Lebesgue spaces with variable exponent on a probability space

Hiroyuki Aoyama

(Received July 4, 2008) (Revised September 4, 2008)

ABSTRACT. We show that the Lebesgue space with a variable exponent $L_{p(\cdot)}$ is a rearrangement–invariant space if and only if p is constant. In addition, we give a necessary and sufficient condition on a variable exponent for a martingale inequality to hold.

1. Introduction

Let p be a variable exponent, i.e., let $p : \mathbf{R}^n \to [1, \infty)$ be a measurable function. The Lebesgue space with a variable exponent $L_{p(\cdot)}$ is defined to be the set of measurable functions f on \mathbf{R}^n such that for some $\lambda > 0$,

$$\int_{\mathbf{R}^n} |\lambda f(x)|^{p(x)} dx < \infty.$$

Such Lebesgue spaces were studied by O. Kováčik and J. Rákosník [6], X. Fan and D. Zhao [3] and others.

In this paper, we consider such Lebesgue spaces $L_{p(\cdot)}$ on a probability space Ω : one of our purposes is to prove that $L_{p(\cdot)}$ is a rearrangement-invariant space (see Definition 5) if and only if p is constant.

Another purpose is to prove the weak type Doob inequality with a variable exponent. Let $(\Omega, \Sigma, \mathbf{P})$ be a probability space with a *filtration* $\mathscr{F} = (\mathscr{F}_n)_{n \in \mathbb{Z}_+}$, where we mean by filtration an increasing sequence of sub- σ -algebras of Σ . We define $Mf = \sup_{n \in \mathbb{Z}_+} |f_n|$ and $f_{\infty} = \lim_{n \to \infty} f_n$ almost surely (a.s.). Let $f = (f_n)_{n \in \mathbb{Z}_+}$ be a uniformly integrable \mathscr{F} -martingale, that is, $f = (f_n)$ is a \mathscr{F} -martingale such that $f_n = \mathbb{E}[f_{\infty}|\mathscr{F}_n]$ a.s. for $n \in \mathbb{Z}_+$. Let $p \ge 1$ be a constant. Then

$$\lambda^{p} \mathbf{P}(Mf > \lambda) \le \mathbf{E}[|f_{\infty}|^{p}] \qquad (\lambda > 0).$$
(1)

This inequality was proved by J. L. Doob.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46E30; Secondary 60G42.

Key words and phrases. Generalized Lebesgue space, variable exponent, martingale, Doob's inequality.

It is well known that inequality (1) is a probabilistic analogue of the Hardy-Littlewood weak type inequality

$$|\{x \in G : Mf(x) > t\}| \le \frac{C}{t^p} \int_G |f(y)|^p dy, \qquad 1 \le p < \infty,$$

where $G \subset \mathbf{R}^n$ is an open set and M denotes the Hardy–Littlewood maximal operator.

Recently, this inequality was generalized as follows (see [2]):

If there exists a constant c such that for every ball B,

$$\frac{1}{p(x)} \le \frac{c}{|B|} \int_B \frac{1}{p(y)} \, dy, \qquad x \in B,$$
(2)

then there exists a constant C such that for any t > 0,

$$|\{x \in G : Mf(x) > t\}| \le C \int_G \left(\frac{|f(y)|}{t}\right)^{p(y)} dy$$

We show that an analogous result holds in our setting; under the condition that

$$\frac{1}{p} \le C \mathbb{E}\left[\frac{1}{p}\middle| \mathscr{F}_{\tau}\right] \quad \text{for all stopping times } \tau,$$

we prove the inequality

$$\mathbf{P}(Mf > \lambda) \le \mathbf{E}\left[\left|\frac{f_{\infty}}{\lambda}\right|^{p}\right].$$
(3)

We also consider the inequality

$$\mathbf{E}[\lambda^p \mathbf{1}_{\{Mf > \lambda\}}] \le \mathbf{E}[|f_{\infty}|^p].$$
(4)

