An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1,\nu,\beta}(G)$

Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura (Received January 24, 2008) (Revised April 15, 2008)

ABSTRACT. Our aim is to give an elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1,\nu,\beta}(G)$, as an extension of Serrin [13]. We are mainly concerned with Trudinger's type exponential integrability for Riesz potentials.

1. Introduction

Let G be a bounded open set in \mathbb{R}^n . For $0 < \alpha < n$, we define the Riesz potential of order α for an integrable function f on G by

$$I_{\alpha}f(x) = \int_{G} |x - y|^{\alpha - n} f(y) dy.$$

In what follows we assume that f = 0 outside G.

For an integrable function u on a measurable set $E \subset \mathbf{R}^n$ of positive measure, we define the integral mean over E by

$$\int_{E} u(x)dx = \frac{1}{|E|} \int_{E} u(x)dx,$$

where |E| denotes the Lebesgue measure of E.

In the present paper, f is assumed to satisfy the Morrey condition: if $0 \le v \le n$ and β are real numbers, then

$$\int_{B(x,r)} |f(y)| dy \le r^{-\nu} (\log(2+r^{-1}))^{-\beta}$$
(1.1)

for all $x \in G$ and $0 < r < d_G$, where B(x,r) denotes the open ball centered at x of radius r > 0 and d_G denotes the diameter of G. It is worth pointing out that (1.1) is essentially equivalent to

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B15, 46E35.

Key words and phrases. Riesz potentials, Sobolev's inequality, Trudinger's exponential inequality, Morrey space.

$$\oint_{B(x,r)} |f(y)| dy \le r^{-\nu} (\log(r^{-1}))^{-\beta}$$
(1.2)

for all $x \in G$ and $0 < r < \min\{2^{-1}, d_G\}$. We denote by $L^{1,\nu,\beta}(G)$ the family of all measurable functions f on G satisfying condition (1.1) or (1.2); for Morrey spaces, we refer to [8] and [12].

The famous Trudinger's inequality ([15]) insists that Sobolev functions in $W^{1,n}$ satisfy finite exponential integrability (see also [2], [4] and [16]). Recently Serrin [13] gave an elementary proof of Trudinger's inequality ([15]), which relies on Hölder's inequality and integration by parts.

Our first aim in this note is to give a local Morrey version of Trudinger's type exponential integrability and continuity for Riesz potentials of functions satisfying (1.1), as an extension of [13] and [15].

Theorem 1.1. Let f be a nonnegative measurable function on G satisfying (1.1) with $v = \alpha$ and a real number β . If $\alpha/2 \le \varepsilon < \alpha$, then there exist constants $c_1, c_2 > 0$ such that

(1) in case $\beta < 1$,

$$\int_{B(z,r)} \exp\left(\frac{(I_{\alpha}f(x))^{1/(1-\beta)}}{c_1}\right) dx \le c_2 r^{-\alpha+\varepsilon} (\log(2+r^{-1}))^{-\beta}$$
 (1.3)

for all $z \in G$ and $0 < r < d_G$;

(2) in case $\beta = 1$,

$$\int_{B(z,r)} \exp\left(\frac{1}{c_1} \exp\left(\frac{I_{\alpha}f(x)}{C}\right)\right) dx \le c_2 r^{-\alpha+\varepsilon} (\log(2+r^{-1}))^{-1} \tag{1.4}$$

for all $z \in G$ and $0 < r < d_G$;

(3) in case $\beta > 1$,

$$|I_{\alpha}f(x) - I_{\alpha}f(z)| \le C(\log(2 + |x - z|^{-1}))^{-\beta + 1}$$
 (1.5)

for all $x, z \in G$. Here we can take

$$c_1 = C(\alpha - \varepsilon)^{-1}$$

and

$$c_2 = C(\alpha - \varepsilon)^{-\beta_+ - 1},$$

where $\beta_+ = \max\{\beta, 0\}$ and $C = C(n, \alpha, \beta, d_G)$ denotes a various constant depending on n, α , β and d_G .

We also give the following Morrey version of Sobolev's type inequality for Riesz potentials of functions satisfying (1.1), as an extension of [13].

