Some monomials in the universal Wu classes

Dedicated to Professor Shôrô Araki on his sixtieth birthday

Hiroki ICHIKAWA and Toshio YOSHIDA (Received April 19, 1989)

§1. Introduction

Let BO be the space which classifies stable real vector bundles. Then, its mod 2 cohomology $H^*(BO; Z_2)$ is the polynomial algebra over Z_2 on the (universal) Stiefel-Whitney classes $w_i \in H^i(BO; Z_2)$, $i \ge 1$ (cf. [2], [6]). Moreover, the Steenrod squaring operation on $H^*(BO; Z_2)$ is given by

(1.1)
$$Sq^{j}w_{i} = \sum_{t=0}^{j} {\binom{i-1-t}{j-t}} w_{i+j-t}w_{t} \quad \text{for } 0 \leq j < i,$$

where $\begin{pmatrix} a \\ b \end{pmatrix}$ is the binomial coefficient and $w_0 = 1$ (cf. [7]).

Let $v_i \in H^i(BO; Z_2)$ be the (universal) Wu classes (cf. [1], [4], [5]) defined inductively by

(1.2)
$$v_0 = w_0 = 1$$
 and $w_i = \sum_{k=0}^{i} Sq^k v_{i-k}, \quad i \ge 1$.

Then, the Wu class v_i is the polynomial

 $v_i = v_i(w_1, w_2, ...)$ with coefficients in Z_2

on the Stiefel-Whitney classes w_j 's, which can be described exactly by using (1.1-2) and the properties of the Steenrod operations, but it is not so easy in general to see the explicit form of this polynomial. In [8, Cor.], we find all monomials $w_{i_1} \dots w_{i_s}$, $i_1 > \dots > i_s \ge 1$, which appear in $v_i(w_1, w_2, \dots)$ with coefficient 1.

The purpose of this paper is to study the monomials of the form w_i^2 or $w_j w_1^k, j \ge 2$, and to prove the following two theorems.

THEOREM 1.3. In the polynomial $v_i(w_1, w_2, ...)$, the monomial w_j^2 , 2j = i, appears with coefficient 1 when and only when

$$i = a \ge 2$$
, or $i = a + b$, $a > b \ge 2$,

where a and b are all powers of 2.

THEOREM 1.4. In $v_i(w_1, w_2, ...)$, the monomial $w_j w_1^{i-j}$, $i \ge j \ge 2$, appears with coefficient 1 if and only if

$$i = a \ge 2$$
 and $a/2 < j \le a$, or
 $i = a + b$, $a > b \ge 1$ and $b < j \le a$,

where a and b are all powers of 2.

The authors are most grateful to Professor Masahiro Sugawara for his valuable advices during this work.

§2. Proof of Theorem 1.3

The following result on the binomial coefficient is used frequently.

PROPOSITION 2.1 (cf. [3]).

$$\binom{a}{b} \equiv \prod_{i=0}^{s} \binom{a_i}{b_i} \mod 2$$

for $a = \sum_{i=0}^{s} a_i 2^i$ and $b = \sum_{i=0}^{s} b_i 2^i$ with $0 \leq a_i$, $b_i \leq 1$.

On the Steenrod operation Sq^{j} : $H^{i}(; Z_{2}) \rightarrow H^{i+j}(; Z_{2})$, we use the following properties in this paper:

 Sq^{j} is a natural homomorphism with $Sq^{0} = id$,

$$Sq^{j}x = 0$$
 if $j > i$, $=x^{2}$ if $j = i$, for $x \in H^{i}(; \mathbb{Z}_{2})$,

 $Sq^{j}(xy) = \sum_{k=0}^{j} (Sq^{k}x)(Sq^{j-k}y)$ (the Cartan formula), and

 $Sq^{j}Sq^{k} = \sum_{s=0}^{\lfloor j/2 \rfloor} \binom{k-1-s}{j-2s} Sq^{j+k-s}Sq^{s} \text{ if } 0 < j < 2k \text{ (the Adem relations),}$

where [] is the Gauss symbol.

