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Abstract. We construct a sequentially compact space of patches. By using this

construction, we analyze certain symmetries of tilings obtained by substitution rules.

1. Introduction

In 1982 a quasi-crystal with 5-fold rotational symmetry was discovered by

Shechtman et al. (published in 1984 [13]). Before that, it had been believed

that the structure of crystals was periodic, like a wallpaper pattern. Periodicty

is another name for translational symmetry. 5-fold rotational symmetry is

incompatible with translational symmetry and therefore quasi-crystals are not

periodic. The most famous 2-dimensional mathematical model for a quasi-

crystal would be a Penrose tiling with 5-fold rotational symmetry ([9], [10]). In

addition, there are an Ammann-Beenker tiling with 8-fold rotational symmetry

([1], [2]) and a Danzer tiling with 7-fold rotational symmetry ([8]) in typical

tilings.

We prepare several basic definitions (cf. [12]). A tiling T of the 2-

dimensional Euclidean space R2 is a countable family of polygons Ti called

tiles: T ¼ fTi j i ¼ 1; 2; . . .g such that 6y
i¼1

Ti ¼ R2 and Int Ti V Int Tj ¼ q if

i0 j. A nonperiodic tiling is one that admits no translation isomorphisms

to itself. A quasiperiodic tiling is a nonperiodic tiling such that each local

configuration of finitely many tiles in the tiling appears infinitely often.

Let S ¼ fS1;S2; . . . ;Slg be a finite set of polygons Sj. When each tile T

in a tiling T is congruent to some Si A S, S is called a prototile set of T.

The substitution rule is one of methods to construct quasiperiodic tilings

with a given prototile set. Fix lð> 1Þ. For S ¼ fS1;S2; . . . ;Slg, any

Sk ðA SÞ is decomposed into l�1 scale-down copies l�1S ¼
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fl�1S1; l
�1S2; . . . ; l

�1Slg of S. This decomposition is called a substitution

rule of S if such a decomposition is possible. Let F denote a substitution rule

of S, and F½Sk� denote the decomposition of Sk A S. Similarly, let F̂F½Sk�
denote the decomposition of lSk into S.

Definition. A patch P is defined to be a set P ¼ fTaga AA of finite or

countably infinitely many polygons which satisfies the following conditions (1)–

(4):

(1) Int Ta V Int Ta 0 ¼ q ða0 a 0Þ,
(2) 6

a AA

Ta is connected,

(3) 6
a AA

Ta

 !
V ðUeðvÞ � fvgÞ is connected for any e > 0 and any vertex v,

where UeðvÞ ¼ fw A R2 j dðw; vÞ < eg, d is Euclidean metric of R2,

(4) (edge to edge) No vertex of tiles is in the interiors of edges of other

tiles.

Note that a tiling is a patch of countably infinitely many tiles, and that

any of possible patches does not necessarily appear in a tiling.

A patch P ¼ fTaga AA with a prototile set S ¼ fS1;S2; . . . ;Slg is defined to

be a patch such that there exists a polygon SjðA SÞ congruent to Ta for any

TaðA PÞ.

Definition. We define the space SPðSÞ of patches with a prototile set S

by the following:

SPðSÞ ¼ fP jO A bT A P; P is a patch with Sg;

where O ¼ ð0; 0Þ A R2 is the origin. We give a metric h in SPðSÞ by using

Hausdor¤ distance H: For any P1;P2 A SPðSÞ,

hðP1;P2Þ ¼ inffe jHðqeðP1Þ; qeðP2ÞÞa eg;

where qeðPÞ ¼ 6
T APðqðTÞVC1=eÞ. qðTÞ is the boundary set of T and

C1=e ¼ fw A R2 j dðw;OÞa 1=eg.

A continuous operator F̂F : SPðSÞ ! SPðSÞ is induced by docomposition

F̂F for each tile in a patch. A patch P is called a periodic point of F̂F when

there exists a positive integer m such that F̂FmðPÞ ¼ P.

Due to [11] the space VðSÞ of tilings from a given prototile set S is a

sequencial compact metric space. We see that VðSÞ is a closed subspace in

SPðSÞ.

