On strongly 1-trivial Montesinos knot

Ichiro Torisu
(Received March 28, 2007)
(Revised February 5, 2008)

Abstract

We present a certain family of strongly 1-trivial Montesinos knots, and show that if a well-known conjecture on Seifert surgery is valid, then the family contains all strongly 1 -trivial Montesinos knots.

1. Introduction

Let K be a knot in S^{3} and n a positive integer. K is called strongly n-trivial, if K admits a diagram containing $n+1$ crossings such that the result of any $0<m \leq n+1$ crossing changes on these crossings is the trivial knot ([6]). The notion of strong n-triviality of knots appears naturally in the theory of finite type knot invariants. For background, examples and recent studies of strongly n-trivial knots, see [2], [6], [7] and [8]. Note that a strongly n-trivial knot is automatically strongly n^{\prime}-trivial for all $n^{\prime} \leq n$ and has unknotting number one. In this paper, we are particularly interested in the case $n=1$.

In [15], the author proved that a 2 -bridge $\operatorname{knot} S(\alpha, \beta)$ is strongly 1-trivial if and only if $S(\alpha, \beta)$ is the trivial knot, the trefoil knot or the figure-eight knot (Figure 1).

In this paper, we study strong 1-triviality of Montesinos knots via Dehn surgery technique.

Recall that a Montesinos knot $M\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$ is defined to be a knot connecting t rational tangles of slope from $r_{1}=\beta_{1} / \alpha_{1}$ through $r_{t}=\beta_{t} / \alpha_{t}$ as indicated in Figure $2\left(\alpha_{i}\right.$ and β_{i} are coprime integers). For a reference, see [3] and [4]. For an integer q and $\varepsilon_{1}= \pm 1, \varepsilon_{2}= \pm 1$, let $M K_{\left(q, \varepsilon_{1}, \varepsilon_{2}\right)}$ be the Montesinos knot $M\left(\left(2 q+\varepsilon_{1}, 2\right),(q,-1),\left(2 q+\varepsilon_{2}, 2\right)\right)$ (see Figure 3).

We first make the following observation:
Observation. For each q, ε_{1} and ε_{2}, the Montesinos knot $M K_{\left(q, \varepsilon_{1}, \varepsilon_{2}\right)}$ is strongly 1 -trivial.

In fact, the crossings $*$ and $* *$ for $M K_{\left(q, \varepsilon_{1}, \varepsilon_{2}\right)}$ as shown in Figure 3 make $M K_{\left(q, \varepsilon_{1}, \varepsilon_{2}\right)}$ strongly 1-trivial.

[^0]

Fig. 1. Strongly 1-trivial 2-bridge knots.

Fig. 2. Montesinos knots.

Fig. 3. $M K_{\left(q, \varepsilon_{1}, \varepsilon_{2}\right)}=M\left(\left(2 q+\varepsilon_{1}, 2\right),(q,-1),\left(2 q+\varepsilon_{2}, 2\right)\right)$, where $q=5$ and $\varepsilon_{1}=\varepsilon_{2}=+1$.
In this paper, we prove that these are the only Montesinos knots which are strongly 1-trivial, by assuming the following well-known conjecture on Dehn surgery (for example, see [9]).

Conjecture 1. For a knot in S^{3} that is neither a torus knot nor a cable of a torus knot, only integral slopes can yield a Seifert fibered space.

Theorem 1. If Conjecture 1 is true, then any strongly 1-trivial Montesinos knot is equivalent to $M K_{\left(q, \varepsilon_{1}, \varepsilon_{2}\right)}$ for some q, ε_{1} and ε_{2}.

The proof of this theorem is based on a recent result concerning twisting operation for knots due to M. Aït Nouh, D. Matignon, K. Motegi [1].

Remark 1. (i) $M K_{\left(0, \varepsilon_{1}, \varepsilon_{2}\right)}$ is the trivial knot and $M K_{(1,1,1)}$ and $M K_{(1,1,-1)}$ are the trefoil knot and the figure-eight knot, respectively.
(ii) It is known that the unknotting number of $M\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$ is greater than one, if $\left|\alpha_{i}\right| \geq 2(i=1, \ldots, t)$ and $t \geq 4$ ([12]). See [14], for a conjectural form of the unknotting number 1 Montesinos knots.

2. Proof of Theorem 1

Let $\mathrm{m}_{0}\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$ be the Seifert fibered space with t singular fibers and orbit space S^{2} obtained from the 2 -fold branched covering of S^{3} along $M\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$. Recall that $\mathrm{m}_{0}\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$ is obtained by Dehn filling from $S^{1} \times P$ with surgery coefficients $\beta_{i} / \alpha_{i}(i=1, \ldots, t)$, here P is a t-holed 2 -sphere (cf. [4]).

For a knot k in S^{3} and coprime integers l, s, let $k(l / s)$ denote the 3-manifold obtained by l / s-Dehn surgery on k (cf. [13]). For a 2-component link $k \cup k^{\prime}$ and two slopes $l / s, l^{\prime} / s^{\prime}$, the 3-manifold $k_{1} \cup k_{2}\left(l / s, l^{\prime} / s^{\prime}\right)$ is similarly defined.

