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When does a satellite knot fiber?
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Abstract. Necessary and su‰cient conditions are given for a satellite knot to be

fibered. Any knot ~kk embeds in an unknotted solid torus ~VV with arbitrary winding

number in such a way that no satellite knot with pattern ð ~VV ; ~kkÞ is fibered. In

particular, there exist nonfibered satellite knots with fibered pattern and companion

knots and nonzero winding number.

1. Introduction

Proposition 4.15 of the monograph Knots [2] erroneously asserts and

proves that a satellite knot is fibered if and only if it has nonzero winding

number and both its companion and pattern knots are fibered. In 1990, the

third author of the present paper contacted the authors of Knots, informed

them of the mistake, and provided a counterexample. The recent second

edition of the now-classic textbook acknowledged the error and reproduced the

example. However, the necessary and su‰cient conditions that it provided are

not the most convenient in practice.

The present paper is an expanded version of an unpublished note that the

third author wrote in 1991. Its algebraic necessary and su‰cient conditions

for a satellite knot to fiber, do not appear to be well known. (It is briefly

mentioned on pages 221–222 of [14].)

Theorem 4.2 of the monograph [3] by D. Eisenbud and W. Neumann

gives topological necessary and su‰cient conditions for a satellite knot in a

homology 3-sphere to fiber. Stated in terms of ‘‘splice components’’ arising

from the Jaco-Shalen Johannson splitting theorem, it requires that each

component is fibered and that the fibers meet each other compatibly.

An alternative, topological condition presented here (see Theorem 2) is

more convenient in many situations. It was discovered by the first author,
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who proved it using D. Gabai’s sutured manifold theory. An elementary

group theoretic proof was subsequently found by the second author.

We work throughout in the smooth category. As usual, a knot is an

embedded circle in the 3-sphere S3. It is trivial if it is the boundary of an

embedded disk in S3. More generally, a link is a union of finitely many

mutually disjoint knots. When each component is provided with a direction,

the link is said to be oriented.

The complement of an open tubular neighborhood of a knot or link l is

called its exterior, and it is denoted by XðlÞ. Its boundary qXðlÞ can be

identified with l� S1. A knot k is fibered if the projection qXðkÞ ! S1

extends to a fibration of XðkÞ. In such a case, XðkÞ is the total space of a fiber

bundle over the circle S1. By theorems of L. Neuwirth [10] and J. Stallings

[15], k is fibered if and only if the commutator subgroup ½pk; pk� of the knot

group pk ¼ p1ðS3nkÞ is finitely generated and hence free. The commutator

subgroup is the kernel of the abelianization homomorphism w : pk ! Z sending

the class of an oriented meridian of k to 1.

2. Fibering criterion

Satellite knots were introduced by H. Schubert [13] as a generalization of

knot product. Proposition 8.23 in [2] includes a formula of the Alexander

polynomial for satellite knots. We briefly review their definition and some

key properties. Let ~kk be a knot embedded in a standard solid torus
~VV ¼ S1 �D2 HS3. Assume that ~kk is not isotopic to S1 � f0g nor is it

contained in any 3-ball of ~VV . Let h be a homeomorphism from ~VV onto a

closed tubular neighborhood of a nontrivial knot k̂k, mapping a longitude of ~VV

onto a longitude of k̂k. (By a longitude of ~VV , we mean a meridian of the

complementary solid torus S3nint ~VV .) The image k ¼ hð~kkÞ is called a satellite

knot with companion knot k̂k and pattern ð ~VV ; ~kkÞ. By a pattern knot we mean ~kk

regarded in S3. The winding number of ~kk in ~VV is the nonnegative integer

n such that the homomorphism H1
~kk ! H1

~VV GZ induced by inclusion has

image nZ.

Two patterns ð ~VV ; ~kk1Þ and ð ~VV ; ~kk2Þ are regarded as the same if ~kk1 and ~kk2 are

isotopic in ~VV .