Theorem. The space SPðSÞ of patches with a prototile set S is a

sequencial compact metric space.
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We remark that Theorem remains true in 3 and higher dimensional cases

since the proof of Theorem in the section 2 works well by changing a little.

One of the purpose of this paper is to analyze certain symmetries of tilings

obtained by using substitution rules:

Corollary. Let S be a prototile set with a substitution rule F. If we

have a prototile with a vertex of an angle p=n, then there exists a tiling Tn with

n-fold rotational symmetry, which is a periodic point of F̂F.

Furthermore, for an integer n with n ¼ 5 or 6 < n, its tiling Tn is

nonperiodic and has a non-trivial action of a non-crystallographic Coxeter group.

Note that a tiling T is an accumulation point in SPðSÞ, and that a patch

P is an accumulation point in SPðSÞ if P is a periodic point of F̂F.

This note is arranged as follows. In the section 2 we prove Theorem and

Corollary. In the section 3 we demonstrate some examples of tilings with

rotational symmetries.

2. Proof of Theorem and Corollary

Proof of Theorem. We take any sequence fPig with Pi ¼ fTðiÞaga AAðiÞ
ði ¼ 1; 2; . . .Þ in SPðSÞ. Because a prototile set S is a finite set, for some

prototile S the sequence fPig contains infinitely many patches Pk such that

O A bTk A Pk and that Tk and S are congruent by an orientation preserving

isometry. By taking a subsequence and renumbering we have fPigi¼1;2;...

which satisfies that O A bTi A Pi and that Ti and S are congruent by an

orientation preserving isometry.

Due to a special case of the Selection Theorem [5, p. 154], if all Tj’s have

some point in common and are congruent to a tile T 0 for an infinite sequence

fTjg of tiles, then some subsequence of fTjg converges to a tile congruent to a

tile T 0 in terms of Hausdor¤ distance. By taking a subsequence we can

assume that congruent transformations are orientation preserving isometries.

In addition, we can take a subsequence fPikg which satisfies one of the

following (a)–(c);

(a) For any Tik with O A Tik A Pik , Tik and Ty ¼ limk!y Tik are con-

gruent by some translation.

(b) For any Tik with O A Tik A Pik , Tik and Ty are congruent by some

rotational transformation tk and for the center pk of tk, fpkg converges to a

point p A R2.

(c) For any Tik with O A Tik A Pik , Tik and Ty are congruent by some

rotational transformation tk and for the center pk of tk, fpkg is divergent.
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We consider a patch P such that O A Ty A P. Let P̂Pik , P̂P be subpatches of

Pik , P respectively, that is, P̂Pik and P̂P are patches such that P̂Pik HPik and P̂PHP.

Now, suppose that for any e > 0 there exists an integer K such that P̂Pik and P̂P

have the same configuration of tiles and that C1=e V ð6
T APik

TÞH6
T A P̂Pik

T and

C1=e V ð6
T AP TÞH6

T A P̂P T for all kbK , where C1=e ¼ fw A R2 j dðw;OÞa
1=eg. If Tik and Ty are congruent by an orientation preserving isometry, then

6
T A P̂Pik

qðTÞ and 6
T A P̂P qðTÞ are isometric by the same isometry.

In the case of (a), for any e > 0 we get that HðqeðPik Þ; qeðPÞÞa e for all

kbK if HðTik ;TyÞa e for Hausdor¤ distance H. Hence we obtain that

hðPik ;PÞa e by the definition of h.

In the case of (b), for any e > 0 there exists an integer M1 such that

dðpk; pÞ < r=2 for all kbM1, where r ¼ supfdðp; xÞ j x A qðTyÞg. We put

rk ¼ supfdðpk; xÞ j x A qðTyÞg, Rk ¼ supfdðpk; xÞ j x A qeðPik ÞU qeðPÞg and R ¼
supfdðp; xÞ j x A qðC1=eÞg. Then we see that ðr=2Þ < rk and Rþ ðr=2Þ > Rk.

