HirosHIMA MATH. J.
38 (2008), 385-395

Remarks on 2-dimensional quasiperiodic tilings
with rotational symmetries

Kazuhisa KATo, Kazushi KoMATsu, Fumihiko NAKANO,
Kentaro NomaKUcHI and Masatetsu YAMAUCHI

(Received July 4, 2007)
(Revised January 10, 2008)

ABSTRACT. We construct a sequentially compact space of patches. By using this
construction, we analyze certain symmetries of tilings obtained by substitution rules.

1. Introduction

In 1982 a quasi-crystal with 5-fold rotational symmetry was discovered by
Shechtman et al. (published in 1984 [13]). Before that, it had been believed
that the structure of crystals was periodic, like a wallpaper pattern. Periodicty
is another name for translational symmetry. 5-fold rotational symmetry is
incompatible with translational symmetry and therefore quasi-crystals are not
periodic. The most famous 2-dimensional mathematical model for a quasi-
crystal would be a Penrose tiling with 5-fold rotational symmetry ([9], [10]). In
addition, there are an Ammann-Beenker tiling with 8-fold rotational symmetry
(1], [2]) and a Danzer tiling with 7-fold rotational symmetry ([8]) in typical
tilings.

We prepare several basic definitions (cf. [12]). A tiling 7 of the 2-
dimensional Euclidean space R? is a countable family of polygons 7; called
tiles: 7 = {T;|i=1,2,...} such that (J”, 7;=R? and Int T;NInt T} = & if
i #j. A nonperiodic tiling is one that admits no translation isomorphisms
to itself. A quasiperiodic tiling is a nonperiodic tiling such that each local
configuration of finitely many tiles in the tiling appears infinitely often.

Let & = {S,S,,...,S;} be a finite set of polygons S;. When each tile T
in a tiling J is congruent to some S; €&, & is called a prototile set of 7.

The substitution rule is one of methods to construct quasiperiodic tilings
with a given prototile set. Fix A(>1). For & ={S,S,,...,5}, any
Sy €%) is decomposed into A"  scale-down copies A7'Y =
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{TlSl,}flSz,...,flS;} of . This decomposition is called a substitution
rule of & if such a decomposition is possible. Let @ denote a substitution rule
of &, and ®[S,] denote the decomposition of Sy € . Similarly, let @[S)]
denote the decomposition of ASj; into &.

DEFINITION. A patch P is defined to be a set P = {T,},., of finite or
countably infinitely many polygons which satisfies the following conditions (1)—
(4):

(1) IntT,NInt T, = (o0 # '),

(2) | T, is connected,

oA

(3) | U 7o) N(U,(v) — {v}) is connected for any ¢ > 0 and any vertex v,
aeAd

where U,(v) = {w e R*|d(w,v) < ¢}, d is Euclidean metric of R?
(4) (edge to edge) No vertex of tiles is in the interiors of edges of other
tiles.

Note that a tiling is a patch of countably infinitely many tiles, and that
any of possible patches does not necessarily appear in a tiling.

A patch P = {T,},., with a prototile set & = {S|,S,...,S;} is defined to
be a patch such that there exists a polygon Sj(€ %) congruent to 7, for any
T,(e P).

DEeriNITION.  We define the space SP(¥) of patches with a prototile set %
by the following:

SP(#)={P|0e?T eP, Pis a patch with ¥},

where O = (0,0) e R? is the origin. We give a metric / in SP(%) by using
Hausdorff distance H: For any P;, P, € SP(¥),

h(Py, P>) = inf{e| H(0,(P1),0:(P>)) < ¢},

where 0,(P) = J,;.p(0(T)NCyy,). O(T) is the boundary set of 7 and
Ci. = {weR?|d(w,0) < 1/e}.

A continuous operator @ : SP(¥) — SP() is induced by docomposition
& for each tile in a patch. A patch P is called a periodic point of & when
there exists a positive integer m such that &”(P) = P.

Due to [11] the space V(&) of tilings from a given prototile set & is a
sequencial compact metric space. We see that V(%) is a closed subspace in
SP(S).

THEOREM. The space SP(¥) of patches with a prototile set & is a
sequencial compact metric space.
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We remark that Theorem remains true in 3 and higher dimensional cases
since the proof of Theorem in the section 2 works well by changing a little.

One of the purpose of this paper is to analyze certain symmetries of tilings
obtained by using substitution rules:

COROLLARY. Let & be a prototile set with a substitution rule ®@. If we
have a prototile with a vertex of an angle ©/n, then there exists a tiling 7, with
n-fold rotational symmetry, which is a periodic point of ®.