We denote the various groups p1ðS3nkÞ, p1ðS3nk̂kÞ, p1ðS3n~kkÞ and p1ð ~VVn~kkÞ
by G, ĜG, ~GG and H, respectively. By the Seifert-van Kampen theorem,

GGH �p1ðq ~VVÞ ĜG; ð1Þ

the amalgamated free product of H and ĜG with subgroups p1ðq ~VVÞHH and

p1ðqX ðk̂kÞÞH ĜG identified via h.
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It is convenient to regard H as the group of the 2-component link ~kkU ~mm,

where ~mm is a meridian of ~VV . Let ~ll be a longitude of ~VV , and let l denote

its homotopy class in H. The quotient group hHjli is naturally isomorphic

to ~GG. We define K to be the kernel of f � p, where p : H ! hHjli and

f : ~GG ! Z are the quotient and abelianization homomorphisms, respectively.

When the winding number n is nonzero, then the Reidemeister-Schreier method

can be used to show that the commutator subgroup G 0 decomposes as an

amalgamated free product:

G 0 GK �F ðĜG 0 � tĜG 0t�1 � � � � � tn�1ĜG 0t�ðn�1ÞÞ: ð2Þ

Here t A G is the class of a meridian of k, while F is the subgroup of K

generated by l; tlt�1; . . . ; tn�1lt�ðn�1Þ. (For a proof, see Section 4.12 of [2].)

Let Yð~kkÞ denote the complement of an open tubular neighborhood of ~kk

in ~VV . We say that the pattern ð ~VV ; ~kkÞ is fibered if there exists a fibration

Yð~kkÞ ! S1 inducing the homomorphism f � p on fundamental groups. It is

well known (and not di‰cult to see) that in this case, the winding number of
~kk in ~VV is nonzero. Moreover, K is the fundamental group of the fiber, a

compact surface with boundary, and hence K is free.

The following fibering criterion for satellite knots is implicit in the knot

theory literature (e.g. [3]), but to our knowledge it has not previously appeared.

Theorem 1. Let k be a satellite knot with companion knot k̂k and pattern

ð ~VV ; ~kkÞ. Then the following conditions are equivalent.

(1) k is fibered;

(2) ĜG 0 and K are finitely generated;

(3) k̂k and ð ~VV ; ~kkÞ are fibered.

Proof. Suppose that k is fibered. The winding number n of ~kk in ~VV

must be nonzero. For otherwise, p1ðq ~VVÞGZlZ, which is a subgroup of

G by equation (1), would be contained in the free commutator subgroup

G 0—an impossibility. Consequently, G 0 has the form described by equation

(2). Since a free product of groups amalgamated over a finitely generated

group is itself finitely generated if and only if each of its factors is (see Lemma

4.14 of [2], for example), both ĜG 0 and K are finitely generated.

If ĜG 0 and K are finitely generated, then Stallings’s theorem [15] implies

that k̂k and ð ~VV ; ~kkÞ are fibered.

Finally, if k̂k and ð ~VV ; ~kkÞ are fibered, then ĜG 0 and K are isomorphic to

fundamental groups of fibers for respective fibrations. Consequently, both

groups are finitely generated. Equation (2) implies that the commutator sub-

group G 0 is finitely generated. By Stallings’s theorem [15], the satellite knot k

is fibered. r
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3. Pattern fibering criterion

Let l ¼ l1 U � � �U lm be an oriented link. A meridian of any component

acquires an orientation by the right-hand rule. The link is fibered if its exterior

XðlÞ admits a fibration XðlÞ ! S1. Such a fibration induces an epimorphism

H1XðlÞ ! Z, and as usual we require that the class of each meridian is sent

to 1.

The epimorphism H1XðlÞ ! Z is the abelianization of an epimorphism

w : p1ðS3nlÞ ! Z. By [10] and [15], the link l is fibered if and only if the

kernel A of w is finitely generated. The group A is known as the augmen-

tation subgroup of the group of l.

Remark 1. Orientation is not required in the definition of a fibered knot,

since any knot is fibered if and only if the knot with reversed orientation is

fibered. Similarly, an orientated link is fibered if and only if the link obtained

by reversing the orientation of every component is fibered. However, reversing

the orientation of some but not all components can destroy the condition of

fiberedness. (A simple example is provided by the closure of the 2-braid s4
1 .)

Consider a pattern ð ~VV ; ~kkÞ such that ~kk has nonzero winding number n. We

associate an oriented 3-component link ~kkU ~mmU ~mm 0, where ~mm and ~mm 0 are disjoint

meridians of ~VV with opposite orientations. The orientation of ~kk is arbitrary.

Theorem 2. The pattern ð ~VV ; ~kkÞ is fibered if and only if ~kkU ~mmU ~mm 0 is a

fibered link.