2. Preliminaries

Let $(\Omega, \Sigma, \mathbf{P})$ be a complete probability space. We denote by \mathbf{F} the set of all filtrations of $(\Omega, \Sigma, \mathbf{P})$, by $\mathscr{M}(\mathscr{F})$ the set of all uniformly integrable martingales with respect to $\mathscr{F} \in \mathbf{F}$, and by $\mathscr{S} \equiv \mathscr{S}(\mathscr{F})$ the set of all stopping times with respect to $\mathscr{F} \in \mathbf{F}$. For $f = (f_n)_{n \in \mathbf{Z}_+} \in \mathscr{M}(\mathscr{F})$, we let

$$Mf = \sup_{n \in \mathbb{Z}_+} |f_n|$$
 and $f_{\infty} = \lim_{n \to \infty} f_n$ a.s.

Next we fix some notation concerning generalized Lebesgue spaces.

Let p be a variable exponent, i.e., let $p: \Omega \to [1, \infty)$ be a random variable. We put $p^+ = \operatorname{ess\,sup}_{\Omega} p$ and $p^- = \operatorname{ess\,inf}_{\Omega} p$. For a random variable x we define the functional $\rho_{p(\cdot)}$ by

$$\rho_{p(\cdot)}(x) = \mathbf{E}[|x|^p] = \int_{\Omega} |x(\omega)|^{p(\omega)} d\mathbf{P}(\omega).$$

The Lebesgue space $L_{p(\cdot)}$ with the variable exponent p on Ω is defined to be the set of all random variables such that $\rho_{p(\cdot)}(\lambda x) < \infty$ for some $\lambda > 0$. It is easy to see that the functional $\|\cdot\|_{p(\cdot)}$ defined by

$$\|x\|_{p(\cdot)} = \inf\{\lambda > 0 : \rho_{p(\cdot)}(x/\lambda) \le 1\}$$

is a norm on $L_{p(\cdot)}$.

PROPOSITION 1. Let *p* be a variable exponent and let $x \in L_{p(\cdot)}$. Then $||x||_{p(\cdot)} \leq 1$ if and only if $\rho_{p(\cdot)}(x) \leq 1$.

See [6] for a proof.

Let X and Y be normed linear spaces. We write $X \hookrightarrow Y$ if X is continuously embedded in Y, i.e., if $X \subset Y$ and the inclusion map is continuous.

PROPOSITION 2. Let p and q be variable exponents. If $p \le q$ a.s. on Ω , then $L_{q(\cdot)} \hookrightarrow L_{p(\cdot)}$.

See [6, Theorem 2.8] for a proof.

DEFINITION 1. A Banach function space over a probability space is a real Banach space $(X, \|\cdot\|_X)$ of random variables such that:

- (B1) $L_{\infty} \hookrightarrow X \hookrightarrow L_1$.
- (B2) If $x \in X$ and $|y| \le |x|$ a.s., then $y \in X$ and $||y||_X \le ||x||_X$.
- (B3) If $x_n \in X$ for all $n, 0 \le x_n \uparrow x$ a.s., and $\sup_n ||x_n||_X < \infty$, then $x \in X$ and $||x||_X = \sup_n ||x_n||_X$.

PROPOSITION 3. The space $(L_{p(\cdot)}, \|\cdot\|_{p(\cdot)})$ is a Banach function space over a probability space Ω .

PROOF. The completeness can be proved as in [6] or [5]. It is easy to prove (B1), (B2) and (B3).

If x and y are random variables, we write $x \simeq_d y$ when they have the same distribution.

DEFINITION 2. A rearrangement-invariant (r.i.) space is a Banach function space $(X, \|\cdot\|_X)$ such that:

(R) If $x \simeq_d y$ and $x \in X$, then $y \in X$ and $||x||_X = ||y||_X$.

