 22; 23Þ; ð1; 4; 6; 7; 9; 11; 14; 15; 18; 20; 21; 24Þ�,
½ð2; 3; 5; 7; 10; 12; 14; 15; 18; 19; 21; 24Þ; ð1; 4; 6; 8; 9; 11; 13; 16; 17; 20; 22; 23Þ�,
½ð2; 4; 5; 7; 9; 12; 14; 16; 17; 20; 21; 23Þ; ð1; 3; 6; 8; 10; 11; 13; 15; 18; 19; 22; 24Þ�,
½ð2; 3; 6; 7; 9; 11; 14; 16; 18; 19; 22; 23Þ; ð1; 4; 5; 8; 10; 12; 13; 15; 17; 20; 21; 24Þ�.

It is well known that a necessary condition for the existence of a Hada-

mard matrix is that the order is either 2 or a multiple of 4. Then Theorem 3.3.4

can produce the following.

Corollary 3.3.4. When x is odd ðb 3Þ, there does not exist an a‰ne

resolvable symmetric SRGD design with parameters v ¼ b ¼ 4x, r ¼ k ¼ 2x,

l1 ¼ 0, l2 ¼ x, q1 ¼ 0, q2 ¼ x; m ¼ 2x, n ¼ 2.

Remark 3.3.3. The existence of a Hadamard matrix of order 2x is known

for all 2xa 664 (i.e., the smallest order in which a Hadamard matrix is

undecided is 668) ([32]). Hence an a‰ne resolvable symmetric SRGD design

of Theorem 3.3.4 exists for all even xa 332. In fact, it is conjectured that a

Hadamard matrix always exists for any order ð1 0 mod 4Þ (see [16]).

Remark 3.3.4. By Theorem 3.3.3, Theorem 3.3.4 and Corollary 3.3.4, the

nonexistence information on designs of Nos. 14, 17, 25, 27, 32, 34, 35 and 38 in

Source 1 of Table 3.4 for y ¼ 1 implies the nonexistence of di¤erence schemes

DSðm; s; xÞ in DSð6; 2; 3Þ, DSð6; 6; 1Þ, DSð10; 2; 5Þ, DSð10; 10; 1Þ, DSð14; 2; 7Þ,
DSð15; 3; 5Þ, DSð15; 5; 3Þ and DSð18; 2; 9Þ, respectively. Since the existence

of DSð12; 6; 2Þ and DSð20; 22; 5Þ is unknown, designs of Nos. 31 and 41 may

not be constructed through Theorem 3.3.3. In general, it also follows from

Theorem 3.3.4 and Corollary 3.3.4 that there does not exist a di¤erence scheme

DSð2x; 2; xÞ for any odd xb 3.

Case 3: x ¼ 1, i.e., m ¼ b. This case shows the design parameters as

v ¼ yb2; b ¼ b2ðyb � 1Þ
b � 1

; r ¼ bðyb � 1Þ
b � 1

; k ¼ yb;

l1 ¼
bðy� 1Þ
b � 1

; l2 ¼
yb � 1

b � 1
; q2 ¼ y;

k

m
¼ y:

When y ¼ 1, this case coincides with Case 1 and then y > 1 is mainly

considered. In fact, the existing SR38 and SR71 in Table VI of Clatworthy

[12] belong to this class for y ¼ 2 and 3, respectively. In this case, all the

existing designs satisfy v ¼ 2k (self-complementary). However, note that the

parameters of an unknown design of No. 12 do not satisfy v ¼ 2k.

As a method of construction of a design belonging to Case 3, Kageyama,

Banerjee and Verma [28] show that the existence of an a‰ne resolvable
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BIBðv� ¼ 2k �; b� ¼ 2r�; r� ¼ 2k � � 1; k �; l� ¼ k � � 1Þ implies the existence of

an a‰ne resolvable SRGD design with parameters v ¼ 4k �, b ¼ 4ð2k � � 1Þ,
r ¼ 2ð2k � � 1Þ, k ¼ 2k �, l1 ¼ 2ðk � � 1Þ, l2 ¼ 2k � � 1; m ¼ 2, n ¼ 2k �. Here

x ¼ 1 and y ¼ k �. Note that this design has only possibility of existence

when k � is even. When k � ¼ 2 we have a design of No. 2 in Table 3.4, i.e.,

SR38. When k � ¼ 4, a design of No. 4 in Table 3.4 is newly constructed as

will be constructed in Example 3.3.3.

Example 3.3.3. There exists an a‰ne resolvable SRGD design with

parameters v ¼ 16, b ¼ 28, r ¼ 14, k ¼ 8, l1 ¼ 6, l2 ¼ 7, q2 ¼ 4; m ¼ 2,

n ¼ 8 whose GD association scheme of 16 treatments is

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

� �
:

The 28 blocks of 14 resolution sets of 2 blocks each are given by

½ð1; 2; 3; 5; 9; 10; 11; 13Þ; ð4; 6; 7; 8; 12; 14; 15; 16Þ�,
½ð4; 6; 7; 8; 9; 10; 11; 13Þ; ð1; 2; 3; 5; 12; 14; 15; 16Þ�,
½ð2; 3; 4; 6; 10; 11; 12; 14Þ; ð1; 5; 7; 8; 9; 13; 15; 16Þ�,
½ð1; 5; 7; 8; 10; 11; 12; 14Þ; ð2; 3; 4; 6; 9; 13; 15; 16Þ�,
½ð3; 4; 5; 7; 11; 12; 13; 15Þ; ð1; 2; 6; 8; 9; 10; 14; 16Þ�,
½ð1; 2; 6; 8; 11; 12; 13; 15Þ; ð3; 4; 5; 7; 9; 10; 14; 16Þ�,
½ð1; 4; 5; 6; 9; 12; 13; 14Þ; ð2; 3; 7; 8; 10; 11; 15; 16Þ�,
½ð2; 3; 7; 8; 9; 12; 13; 14Þ; ð1; 4; 5; 6; 10; 11; 15; 16Þ�,
½ð2; 5; 6; 7; 10; 13; 14; 15Þ; ð1; 3; 4; 8; 9; 11; 12; 16Þ�,
½ð1; 3; 4; 8; 10; 13; 14; 15Þ; ð2; 5; 6; 7; 9; 11; 12; 16Þ�,
½ð1; 3; 6; 7; 9; 11; 14; 15Þ; ð2; 4; 5; 8; 10; 12; 13; 16Þ�,
½ð2; 4; 5; 8; 9; 11; 14; 15Þ; ð1; 3; 6; 7; 10; 12; 13; 16Þ�,
½ð1; 2; 4; 7; 9; 10; 12; 15Þ; ð3; 5; 6; 8; 11; 13; 14; 16Þ�,
½ð3; 5; 6; 8; 9; 10; 12; 15Þ; ð1; 2; 4; 7; 11; 13; 14; 16Þ�.

This is constructed by use of Theorem 1 and Corollary 2 of Kageyama, Banerjee

and Verma [28] with an a‰ne resolvable solution, ½ð0; 1; 2; 4Þ; ð3; 5; 6;yÞ� mod 7,

of a BIBð8; 14; 7; 4; 3Þ (cf. [21]), having the incidence matrix N, i.e., the con-

structed design has

Nn
1 0

1 1

� �
þ ð181 0

14 �NÞn 0 1

0 0

� �

with some renumbering of 16 new treatments to suit the present GD association

scheme from the original scheme

1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

� �
:
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Case 4: x > 1 and y > 1. In this case we have the design parameters as

in (3.3.1) and (3.3.2). In general, since

l1 ¼ xðy� 1Þ þ xðy� 1Þ
b � 1

;

for given x and y there are a finite number of values of b since l1 is an integer.

Thus all parameters of an a‰ne resolvable SRGD design are systematically

expressed in terms of parameters x, y and b.

Some special cases are taken below.

Case 4.1: x ¼ 2 and y ¼ 2. Then l1 ¼ 2þ 2=ðb � 1Þ which implies

b ¼ 2; 3. When b ¼ 2, we have v ¼ 16, b ¼ 24, r ¼ 12, k ¼ 8, l1 ¼ 4, l2 ¼ 6;

m ¼ n ¼ 4. This is a design of No. 10 in Table 3.4 and will be constructed as

in Example 3.3.4. This is the only existing a‰ne resolvable SRGD design for

x > 1 and y > 1 as far as the authors are aware of. When b ¼ 3, we have

v ¼ 36, b ¼ 45, r ¼ 15, k ¼ 12, l1 ¼ 3, l2 ¼ 5; m ¼ n ¼ 6 a design of which is

shown to be nonexistent by Theorem 12.6.2 in Raghavarao [39].

Example 3.3.4. There exists an a‰ne resolvable SRGD design with

parameters v ¼ 16, b ¼ 24, r ¼ 12, k ¼ 8, l1 ¼ 4, l2 ¼ 6, q2 ¼ 4; m ¼ n ¼ 4

whose GD association scheme of 16 treatments is

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2
6664

3
7775:

The 24 blocks of 12 resolution sets of 2 blocks each are given by

½ð1; 2; 5; 6; 9; 10; 13; 14Þ; ð3; 4; 7; 8; 11; 12; 15; 16Þ�,
½ð1; 2; 5; 6; 11; 12; 15; 16Þ; ð3; 4; 7; 8; 9; 10; 13; 14Þ�,
½ð1; 2; 7; 8; 9; 10; 15; 16Þ; ð3; 4; 5; 6; 11; 12; 13; 14Þ�,
½ð1; 2; 7; 8; 11; 12; 13; 14Þ; ð3; 4; 5; 6; 9; 10; 15; 16Þ�,
½ð1; 3; 5; 7; 9; 11; 13; 15Þ; ð2; 4; 6; 8; 10; 12; 14; 16Þ�,
½ð1; 3; 5; 7; 10; 12; 14; 16Þ; ð2; 4; 6; 8; 9; 11; 13; 15Þ�,
½ð1; 3; 6; 8; 9; 11; 14; 16Þ; ð2; 4; 5; 7; 10; 12; 13; 15Þ�,
½ð1; 3; 6; 8; 10; 12; 13; 15Þ; ð2; 4; 5; 7; 9; 11; 14; 16Þ�,
½ð1; 4; 5; 8; 9; 12; 13; 16Þ; ð2; 3; 6; 7; 10; 11; 14; 15Þ�,
½ð1; 4; 5; 8; 10; 11; 14; 15Þ; ð2; 3; 6; 7; 9; 12; 13; 16Þ�,
½ð1; 4; 6; 7; 9; 12; 14; 15Þ; ð2; 3; 5; 8; 10; 11; 13; 16Þ�,
½ð1; 4; 6; 7; 10; 11; 13; 16Þ; ð2; 3; 5; 8; 9; 12; 14; 15Þ�.