For a monomial x on w_j 's, we say simply that x appears in $A \in H^i(BO; Z_2)$ when the coefficient of x is 1 in the polynomial representing A on w_j 's with coefficients in Z_2 . Moreover, we mean in this section by the notation

 $A \sim B$ for $A, B \in H^{2n}(BO; \mathbb{Z}_2)$, $n \ge 1$,

that the monomial w_n^2 does not appear in A + B.

LEMMA 2.2. Let
$$s \ge 3$$
 and $j_1 \ge \cdots \ge j_s \ge 1$. Then
 $Sq^i(w_{j_1} \dots w_{j_s}) \sim 0$ for any $i \ge 0$.

PROOF. The Cartan formula and (1.1) tell us the lemma by the above definition. \Box

The following result is a special case of [8, Cor.]:

PROPOSITION 2.3. The monomial of the form $w_{i-j}w_j$, $i > 2j \ge 0$ ($w_0 = 1$), appears in the Wu class v_i if and only if

 $i = a \ge 1$ and $0 \le j < a/2$, or i = a + b, $a > b \ge 1$ and j = b, where a and b are all powers of 2.

LEMMA 2.4. $Sq^{\alpha}(w_a w_b) \sim 0$ for any powers $a > b \ge 1$ of 2 and any $\alpha \ge 0$.

PROOF. By the Cartan formula, (1.1) and the definition of \sim , we have

$$Sq^{\alpha}(w_a w_b) = \sum_{i=0}^{\alpha} (Sq^i w_a) (Sq^{\alpha-i} w_b) \sim \sum_{i=0}^{\alpha} \binom{a-1}{i} \binom{b-1}{\alpha-i} w_{a+i} w_{b+\alpha-i}.$$

Here, if $b > \alpha - i$, then $b + \alpha - i < 2b \le a \le a + i$, since a > b are powers of 2. \Box

LEMMA 2.5. (i) Let a be a power of 2. Then

$$Sq^{2\alpha}(w_a^2) \sim w_{a+\alpha}^2 \quad for \ 0 \leq \alpha < a \ .$$

(ii) Let a > b be powers of 2. Then

$$Sq^{2\alpha}(w_{a+b}^2) \sim \begin{cases} w_{a+b+\alpha}^2 & \text{for } 0 \leq \alpha < b & \text{or} \quad a \leq \alpha < a+b \\ 0 & \text{for } b \leq \alpha < a \end{cases}$$

PROOF. Since $Sq^{2\alpha}(w_i^2) = (Sq^{\alpha}w_i)^2 \sim {\binom{i-1}{\alpha}}w_{i+\alpha}^2$, we see the lemma by Proposition 2.1. \Box

LEMMA 2.6. Let $a \ge 2$ be a power of 2. Then

$$Sq^{2\alpha}P_{2a} \sim \begin{cases} w_{a+\alpha}^2 & \text{for } 1 \leq \alpha < a/2 , \\ 0 & \text{for } a/2 \leq \alpha < a , \end{cases}$$

where $P_{2a} = \sum_{i=1}^{a-1} w_{2a-i} w_i$.

PROOF. In $Sq^{2\alpha}P_{2a} = \sum_{i=1}^{a-1} \sum_{j=0}^{2\alpha} (Sq^j w_{2a-i})(Sq^{2\alpha-j}w_i)$, the coefficient of $w_{a+\alpha}^2$ is seen by (1.1) to be equal to

$$c(a, \alpha) = \sum_{\substack{i=a-\alpha}}^{a-1} \binom{2a-i-1}{\alpha+i-a} \binom{i-1}{\alpha-i+a}$$

Thus it is sufficient to prove that

Hiroki ICHIKAWA and Toshio YOSHIDA

(2.7)
$$c(a, \alpha) \equiv 1 \text{ for } 1 \leq \alpha < a/2, \quad \equiv 0 \text{ for } a/2 \leq \alpha < a,$$

where \equiv means \equiv mod 2. We can show (2.7) easily when a = 2, 4.