It is known (cf. [1, p. 43]) that if p is constant on Ω , then $(L_{p(\cdot)}, \|\cdot\|_{p(\cdot)})$ is an r.i. space.

3. Results

Throughout this section, we will consider martingales $f = (f_n)$ such that $f_{\infty} \in L_{p(\cdot)}$ and filtrations $\mathscr{F} = (\mathscr{F}_n)$ such that \mathscr{F}_0 includes the family of **P**-negligible subsets of Ω . We denote by 1_A the indicator function of $A \in \Sigma$.

Our main result is as follows:

THEOREM 1. Suppose that $(\Omega, \Sigma, \mathbf{P})$ is a nonatomic space, i.e., that $(\Omega, \Sigma, \mathbf{P})$ contains no atom. If there exists a norm on $L_{p(\cdot)}$ which is equivalent to $\|\cdot\|_{p(\cdot)}$ and with respect to which $L_{p(\cdot)}$ is an r.i. space, then p is constant.

PROOF. We assume that p is not constant. It suffices to show that there are random variables x and y such that $x \in L_{p(\cdot)}$, $x \simeq_d y$ and $||y||_{p(\cdot)} = \infty$. Then there exist numbers m_1 and m_2 such that $1 \le m_1 < m_2 < \infty$ and both $A = \{p \le m_1\}$ and $B = \{m_2 \le p\}$ have positive measure. Since Ω is non-atomic, there exist measurable sets A' and B' such that $A' \subset A$, $B' \subset B$ and $\mathbf{P}(A') = \mathbf{P}(B') > 0$. Again since Ω is a nonatomic, there exist sequences $\{A_n\}_{n \in \mathbb{N}}$ and $\{B_n\}_{n \in \mathbb{N}}$ of pairwise disjoint measurable subsets of Ω such that

$$A_n \subset A', \quad B_n \subset B' \qquad (n \in \mathbf{N}),$$

and

$$\mathbf{P}(A_n) = \frac{1}{2^n} \mathbf{P}(A'), \quad \mathbf{P}(B_n) = \frac{1}{2^n} \mathbf{P}(B') \qquad (n \in \mathbf{N}).$$

Define

$$x = \sum_{n=1}^{\infty} 2^{n/m_2} \mathbf{1}_{A_n}$$
 and $y = \sum_{n=1}^{\infty} 2^{n/m_2} \mathbf{1}_{B_n}$

Then we have $x \simeq_d y$ and

$$\mathbf{E}[x^{p}] = \sum_{n=1}^{\infty} \mathbf{E}[2^{(n/m_{2})p} \mathbf{1}_{A_{n}}] \le \sum_{n=1}^{\infty} \mathbf{E}[2^{(m_{1}/m_{2})n} \mathbf{1}_{A_{n}}] = \sum_{n=1}^{\infty} \left\{ \left(\frac{1}{2}\right)^{1-m_{1}/m_{2}} \right\}^{n} \mathbf{P}(A') < \infty.$$

Therefore $x \in L_{p(\cdot)}$. Moreover, for each $\lambda > 0$, there is a number $N_{\lambda} \in \mathbb{N}$ such that $\lambda \leq 2^{N_{\lambda}/m_2}$. Then we have

$$\mathbf{E}\left[\left|\frac{y}{\lambda}\right|^{p}\right] \geq \sum_{n=N_{\lambda}}^{\infty} \mathbf{E}\left[\left(\frac{2^{n/m_{2}}}{\lambda}\right)^{p} \mathbf{1}_{B_{n}}\right] \geq \sum_{n=N_{\lambda}}^{\infty} \frac{1}{\lambda^{m_{2}}} \mathbf{P}(B') = \infty.$$

Hence $||y||_{p(\cdot)} = \inf\{\lambda > 0 : \mathbf{E}[|y/\lambda|^p] \le 1\} = \infty.$