Furthermore, for an integer n with n=15 or 6<n, its tiling 7, is
nonperiodic and has a non-trivial action of a non-crystallographic Coxeter group.

Note that a tiling 7 is an accumulation point in SP(.%), and that a patch
P is an accumulation point in SP(¥) if P is a periodic point of @.

This note is arranged as follows. In the section 2 we prove Theorem and
Corollary. In the section 3 we demonstrate some examples of tilings with
rotational symmetries.

2. Proof of Theorem and Corollary

Proor oF THEOREM. We take any sequence {P;} with P; = {T(i),},c
(i=1,2,...) in SP(¥). Because a prototile set % is a finite set, for some
prototile S the sequence {P;} contains infinitely many patches P, such that
O €T, € P, and that T, and S are congruent by an orientation preserving
isometry. By taking a subsequence and renumbering we have {P;},_;,
which satisfies that O €3T;e P; and that 7; and S are congruent by'an
orientation preserving isometry.

Due to a special case of the Selection Theorem [5, p. 154], if all 7;’s have
some point in common and are congruent to a tile 7’ for an infinite sequence
{T;} of tiles, then some subsequence of {7;} converges to a tile congruent to a
tile 7’ in terms of Hausdorff distance. By taking a subsequence we can
assume that congruent transformations are orientation preserving isometries.

In addition, we can take a subsequence {P;} which satisfies one of the
following (a)—(c);

(a) For any T; with Oe T, € P
gruent by some translation.

(b) For any T; with OeT; € P;, T; and T, are congruent by some
rotational transformation #; and for the center pi of 7, {px} converges to a
point p € R2.

(c) For any T, with Oe T, e P,, T; and T, are congruent by some
rotational transformation f; and for the center p; of #, {px} is divergent.

> 1, and Ty, =limy_,, T; are con-
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We consider a patch P such that Oe T, € P. Let ﬁik, P be subpatches of
P; , P respectively, that is, f’,-k and P are patches such that P,»k c P;, and Pc P
Now, suppose that for any ¢ > 0 there exists an integer K such that P,-k and P
have the same configuration of tiles and that C;,, N (|, p, T)cUre 5, T and

CeN(UpepT) € UpepT for all k> K, where Cy), = {weR?|d(w,0) <
1/e}. If T;, and T, are congruent by an orientation preserving isometry, then
Ure b, o(T) and | J,_p0(T) are isometric by the same isometry.

In the case of (a), for any ¢ > 0 we get that H(0.(P;,),0.(P)) < ¢ for all
k=K if H(T;,T,)<e for Hausdorff distance H. Hence we obtain that
h(P;,,P) <& by the definition of .

In the case of (b), for any ¢ > 0 there exists an integer M) such that
d(pr,p) <r/2 for all k> M,, where r=sup{d(p,x)|xed(Ty)}. We put
i = sup{d(pk,x)|x € (T )}, Ri = sup{d(pk,x)|x € d.(P;,)U0.(P)} and R =
sup{d(p,x)|x € d(Cy;)}. Then we see that (r/2) <r and R+ (r/2) > Ry.
Since T, =limy_,, T;, we can take an integer M, such that H(T;,T,) <
(r/QR+r))e for all k> M, For M =max{K, M;,M>} we get that
H(0,(P;),0:(P)) <e¢ for all k> M. Hence we obtain that A(P;,,P) <& by
the definition of A.

In the case of (c), for any & >0 there exists an integer N; such that
d(pr, O) > 1/e for all k > N;. Without the loss of generality, we can assume
that d(p;, O) < d(pi+1,0). Then we see that d(py,, O) < ry and 2d(py,, O) >
Ry. Since T, =limy_, T;, we can take an integer N, such that
H(T,,Ts) <¢/2 for all k> N,. For N =max{K,N;,N,} we get that
H(0,(P;),0:(P)) <e for all k> N. Hence we obtain that A(P;,P)<e by
the definition of A.

Thus, the rest of the proof is only to choose a subsequence {P; } < {P;}
with the same configuration in larger and larger subpatches of finitely many
tiles. By the definition of #, it suffices to choose a convergent subsequence of
{P;} in the special case where P; contains the common tile Ty with O € Ty.
We choose a subsequence {P/ };_;, of {P;} inductively. We put Pfl) =
{T(i),e P/|CiNT(i), # &}, where C; ={weR*|d(w,0)<1}. For any
L >0 there are only finitely many patches P={T,}, ., which satisfy
that Toe P={T,},., and C NT,# & for all aed, where C;=
{weR*|d(w,0) < L}. Hence {Pz(l)}izl.l,,.. is a finite set and there exists PSOI)
such that |{j|Pl(.01> c Pi}|=o00. We put 4, = {j|P§01) c P} and /) = min 4,.
So, we choose Py,.