Proof. As in Section 2, let H be the group of the 2-component link
~kkU ~mm, and let K be the kernel of the epimorphism H ! Z mapping the class

of a meridian of ~kk to 1 and l, the class of a meridian of ~mm, to 0.

It su‰ces to show that the augmentation subgroup A of the link
~kkU ~mmU ~mm 0 is the free product of K and a finitely generated group (in fact,

a free group of rank n, the winding number of ~kk in ~VV ). Since the free product

of two groups is finitely generated if and only if each of its factors is finitely

generated, it will then follow that K is finitely generated if and only if A

is. Equivalently, the pattern ð ~VV ; ~kkÞ is fibered if and only if the link ~kkU ~mmU ~mm 0

is fibered.

Part of a diagram D1 for ~kk U ~mm appears in Fig. 1 (a) with families of

generators indicated. There are pb n strands of ~kk passing the meridional

disk bounded by the unknotted circle representing ~mm. Assign a weight o of 1

or 0 to each arc of D1 according to whether the arc belongs to ~kk or

~mm, respectively. The Wirtinger algorithm combined with the Reidemeister-

Schreier method enables us to write a presentation for K. Each arc except one

represents an infinite family of generators aj ; a
0
j ; bj; b

0
j ; . . . or uj; u1; j ; . . . ; up�1; j ,
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indexed by j A Z. One arc of ~kk is labeled only with the identity element; the

symbols a; a 0; b; b 0; . . . correspond to the other arcs of ~kk; the remaining symbols

correspond to arcs of ~mm. Relators, which come in families indexed by j A Z,

correspond to the crossings of D1, and have the form wjyjþo ¼ zjwjþo 0 , where o

and o 0 are the weights of the arcs corresponding to wj and zj, respectively.

We use relators r1; . . . ; rp�1 (indicated in the figure by boxed numbers) to

eliminate u1; j; . . . ; up�1; j.

Recall that in a link diagram, any one Wirtinger relator is a consequence

of the others. Consequently, any single relator family is a consequence of the

others. We regard rp as a redundant family of relators.

The relator families arising from the remaining crossings in the figure have

the form a 0
j ¼ ujajujþ1, b 0

j ¼ ujbjujþ1; . . . , where denotes inverse.

Consider now the partial diagram D2 for ~kkU ~mmU ~mm 0 that appears in Fig. 1

(b), again with families of generators indicated. Letters a; a 0; a 00; b; b 0; b 00; . . .

correspond to arcs of ~kk while v; v1; . . . ; vp�1 and w;w1; . . . ;wp�1 correspond

to arcs of ~mm and ~mm 0, respectively. The parts of D1 and D2 not shown are

identical.

Relator families r1; . . . ; rp�1 (indicated in the figure by boxed numbers) are

used to eliminate v1; j; . . . ; vp�1; j. The relator family rp expresses vjþn in terms

of vj; . . . ; vjþn�1 and aj; bj ; . . .; it also expresses vj in terms of vjþ1; . . . ; vjþn and

aj; bj; . . . .

The top front relator families are used to eliminate a 00
j ; b

00
j ; . . . . Relator

families r 01; . . . ; r
0
p�1 are used to eliminate w1; j; . . . ;wp�1; j. The relator family r 0p

is regarded as redundant.

The bottom front relator families are of the form a 0
j ¼ wj�1vj�1ajvjwj, b

0
j ¼

wj�1vj�1bjvjwj ; . . . .

Fig. 1. (a) Partial diagram of D1, (b) Partial diagram of D2.
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Introduce a new generator family uj and defining relators uj ¼ wj�1vj�1.

Rewrite the relators as wj ¼ vjujþ1, and use them to eliminate wj.

Relator family rp can be used to eliminate vj for j0 0; 1; 2; . . . ; n� 1,

writing them in terms of v0; v1; . . . ; vn�1, aj; bj; . . . . None of the remaining

relators contain v0; . . . ; vn�1, and so these generate a free factor Fn of rank n.

The other generators and remaining relators are identical with those of

the presentation obtained for K. Hence A is isomorphic to the free product

K � Fn.

4. Examples

We give examples to demonstrate the applicability of Theorem 2. We

show that the knot 76 (with braid index 4) gives two 4-braided fibered patterns

and infinitely many mutually non-conjugate 4-braided non-fibered patterns.