210

If $(\Omega, \Sigma, \mathbf{P})$ has an atom, then the conclusion of Theorem 1 may not hold. EXAMPLE. Let A_1 , A_2 and A_3 be measurable subsets of Ω such that

$$\mathbf{P}(A_1) = \mathbf{P}(A_2) = \frac{2}{5}, \quad \mathbf{P}(A_3) = \frac{1}{5} \quad \text{and} \quad A_i \cap A_j = \emptyset \quad (i \neq j).$$

We let $\Sigma = \sigma(A_1, A_2, A_3)$. Now we define

$$p = \begin{cases} 1 & \text{on } A_1 \cup A_2, \\ 2 & \text{on } A_3. \end{cases}$$

For random variables x and y, we can write

$$x = \sum_{i=1}^{3} a_i 1_{A_i}, \qquad y = \sum_{i=1}^{3} b_i 1_{A_i},$$

where $a_i, b_i \in \mathbf{R}$.

We observe that if $x \neq y$ and $x \simeq_d y$, then $a_1 \neq a_2$, $a_1 = b_2$, $a_2 = b_1$ and $a_3 = b_3$. As a result, for $\lambda > 0$,

$$\mathbf{E}\left[\left|\frac{x}{\lambda}\right|^{p}\right] = \left|\frac{a_{1}}{\lambda}\right|\mathbf{P}(A_{1}) + \left|\frac{a_{2}}{\lambda}\right|\mathbf{P}(A_{2}) + \left|\frac{a_{3}}{\lambda}\right|^{2}\mathbf{P}(A_{3})$$
$$= \left|\frac{b_{2}}{\lambda}\right|\mathbf{P}(A_{1}) + \left|\frac{b_{1}}{\lambda}\right|\mathbf{P}(A_{2}) + \left|\frac{b_{3}}{\lambda}\right|^{2}\mathbf{P}(A_{3}) = \mathbf{E}\left[\left|\frac{y}{\lambda}\right|^{p}\right],$$

that is, $||x||_{p(\cdot)} = ||y||_{p(\cdot)}$. Thus $(L_{p(\cdot)}, ||\cdot||_{p(\cdot)})$ is the r.i. space, but p is not constant.

Now we study some martingale inequalities.

The next proposition is an analogue of the result of [2, Theorem 1.8]. The method of [2] is available for the proof of the proposition.

PROPOSITION 4. Let $\mathcal{F} \in \mathbf{F}$. If there is a constant $C \ge 1$ such that

$$\frac{1}{p} \le C \mathbf{E} \left[\frac{1}{p} \middle| \mathscr{F}_{\tau} \right] \ a.s.$$

for all $\tau \in \mathscr{S}$, then for any $f \in \mathscr{M}(\mathscr{F})$ such that $f_{\infty} \in L_{p(\cdot)}$ and for any $\lambda > 0$,

$$\mathbf{P}(Mf > \lambda) \le C\mathbf{E}\left[\left|\frac{f_{\infty}}{\lambda}\right|^{p}\right].$$

PROOF. For $\lambda > 0$, we define

$$\tau = \inf\{n \in \mathbf{Z}_+ : |f_n| > \lambda\} \in \mathscr{S},$$

with the convention that $\inf \emptyset = \infty$. It is easy to prove that $\{Mf > \lambda\} = \{\tau < \infty\}$ and $\{\tau < \infty\} \subset \{|f_{\tau}| > \lambda\}$. Note that

$$\mathbf{E}\left[\left|\frac{f_{\infty}}{\lambda}\right| \middle| \mathscr{F}_{\tau}\right] > 1 \ a.s. \text{ on } \{\tau < \infty\}.$$
(5)