THEOREM 1.2. Let f be a nonnegative measurable function on G satisfying (1.1) with $\alpha < \nu \le n$ and a real number β . If $p = \nu/(\nu - \alpha)$ and $\gamma > 1$, then there exists a constant $C = C(n, \alpha, \nu, \beta, \gamma, d_G) > 0$ such that

$$\left(\int_{B(z,r)} (I_{\alpha}f(x))^{p} (\log(2+I_{\alpha}f(x)))^{-\gamma+\alpha\beta p/\nu} dx\right)^{1/p} \leq Cr^{\alpha-\nu} (\log(2+r^{-1}))^{(1-\gamma-\beta)/p}$$
(1.6)

for all $z \in G$ and $0 < r < d_G$.

For related results, we also refer to Adams [1], Chiarenza-Frasca [3] and the authors [5, 6, 7, 10, 11].

2. Proof of Theorem 1.1

Throughout this paper, let C denote various positive constants independent of the variables in question and C(a, b, ...) be a constant which may depend on a, b, ...

When $\gamma > 0$, note that

$$\int |x - y|^{-\gamma} f(y) dy = \int_0^\infty \left(\int_{B(x,t)} f(y) dy \right) d(-t^{-\gamma})$$
 (2.1)

and

$$\int_{0}^{r} \left(\log \frac{1}{t}\right)^{-\gamma - 1} \frac{dt}{t} = \frac{1}{\gamma} \left(\log \frac{1}{r}\right)^{-\gamma} \tag{2.2}$$

for 0 < r < 1.

Lemma 2.1. Suppose $0 < a \le R_0$ and $0 < b \le R_0$. Then there exists a constant $C(R_0) > 0$ such that

$$\int_{\delta}^{1/2} t^{-a} (\log(1/t))^{-b} \frac{dt}{t} \le C(R_0) a^{-b-1} \delta^{-a} (\log(1/\delta))^{-b}$$

for all $0 < \delta < 1/2$.

PROOF. Note that $u_a(s) = s^{-a}(\log(1/s))^{-b}$ attains a minimum value of $e^b b^{-b} a^b$ at $s = e^{-b/a}$ for 0 < s < 1. If $1/2 \le e^{-b/a}$, then u_a is decreasing on (0,1/2]. Hence

$$u_a(t) \le u_a(\delta)$$
 for $0 < \delta \le t < 1/2$.

If $e^{-b/a} < 1/2$, then u_a is decreasing on $(0, e^{-b/a}]$ and increasing on $[e^{-b/a}, 1/2]$. Hence, in the case $e^{-b/a} \le \delta$ we have

$$u_a(t) \le \frac{u_a(1/2)}{u_a(e^{-b/a})} u_a(\delta) = \frac{2^a (\log 2)^{-b}}{e^b b^{-b} a^b} u_a(\delta)$$
 for $0 < \delta \le t < 1/2$,

and, in the case $0 < \delta < e^{-b/a}$ we have

$$u_a(t) \le u_a(\delta)$$
 for $0 < \delta \le t < e^{-b/a}$,
 $u_a(t) \le \frac{2^a (\log 2)^{-b}}{e^b b^{-b} a^b} u_a(\delta)$ for $e^{-b/a} \le t < 1/2$.

Therefore, we obtain

$$u_a(t) \le C(R_0)a^{-b}u_a(\delta)$$
 for $0 < \delta \le t < 1/2$, (2.3)

so that

$$\begin{split} \int_{\delta}^{1/2} t^{-a} (\log(1/t))^{-b} \frac{dt}{t} &\leq C(R_0) (a/2)^{-b} u_{a/2}(\delta) \int_{\delta}^{1/2} t^{-a/2} \frac{dt}{t} \\ &\leq C(R_0) 2^{b+1} a^{-b-1} \delta^{-a} (\log(1/\delta))^{-b} \end{split}$$

for all $0 < \delta < 1/2$, as required.

LEMMA 2.2. Let $\alpha/2 \le \varepsilon \le \alpha$. Let f be a nonnegative measurable function on G satisfying (1.1) with $v = \alpha$.