This is constructed by trial and error under some manner.
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Case 4.2: x ¼ 2 and y ¼ 3. Then l1 ¼ 4þ 4=ðb � 1Þ which implies

b ¼ 2; 3; 5. When b ¼ 2, we have v ¼ 24, b ¼ 40, r ¼ 20, k ¼ 12, l1 ¼ 8,

l2 ¼ 10; m ¼ 4, n ¼ 6 whose a‰ne resolvable solution as a design of No.

11 in Table 3.4 is unknown. A 5-resolvable solution under the usual 4� 6 GD

association scheme of 24 treatments can be constructed by trial and error.

However, it is not a‰ne 5-resolvable.

When b ¼ 3, we get v ¼ 54, b ¼ 72, r ¼ 24 ð> 20Þ, k ¼ 18, l1 ¼ 6, l2 ¼ 8;

m ¼ 6, n ¼ 9 whose solution as a design is unknown. When b ¼ 5, we obtain

v ¼ 150, b ¼ 175, r ¼ 35, k ¼ 30, l1 ¼ 5, l2 ¼ 7; m ¼ 10, n ¼ 15 a design of

which is shown to be nonexistent by Theorem 12.6.2 in Raghavarao [39].

Case 4.3: x ¼ 3 and y ¼ 2. Then l1 ¼ 3þ 3=ðb � 1Þ which implies b ¼
2; 4. When b ¼ 2, we have v ¼ 24, b ¼ 36, r ¼ 18, k ¼ 12, l1 ¼ 6, l2 ¼ 9;

m ¼ 6, n ¼ 4 a design of which is shown to be nonexistent by Theorem 12.6.2

in Raghavarao [39]. When b ¼ 4, we get v ¼ 96, b ¼ 112, r ¼ 28 ð> 20Þ,
k ¼ 24 ð> 20Þ, l1 ¼ 4, l2 ¼ 7; m ¼ 12, n ¼ 8 whose solution as a design is

unknown.

Case 4.4: x ¼ 3 and y ¼ 3. Then l1 ¼ 6þ 6=ðb � 1Þ which implies b ¼
2; 3; 4; 7. When b ¼ 2, we have v ¼ 36, b ¼ 60, r ¼ 30, k ¼ 18, l1 ¼ 12,

l2 ¼ 15; m ¼ n ¼ 6 a design of which is shown to be nonexistent by Theorem

12.6.2 in Raghavarao [39]. When b ¼ 3, we get v ¼ 81, b ¼ 108, r ¼ 36,

k ¼ 27, l1 ¼ 9, l2 ¼ 12; m ¼ n ¼ 9 whose solution is unknown as a design.

When b ¼ 4, we obtain v ¼ 144, b ¼ 176, r ¼ 44, k ¼ 36, l1 ¼ 8, l2 ¼ 11;

m ¼ n ¼ 12 whose solution is unknown as a design. When b ¼ 7, we obtain

v ¼ 441, b ¼ 490, r ¼ 70, k ¼ 63, l1 ¼ 7, l2 ¼ 10; m ¼ n ¼ 21 a design of

which is shown to be nonexistent by Theorem 12.6.2 in Raghavarao [39]. All

designs of Case 4.4 have r or k > 20 which are beyond the scope in Table 3.4.

Other cases may have r and/or k > 20.

The above-mentioned information will be summarized in Table 3.4.

3.4. Table of a‰ne resolvable SRGD designs with va 100 and r; ka 20

According to the values of positive integers x and y as expressed in (3.3.1)

and (3.3.2), we now systematically search a‰ne resolvable SRGD designs with

admissible parameters within the scope of va 100 and r; ka 20. (Note that

in Clatworthy [12] r; ka 10.) In fact, there are 42 parameters’ combinations,

among of which 26 designs are existent, 11 designs do not exist, while other 5

cases are unknown for the existence.

In Table 3.4, the admissible parameters of the a‰ne resolvable SRGD

designs are listed along with existence information. The designs are numbered
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Table 3.4. A‰ne resolvable SRGD designs