Let bn denote the 4-braid s2s
�1
1 s�2n

2 s�1
3 s2s

�1
3 s2n

2 s�2
1 , where nb 0. Let b̂bn

be its closure along an axis A. Each b̂bn is (the mirror image of ) the knot 76.

Let NðAÞ denote a closed tubular neighborhood of A that is disjoint from

b̂bn. Then ~VV ¼ S3nint NðAÞ is a solid torus, and ð ~VV ; b̂bnÞ is a pattern of 76.

Proposition 1. With bn defined as above:

(1) The pattern ð ~VV ; b̂bnÞ is not fibered for any n > 1;

(2) Patterns ð ~VV ; b̂b0Þ and ð ~VV ; b̂b1Þ are fibered.

Remark 2. Since b0 is a homogeneous braid, J. Stallings [16] and L.

Rudolph [12] claim that ð ~VV ; b̂b0Þ is a fibered pattern. However, for completeness

we include a proof for this case.

The encircled closures of b0 and b1 are links with distinct 1-variable

Alexander polynomials, and hence the braids are non-conjugate. The braids

bn, nb 2, will be seen to be mutually non-conjugate as a consequence of the fact

that the genera of the 3-component links consisting of the closed braids and

two copies of axes with opposite orientations are distinct. Consequently, the

patterns ð ~VV ; b̂bnÞ are seen to be pairwise distinct.

Proof. For any nb 0, let Ln denote the 3-component link consisting of

b̂bn and AUA 0, two copies of A with opposite orientations. We will construct a

minimal genus Seifert surface for Ln, and show that it is not a fiber surface

unless n ¼ 0; 1. We use sutured manifold theory. (For basic facts about

sutured manifolds, see [5, pp. 8–10 and Appendix A] and [6, Section 1].)

Consider the Seifert surface F0 for L0 as in Figure 2 (a), obtained by

smoothing the ribbon intersections of the Seifert surface for b̂b0 and the annulus

spanned by AUA 0. Recall that if a Seifert surface has minimal genus or is a
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fiber, then it remains so after plumbing or deplumbing of Hopf bands. Let F 0
0

be the surface as in Figure 2 (b), obtained from F0 by deplumbing Hopf bands.

Consider the sutured manifold ðM; gÞ ¼ ðF 0
0 � I ; qF 0

0 � IÞ, where I is an

interval. Apply a C-product decomposition at each ‘ribbon hole’ to obtain the

sutured manifold as in Figure 3 (a). The ‘annulus part’ of F0 gives rise to

the four 1-handles. We can slide each of them as in Figure 3 (b) and then

remove them by C-product decompositions.

We now have a sutured manifold which is a 3-ball with a single

suture. By [5], F0 is a fiber surface (of genus 5) and hence L0 is fibered. By

Theorem 2, ð ~VV ; b̂b0Þ is a fibered pattern.

Assume that n > 1. Let Rn be a Seifert surface for b̂bn (not of minimal

genus) as in Figure 4.

By superimposing an annulus spanned by AUA 0 and smoothing the ribbon

intersections as before, we obtain a Seifert surface Fn (of genus 2nþ 3 if n > 0)

Fig. 2. Seifert surfaces for 3-component links

Fig. 3. A sutured manifold and the C-product decomposition
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for Ln. Recall that for any fibered link L, fiber surfaces are unique Seifert

surfaces of minimal genus. Therefore, to show that Ln is not a fibered link, it

su‰ces to show that Fn is not a fiber surface but that it has minimal genus.

Without loss of generality, we can remove some of parallel half-twisted

bands by deplumbing Hopf bands so that the remaining ones are as in Figure 5

(a). Then we slide a band as in Figure 5 (b) and remove the band marked �
by another Hopf deplumbing.

Obtain a sutured manifold by thickening the resulting Seifert surface and

apply C-product decompositions at each cite of a ribbon singularity. The

sutured manifold appears in Figure 6 (a).

As before, we can remove three 1-handles marked � by C-product

decompositions. Then applying another C-product decomposition along the

shaded disk (where the dots indicate the intersections with the sutures), we

obtain a sutured manifold as in Figure 6 (b).

A final C-product decomposition yields a sutured manifold ðM; gÞ. Since

it is a solid torus with four meridional sutures (Figure 6 (c)), its complement

is not a product sutured manifold.