We assume (2.7) for $a \ge 4$ inductively, and study $c(2a, \alpha)$ by putting

$$m_1 = 2a - i - 1$$
, $m_2 = \alpha + i - 2a$, $m_3 = i - a - 1$, $m_4 = \alpha - i + 2a$

for $1 \leq \alpha < 2a$ and $2a - \alpha \leq i < 2a$.

Case 1: $1 \leq \alpha < a/2$. In this case, $0 \leq m_k < a$ for all k. Therefore,

$$\begin{pmatrix} 4a-i-1\\ \alpha+i-2a \end{pmatrix} = \begin{pmatrix} 2a+m_1\\ m_2 \end{pmatrix} \equiv \begin{pmatrix} m_1\\ m_2 \end{pmatrix} \equiv \begin{pmatrix} a+m_1\\ m_2 \end{pmatrix} = \begin{pmatrix} 2a-j-1\\ \alpha+j-a \end{pmatrix},$$
$$\begin{pmatrix} i-1\\ \alpha-i+2a \end{pmatrix} = \begin{pmatrix} a+m_3\\ m_4 \end{pmatrix} \equiv \begin{pmatrix} m_3\\ m_4 \end{pmatrix} = \begin{pmatrix} j-1\\ \alpha-j+a \end{pmatrix}$$

for j = i - a, by Proposition 2.1, because a is a power of 2. Thus,

 $c(2a, \alpha) \equiv c(a, \alpha) \equiv 1$ if $1 \leq \alpha < a/2$.

Case 2: $a/2 \leq \alpha < a$. In this case, $0 \leq m_k < a$ hold except for $m_4 < a$. If $a + \alpha < i < 2a$, then $m_4 < a$ also holds, and the above proof shows that

$$\binom{4a-i-1}{\alpha+i-2a}\binom{i-1}{\alpha-i+2a} \equiv \binom{m_1}{m_2}\binom{m_3}{m_4} = 0$$

because $m_1 \ge m_2$ implies $m_3 \le m_4 + a - 2\alpha - 2 < m_4$. If $2a - \alpha \le i \le a + \alpha$, then $0 \le m_4 - a < a$ and $\begin{pmatrix} a + m_3 \\ m_4 \end{pmatrix} \equiv \begin{pmatrix} m_3 \\ m_4 - a \end{pmatrix}$. Thus we have $c(2a, \alpha) \equiv \sum_{i=2a-\alpha}^{a+\alpha} d_1(i) d_2(i)$

for

$$d_1(i) = \binom{m_1}{m_2} = \binom{2a-i-1}{\alpha+i-2a}, \qquad d_2(i) = \binom{m_3}{m_4-a} = \binom{i-a-1}{\alpha-i+a}$$

Put a' = a/2. Then $d_1(3a'+j) = \begin{pmatrix} a'-j-1\\ \alpha-a'+j \end{pmatrix} = d_2(3a'-j)$ for any integer j, and $d_1(3a') = d_2(3a') \equiv 1$ since a' is a power of 2. Therefore

$$c(2a, \alpha) \equiv 1$$
 if $a/2 \leq \alpha < a$.

Case 3: $a \leq \alpha < 2a$. In this case, $0 \leq m_k < 2a$ for k = 1, 2. Hence

$$c(2a, \alpha) \equiv \sum_{i=2a-\alpha}^{2a-1} \binom{m_1}{m_2} \binom{a+m_3}{m_4} = 0 \quad \text{if } a \leq \alpha < 2a ,$$

because $m_1 \ge m_2$ implies $a + m_3 \le m_4 + 2a - 2\alpha - 2 < m_4$.