(1) If $\alpha/2 \le \varepsilon < \alpha$, then

$$\int_{G \setminus B(x,\delta)} |x-y|^{\varepsilon-n} f(y) dy \le C(\alpha-\varepsilon)^{-\beta_+ - 1} \delta^{\varepsilon-\alpha} (\log(2+\delta^{-1}))^{-\beta};$$

(2) if $\varepsilon = \alpha$ and $\beta < 1$, then

$$\int_{G \setminus B(x,\delta)} |x-y|^{\varepsilon-n} f(y) dy \le C(\log(2+\delta^{-1}))^{-\beta+1};$$

(3) if $\varepsilon = \alpha$ and $\beta = 1$, then

$$\int_{G\setminus B(x,\delta)} |x-y|^{\varepsilon-n} f(y) dy \le C \log(2 + (\log(2+\delta^{-1})))$$

for $x \in G$ and $\delta > 0$, where $C = C(n, \beta, d_G)$.

PROOF. If $\alpha/2 \le \varepsilon < \alpha$, then we have by (2.1) and (1.1)

$$\begin{split} \int_{G\setminus B(x,\delta)} |x-y|^{\varepsilon-n} f(y) dy &\leq \int_{\delta}^{2d_G} \left(\int_{B(x,r)} f(y) dy \right) d(-r^{\varepsilon-n}) \\ &\leq C \int_{\delta}^{\infty} r^{\varepsilon-\alpha} (\log(2+r^{-1}))^{-\beta} \frac{dr}{r}. \end{split}$$

When $\beta > 0$, Lemma 2.1 gives

$$\int_{\delta}^{\infty} r^{\varepsilon - \alpha} (\log(2 + r^{-1}))^{-\beta} \frac{dr}{r} \le C(\beta) (\alpha - \varepsilon)^{-\beta - 1} \delta^{\varepsilon - \alpha} (\log(2 + \delta^{-1}))^{-\beta}$$

and when $\beta \leq 0$,

$$\int_{\delta}^{\infty} r^{\varepsilon - \alpha} (\log(2 + r^{-1}))^{-\beta} \frac{dr}{r} \le (\log(2 + \delta^{-1}))^{-\beta} \int_{\delta}^{\infty} r^{\varepsilon - \alpha} \frac{dr}{r}$$
$$\le (\alpha - \varepsilon)^{-1} \delta^{\varepsilon - \alpha} (\log(2 + \delta^{-1}))^{-\beta}.$$

Thus it follows that

$$\int_{G\setminus B(x,\delta)} |x-y|^{\varepsilon-n} f(y) dy \le C(\alpha-\varepsilon)^{-\beta_+-1} \delta^{\varepsilon-\alpha} (\log(2+\delta^{-1}))^{-\beta},$$

where C is a positive constant depending on β .

The remaining cases can be proved similarly.

Lemma 2.3. Let $\alpha < \nu \le n$. Let f be a nonnegative measurable function on G satisfying (1.1). Then

$$\int_{G\setminus B(x,\delta)} |x-y|^{\alpha-n} f(y) dy \le C\delta^{\alpha-\nu} (\log(2+\delta^{-1}))^{-\beta}$$

for $x \in G$ and $\delta > 0$, where $C = C(n, \alpha, \nu, \beta)$.

Lemma 2.4. Let $\alpha/2 \le \varepsilon < \alpha$ and $\alpha \le v$. Let f be a nonnegative measurable function on G satisfying (1.1). Then

$$\int_{B(z,\delta)} I_{\varepsilon} f(x) dx \le C(\nu - \varepsilon)^{-\beta_{+} - 1} \delta^{\varepsilon - \nu + n} (\log(2 + \delta^{-1}))^{-\beta}$$

for $z \in G$ and $\delta > 0$, where $C = C(n, \alpha, \beta)$.

Proof. Write

$$I_{\varepsilon}f(x) = \int_{B(z,2\delta)} |x-y|^{\varepsilon-n} f(y) dy + \int_{G \setminus B(z,2\delta)} |x-y|^{\varepsilon-n} f(y) dy = I_1(x) + I_2(x).$$

By Fubini's theorem, we have by (1.1) and the fact that $\int_{B(z,\delta)} |x-y|^{\varepsilon-n} dx$ attains its maximum at y=z

$$\int_{B(z,\delta)} I_1(x) dx \le \int_{B(z,2\delta)} \left(\int_{B(z,\delta)} |x-y|^{\varepsilon-n} dx \right) f(y) dy$$

$$\le C\delta^{\varepsilon} \int_{B(z,2\delta)} f(y) dy \le C\delta^{\varepsilon-\nu+n} (\log(2+\delta^{-1}))^{-\beta}.$$