By Young's inequality,

$$\mathbf{E}\left[\left|\frac{f_{\infty}}{\lambda}\right|\right|\mathscr{F}_{\tau}\right] \leq \mathbf{E}\left[\frac{1}{p}\left|\frac{f_{\infty}}{\lambda}\right|^{p}\right|\mathscr{F}_{\tau}\right] + \mathbf{E}\left[\frac{1}{q}\right|\mathscr{F}_{\tau}\right] \ a.s.,\tag{6}$$

where q is the conjugate function of p. By (5) and (6), we have

$$\mathbf{E}\left[\frac{1}{p}\middle|\mathscr{F}_{\tau}\right] = 1 - \mathbf{E}\left[\frac{1}{q}\middle|\mathscr{F}_{\tau}\right]$$
$$< \mathbf{E}\left[\left|\frac{f_{\infty}}{\lambda}\right|\middle|\mathscr{F}_{\tau}\right] - \mathbf{E}\left[\frac{1}{q}\middle|\mathscr{F}_{\tau}\right]$$
$$\leq \mathbf{E}\left[\frac{1}{p}\left|\frac{f_{\infty}}{\lambda}\right|^{p}\middle|\mathscr{F}_{\tau}\right] a.s. \text{ on } \{\tau < \infty\}.$$

Therefore,

$$\mathbf{P}(Mf > \lambda) \leq \mathbf{E}\left[\frac{1}{\mathbf{E}[1/p \mid \mathscr{F}_{\tau}]}\mathbf{E}[1/p \mid \mathscr{F}_{\tau}]\mathbf{1}_{\{\tau < \infty\}}\right]$$
$$\leq \mathbf{E}\left[\frac{1}{\mathbf{E}[1/p \mid \mathscr{F}_{\tau}]}\mathbf{E}\left[\frac{1}{p} \left|\frac{f_{\infty}}{\lambda}\right|^{p}\right|\mathscr{F}_{\tau}\right]\mathbf{1}_{\{\tau < \infty\}}\right]$$
$$\leq \mathbf{E}\left[\frac{1}{\mathbf{E}[1/p \mid \mathscr{F}_{\tau}]} \cdot \frac{1}{p} \cdot \left|\frac{f_{\infty}}{\lambda}\right|^{p}\mathbf{1}_{\{\tau < \infty\}}\right]$$
$$\leq C\mathbf{E}\left[\left|\frac{f_{\infty}}{\lambda}\right|^{p}\mathbf{1}_{\{\tau < \infty\}}\right] \leq C\mathbf{E}\left[\left|\frac{f_{\infty}}{\lambda}\right|^{p}\mathbf{1}_{\{\tau < \infty\}}\right]$$

This completes the proof of Proposition 4.

For a specific filtration, we prove the inequality (4). In order to prove it, we need the following lemmas.

LEMMA 1. Let \mathcal{A} be a sub- σ -algebra of Σ and let p be an \mathcal{A} -measurable variable exponent. Then

$$\mathbf{E}[|x| \,|\mathscr{A}]^p \le \mathbf{E}[|x|^p \,|\mathscr{A}] \ a.s.$$

for all $x \in L_{p(\cdot)}$.

PROOF. Suppose that p is an \mathscr{A} -measurable simple function and $p \ge 1$ on Ω . Then we can write

$$p=\sum_{k=1}^n \alpha_k \mathbf{1}_{A_k} \ a.s.,$$

where the sets A_k are pairwise disjoint subsets of Ω and $\alpha_k \ge 1$ (k = 1, 2, ...). We find that

$$\begin{split} \mathbf{E}[|x| \, |\mathscr{A}]^p &= \sum_{k=1}^n \mathbf{E}[|x| \, |\mathscr{A}]^{\alpha_k} \mathbf{1}_{A_k} \le \sum_{k=1}^n \mathbf{E}[|x|^{\alpha_k} |\mathscr{A}] \mathbf{1}_{A_k} \\ &= \mathbf{E}\left[\sum_{k=1}^n |x|^{\alpha_k} \mathbf{1}_{A_k} \middle| \mathscr{A}\right] = \mathbf{E}[|x|^p |\mathscr{A}] \ a.s. \end{split}$$