Since Ty ¼ limk!y Tik , we can take an integer M2 such that HðTik ;TyÞa
ðr=ð2Rþ rÞÞe for all kbM2. For M ¼ maxfK ;M1;M2g we get that

HðqeðPik Þ; qeðPÞÞa e for all kbM. Hence we obtain that hðPik ;PÞa e by

the definition of h.

In the case of (c), for any e > 0 there exists an integer N1 such that

dðpk;OÞ > 1=e for all kbN1. Without the loss of generality, we can assume

that dðpi;OÞ < dðpiþ1;OÞ. Then we see that dðpN1
;OÞ < rk and 2dðpN1

;OÞ >
Rk. Since Ty ¼ limk!y Tik , we can take an integer N2 such that

HðTik ;TyÞa e=2 for all kbN2. For N ¼ maxfK ;N1;N2g we get that

HðqeðPik Þ; qeðPÞÞa e for all kbN. Hence we obtain that hðPik ;PÞa e by

the definition of h.

Thus, the rest of the proof is only to choose a subsequence fPikgH fPig
with the same configuration in larger and larger subpatches of finitely many

tiles. By the definition of h, it su‰ces to choose a convergent subsequence of

fPig in the special case where Pi contains the common tile T0 with O A T0.

We choose a subsequence fPlkgk¼1;2;... of fPig inductively. We put P
ð1Þ
i ¼

fTðiÞa A Pi jC1 VTðiÞa 0qg, where C1 ¼ fw A R2 j dðw;OÞa 1g. For any

L > 0 there are only finitely many patches P ¼ fTaga AA which satisfy

that T0 A P ¼ fTaga AA and CL VTa 0q for all a A A, where CL ¼
fw A R2 j dðw;OÞaLg. Hence fPð1Þ

i gi¼1;2;... is a finite set and there exists P
ð1Þ
i0

such that jf j jPð1Þ
i0

HPjgj ¼ y. We put L1 ¼ f j jPð1Þ
i0

HPjg and l1 ¼ min L1.

So, we choose Pl1 .

Assume that we have Lk�1 and lk�1. We put a subpatch P
ðkÞ
i ¼

fTðiÞa A Pi jCk VTðiÞa 0qg for each i A Lk�1 � flk�1g, where Ck ¼
fw A R2 j dðw;OÞa kg. By the above argument, fPðkÞ

i g is a finite set and there

exists P
ðkÞ
i0

such that jf j jPðkÞ
i0

HPj; j A Lk�1 � flk�1ggj ¼ y. We put Lk ¼
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f j jPðkÞ
i0

HPj ; j A Lk�1 � flk�1gg and lk ¼ min Lk. So, we choose Plk .

Hence we can choose a subsequence fPlkg of fPig inductively. Then we put

Py ¼ 6
k
P
ðkÞ
i0

A SPðSÞ. Since hðPlk ;PyÞ < 1=k, we obtain that fPlkgk¼1;2;...

converges to Py.

Therefore, SPðSÞ is sequencial compact and the proof of Theorem is

completed.

Proof of Corollary. First, we prove the existence of a tiling with n-

fold rotational symmetry. We consider a subset Dðp=nÞ ¼ fðr cos y; r sin yÞ j
�p=na ya 0; rb 0g.

We show that Dðp=nÞ is decomposed into prototiles. We take a prototile

S0 with a vertex of an angle p=n. We set a tile T0 in Dðp=nÞ which is a copy

of S0 and contains the origin O ¼ ð0; 0Þ as a vertex of an angle p=n. We take

a sequence fF̂Fk½T0�g in SPðSÞ. Since SPðSÞ is sequencial compact by

Theorem, we can choose a convergent subsequence fF̂Fki ½T0�gi¼1;2;... of

fF̂Fk½T0�g. Let Py be a limit point of fF̂Fki ½T0�gi¼1;2;.... Because l > 1, for

any R > 0 there exists a su‰ciently large j such that URðOÞVDðp=nÞH
6

T A F̂Fkj ½T0� T , where URðOÞ ¼ fw A R2 j dðw;OÞ < Rg. Hence Py is a decom-

position of Dðp=nÞ and there exists a set fTig of tiles such that

6y
i¼1

Ti ¼ Dðp=nÞ and Int Ti V Int Tj ¼ q if i0 j.