By [5], Fn is not a fiber surface. However, we can apply a disk de-

composition to ðM; gÞ so that the result is a 3-ball with a single suture,

and hence by [6], Fn is a minimal genus Seifert surface. Therefore, Ln, n > 1 is

not a fibered link. By Theorem 2, we conclude that ð ~VV ; b̂bnÞ is not fibered for

any n > 1.

Fig. 4. Seifert surfaces for closed braids

Fig. 5. Deplumbing a Hopf band
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In the remaining case n ¼ 1, a sequence of C-product decompositions as

above produces a solid torus with two meridional sutures. Consequently, F1 is

a fiber for L1. r

5. Fibered patterns of the unknot

We will denote by Pn the collection of all fibered patterns ð ~VV ; ~kkÞ such that
~kk is a trivial knot with winding number n in ~VV . The following theorem

classifies the members of Pn.

Theorem 3. Let ð ~VV ; ~kkÞ be a pattern such that ~kk is the trivial knot with

winding number in ~VV equal to n. Then ð ~VV ; ~kkÞ is fibered if and only if the

meridian ~mm of ~VV is the closure of an n-braid B with axis ~kk. The mapping

ð ~VV ; ~kkÞ 7! ½B� is a bijection between Pn and the set of conjugacy classes of the n-

braid group Bn.

For the definition and elementary properties of n-braids, the reader is referred

to [1].

Proof. We use notation established in Section 2. Assume that ð ~VV ; ~kkÞ
is a member of Pn. Then there exists a fibration p : Y ð~kkÞ ! S1 inducing

the homomorphism f � p on fundamental groups. Let S be a fiber p�1ðyÞ,
y A S1. Since p restricts to a fibration of qY ð~kkÞ, it follows that qS consists

of a longitude of ~kk together with longitudes ~ll1; . . . ; ~lln of ~VV . We can extend

p to a fibration p : Xð~kkÞ ! S1 such that p�1ðyÞ is the ‘‘capped o¤ ’’ fiber

S Ul1
D2 Ul2

� � � Uln
D2, since ~VV is unknotted. Assume now that ~kk is a trivial

knot. Then p�1ðyÞ must be a disk. Moreover, Xð~kkÞ is isotopic in S3 to a

standardly embedded solid torus S1 �D2. Since ~mm intersects each y�D2 ¼

Fig. 6. C-product decompositions
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p�1ðyÞ in exactly n points, ~mm is the closure of an n-braid B with axis ~kk. The

particular embedding of ~mm in S1 �D2 that we obtain in this way is independent

up to isotopy of the choices that we make. Hence by Theorem 1 of [9], the

conjugacy class of B in the n-braid group is well defined.

In order to prove that the mapping ð ~VV ; ~kkÞ 7! ½B� is a bijection, it su‰ces

to produce the inverse mapping. The method that we use is essentially the

reverse of the above, and it has been used elsewhere (cf. [9]). Assume that B

is an n-braid that closes to a trivial knot ~mm. Denote the axis of ~mm by ~kk.

Let Nð ~mmÞ and Nð~kkÞ be disjoint tubular neighborhoods in S3 of ~mm and ~kk,

respectively, and consider the space Y ¼ S3nintðNð ~mmÞUNð~kkÞÞ. Regarded as

the exterior of the closed n-braid ~mm in the solid torus S3nint Nð~kkÞ, the space

Y fibers over S1; the fiber is a disk with n holes and boundary consisting of

a meridian of S3nint Nð~kkÞ together with n meridians of Nð ~mmÞ. On the other

hand, Y can be viewed as the exterior of the trivial knot ~kk in the unknotted

solid torus ~VV ¼ S3nint Nð ~mmÞ. From this vantage, the boundary of the fiber

consists of a longitude of ~kk together with n longitudes of ~VV , each also a

meridian of S3nint ~VV . It follows that the pattern ð ~VV ; ~kkÞ is fibered. Notice

that ~kk has winding number in ~VV equal to n. Also, ð ~VV ; ~kkÞ depends only

on the conjugacy class of B. Clearly, B 7! ð ~VV ; ~kkÞ is the desired inverse

mapping.

If ~mm is the closure of a 1-braid with unknotted axis ~kk, then ~kk U ~mm is a Hopf

link. We obtain the following corollary. In e¤ect, it asserts that there is no

fibered satellite knot with unknotted pattern knot ~kk having winding number 1

in the solid torus ~VV .