For I_2 , note that

$$I_2(x) \le C \int_{G \setminus B(z,2\delta)} |z-y|^{\varepsilon-n} f(y) dy$$

for $x \in B(z, \delta)$. Hence the proof of Lemma 2.2 gives

$$\int_{B(z,\delta)} I_2(x) dx \le C(\nu - \varepsilon)^{-\beta_+ - 1} \delta^{n + \varepsilon - \nu} (\log(2 + \delta^{-1}))^{-\beta}$$

since $\alpha/2 \le \varepsilon < \alpha$. Thus this lemma is proved.

PROOF OF THEOREM 1.1. Let f be a nonnegative measurable function on G satisfying (1.1).

First suppose $\beta < 1$. For $\alpha/2 \le \varepsilon < \alpha$, by Lemma 2.2, we have

$$I_{\alpha}f(x) = \int_{B(x,\delta)} |x - y|^{\alpha - n} f(y) dy + \int_{G \setminus B(x,\delta)} |x - y|^{\alpha - n} f(y) dy$$

$$\leq \delta^{\alpha - \varepsilon} \int_{B(x,\delta)} |x - y|^{\varepsilon - n} f(y) dy + C(\log(2 + \delta^{-1}))^{-\beta + 1}$$

$$\leq \delta^{\alpha - \varepsilon} I_{\varepsilon} f(x) + C(\log(2 + \delta^{-1}))^{-\beta + 1}$$

for $\delta > 0$. Considering $\delta = (I_{\varepsilon}f(x))^{-1/(\alpha-\varepsilon)}(\log(2+I_{\varepsilon}f(x)))^{(1-\beta)/(\alpha-\varepsilon)}$ when $I_{\varepsilon}f(x)$ is large enough, we see that

$$I_{\alpha}f(x) \leq C(\alpha - \varepsilon)^{\beta - 1} (\log(2 + I_{\varepsilon}f(x)))^{-\beta + 1}$$

so that

$$\oint_{B(z,r)} \exp\left(\frac{\left(I_{\alpha}f(x)\right)^{1/(1-\beta)}}{c_1}\right) dx \le \oint_{B(z,r)} \{2 + I_{\varepsilon}f(x)\} dx$$

for $z \in G$ and $0 < r < d_G$, where $c_1 = C(\alpha - \varepsilon)^{-1}$. Hence Lemma 2.4 with $v = \alpha$ gives

$$\int_{B(z,r)} \exp\left(\frac{(I_{\alpha}f(x))^{1/(1-\beta)}}{c_1}\right) dx \le C(\alpha - \varepsilon)^{-\beta_+ - 1} r^{-\alpha + \varepsilon} (\log(2 + r^{-1}))^{-\beta}$$

for such z and r, which implies (1.3).

Next suppose $\beta = 1$. For $\alpha/2 \le \varepsilon < \alpha$, by Lemma 2.2, we have

$$I_{\alpha}f(x) = \int_{B(x,\delta)} |x-y|^{\alpha-n} f(y) dy + \int_{G \setminus B(x,\delta)} |x-y|^{\alpha-n} f(y) dy$$

$$\leq \delta^{\alpha-\varepsilon} I_{\varepsilon} f(x) + C \log(2 + \log(2 + \delta^{-1}))$$

for $\delta > 0$. Considering $\delta = (I_{\varepsilon}f(x))^{-1/(\alpha-\varepsilon)}(\log(2+\log(2+I_{\varepsilon}f(x))))^{1/(\alpha-\varepsilon)}$ when $I_{\varepsilon}f(x)$ is large enough, we see that

$$I_{\alpha}f(x) \le C \log \left(2 + \frac{\log(2 + I_{\varepsilon}f(x))}{\alpha - \varepsilon}\right),$$

so that

for $z \in G$ and $0 < r < d_G$, where $c_1 = C(\alpha - \varepsilon)^{-1}$. Hence Lemma 2.4 with $v = \alpha$ gives