Assume that we have A, ; and /;_;. We put a subpatch Pflc) =
{T(i),e Pi|CNT(i), # S} for each ie Ay —{lk_1}, where Ci=
{weR?|d(w,0) <k}. By the above argument, {ng)} is a finite set and there

exists P such that |{j|Pl(.é‘) c P je Ay —{li1}} = 0. We put A, =

io

7
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{j|P§f) c P, jedry—{/k1}} and /p =min A,. So, we choose Py,.
Hence we can choose a subsequence {P,,} of {P;} inductively. Then we put
P =, Pl(.f) e SP(¥). Since h(Ps,P) < 1/k, we obtain that {P; },_, ,
converges to P..

Therefore, SP(%) is sequencial compact and the proof of Theorem is
completed.

yees

ProoF ofF CoroLLARY. First, we prove the existence of a tiling with »n-
fold rotational symmetry. We consider a subset A(z/n) = {(rcos 0,r sin 0) |
—n/n<0<0,r=>0}.

We show that 4(n/n) is decomposed into prototiles. We take a prototile
So with a vertex of an angle n/n. We set a tile Ty in 4(z/n) which is a copy
of Sy and contains the origin O = (0,0) as a vertex of an angle n/n. We take
a sequence {®F[Ty]} in SP(¥). Since SP(¥) is sequencial compact by
Theorem, we can choose a convergent subsequence {®%[Ty]},_, 5. of
{®X[Ty]}. Let P, be a limit point of {dAik"[To]}i:mw. Because /> 1, for
any R >0 there exists a sufficiently large j such that Ug(O)NA(n/n) <
UTeéskf[To] T, where Ug(O) = {weR?|d(w,0) < R}. Hence P, is a decom-
position of A(z/n) and there exists a set {7;} of tiles such that
U~ T; = A4(n/n) and Int T;NInt T; = & if i #j.

The decomposition of A(z/n) can be extended to the whole plane R*>. In
fact, we put Ti(k,j) = ré(n/nR{T,- (k=0,1,2,....n—1,j=0,1), where Ry is
the reflection in the x-axis and r,/, is the 27/n rotation around the origin.
Then we see that (), Ti(k,)) = R? and Int Tj(k, j)NInt Ty (k', j') = & if
(i, j, k) # (i', j', k"), and get that {T}(k, j)} is a tiling in R?>. By the way of the
construction we obtain that {7;(k,;)} has n-fold rotational symmetry.

Secondly, we show that the tiling just constructed above is a periodic point
of @. We have only to prove that the decomposition P, of A(z/n) is a
periodic point of @ by the way of the construction. We take a patch P = P,
which consists of all tiles 7T such that OeTeP,. Since P, =
lim;_,, @[Ty, there exists an integer N such that P = &% [T;] for any i > N.
We put p=min{k|P < &*[Ty]} and m = min{k — k'| P = & [To] N &~ [Ty],
k' < k}. The sequence {&* [P]}i—0.1,2,.. converges to (], @™ [P] because
®™[P] = /[P] if i < j. We consider a sequence {®"*"[Ty]},_,,, . Since
P < ®P[Ty], we see that &*"[P] = &”**"[T;]. Hence we get that {®""[Ty]}
converges to limy_,, ®*[P]. By the minimality of p and m, {@[Ty]},. y is a
convergent subsequence of {é“km[To}}k:O’L »_. Then we get that {&"*"[T;]}
converges to P, =lim;_, @""[To]. Therefore, we obtain that P, =
limy_., @*"[P] and ®"[P..] = P...

In addition, we see that the tiling obtained above is nonperiodic by the
following proposition:
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ProposiTION ([4], [14]). Let n be a positive integer with n=5 or
6 <n. Then the tilings with n-fold rotational symmetry are nonperiodic.

The following lemma implies Proposition immediately (see [4], [14] for
details).

Lemma ([4], [14]). Let n be a positive integer with n=15 or 6 <n. No
tiling has more than one center of n-fold rotational symmetry.

Due to [4] J. H. Conway introduced the proof of Lemma for n =5 which
is given by P. Barlow. By the similar argument Lemma is true for 6 < n (cf.
[14)).