No. m n v b r k l1 l2 q2 Source 1 Source 2 x y

1 2 2 4 4 2 2 0 1 1 SR1 1 1

2 2 4 8 12 6 4 2 3 2 SR38 1 2

3 2 6 12 20 10 6 4 5 3 SR71 1 3

4 2 8 16 28 14 8 6 7 4 Exist 1 4

5 2 10 20 36 18 10 8 9 5 ? ? 1 5

6 3 3 9 9 3 3 0 1 1 SR23 1 1

7 3 9 27 36 12 9 3 4 3 Non-E ? 1 3

8 4 2 8 8 4 4 0 2 2 SR36 2 1

9 4 4 16 16 4 4 0 1 1 SR44 1 1

10 4 4 16 24 12 8 4 6 4 Exist 2 2

11 4 6 24 40 20 12 8 10 6 ? Exist 2 3

12 4 16 64 80 20 16 4 5 4 ? ? 1 4

13 5 5 25 25 5 5 0 1 1 SR60 1 1

14 6 2 12 12 6 6 0 3 3 Non-E SR67 3 1

15 6 3 18 18 6 6 0 2 2 SR72 2 1

16 6 4 24 36 18 12 6 9 6 Non-E ? 3 2

17 6 6 36 36 6 6 0 1 1 Non-E ? 1 1

18 6 6 36 45 15 12 3 5 4 Non-E ? 2 2

19 7 7 49 49 7 7 0 1 1 SR87 1 1

20 8 2 16 16 8 8 0 4 4 SR92 4 1

21 8 4 32 32 8 8 0 2 2 SR95 2 1

22 8 8 64 64 8 8 0 1 1 SR97 1 1

23 9 3 27 27 9 9 0 3 3 SR102 3 1

24 9 9 81 81 9 9 0 1 1 SR105 1 1

25 10 2 20 20 10 10 0 5 5 Non-E SR108 5 1

26 10 5 50 50 10 10 0 2 2 Exist 2 1

27 10 10 100 100 10 10 0 1 1 Non-E ? 1 1

28 12 2 24 24 12 12 0 6 6 Exist 6 1

29 12 3 36 36 12 12 0 4 4 Exist 4 1

30 12 4 48 48 12 12 0 3 3 Exist 3 1

31 12 6 72 72 12 12 0 2 2 ? ? 2 1

32 14 2 28 28 14 14 0 7 7 Non-E ? 7 1

33 14 7 98 98 14 14 0 2 2 Exist 2 1

34 15 3 45 45 15 15 0 5 5 Non-E ? 5 1

35 15 5 75 75 15 15 0 3 3 Non-E ? 3 1

36 16 2 32 32 16 16 0 8 8 Exist 8 1

37 16 4 64 64 16 16 0 4 4 Exist 4 1

38 18 2 36 36 18 18 0 9 9 Non-E ? 9 1

39 18 3 54 54 18 18 0 6 6 Exist 6 1

40 20 2 40 40 20 20 0 10 10 Exist 10 1

41 20 4 80 80 20 20 0 5 5 ? ? 5 1

42 20 5 100 100 20 20 0 4 4 Exist 4 1

315A‰ne a-resolvable PBIB designs



in the ascending order of m and for the same m in the order of n. Since

q1 ¼ 0, the parameter is not listed. ‘‘Non-E’’ means the nonexistence of the

design. Source 1 has some information on the existence of the corresponding

a‰ne resolvable SRGD design, while Source 2 shows some information on

the existence of the corresponding SRGD design when the a‰ne resolvable

solution does not exist or is unknown. The symbol ? means that the existence

or nonexistence of the corresponding design is unknown. Half of the existence

is confirmed in Table VI of Clatworthy [12], for example, SR1, etc. By

Theorem 12.6.2 of Raghavarao [39], it can be seen that a‰ne resolvable designs

of Nos. 7, 14, 16, 17, 18, 32, 34 and 35 do not exist. The nonexistence of

designs of Nos. 17 and 27 also follows from Remark 3.3.1 since an a‰ne plane

of order 6 or 10 does not exist (cf. [34]). The nonexistence of designs of Nos.

25 and 38 follows from Corollary 3.3.4.

3.5. A‰ne a-resolvable L2 designs

For the description of an L2 design with v ¼ s2 treatments, having the

incidence matrix N, see Definition 2.5. Note (cf. [39]) that NN 0 has eigen-

values rþ ðs� 2Þl1 � ðs� 1Þl2 (¼ y1, say) and r� 2l1 þ l2 (¼ y2, say) other

than simple rk with respective multiplicities 2ðs� 1Þ and ðs� 1Þ2.
Now we consider an a‰ne a-resolvable L2 design with parameters v ¼ s2,

b ¼ bt, r ¼ at, k, l1, l2, q1 ¼ kða� 1Þ=ðb � 1Þ and q2 ¼ k2=v.

By Lemma 3.1, we have the following.

Theorem 3.5.1. If rþ ðs� 2Þl1 � ðs� 1Þl2 > 0 and r� 2l1 þ l2 > 0, then

there does not exist an a‰ne a-resolvable L2 design for any ab 1.

Therefore, by Remark 3.2, other two cases are considered to investigate L2

designs with the a‰ne a-resolvability.

Case 3.5.1. A‰ne a-resolvable L2 designs with y1 ¼ rþ ðs� 2Þl1 � ðs� 1Þl2
¼ 0 and y2 ¼ r� 2l1 þ l2 > 0

In this case, it is clear that l2 > l1.

At first, an integral expression of q1 is derived as in Corollaries 3.1.1 and

3.3.1 for a‰ne a-resolvable GD designs.

Corollary 3.5.1. In an a‰ne a-resolvable L2 design of Case 3.5.1,

q1 ¼ kða� 1Þ=ðb � 1Þ ¼ k � rþ 2l1 � l2 holds.

Proof. Since y1 ¼ rþ ðs� 2Þl1 � ðs� 1Þl2 ¼ 0 and y2 ¼ r� 2l1 þ l2 > 0,

Theorem 3.3 implies that q1 ¼ k � rþ 2l1 � l2. 9

Furthermore, a useful result is remarked.
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Lemma 3.5.1 ([31]). In an L2 design of Case 3.5.1, k is divisible by s.