$$\int_{B(z,r)} \exp\left(\frac{1}{c_1} \exp\left(\frac{I_{\alpha}f(x)}{C}\right)\right) dx \le c_2 r^{-\alpha+\varepsilon} (\log(2+r^{-1}))^{-1}$$

with $c_2 = C(\alpha - \varepsilon)^{-2}$ for such z and r, which implies (1.4). Finally suppose $\beta > 1$. Write

$$I_{\alpha}f(x) - I_{\alpha}f(z) = \int_{B(x,2|x-z|)} |x-y|^{\alpha-n} f(y) dy - \int_{B(x,2|x-z|)} |z-y|^{\alpha-n} f(y) dy + \int_{G\backslash B(x,2|x-z|)} (|x-y|^{\alpha-n} - |z-y|^{\alpha-n}) f(y) dy.$$

As in the proof of Lemma 2.2, we have

$$\int_{B(x,2|x-z|)} |x-y|^{\alpha-n} f(y) dy \le C (\log(2+|x-z|^{-1}))^{-\beta+1}$$

and

$$\int_{B(x,2|x-z|)} |z-y|^{\alpha-n} f(y) dy \le \int_{B(z,3|x-z|)} |z-y|^{\alpha-n} f(y) dy$$

$$\le C(\log(2+|x-z|^{-1}))^{-\beta+1}$$

for $x, z \in G$. On the other hand, by the mean value theorem for analysis, we have by Lemma 2.3

$$\int_{G\setminus B(x,2|x-z|)} ||x-y|^{\alpha-n} - |z-y|^{\alpha-n}|f(y)dy$$

$$\leq C|x-z| \int_{G\setminus B(x,2|x-z|)} |x-y|^{\alpha-n-1}f(y)dy$$

$$\leq C(\log(2+|x-z|^{-1}))^{-\beta}.$$

As a consequence we obtain

$$|I_{\alpha}f(x) - I_{\alpha}f(z)| \le C(\log(2 + |x - z|^{-1}))^{-\beta+1}$$

for $x, z \in G$, which implies (1.5).

Remark 2.5. Let f be a nonnegative measurable function on G satisfying

$$\left(\int_{B(x,r)} f(y)^p dy\right)^{1/p} \le r^{-\alpha} (\log(2+r^{-1}))^{-\beta}$$

for all $x \in G$ and $0 < r < d_G$, where p > 1 and a real number β . Then Jensen's inequality yields

$$\int_{B(x,r)} f(y) dy \le r^{-\alpha} (\log(2 + r^{-1}))^{-\beta}.$$

Hence we can apply Theorem 1.1.

REMARK 2.6. In Theorem 1.1 (1), if $\beta = 0$ and $\varepsilon = \alpha/2$, then we can find constants $C_1, C_2 > 0$ depending on n, α and d_G such that

$$\oint_{B(z,r)} \exp\left(\frac{I_{\alpha}f(x)}{C_1}\right) dx \le C_2 r^{-\alpha/2}$$

for all $z \in G$ and $0 < r < d_G$. If $\alpha/2 < \varepsilon < \alpha$, then Jensen's inequality gives

$$\int_{B(z,r)} \exp\left(\frac{2(\alpha-\varepsilon)I_{\alpha}f(x)}{C_{1}\alpha}\right) dx \le C_{2}^{2(\alpha-\varepsilon)/\alpha}r^{-\alpha+\varepsilon},$$

so that

$$\int_{B(z,r)} \exp\left(\frac{I_{\alpha}f(x)}{c_1}\right) dx \le c_2 r^{-\alpha + \varepsilon}$$

for all $z \in G$ and $0 < r < d_G$. Here $c_1 = C(\alpha - \varepsilon)^{-1}$ and $c_2 \to 1$ as $\varepsilon \to \alpha$.

REMARK 2.7. Theorem 1.1 (3) can also be proved by using Nakai [10, Theorem 3.3] and Spanne [14, p. 601] (see also [9, p. 521]). However our discussions are straightforward.

Remark 2.8. In Theorem 1.1 (1), one can not find positive constants \tilde{c}_1 and \tilde{c}_2 such that

$$\int_{B(z,r)} \exp\left(\frac{\left(I_{\alpha}f(x)\right)^{1/(1-\beta)}}{\tilde{c}_1}\right) dx \le \tilde{c}_2(\log(2+r^{-1}))^{-\beta}$$

holds for all $z \in G$ and $0 < r < d_G$.