Corollary 1. Let ~kk be a trivial knot embedded in an unknotted solid

torus ~VV with winding number equal to 1. Then ð ~VV ; ~kkÞ is fibered if and only if

ð ~VV ; ~kkÞ ¼ ðS1 �D2;S1 � 0Þ.

Remark 3. There exist nontrivial fibered patterns with winding number

1. Such an example ð ~VV ; ~kkÞ can be constructed from the closure of the 3-braid

s2
2s

2
1s2 in ~VV by adding a short band with a full twist between the 1st and

2nd strings, away from the crossings. Here ~kk naturally spans a fiber surface F

consisting of a checkerboard-colorable surface together with a plumbed Hopf

band. A fiber S for the 3-component link of Theorem 2 is obtained by adding an

annulus to F . By Theorem 2 and arguments similar to earlier ones, we see that

ð ~VV ; ~kkÞ is a fibered pattern.

By reasoning similar to that of Corollary 1 we find that there exist only

two fibered patterns ð ~VV ; ~kkÞ such that ~kk is a trivial knot with winding number

in ~VV equal to 2. These correspond to the conjugacy classes of the 2-braids s1
and s�1

1 . See Fig. 7.
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For n ¼ 3, there are only three fibered patterns, corresponding to the

conjugacy classes of 3-braids s1s2, s�1
1 s2 and s�1

1 s�1
2 [7]. (The braid s1s

�1
2

does not appear in the list since it is conjugate to s�1
1 s2 in B3.)

If n is greater than 3, the situation is more complicated. We note that

s1s
2iþ1
2 s3s

�2i
2 , ib 0 represent infinitely many pairwise non-conjugate 4-braids

[9]. Axes ~mm of non-conjugate braids form distinct fibered patterns of the

unknot by Theorem 3. Hence P4 is infinite.

Corollary 2. Any knot ~kk can be embedded in an unknotted solid torus ~VV

with arbitrary winding number n in such a way that no satellite knot with pattern

ð ~VV ; ~kkÞ is fibered.

Proof. By Theorem 1 it su‰ces to prove that ~kk can be embedded in ~VV

with arbitrary winding number n in such a way that ð ~VV ; ~kkÞ is not fibered. We

may assume that n is positive (see remarks preceding Theorem 1). We will

prove the corollary assuming further that ~kk is the trivial knot. The general

result will then follow by trying an arbitrary ‘‘local knot’’ in ~kk (that is, forming

the knot product of ~kk and an arbitrary knot, and doing so within a 3-ball in
~VV ), since a product of knots is fibered if and only if each of the factors is.

For n > 0, consider the oriented link Ln depicted in Fig. 8 (a), consisting

of two unknotted components ~kk and ~mm.

Let Nð ~mmÞ be a tubular neighborhood in S3 of ~mm that is disjoint from
~kk. Then S3nint Nð ~mmÞ is an unknotted solid torus ~VV containing the trivial knot
~kk with winding number n. (When n ¼ 1, the pattern ð ~VV ; ~kkÞ is the configuration

in Fig. 8 (b) (cf. [8])). Assume that ð ~VV ; ~kkÞ is fibered. By Theorem 3, the link

Ln can be isotoped in such a way that ~mm appears as the closure of an n-braid

with axis ~kk. Consequently, Ln is the closure of an ðnþ 1Þ-braid. A theorem

of J. Franks and R. F. Williams [4] (also proved by H. R. Morton) implies that

the braid index of Ln is at least 1
2 ðemax � eminÞ þ 1, where emax and emin are

respectively the largest and smallest exponents of x in the 2-variable Jones

polynomial jLn
ðx; yÞ of Ln. An easy calculation reveals that jLn

ðx; yÞ ¼
�x�2jLn�1

ðx; yÞ � x�1j31ðx; yÞ, where 31 denotes the left-hand trefoil knot, and

Fig. 7. Fibered patterns of unknot with winding number 2.
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from this it is not di‰cult to verify that 1
2 ðemax � eminÞ þ 1 ¼ nþ 3, a con-

tradiction. Hence ð ~VV ; ~kkÞ is not fibered.

Remark 4. The orientation of the components of Ln is critical. If the

orientation of just one component is reversed, then the braid index of Ln becomes

3, for any nonzero n.
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