Hence the following can be shown.

Theorem 3.5.2. The parameters of an a‰ne a-resolvable L2 design of Case

3.5.1 are given by

v ¼ s2; b ¼ bðs� 1Þ2

b � 1
; r ¼ aðs� 1Þ2

b � 1
; k ¼ as2

b
;

l1 ¼
aðs� 1Þðas� bÞ

bðb � 1Þ ; l2 ¼
aðas2 þ b � 2asÞ

bðb � 1Þ ; t ¼ ðs� 1Þ2

b � 1
;

where as=b is an integer.

Proof. Since eigenvalues of NN 0 are rþ ðs� 2Þl1 � ðs� 1Þl2 ¼ 0 and

r� 2l1 þ l2 > 0 with respective multiplicities 2ðs� 1Þ and ðs� 1Þ2, by Theorem

3.3 it holds that b� t ¼ ðs� 1Þ2, i.e., b ¼ vþ t� 2sþ 1 which also implies

that t ¼ ðs� 1Þ2=ðb � 1Þ. Then it follows that v ¼ s2, b ¼ bt ¼ bðs� 1Þ2=
ðb � 1Þ, r ¼ at ¼ aðs� 1Þ2=ðb � 1Þ, k ¼ vr=b ¼ as2=b. Furthermore, from re-

lations rðk � 1Þ ¼ n1l1 þ n2l2 and rþ ðs� 2Þl1 � ðs� 1Þl2 ¼ 0, we get l1 ¼
aðs� 1Þðsa� bÞ=½bðb � 1Þ� and l2 ¼ aðs2aþ b � 2saÞ=½bðb � 1Þ�. Also by

Lemma 3.5.1, k=s ¼ as=b must be an integer. 9

Thus, all parameters of an a‰ne a-resolvable L2 design of Case 3.5.1 can

be expressed in terms of s, a and b.

Note that

q1 ¼
s2aða� 1Þ
bðb � 1Þ and q2 ¼

sa

b

� �2

:

Next the case of a ¼ 1 will be investigated in detail. For an a‰ne resolv-

able L2 design of Case 3.5.1, t ¼ r and then Theorem 3.5.2 shows the

expression of design parameters as

v ¼ s2; b ¼ bðs� 1Þ2

b � 1
; r ¼ ðs� 1Þ2

b � 1
; k ¼ s2

b
; l1 ¼

ðs� 1Þðs� bÞ
bðb � 1Þ ;

l2 ¼
s2 þ b � 2s

bðb � 1Þ ; q1 ¼ 0; q2 ¼
s2

b2
;

k

s
¼ s

b
:

Then there exists a positive integer l such that

s ¼ lb

which implies that
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v ¼ ðlbÞ2; b ¼ bðlb � 1Þ2

b � 1
; r ¼ ðlb � 1Þ2

b � 1
; k ¼ l2b;ð3:5:1Þ

l1 ¼ lðl� 1Þ þ ðl� 1Þ2

b � 1
; l2 ¼

l2b þ 1� 2l

b � 1
; q2 ¼ l2:ð3:5:2Þ

Thus all parameters of an a‰ne resolvable L2 design of Case 3.5.1 are expressed

in terms of l and b. In particular, the above expression of l1 means that for

given l, we have a finite number of b since l1 in (3.5.2) is an integer. For

example, some l are investigated.

(i) l ¼ 1: l1 ¼ 0 and then we have the design parameters as v ¼ b2,

b ¼ bðb � 1Þ, r ¼ b � 1, k ¼ b, l1 ¼ 0, l2 ¼ 1. The existing LS36 and LS61 in

Table XII of Clatworthy [12] belong to this case. Note ([39; Theorem 8.10.1])

that there exists an L2 design, whose solution may not be a‰ne resolvable, with

the above parameters for any b of a prime or a prime power. However, the

following can be further obtained.

Theorem 3.5.3. The existence of an a‰ne resolvable symmetric SRGD

design with parameters

v ¼ b ¼ n2; r ¼ k ¼ n; l1 ¼ 0; l2 ¼ 1; q1 ¼ 0; q2 ¼ 1; m ¼ n

is equivalent to the existence of an a‰ne resolvable L2 design of Case 3.5.1 with

parameters

v� ¼ n2; b� ¼ nðn� 1Þ; r� ¼ n� 1; k � ¼ n; l�
1 ¼ 0; l�

2 ¼ 1; q�
1 ¼ 0; q�

2 ¼ 1:

Proof. In the first resolution set of the given a‰ne resolvable SRGD

design, without loss of generality, we can put the incidence structure, by

suitable permutations on rows for each of n groups of n treatments, as follows:

1n n In;

where the GD association scheme is

1 2 � � � n

nþ 1 nþ 2 � � � 2n

..

. ..
.

� � � ..
.

