HIROSHIMA MATH. J. 20 (1990), 209–211

Non-existence of positive commutators

Tohru Ozawa

(Received May 19, 1989)

We consider the positivity of the commutator [H, iA] for self-adjoint operators H and A in a complex Hilbert space $\mathscr{H} \neq \{0\}$. Throughout the paper we denote by (\cdot, \cdot) the scalar product on \mathscr{H} and by $\|\cdot\|$ the associated norm.

In the case where H and A are bounded, it is well known from the proof of Putnam's theorem that $[H, iA] \ge \alpha 1$, i.e.,

$$([H, iA]\psi, \psi) \ge \alpha \|\psi\|^2$$
 for any $\psi \in \mathcal{H}$,

is impossible for any $\alpha > 0$ (see [1; p. 61]). Our purpose in this paper is to extend the above result to the case where H and A are unbounded. In this case, following Mourre [2], we define the commutator [H, iA] by

$$([H, iA]\psi, \phi) = i(A\psi, H\phi) - i(H\psi, A\phi), \qquad \psi, \phi \in D(A) \cap D(H),$$

where D(A) (resp. D(H)) denotes the domain of A (resp. H). We prove

THEOREM. Let A and H be self-adjoint operators in \mathcal{H} such that $D(H) \subset D(A)$. Then $[H, iA] \ge \alpha 1$ is impossible for any $\alpha > 0$.

Before proving the theorem, we give a few remarks.

REMARK 1. It follows from the closed graph theorem that the assumption of the previous result is precisely $D(H) = D(A) = \mathcal{H}$.

REMARK 2. If D(H) and D(A) have no inclusion relations, the conclusion in the theorem fails. For example, if $\mathscr{H} = L^2(\mathbb{R})$, $A = x \cdot$ with domain $D(A) = \{\psi \in \mathscr{H}; x\psi \in \mathscr{H}\}$, H = -id/dx with domain $D(H) = \{\psi \in \mathscr{H}; (d/dx)\psi \in \mathscr{H}\}$, then [H, iA] = 1 on $D(A) \cap D(H)$.

PROOF OF THEOREM. In what follows $\mathscr{L}(\mathscr{H})$ denotes the Banach space of all bounded operators on \mathscr{H} . Suppose that $[H, iA] \ge \alpha 1$ holds for some $\alpha > 0$. We choose $\phi_0 \in \mathscr{H} \setminus \{0\}$ and set $\phi = (H + i)^{-1}\phi_0$. Then $\phi \in D(H) \setminus \{0\}$ and the map $\mathbf{R} \ni t \mapsto e^{-itH}\phi \in \mathscr{H}$ is continuously differentiable. By the closed theorem, there is a constant C > 0 such that

(1)
$$||A\psi|| \le C(||H\psi|| + ||\psi||), \quad \psi \in D(H).$$

Tohru Ozawa

We see from (1) that the map $\mathbf{R} \ni t \mapsto Ae^{-itH}\phi \in \mathcal{H}$ is continuous and

(2)
$$\sup_{t \in \mathbb{R}} \|Ae^{-itH}\phi\| \le C(\|H\phi\| + \|\phi\|).$$

For $\lambda \in \mathbb{R} \setminus \{0\}$ we set $R_{\lambda} = (A + i\lambda)^{-1}$. Then, $AR_{\lambda} \in \mathscr{L}(\mathscr{H})$ and its operator norm is bounded by one. Moreover, the map $\mathbb{R} \ni t \mapsto AR_{\lambda}e^{-itH}\phi \in \mathscr{H}$ is continuously differentiable and

$$(d/dt)(Ai\lambda R_{\lambda}e^{-itH}\phi, e^{-itH}\phi) = -i(Ai\lambda R_{\lambda}He^{-itH}\phi, e^{-itH}\phi) + i(Ai\lambda R_{\lambda}e^{-itH}\phi, He^{-itH}\phi)$$
$$= -i(He^{-itH}\phi, (A - AR_{-\lambda}A)e^{-itH}\phi)$$
$$+ i((A - AR_{\lambda}A)e^{-itH}\phi, He^{-itH}\phi)$$
$$= ([H, iA]e^{-itH}\phi, e^{-itH}\phi) + i(He^{-itH}\phi, AR_{-\lambda}Ae^{-itH}\phi)$$
$$- i(AR_{\lambda}Ae^{-itH}\phi, He^{-itH}\phi).$$

By assumption,

(3)
$$(d/dt)(Ai\lambda R_{\lambda}e^{-itH}\phi, e^{-itH}\phi) \geq \alpha \|\phi\|^{2} + f(t, \lambda),$$

where $f(t, \lambda) = i(He^{-itH}\phi, AR_{-\lambda}Ae^{-itH}\phi) - i(AR_{\lambda}Ae^{-itH}\phi, He^{-itH}\phi)$. By integrating both sides of (3) over an interval [0, t], t > 0, we obtain

(4)
$$(Ai\lambda R_{\lambda}e^{-itH}\phi, e^{-itH}\phi) - (Ai\lambda R_{\lambda}\phi, \phi) \ge \alpha t \|\phi\|^2 + \int_0^t f(s, \lambda) \, ds \, .$$

Since $i\lambda R_{\lambda} \to 1$ strongly in $\mathscr{L}(\mathscr{H})$ as $|\lambda| \to \infty$, for any $t \ge 0$, $Ai\lambda R_{\lambda}e^{-itH}\phi \to Ae^{-itH}\phi$ in \mathscr{H} and $f(t, \lambda) \to 0$ in C as $|\lambda| \to \infty$. Moreover, by (2),

 $|f(t, \lambda)| \le 2C \|H\phi\|(\|H\phi\| + \|\phi\|).$

Therefore, by Lebesgue's dominated convergence theorem, taking the limit $|\lambda| \rightarrow \infty$ in (4), we obtain

(5)
$$(Ae^{-itH}\phi, e^{-itH}\phi) - (A\phi, \phi) \ge \alpha t \|\phi\|^2, \quad t > 0.$$

By (2) and (5),

(6)
$$C(||H\phi|| + ||\phi||)||\phi|| \ge (A\phi, \phi) + \alpha t ||\phi||^2, \quad t > 0.$$

Dividing both sides of (6) by t and taking the limit $t \to \infty$ in the resulting inequality, we have $\alpha \|\phi\|^2 = 0$ and therefore $\phi = 0$. This contradicts the fact that $\phi \neq 0$. Q.E.D.

References

[1] H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1987.

210

 [2] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys. 78 (1981), 391-408.

> Department of Mathematics, School of Science, Nagoya University