Using the Montesinos trick (see [10]), the following is proved by an argument similar to that of the proof of Proposition 2.2 in [15].

Proposition 1. Let K be a Montesinos knot $M\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$. Suppose K is strongly 1-trivial. Then there is a 2-component link $k_{1} \cup k_{2}$ in S^{3} such that (i) k_{1} and k_{2} are unknotted (ii) $k_{1} \cup k_{2}\left(\varepsilon_{1} / 2, \varepsilon_{2} / 2\right)$ is a Seifert fibered space $\mathrm{m}_{0}\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$ for some $\varepsilon_{i}= \pm 1 \quad(i=1,2)$.

The following proposition is well-known ([5], [11], [14, p. 172]).
Proposition 2. (i) Suppose k is $a(p, q)$-torus knot. Then, $k(l / 2)$ is a Seifert fibered space $\mathrm{m}_{0}((p,-r),(q, s),(-2 p q+l, 2))$ for some integers r, s with $p s-r q=1$.
(ii) Suppose k is an (m, n)-cable of a (p, q)-torus knot and $k(l / 2)$ is a Seifert fibered space Q. Then $l=2 m n \pm 1$ and $Q=\mathrm{m}_{0}((p,-r),(q, s)$, $\left.\left(-2 n^{2} p q+2 m n \pm l, 2 n^{2}\right)\right)$ for some integers r, s with $p s-r q=1$.

To complete the proof of Theorem 1, we need the following theorem due to M. Ait Nouh, D. Matignon, K. Motegi in [1].

Theorem 2 ([1]). Let K be a knot in a solid torus V standardly embedded in S^{3} and K_{n} the result of an n-full twist of K along a meridian disk of V. Suppose K is the trivial knot in S^{3} and K_{n} is (i) a torus knot or (ii) a cable of a torus knot in S^{3} for $|n| \geq 2$.

Then the following holds accordingly, where $\epsilon= \pm 1$ and $\epsilon^{\prime}= \pm 1$.
(i) K is an (ϵ, q)-cable of a core of V and K_{n} is an $(\epsilon+n q, q)$-torus knot, or
(ii) K is an $\left(\epsilon^{\prime}, q^{\prime}\right)$-cable of an (ϵ, q)-cable of a core of V and K_{n} is a $\left(q\left(\epsilon^{\prime}+n q^{\prime}\right), q^{\prime}\right)$-cable of an $(\epsilon+n q, q)$-torus knot on the boundary of a neighbourhood of a core of V.

Proof of Theorem 1. Suppose K is a strongly 1 -trivial Montesinos knot $M\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$. By Proposition 1, there is a 2 -component link $k_{1} \cup k_{2}$ in S^{3} such that (i) k_{1} and k_{2} are unknotted (ii) $k_{1} \cup k_{2}\left(\varepsilon_{1} / 2, \varepsilon_{2} / 2\right)$ is a Seifert fibered space $\mathrm{m}_{0}\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)$ for some $\varepsilon_{i}= \pm 1(i=1,2)$.

Note that the Seifert fibered space $k_{1} \cup k_{2}\left(\varepsilon_{1} / 2, \varepsilon_{2} / 2\right)=\mathrm{m}_{0}\left(\left(\alpha_{1}, \beta_{1}\right), \ldots\right.$, $\left.\left(\alpha_{t}, \beta_{t}\right)\right)$ is obtained by a non-integral surgery on the knot k_{2} in $k_{1}\left(\varepsilon_{1} / 2\right)=S^{3}$. By our assumption that Conjecture 1 is valid, this implies that the knot k_{2} in $k_{1}\left(\varepsilon_{1} / 2\right)$ is either a torus knot or a cable of a torus knot. Since this knot is obtained from the original knot k_{2} in the unknotted solid torus $S^{3}-\operatorname{int} N\left(k_{1}\right)$ in S^{3} by performing $2 \varepsilon_{1}$-full twists (Here $N\left(k_{1}\right)$ represents a regular neighborhood of k_{1}), we see by Theorem 2 that the knot k_{2} in $k_{1}\left(\varepsilon_{1} / 2\right)$ is identified with a knot $K_{2 \varepsilon_{1}}$ described in Theorem 2. Namely, the knot is equal to either (i) the $\left(\epsilon+2 \varepsilon_{1} q, q\right)$-torus knot or (ii) the $\left(q\left(\epsilon^{\prime}+2 \varepsilon_{1} q^{\prime}\right), q^{\prime}\right)$-cable of an $\left(\epsilon+2 \varepsilon_{1} q, q\right)$-torus knot. Since the linking number of k_{1} and $k_{2}=K_{2 \varepsilon_{1}}$ is q or $q q^{\prime}$ accordingly, the (Seifert fibered) space $k_{1} \cup k_{2}\left(\varepsilon_{1} / 2, \varepsilon_{2} / 2\right)$ is the result of surgery on the knot k_{2} in $k_{1}\left(\varepsilon_{1} / 2\right)=S^{3}$ with surgery coefficient $\varepsilon_{2} / 2+2 \varepsilon_{1} q^{2}$ or $\varepsilon_{2} / 2+2 \varepsilon_{1} q^{2} q^{\prime 2}$ accordingly (cf. [13, p. 267]). Suppose the latter occurs. By Proposition 2 (ii), we have $\varepsilon_{2}+4 \varepsilon_{1} q^{2} q^{\prime 2}=2 q q^{\prime}\left(\epsilon^{\prime}+2 \varepsilon_{1} q^{\prime}\right) \pm 1$. In this case, easy calculations show that $|q| \leq 1$ and $\left|q^{\prime}\right| \leq 1$, that is to say, k_{2} is a torus (in fact, trivial) knot in $k_{1}\left(\varepsilon_{1} / 2\right)$. Therefore the case (ii) is reduced to the case (i). By Proposition 2 (i), the space obtained by $\left(\varepsilon_{2}+4 \varepsilon_{1} q^{2}\right) / 2$-Dehn surgery on the $\left(\epsilon+2 \varepsilon_{1} q, q\right)$-torus knot is $\mathrm{m}_{0}\left(\left(\epsilon+2 \varepsilon_{1} q,-2 \epsilon \varepsilon_{1}\right),(q, \epsilon),\left(-2\left(\epsilon+2 \varepsilon_{1} q\right) q+\varepsilon_{2}+\right.\right.$ $\left.\left.4 \varepsilon_{1} q^{2}, 2\right)\right)=\mathrm{m}_{0}\left(\left(-2 \epsilon q-\varepsilon_{1}, 2\right),(q, \epsilon),\left(-2 \epsilon q+\varepsilon_{2}, 2\right)\right)$.