ðn� 1Þnþ 1 ðn� 1Þnþ 2 � � � n2

2
66664

3
77775:ð3:5:3Þ

Now, by deleting the first resolution set 1n n In of n blocks from the original

a‰ne resolvable SRGD design, it can be seen that the remaining structure

forms an a‰ne resolvable L2 design of Case 3.5.1 with parameters v� ¼ v ¼ n2,

b� ¼ b� n ¼ nðn� 1Þ, r� ¼ r� 1 ¼ n� 1, k � ¼ k ¼ n, l�
1 ¼ l1 or l2 � 1,

l�
2 ¼ l2, whose association scheme is the same as in (3.5.3) by following

Definition 2.5. The converse process is obvious. 9
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We should know the existence of the SRGD design in Theorem 3.5.3 as

described in Theorem 3.3.2 and Remark 3.3.1. Four designs of Nos. 1, 6, 7

and 8 in Table 3.6.1 are provided by Theorem 3.5.3 with n ¼ 3; 7; 8 and 9,

respectively. When n ¼ 4 and 5, the designs are available as LS36 and LS61.

(ii) l ¼ 2: l1 ¼ 2þ 1=ðb � 1Þ which yields b ¼ 2. Hence we have

v ¼ 16, b ¼ 18, r ¼ 9, k ¼ 8, l1 ¼ 3, l2 ¼ 5 whose solution is known as

LS100 in Table XII of Clatworthy [12].

(iii) l ¼ 3: l1 ¼ 6þ 4=ðb � 1Þ which yields b ¼ 2; 3; 5. When b ¼ 2, we

have v ¼ 36, b ¼ 50, r ¼ 25, k ¼ 18, l1 ¼ 10, l2 ¼ 13. When b ¼ 3, we have

v ¼ 81, b ¼ 96, r ¼ 32, k ¼ 27, l1 ¼ 8, l2 ¼ 22. When b ¼ 5, we have v ¼ 225,

b ¼ 245, r ¼ 49, k ¼ 45, l1 ¼ 7, l2 ¼ 10. All have r and/or k > 20 which are

beyond the scope in Table 3.6.1.

(iv) lb 4: Since r; k > 30, the parameters are not described here.

Case 3.5.2. A‰ne a-resolvable L2 designs with y1 ¼ rþ ðs� 2Þl1 � ðs� 1Þl2
> 0 and y2 ¼ r� 2l1 þ l2 ¼ 0

In this case, it is clear that l1 > l2.

At first, an integral expression of q1 is derived as in Corollary 3.5.1 for an

a‰ne a-resolvable L2 design of Case 3.5.1.

Corollary 3.5.2. In an a‰ne a-resolvable L2 design of Case 3.5.2,

q1 ¼ k � r� ðs� 2Þl1 þ ðs� 1Þl2 holds.

Proof. Since y1 ¼ rþ ðs� 2Þl1 � ðs� 1Þl2 > 0 and y2 ¼ r� 2l1 þ l2 ¼ 0,

Theorem 3.3 implies the required expression. 9

Furthermore, the same result as in Corollary 3.5.1 is remarked in this case

as follows.

Lemma 3.5.2 ([31]). In an L2 design of Case 3.5.2, k is divisible by s.

In this case the following is also seen.

Theorem 3.5.4. The parameters of an a‰ne a-resolvable L2 design of Case

3.5.2 are given by

v ¼ s2; b ¼ 2bðs� 1Þ
b � 1

; r ¼ 2aðs� 1Þ
b � 1

; k ¼ as2

b
;

l1 ¼
aðasþ bs� 2bÞ

bðb � 1Þ ; l2 ¼
2aðas� bÞ
bðb � 1Þ ; t ¼ 2ðs� 1Þ

b � 1
;

where as=b is an integer.

Proof. Since eigenvalues of NN 0 are rþ ðs� 2Þl1 � ðs� 1Þl2 > 0 and

r� 2l1 þ l2 ¼ 0 with respective multiplicities 2ðs� 1Þ and ðs� 1Þ2, by Theorem
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3.3 it holds that b� t ¼ 2ðs� 1Þ, i.e., t ¼ 2ðs� 1Þ=ðb � 1Þ. Then it follows

that v ¼ s2, b ¼ bt ¼ 2bðs� 1Þ=ðb � 1Þ, r ¼ at ¼ 2aðs� 1Þ=ðb � 1Þ, k ¼ vr=b ¼
as2=b. Furthermore, from relations rðk � 1Þ ¼ n1l1 þ n2l2 and r� 2l1 þ l2 ¼
0, we obtain l1 ¼ aðsaþ sb � 2bÞ=½bðb � 1Þ� and l2 ¼ 2aðsa� bÞ=½bðb � 1Þ�.
Also by Lemma 3.5.2, k=s ¼ as=b must be an integer. 9

Thus, all parameters of an a‰ne a-resolvable L2 design of Case 3.5.2 can

be expressed in terms of s, a and b.

Note that

q1 ¼
s2aða� 1Þ
bðb � 1Þ and q2 ¼

sa

b

� �2

:

Next the case of a ¼ 1 will be investigated in detail. For an a‰ne resolv-

able L2 design of Case 3.5.2, t ¼ r and then Theorem 3.5.4 shows the design

parameters as

v ¼ s2; b ¼ 2bðs� 1Þ
b � 1

; r ¼ 2ðs� 1Þ
b � 1

; k ¼ s2

b
; l1 ¼

ðs� 2Þb þ s

bðb � 1Þ ;

l2 ¼
2ðs� bÞ
bðb � 1Þ ; q1 ¼ 0; q2 ¼

s2

b2
;

k

s
¼ s

b
:

Then there exists a positive integer l such that

s ¼ lb

which implies that

v ¼ ðlbÞ2; b ¼ 2bðlb � 1Þ
b � 1

; r ¼ 2ðlb � 1Þ
b � 1

; k ¼ l2b;ð3:5:4Þ

l1 ¼ lþ 2ðl� 1Þ
b � 1

; l2 ¼
2ðl� 1Þ
b � 1

; q2 ¼ l2:ð3:5:5Þ

Thus all parameters of a‰ne resolvable L2 design of Case 3.5.2 are expressed

in terms of l and b. In particular, the above expression of l1 or l2 in (3.5.5)

means that for given l, we have a finite number of b. For example, some l

are investigated.