Next, we see that a Coxeter group Hé") acts on the tiling obtained above
by the way of the construction because A(z/n) is the fundamental region of
H" = (R, R, | (R{R,))" = R? = R} = ¢), where R, is the reflection in the x-
axis and R; is the reflection in the line x tan(—n/n) — y = 0. For any integer
n with n =15 or 6 <n, HZ(") is a non-crystallographic Coxeter group (cf. [6]).

The proof of Corollary is completed.

REMARK. When the decomposition of 4(x/n) is line symmetric in the line
x tan(—=n/2n) — y = 0, the decomposition of A(n/n) can be extended to the
tiling in the whole plane R? by using only rotation r, /n- This tiling has 2n-fold
rotational symmetry (for example, see an Ammann-Beenker tiling in 3.3).

3. Some examples
In this section we demonstrate three examples of typical tilings with

rotational symmetries.

3.1. A Danzer tiling with 7-fold rotational symmetry. The prototiles of
Danzer tilings are six types of triangles with arrows on the edges (three
triangles a, b, ¢ in Figure 1 and their mirror images).

a > C

Fig. 1. Three prototiles with arrows of Danzer tilings (0 = n/7)
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Fig. 2. The substitution rule of Danzer tilings

®lal ®lal
</

Fig. 3. Rescaling ®[a] to ®[q|

Fig. 4. The decomposition of A(n/7)

We give the substitution rule of prototiles as in Figure 2 and their mirror
images (cf. [8]). As an example we decompose a tile a into smaller copies of
the prototiles and get ®@[a]. Then we rescale these small tiles to the original
size and get é[a] as in Figure 3. Next, we docompose each tile in the patch
which we have just constructed, rescale, decompose again, and so forth ad
infinitum. The sequence {a, ®[a], ®[d],...} converges to a decomposition of
A(n/7) as in Figure 4. We reflect the decomposition of A4(z/7) in the x-axis
and get Figure 5. In addition, we rotate Figure 5 by 2k7/7 radian around the
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Fig. 5. The reflection of Fig. 4

SOEK

NS
N
| >

AN
o)

i

Fig. 6. A Danzer tiling with 7-fold rotational symmetry

origin (k=1,2,...,6). Then a Danzer tiling with 7-fold rotational symmetry
appears as in Figure 6.

When we take a sequence {b, ®[b], d>[b],...}, we see that a subsequence
{®[b], ®*[b], ®3[b],...} converges to a decomposition of A(n/7).

3.2. A Penrose tiling with 5-fold rotational symmetry. The prototiles of
Penrose tilings are four types of triangles with arrows on the edges (two
triangles @, b in Figure 7 and their mirror images). Note that the original

s
s
-1
r

Fig. 7. Two prototiles with arrows of Penrose tilings
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@|al

3

W (D[b] L

Fig. 8. The substitution rule of Penrose tilings

Penrose tilings are restorable from tilings that use four kinds of tiles in Figure 7
and their mirror images by erasing edges with threefold or fourfold arrows.

We give the substitution rule of prototiles as in Figure 8 and their mirror
images (cf. [3]).

When we take a sequence {a, ®la|, ®[d],...}, we see that a subsequence
{®a], ®’[a], ®°[a],...} converges to a decomposition of A(z/5).

When we take a sequence {b, ®[b], d?[b],...}, we see that a subsequence
{®[b], °[b], ®°[b],...} converges to a decomposition of A(z/5).

3.3. An Ammann-Beenker tiling with 8-fold rotational symmetry. The proto-
tiles of Ammann-Beenker tilings are two decorated rhombs with acute angles
7/4 and two decorated halves of a square (two tiles @, b in Figure 9 and their
mirror images). Note that the original Ammann-Beenker tilings are restorable
from tilings that use four kinds of decorated tiles in Figure 9 and their mirror
images by identifying squares which appear in tilings as tiles.

We give the substitution rule of prototiles as in Figure 10 and their mirror
images (cf. [7]).

a b
Fig. 9. Two prototiles of Ammann-Beenker tilings

®[a] @[b]

ey, Ve

Fig. 10. The substitution rule of Ammann-Beenker tilings
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When we take a sequence {a,®[a], d*[a], ®*[d],...}, we see that it is
convergent sequence and get a decomposition of A(n/4).

When we take a sequence {b, ®[b], d[b],...}, we see that a subsequence
{®[b], d[b], D3[b],...} converges to a decomposition of A(z/4). These two
decompositions of A(z/4) is line symmetric in the line x tan(—n/8) — y = 0.
Hence we obtain a tiling with 8-fold rotational symmetry in each case.
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