The decomposition of Dðp=nÞ can be extended to the whole plane R2. In

fact, we put Tiðk; jÞ ¼ rk2p=nR
j
1Ti ðk ¼ 0; 1; 2; . . . ; n� 1; j ¼ 0; 1Þ, where R1 is

the reflection in the x-axis and r2p=n is the 2p=n rotation around the origin.

Then we see that 6
i;k; j

Tiðk; jÞ ¼ R2 and Int Tiðk; jÞV Int Ti 0 ðk 0; j 0Þ ¼ q if

ði; j; kÞ0 ði 0; j 0; k 0Þ, and get that fTiðk; jÞg is a tiling in R2. By the way of the

construction we obtain that fTiðk; jÞg has n-fold rotational symmetry.

Secondly, we show that the tiling just constructed above is a periodic point

of F̂F. We have only to prove that the decomposition Py of Dðp=nÞ is a

periodic point of F̂F by the way of the construction. We take a patch PHPy

which consists of all tiles T such that O A T A Py. Since Py ¼
limi!y F̂Fki ½T0�, there exists an integer N such that PH F̂Fki ½T0� for any ibN.

We put p ¼ minfk jPH F̂Fk½T0�g and m ¼ minfk � k 0 jPH F̂Fk½T0�V F̂Fk 0 ½T0�;
k 0 < kg. The sequence fF̂Fkm½P�gk¼0;1;2;... converges to 6

k
F̂Fkm½P� because

F̂F im½P�H F̂F jm½P� if i < j. We consider a sequence fF̂Fpþkm½T0�gk¼0;1;2;.... Since

PH F̂Fp½T0�, we see that F̂Fkm½P�H F̂Fpþkm½T0�. Hence we get that fF̂Fpþkm½T0�g
converges to limk!y F̂Fkm½P�. By the minimality of p and m, fF̂Fki ½T0�gibN is a

convergent subsequence of fF̂Fpþkm½T0�gk¼0;1;2;.... Then we get that fF̂Fpþkm½T0�g
converges to Py ¼ limi!y F̂Fki ½T0�. Therefore, we obtain that Py ¼
limk!y F̂Fkm½P� and F̂Fm½Py� ¼ Py.

In addition, we see that the tiling obtained above is nonperiodic by the

following proposition:
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Proposition ([4], [14]). Let n be a positive integer with n ¼ 5 or

6 < n. Then the tilings with n-fold rotational symmetry are nonperiodic.

The following lemma implies Proposition immediately (see [4], [14] for

details).

Lemma ([4], [14]). Let n be a positive integer with n ¼ 5 or 6 < n. No

tiling has more than one center of n-fold rotational symmetry.

Due to [4] J. H. Conway introduced the proof of Lemma for n ¼ 5 which

is given by P. Barlow. By the similar argument Lemma is true for 6 < n (cf.

[14]).

Next, we see that a Coxeter group H
ðnÞ
2 acts on the tiling obtained above

by the way of the construction because Dðp=nÞ is the fundamental region of

H
ðnÞ
2 ¼ hR1;R2 j ðR1R2Þn ¼ R2

1 ¼ R2
2 ¼ ei, where R1 is the reflection in the x-

axis and R2 is the reflection in the line x tanð�p=nÞ � y ¼ 0. For any integer

n with n ¼ 5 or 6 < n, H
ðnÞ
2 is a non-crystallographic Coxeter group (cf. [6]).

The proof of Corollary is completed.

Remark. When the decomposition of Dðp=nÞ is line symmetric in the line

x tanð�p=2nÞ � y ¼ 0, the decomposition of Dðp=nÞ can be extended to the

tiling in the whole plane R2 by using only rotation rp=n. This tiling has 2n-fold

rotational symmetry (for example, see an Ammann-Beenker tiling in 3.3).