To show this, consider

$$f(y) = |y|^{-\alpha} (\log(|y|^{-1}))^{-\beta}$$

for $y \in B(0, 1/2)$ with $\beta < 1$; set f = 0 elsewhere. Then

$$\int_{B(x,r)} |f(y)| dy \le Cr^{-\alpha} (\log(2 + r^{-1}))^{-\beta}$$

for $x \in \mathbf{B} = B(0, 1)$. Further,

$$I_{\alpha}f(x) \ge \int_{B(0,1/2)\setminus B(0,2|x|)} |x-y|^{\alpha-n} f(y) dy$$

$$\ge C \int_{B(0,1/2)\setminus B(0,2|x|)} |y|^{-n} (\log(|y|^{-1}))^{-\beta} dy$$

$$\ge C (\log(|x|^{-1}))^{-\beta+1}$$

for $x \in B(0, 1/8)$. Hence it follows that

$$\int_{B(0,r)} \exp\left(\frac{I_{\alpha}f(x)^{1/(1-\beta)}}{C^{1/(1-\beta)}c}\right) dx \ge \int_{B(0,r)} |x|^{-1/c} dx = C'r^{-1/c}$$

for 0 < r < 1/8, where 1/c < n.

3. Proof of Theorem 1.2

For $\gamma > 0$, let

$$\rho_{\gamma}(r) = r^{-n} (\log(2 + r^{-1}))^{-\gamma}.$$

The following lemma can be proved in the same way as Lemma 2.4.

LEMMA 3.1. Let $\alpha < \nu \le n$ and $\gamma > 1$. If f is a nonnegative measurable function on G satisfying (1.1), then

$$\int_{B(z,r)} \left(\int_{G} \rho_{\gamma}(|x-y|) f(y) dy \right) dx \le C r^{n-\nu} (\log(2+r^{-1}))^{-\gamma-\beta+1}$$

whenever $B(z,r) \subset G$, where $C = C(n, \alpha, \nu, \beta, \gamma, d_G)$.

PROOF OF THEOREM 1.2. Let f be a nonnegative measurable function on G satisfying (1.1). Let

$$J_{\gamma}(x) = \int_{G} \rho_{\gamma}(|x - y|) f(y) dy$$

and

$$p = \frac{v}{v - \alpha}$$
.

We find by Lemma 2.3

$$I_{\alpha}f(x) = \int_{B(x,\delta)} |x-y|^{\alpha-n} f(y) dy + \int_{G \setminus B(x,\delta)} |x-y|^{\alpha-n} f(y) dy$$

$$\leq C\delta^{\alpha} (\log(2+\delta^{-1}))^{\gamma} J_{\gamma}(x) + C\delta^{\alpha-\nu} (\log(2+\delta^{-1}))^{-\beta}$$

for $\delta > 0$. Considering $\delta = J_{\gamma}(x)^{-1/\nu} (\log(2 + J_{\gamma}(x)))^{-(\gamma + \beta)/\nu}$, we see that

$$I_{\alpha}f(x) \leq CJ_{\gamma}(x)^{(\nu-\alpha)/\nu} (\log(2+J_{\gamma}(x)))^{\gamma(\nu-\alpha)/\nu-\alpha\beta/\nu}$$
$$= CJ_{\gamma}(x)^{1/p} (\log(2+J_{\gamma}(x)))^{\gamma/p-\alpha\beta/\nu},$$

so that

$$\int_{B(z,r)} \{I_{\alpha}f(x)(\log(2+I_{\alpha}f(x)))^{-\gamma/p+\alpha\beta/\nu}\}^{p} dx \le C \int_{B(z,r)} J_{\gamma}(x) dx$$

whenever $B(z,r) \subset G$. Hence Lemma 3.1 gives

$$\oint_{B(z,r)} \{ I_{\alpha} f(x) (\log(2 + I_{\alpha} f(x)))^{-\gamma/p + \alpha\beta/\nu} \}^{p} dx \le C r^{-\nu} (\log(2 + r^{-1}))^{-\gamma-\beta+1}$$

for such z and r, which completes the proof of Theorem 1.2.