Since $\mathrm{m}_{0}\left(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{t}, \beta_{t}\right)\right)=\mathrm{m}_{0}\left(\left(-2 \epsilon q-\varepsilon_{1}, 2\right),(q, \epsilon),\left(-2 \epsilon q+\varepsilon_{2}, 2\right)\right)$, the Montesinos knot K is equal to $M\left(\left(-2 \epsilon q-\varepsilon_{1}, 2\right),(q, \epsilon),\left(-2 \epsilon q+\varepsilon_{2}, 2\right)\right)$, which in turn is equal to $M K_{\left(-q,-\varepsilon_{1}, \varepsilon_{2}\right)}$ or $M K_{\left(q,-\varepsilon_{1}, \varepsilon_{2}\right)}$ according as $\epsilon=+1$ or -1 . This completes the proof of Theorem 1.

References

[1] M. Aït Nouh, D. Matignon, K. Motegi, Obtaining graph knots by twisting unknots, Topology and its Appl., 146/147 (2005), 105-121.
[2] N. Askitas, E. Kalfagianni, On knot adjacency, Topology and its Appl., 126 (2002), 63-81.
[3] M. Boileau, B. Zimmermann, Symmetries of nonelliptic Montesinos links, Math. Ann., 277 (1987), 563-584.
[4] G. Burde, H. Zieschang, Knots, de Gruyter Studies in Mathematics, No. 5, Walter de Gruyter, Berlin, 1985.
[5] C. McA. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc., 275 (1983), 687-708.
[6] H. Howards, J. Luecke, Strongly n-trivial knots, Bull. London Math. Soc., 34 (2002), 431437.
[7] E. Kalfagianni, X.-S. Lin, Knot adjacency and satellites, Topology and its Appl., 138 (2004), 207-217.
[8] E. Kalfagianni, X.-S. Lin, Knot adjacency, genus and essential tori, Pacific J. Math., 228 (2006), 251-276.
[9] K. Miyazaki, K. Motegi, Seifert fibred manifolds and Dehn surgery, Topology, 36 (1997), 579-603.
[10] J. Montesinos, Surgery on links and double branched coverings of S^{3}, Ann. of Math. Studies, 84 (1975), 227-259.
[11] L. Moser, Elementary surgery along a torus knot, Pacific J. Math., 38 (1971), 737-745.
[12] K. Motegi, A note on unlinking numbers of Montesinos links, Rev. Mat. Univ. Complut. Madrid, 9 (1996), 151-164.
[13] D. Rolfsen, Knots and Links, Mathematics Lecture Series, No. 7, Publish or Perish, 1976.
[14] I. Torisu, A note on Montesinos links with unlinking number one (conjectures and partial solutions), Kobe J. Math., 13 (1996), 167-175.
[15] I. Torisu, On strongly n-trivial 2 -bridge knots, Math. Proc. Cambridge Philos. Soc., 137 (2004), 613-616.

Ichiro Torisu
University of Occupational and
Environmental Health, Japan
School of Medicine
Yahatanishi-ku Kitakyushu
807-8555, Japan
e-mail: torisu@med.uoeh-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 57M25.
 Key words and phrases. Strongly 1-trivial, Montesinos knot, Dehn surgery.