(i) l ¼ 1: The design of this case always exists for any b as the

following shows.

Theorem 3.5.5. There exists an a‰ne resolvable L2 design of Case 3.5.2

with parameters

v ¼ b2; b ¼ 2b; r ¼ 2; k ¼ b; l1 ¼ 1; l2 ¼ 0; q1 ¼ 0; q2 ¼ 1:
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Proof. It follows that the present design can be provided by the inci-

dence matrix as

½Ib n 1b : 1b n Ib�:

Here the association scheme is given by the b � b array as

1 2 � � � b

b þ 1 b þ 2 � � � 2b

..

. ..
.

� � � ..
.

ðb � 1Þb þ 1 ðb � 1Þb þ 2 � � � b2

2
66664

3
77775

which is the same structure as in (3.5.3). 9

When b ¼ 2, a design of No. 10 in Table 3.6.2 is provided. The existing

LS7, LS28, LS51, LS74, LS84, LS102, LS119 and LS137 in Table XII of

Clatworthy [12] belong to this case.

(ii) l ¼ 2: l1 ¼ 2þ 2=ðb � 1Þ which yields b ¼ 2; 3. When b ¼ 2, we

have v ¼ 16, b ¼ 12, r ¼ 6, k ¼ 8, l1 ¼ 4, l2 ¼ 2 a design of which exists as

LS98 in Table XII of Clatworthy [12]. When b ¼ 3, we have v ¼ 36, b ¼ 15,

r ¼ 5, k ¼ 12, l1 ¼ 3, l2 ¼ 1 a design of which does not exist by Theorem

12.6.6 of Raghavarao [39].

(iii) l ¼ 3: l1 ¼ 3þ 4=ðb � 1Þ which yields b ¼ 2; 3; 5. When b ¼ 2, we

have v ¼ 36, b ¼ 20, r ¼ 10, k ¼ 18, l1 ¼ 7, l2 ¼ 4 whose solution is unknown.

When b ¼ 3, we have v ¼ 81, b ¼ 24, r ¼ 8, k ¼ 27, l1 ¼ 5, l2 ¼ 2. When

b ¼ 5, we have v ¼ 225, b ¼ 35, r ¼ 7, k ¼ 45, l1 ¼ 4, l2 ¼ 1. The last two

designs have k > 20 which are beyond the scope of Table 3.6.2.

(iv) lb 4: Since r and/or k > 30, the parameters are not described here.

3.6. Tables of a‰ne resolvable L2 designs with va 100 and r; ka 20

According to the values of positive integers l in (3.5.1), (3.5.2), (3.5.4) and

(3.5.5), we now systematically search a‰ne resolvable L2 designs, of two cases,

with admissible parameters within the scope of va 100 and r; ka 20. (Note

that in Clatworthy [12] r; ka 10.) In fact, there are 21 parameters’ combi-

nations, among of which 17 designs are existent, 3 designs do not exist, while

only one case is unknown for the existence.

In Tables 3.6.1 and 3.6.2, the admissible parameters of the a‰ne resolv-

able L2 designs are listed along with existence information. The designs are

numbered in the ascending order of v and for the same v in the order of b.

Since q1 ¼ 0, the parameter is not listed. ‘‘Non-E’’ means the nonexistence of

the design. Most of the existence is confirmed in Table VII of Clatworthy [12],

for example, LS36, etc. Source has some information on the existence of the
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corresponding a‰ne resolvable L2 design (cf. [12]). Comment shows theorems

on the construction. The existence of designs of Nos. 1, 6, 7 and 8 is newly

shown by Theorem 3.5.3. It is also shown by Theorems 12.6.5 and 12.6.6

of Raghavarao [39] that two designs of Nos. 5 and 16 do not exist. The

nonexistence of a design of No. 9 is shown by Theorem 3.5.3 with Remark

3.3.1. A design of No. 10 is newly listed by Theorem 3.5.5.

4. Bounds in a‰ne resolvable PBIB designs

A simple comparison between the number of treatments v and the number

of blocks b will be made. As mentioned in Section 2, Fisher’s inequality bb v

holds for a BIB design, but it is not always valid in a PBIB design.