Suppose now that p is an arbitrary \mathscr{A} -measurable variable exponent. Then there exists a sequence $(p_n)_{n \in \mathbb{N}}$ of \mathscr{A} -measurable simple functions such that

$$p_n \uparrow p \quad (n \to \infty) \qquad \text{and} \qquad p_n \ge 1 \quad (n \in \mathbf{N})$$

Since $|x|^{p_n} \le 1 + |x|^p \in L_1$ $(n \in \mathbb{N})$ when $x \in L_{p(\cdot)}$, the dominated convergence theorem gives

$$\mathbf{E}[|x|\,|\mathscr{A}]^p \le \mathbf{E}[|x|^p|\mathscr{A}] \ a.s.$$

This completes the proof of Lemma 1.

LEMMA 2. Let $\{A_k\}_{k \in \mathbb{N}}$ be a sequence of pairwise disjoint measurable subsets of Ω such that $\Omega = \bigcup_{k \in \mathbb{N}} A_k$, and let $\mathscr{F}_0 = \sigma(\{A_k; k \in \mathbb{N}\})$. If there exists a constant $C \ge 1$, independent of $x \in L_{p(\cdot)}^+$, such that

$$\mathbf{E}[\mathbf{E}[x|\mathscr{F}_0]^p \,|\, \mathscr{F}_0] \le C\mathbf{E}[x^p|\mathscr{F}_0] \ a.s.,\tag{7}$$

then p is \mathscr{F}_0 -measurable. Here $L_{p(\cdot)}^+ = \{x \in L_{p(\cdot)} : x \ge 0\}.$

PROOF. Let $\mathscr{A} = \mathscr{F}_0$. Assume that p is not \mathscr{A} -measurable, i.e., that there exists an index $N \in \mathbb{N}$ such that p is not constant on A_N . Then there exists a number m such that $1 \le m < \infty$, and both $A_1 = \{p \le m\} \cap A_N$ and $A_2 = \{m < p\} \cap A_N$ have positive measure. For a > 1, we define a random variable x_a by $x_a = a \mathbb{1}_{A_1} \in L_{p(\cdot)}^+$. Then we have

$$\mathbf{E}[x_a^p|\mathscr{A}] = \frac{\mathbf{1}_{A_N}}{\mathbf{P}(A_N)} \mathbf{E}[a^p \mathbf{1}_{A_1}] \le a^m \frac{\mathbf{P}(A_1)}{\mathbf{P}(A_N)} \mathbf{1}_{A_N} \ a.s.,$$

and

Hiroyuki Аоуама

$$\mathbf{E}[\mathbf{E}[x_a|\mathscr{A}]^p | \mathscr{A}]\mathbf{1}_{A_N} = \mathbf{E}\left[\frac{\mathbf{1}_{A_N}}{\mathbf{P}(A_N)^p}\mathbf{E}[a\mathbf{1}_{A_1}]^p | \mathscr{A}\right]$$
$$\geq \frac{\mathbf{1}_{A_N}}{\mathbf{P}(A_N)}\mathbf{E}\left[a^p\left(\frac{\mathbf{P}(A_1)}{\mathbf{P}(A_N)}\right)^p\mathbf{1}_{A_2}\right] a.s.$$

Hence

$$\frac{\mathbf{E}[\mathbf{E}[x_a|\mathscr{A}]^p | \mathscr{A}]}{\mathbf{E}[x_a^p|\mathscr{A}]} \mathbf{1}_{A_N} \ge \frac{\mathbf{1}_{A_N}}{\mathbf{P}(A_1)} \left[a^{p-m} \left(\frac{\mathbf{P}(A_1)}{\mathbf{P}(A_N)} \right)^p \mathbf{1}_{A_2} \right] a.s.$$

Since p - m > 0 on Λ_2 ,

$$\lim_{a\to\infty}\frac{\mathbf{E}[\mathbf{E}[x_a|\mathscr{A}]^p\,|\,\mathscr{A}]}{\mathbf{E}[x_a^p|\mathscr{A}]}\mathbf{1}_{A_N}=\infty \ a.s.$$

Therefore there is no constant $C \ge 1$ satisfying (7). This completes the proof of Lemma 2.