Remark 3.2. The case when $\beta = 0$, $\alpha = 1$ and $1 \le p \le 1/\{2(\nu - 1)\}$ was also discussed by Serrin [13] in a different manner.

Remark 3.3. In general, (1.6) does not hold when $\gamma < 1$. To show this when n = 2, we consider

$$f(y) = f(y_1, y_2) = |y_2|^{-1} (\log(2 + |y_2|^{-1}))^{-\beta - 1}$$

with $\beta > 0$. Then (2.2) gives

$$\oint_{B(x,r)} |f(y)| dy \le \frac{C}{r} \int_0^r |y_2|^{-1} (\log(2 + |y_2|^{-1}))^{-\beta - 1} dy_2 \le Cr^{-1} (\log(2 + r^{-1}))^{-\beta}$$

for $x \in \mathbf{B} = B(0, 1)$. For $0 < \alpha < 1$, consider the potential

$$I_{\alpha}f(x) = \int_{\mathbf{B}} |x - y|^{\alpha - 2} f(y) dy.$$

Here we may assume that $x_2 \neq 0$. Setting $Q(x) = \{y = (y_1, y_2) \in \mathbf{B} : |x_1 - y_1| < |x_2|, |y_2| < |x_2|\}$, we note that

$$I_{\alpha}f(x) \ge \int_{Q(x)} |x - y|^{\alpha - 2} f(y) dy$$

$$\ge C|x_2|^{\alpha - 2} \int_{Q(x)} f(y) dy$$

$$\ge C|x_2|^{\alpha - 1} \int_0^{|x_2|} |y_2|^{-1} (\log(2 + |y_2|^{-1}))^{-\beta - 1} dy_2$$

$$\ge C|x_2|^{\alpha - 1} (\log(2 + |x_2|^{-1}))^{-\beta},$$

so that

$$\int_{B(0,1)} (I_{\alpha}f(x))^{p} (\log(2 + I_{\alpha}f(x))^{-\gamma + \alpha\beta p/\nu} dx$$

$$\geq C \int_{B(0,1)} |x_{2}|^{-1} (\log(2 + |x_{2}|^{-1}))^{-\gamma - \beta} dx = \infty$$

when $p = 1/(1 - \alpha), v = 1$ and $0 < \beta < 1 - \gamma$.

Acknowledgement

We would like to express our hearty thanks to the referee for his/her kind comments.

References

- [1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778.
- [2] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, Heidelberg, 1996.
- [3] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), 273–279.
- [4] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
- [5] Y. Mizuta and T. Shimomura, Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form, to appear in Math. Nachr.
- [6] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, to appear in J. Math. Soc. Japan.
- [7] Y. Mizuta and T. Shimomura, Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent, to appear in Math. Inequal. Appl.
- [8] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126–166.

- [9] E. Nakai, On the restriction of functions of bounded mean oscillation to the lowerdimensional space, Arch. Math. (Basel) 43 (1984), 519–529.
- [10] E. Nakai, On generalized fractional integrals on the weak Orlicz spaces, BMO_{ϕ} , the Morrey spaces and the Campanato spaces, Function spaces, interpolation theory and related topics (Lund, 2000), 389–401, Walter de Gruyter, Berlin, New York, 2002.
- [11] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, 323–333, Yokohama Publ., Yokohama, 2004.
- [12] J. Peetre, On the theory of $L_{p,\lambda}$ spaces, J. Funct. Anal. 4 (1969), 71–87.
- [13] J. Serrin, A remark on Morrey potential, Contemp. Math. 426 (2007), 307-315.
- [14] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 593–608.
- [15] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.
- [16] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

Yoshihiro Mizuta The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 739-8521, Japan E-mail: mizuta@mis.hiroshima-u.ac.jp

Eiichi Nakai
Department of Mathematics
Osaka Kyoiku University
Kashiwara, Osaka 582-8582, Japan
E-mail: enakai@cc.osaka-kyoiku.ac.jp

Takao Ohno General Arts Hiroshima National College of Maritime Technology Higashino Oosakikamijima Toyotagun 725-0231, Japan E-mail: ohno@hiroshima-cmt.ac.jp

Tetsu Shimomura
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail: tshimo@hiroshima-u.ac.jp