The following results are well known (cf. [39]): (i) In a regular GD design

bb v holds. (ii) In an SGD design with v ¼ mn, bbm holds. (iii) In an

Table 3.6.1. A‰ne resolvable L2 designs with rþ ðs� 2Þl1 � ðs� 1Þl2 ¼ 0

No. v b r k l1 l2 q2 Source Comment

1 9 6 2 3 0 1 1 Exist Theorem 3.5.3

2 16 12 3 4 0 1 1 LS36 Theorem 3.5.3

3 16 18 9 8 3 5 4 LS100

4 25 20 4 5 0 1 1 LS61 Theorem 3.5.3

5 36 30 5 6 0 1 1 Non-E

6 49 42 6 7 0 1 1 Exist Theorem 3.5.3

7 64 56 7 8 0 1 1 Exist Theorem 3.5.3

8 81 72 8 9 0 1 1 Exist Theorem 3.5.3

9 100 90 9 10 0 1 1 Non-E

Table 3.6.2. A‰ne resolvable L2 designs with r� 2l1 þ l2 ¼ 0

No. v b r k l1 l2 q2 Source Comment

10 4 4 2 2 1 0 1 Exist Theorem 3.5.5

11 9 6 2 3 1 0 1 LS7 Theorem 3.5.5

12 16 8 2 4 1 0 1 LS28 Theorem 3.5.5

13 16 12 6 8 4 2 4 LS98

14 25 10 2 5 1 0 1 LS51 Theorem 3.5.5

15 36 12 2 6 1 0 1 LS74 Theorem 3.5.5

16 36 15 5 12 3 1 4 Non-E

17 36 20 10 18 7 4 9 ?

18 49 14 2 7 1 0 1 LS84 Theorem 3.5.5

19 64 16 2 8 1 0 1 LS102 Theorem 3.5.5

20 81 18 2 9 1 0 1 LS119 Theorem 3.5.5

21 100 20 2 10 1 0 1 LS137 Theorem 3.5.5
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SRGD design with v ¼ mn, bb v� ðm� 1Þ holds. (iv) In an L2 design with

v ¼ s2, y1 ¼ rþ ðs� 2Þl1 � ðs� 1Þl2 and y2 ¼ r� 2l1 þ l2, (iv-1) when y1 > 0

and y2 > 0, bb v holds, (iv-2) when y1 > 0 and y2 ¼ 0, bb v� ðs� 1Þ2 holds,

and (iv-3) when y1 ¼ 0 and y2 > 0, bb v� 2ðs� 1Þ holds. Thus, for the

incidence matrix N of a block design, if one of eigenvalues of NN 0 is zero, then

an inequality bb v may not hold in general. Through the property of a‰ne

resolvability, this inequality will be examined as in Theorem 4.1.

By Theorem 3.3, we can see some relations on v and b through other

parameters in an a‰ne a-resolvable 2-associate PBIB design. Even so, a

property of the a‰ne resolvability shows the following as a simple comparison

between v and b only.

Theorem 4.1. In a‰ne resolvable PBIB designs, it holds that

(1) for an SGD design, b < v;

(2) for an SRGD design, bb v;

(3) for an L2 design with y1 > 0 and y2 ¼ 0, b < v.

Proof. (1) It follows that b ¼ rþm� 1 ¼ ðm� 1Þ=ðb � 1Þ þm� 1 ¼
½1þ 1=ðb � 1Þ�ðm� 1Þ < 2ðm� 1Þa nðm� 1Þ < nm ¼ v. (2) Since l1 ¼ r�
kb 0, rb k and hence b ¼ brb bk ¼ v. (3) Since b ¼ v� 1� ðs� 1Þ2 þ r,

v � b ¼ s2 � 2s þ 2 � 2ðs � 1Þ=ðb � 1Þ ¼ s2 � 2ðs � 1Þ½1 þ 1=ðb � 1Þ�b s2 �
4ðs� 1Þ ¼ ðs� 2Þ2 b 0. 9

Note that (2) in Theorem 4.1 is interesting in the sense that one of

eigenvalues is zero and further Fisher inequality holds. Also note that in an

a‰ne resolvable L2 design with y1 ¼ 0 and y2 > 0, two cases b < v or b > v

hold. Both such examples exist. For example, see the existing LS51, LS61

and LS100 in Table XII of Clatworthy [12].

The argument made in this section is motivated by the discussion given in

Kadowaki and Kageyama [18, 19, 20].

5. Conclusions

We show the usefulness of number-theoretic approach to investigate

combinatorial structure of a‰ne a-resolvable PBIB designs. Usually, this

kind of approach may not yield much results in design theory. However,

as far as a property of the a‰ne a-resolvability is concerned, the approach is

powerful. Of course this does not solve the problem completely. We may

require other combinatorial consideration. If we restrict ourselves to a ¼ 1,

i.e., a‰ne resolvability, then we could get more concise results on existence.

Within the practical range of parameters, it reveals that there are not many

such designs as in tables given in Sections 3.2, 3.4 and 3.6. In fact, we cannot
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find many new series of such PBIB designs other than ones in Theorems 3.3.2,

3.3.3, 3.3.4 and 3.5.5, except for designs constructed by use of the result that

the complement of an a‰ne resolvable block design is an a‰ne a-resolvable

block design for some a. Theorems 3.3.4 and 3.5.3 have some potential to

produce many a‰ne resolvable designs.

As a practical investigation (i.e., va 100 and r; ka 20) of a‰ne resolvable

SGD, SRGD, L2, triangular and cyclic designs, only six designs are left un-

known on existence (i.e., five SRGD designs, one L2 design).
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[ 9 ] T. Caliński and S. Kageyama, Block Designs: A Randomization Approach, Vol. I:

Analysis, Lecture Notes in Statistics 150, Springer, New York, 2000.
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