3. Some examples

In this section we demonstrate three examples of typical tilings with

rotational symmetries.

3.1. A Danzer tiling with 7-fold rotational symmetry. The prototiles of

Danzer tilings are six types of triangles with arrows on the edges (three

triangles a, b, c in Figure 1 and their mirror images).

Fig. 1. Three prototiles with arrows of Danzer tilings ðy ¼ p=7Þ
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We give the substitution rule of prototiles as in Figure 2 and their mirror

images (cf. [8]). As an example we decompose a tile a into smaller copies of

the prototiles and get F½a�. Then we rescale these small tiles to the original

size and get F̂F½a� as in Figure 3. Next, we docompose each tile in the patch

which we have just constructed, rescale, decompose again, and so forth ad

infinitum. The sequence fa; F̂F½a�; F̂F2½a�; . . .g converges to a decomposition of

Dðp=7Þ as in Figure 4. We reflect the decomposition of Dðp=7Þ in the x-axis

and get Figure 5. In addition, we rotate Figure 5 by 2kp=7 radian around the

Fig. 2. The substitution rule of Danzer tilings

Fig. 3. Rescaling F½a� to F̂F½a�

Fig. 4. The decomposition of Dðp=7Þ
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origin ðk ¼ 1; 2; . . . ; 6Þ. Then a Danzer tiling with 7-fold rotational symmetry

appears as in Figure 6.

When we take a sequence fb; F̂F½b�; F̂F2½b�; . . .g, we see that a subsequence

fF̂F½b�; F̂F2½b�; F̂F3½b�; . . .g converges to a decomposition of Dðp=7Þ.

3.2. A Penrose tiling with 5-fold rotational symmetry. The prototiles of

Penrose tilings are four types of triangles with arrows on the edges (two

triangles a, b in Figure 7 and their mirror images). Note that the original

Fig. 5. The reflection of Fig. 4

Fig. 6. A Danzer tiling with 7-fold rotational symmetry

Fig. 7. Two prototiles with arrows of Penrose tilings

392 Kazuhisa Kato et al.



Penrose tilings are restorable from tilings that use four kinds of tiles in Figure 7

and their mirror images by erasing edges with threefold or fourfold arrows.

We give the substitution rule of prototiles as in Figure 8 and their mirror

images (cf. [3]).

When we take a sequence fa; F̂F½a�; F̂F2½a�; . . .g, we see that a subsequence

fF̂F½a�; F̂F5½a�; F̂F9½a�; . . .g converges to a decomposition of Dðp=5Þ.
When we take a sequence fb; F̂F½b�; F̂F2½b�; . . .g, we see that a subsequence

fF̂F½b�; F̂F5½b�; F̂F9½b�; . . .g converges to a decomposition of Dðp=5Þ.

3.3. An Ammann-Beenker tiling with 8-fold rotational symmetry. The proto-

tiles of Ammann-Beenker tilings are two decorated rhombs with acute angles

p=4 and two decorated halves of a square (two tiles a, b in Figure 9 and their

mirror images). Note that the original Ammann-Beenker tilings are restorable

from tilings that use four kinds of decorated tiles in Figure 9 and their mirror

images by identifying squares which appear in tilings as tiles.

We give the substitution rule of prototiles as in Figure 10 and their mirror

images (cf. [7]).

Fig. 8. The substitution rule of Penrose tilings

Fig. 9. Two prototiles of Ammann-Beenker tilings

Fig. 10. The substitution rule of Ammann-Beenker tilings
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When we take a sequence fa; F̂F½a�; F̂F2½a�; F̂F3½a�; . . .g, we see that it is

convergent sequence and get a decomposition of Dðp=4Þ.
When we take a sequence fb; F̂F½b�; F̂F2½b�; . . .g, we see that a subsequence

fF̂F½b�; F̂F2½b�; F̂F3½b�; . . .g converges to a decomposition of Dðp=4Þ. These two

decompositions of Dðp=4Þ is line symmetric in the line x tanð�p=8Þ � y ¼ 0.

Hence we obtain a tiling with 8-fold rotational symmetry in each case.
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