THEOREM 2. Let $\{A_k\}_{k \in \mathbb{N}}$ be as in Lemma 2 and let $\mathscr{F} = (\mathscr{F}_n)_{n \in \mathbb{Z}_+} \in \mathbb{F}$ be such that $\mathscr{F}_0 = \sigma(\{A_k; k \in \mathbb{N}\})$. Then the following are equivalent:

(i) There exists a constant $C \ge 1$, independent of $f \in \mathcal{M}(\mathcal{F})$, such that for any $\lambda > 0$,

$$\mathbf{E}[\lambda^p \mathbf{1}_{\{Mf > \lambda\}}] \le C \mathbf{E}[|f_{\infty}|^p].$$
(8)

(ii) p is \mathcal{F}_0 -measurable.

PROOF. (i) \Rightarrow (ii): By (8), we have for any $\Lambda \in \mathscr{F}_0$,

$$\mathbf{E}[\lambda^p \mathbf{1}_{\{\mathbf{E}[|f_{\infty}||\mathscr{F}_{0}]>\lambda\}}\mathbf{1}_{A}] = \mathbf{E}[\lambda^p \mathbf{1}_{\{\mathbf{E}[|f_{\infty}|\mathbf{1}_{A}|\mathscr{F}_{0}]>\lambda\}}] \leq C\mathbf{E}[|f_{\infty}|^p \mathbf{1}_{A}].$$

Hence

$$\sup_{\lambda>0} \mathbf{E}[\lambda^p|\mathscr{F}_0]\mathbf{1}_{\{\mathbf{E}[|f_{\infty}||\mathscr{F}_0]>\lambda\}} \leq C\mathbf{E}[|f_{\infty}|^p|\mathscr{F}_0] \ a.s.$$

This implies that for any $f \in \mathcal{M}(\mathcal{F})$,

$$\mathbf{E}[\mathbf{E}[|f_{\infty}| |\mathscr{F}_{0}]^{p} | \mathscr{F}_{0}] \leq C\mathbf{E}[|f_{\infty}|^{p} | \mathscr{F}_{0}] \ a.s.$$

Thus, by Lemma 2, p is \mathcal{F}_0 -measurable.

(ii) \Rightarrow (i): For $\lambda > 0$, we define $\tau \in \mathscr{S}$ as in Proposition 4. Then, by Lemma 1, we have

$$\begin{split} \mathbf{E}[\lambda^p \mathbf{1}_{\{Mf>\lambda\}}] &= \mathbf{E}[\lambda^p \mathbf{1}_{\{\tau<\infty\}}] \leq \mathbf{E}[|f_{\tau}|^p \mathbf{1}_{\{\tau<\infty\}}] \\ &\leq \mathbf{E}[|f_{\infty}|^p \mathbf{1}_{\{\tau<\infty\}}] \leq \mathbf{E}[|f_{\infty}|^p]. \end{split}$$

This completes the proof.

214

COROLLARY 1. Let $\mathscr{F} = (\mathscr{F}_n)$ be as in Theorem 2, and $1 < p^- \le p^+ < \infty$. Then the following conditions are equivalent:

(i) There exists a constant $C \ge 1$, independent of $f \in \mathcal{M}(\mathcal{F})$, such that

$$\|Mf\|_{p(\cdot)} \le C \|f_{\infty}\|_{p(\cdot)}$$

(ii) p is \mathcal{F}_0 -measurable.

PROOF. We may assume $||f_{\infty}||_{p(\cdot)} \leq 1$.

(i) \Rightarrow (ii): Since $p^+ < \infty$ and $\mathbf{E}[|f_{\infty}|^p] \le 1$, we have $\mathbf{E}[(Mf)^p] \le C^{p^+}$. Therefore, we have

$$\mathbf{E}[\lambda^p \mathbf{1}_{\{Mf > \lambda\}}] \le C^{p^+}$$

for any $f_{\infty} \in L_{p(\cdot)}$. Thus, by Theorem 2, p is \mathscr{F}_0 -measurable.

(ii) \Rightarrow (i): We set $q = p/p^{-}$. By Lemma 1,

$$(Mf)^q = \sup_n |f_n|^q \le \sup_n \mathbf{E}[|f_{\infty}|^q |\mathscr{F}_n].$$

We have

$$\rho_{p(\cdot)}(Mf) = \mathbf{E}[(Mf)^{q\cdot p^-}] = \|(Mf)^q\|_{p^-}^p$$
$$\leq \left\|\sup_n \mathbf{E}[|f_{\infty}|^q|\mathscr{F}_n]\right\|_{p^-}^p.$$

Here, by the strong type Doob inequality, we obtain

$$\left\|\sup_{n} \mathbf{E}[|f_{\infty}|^{q}|\mathscr{F}_{n}]\right\|_{p^{-}}^{p^{-}} \leq q^{+} \|f_{\infty}^{q}\|_{p^{-}}^{p^{-}},$$

where $q^+ = p^+/p^-$. Therefore

$$\rho_{p(\cdot)}(Mf) \le q^+ \|f_{\infty}^q\|_{p^-}^{p^-} \le q^+.$$

Hence, $\|Mf\|_{p(\cdot)} \le q^+$.

REMARK. Let $p^- > 1$ and $p^+ < \infty$. According to [7] (cf. [4, Remark 4.5]), the following are equivalent:

(i) There exists a constant $c \ge 1$ such that for any $f \in L_{p(\cdot)}(\mathbf{R}^n)$,

$$\int_{\mathbf{R}^n} (Mf(x))^{p(x)} dx \le c \int_{\mathbf{R}^n} |f(x)|^{p(x)} dx$$

holds, where M denotes the Hardy-Littlewood maximal operator. (ii) p is constant.

A probabilistic analogue of this result is as follows:

Let $(\Omega, \Sigma, \mathbf{P})$ be a nonatomic probability space, and let p be a variable exponent. The following are equivalent:

- (i) If there exists a norm on $L_{p(\cdot)}$ which is equivalent to $\|\cdot\|_{p(\cdot)}$ and with respect to which $L_{p(\cdot)}$ is an r.i. space.
- (ii) There exists a constant $C \ge 1$, independent of $f \in \mathcal{M}(\mathcal{F})$, such that

$$\mathbf{E}[\lambda^p \mathbf{1}_{\{Mf > \lambda\}}] \le C \mathbf{E}[|f_{\infty}|^p]$$

for any $\mathscr{F} \in \mathbf{F}$ and $\lambda > 0$.

(iii) p is constant.

The equivalence of (i) and (iii) follows from Theorem 1. The equivalence of (ii) and (iii) follows from Theorem 2.

Acknowledgement

The author is most grateful to Prof. Masato Kikuchi for his kind advice. I also thank the referee for his helpful suggestions.

References

- C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics 129, Academic Press, 1988.
- [2] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable L^p spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238; 29 (2004), 247–249.
- [3] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), 424–446.
- [4] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495–522.
- [5] P. Harjulehto, P. Hästö and M. Pere, Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exchange 30 (1) (2004/2005), 87–104.
- [6] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (116) (1991), 592–618.
- [7] A. K. Lerner, On modular inequalities in variable L^p spaces, Arch. Math. (Basel) 85 (2005), no. 6, 538–543.

Hiroyuki Aoyama Department of Mathematics University of Toyama 3190 Gofuku, Toyama 930-8555 Japan E-mail: aoyama@math.u-toyama.ac.jp

216