Therefore, (2.7) and the lemma are proved by induction. П

130

Now, we prove Theorem 1.3 which is trivial for odd i and is restated by the above notation \sim as follows:

(2.8)
$$v_{2i} \sim w_i^2$$
 if $i \in N_1 \cup N_2$, ~ 0 otherwise,

where $N_1 = \{2^k | k \ge 0\}$ and $N_2 = \{2^k + 2^l | k > l \ge 0\}.$

This holds for i = 1, because $v_2 = w_2 + w_1^2 \sim w_1^2$. We prove it for $i \ge 2$ by induction in the following way, where the inductive assumption is denoted simply by (2.8) and Lemma or Proposition 2.n by 2.n.

We note that \sim is an equivalence relation preserved by +. Now,

(2.9) in
$$v_{2i} = w_{2i} + \sum_{k=1}^{2i} Sq^k v_{2i-k} \sim v_i^2 + \sum_{j=i+1}^{2i-1} Sq^{2i-j} v_j$$
 of (1.2),
 $v_i^2 \sim w_i^2$ if $i \in N_1$, ~0 otherwise; $Sq^{2i-j}v_j \sim 0$ if $j \notin N_1 \cup N_2$,

by 2.3, 2.2 and (2.8), and the other terms are seen by 2.4-6 as follows:

Case 1: i = 2a for $a \in N_1$. In this case, $\{j \in N_1 \cup N_2 | i < j < 2i\} = \{2a + t | t \in N_1, t \leq a\}$, and then 2.2-4, (2.8) and 2.5(ii) show that

$$Sq^{2a-t}v_{2a+t} \sim \begin{cases} Sq^{2a-1}(w_{2a}w_1) \sim 0 & \text{if } t = 1, \\ Sq^{2a-t}(w_{2a}w_t + w_{a+t/2}^2) \sim 0 & \text{if } 2 \leq t \leq a, t \in N_1. \end{cases}$$

Thus $v_{4a} \sim w_{2a}^2$ by (2.9).

Case 2: i = 2a + b for $a, b \in N_1, a \ge b$. In this case, $\{j \in N_1 \cup N_2 | i < j < 2i\} = \{4a, 4a + t | t \in N_1, t \le b\} \cup \{2a + s | s \in N_1, 2b \le s \le a\}$. Then

$$\begin{split} & Sq^{2b}v_{4a} \sim Sq^{2b}(w_{4a} + w_{2a}^2 + P_{4a}) \\ & \sim (1 + \varepsilon)w_i^2 \text{ for } \varepsilon = 1 \quad \text{if } b < a \,, \quad = 0 \quad \text{if } b = a \,, \end{split}$$

by (1.1), 2.5(i) and 2.6. Also $Sq^{2b-t}v_{4a+t} \sim 0$ in the same way, and

$$Sq^{2a+2b-s}v_{2a+s} \sim \begin{cases} 0 & \text{if } s > 2b , \\ Sq^{2a}w_{a+b}^2 \sim w_i^2 & \text{if } s = 2b \leq a , \end{cases}$$

by 2.5(ii). Thus $v_{4a+2b} \sim w_{2a+b}^2$ by (2.9).

Case 3: i = 2a + b + r for $a, b \in N_1, a \ge b > r$. In this case, $\{j \in N_1 \cup N_2 | i < j < 2i\} = \{4a, 4a + t | t \in N_1, t \le 2b\} \cup \{2a + s | 2b \le s \le a\}$. Then, in the same way, we have

$$\begin{split} Sq^{2b+2r}v_{4a} &\sim (1+\varepsilon)w_i^2 \quad \text{for the above } \varepsilon \;, \\ Sq^{2b+2r-t}v_{4a+t} &\sim 0 \quad \text{if } t \leq b \;, \quad = Sq^{2r}v_{4a+2b} \sim w_i^2 \quad \text{if } t = 2b \;, \\ Sq^{2a+2b+2r-s}v_{2a+s} &\sim 0 \quad \text{if } s > 2b \;, \quad \sim w_i^2 \quad \text{if } s = 2b \leq a \;; \end{split}$$

hence $v_{4a+2b+2r} \sim 0$.

Thus, Theorem 1.3 is proved completely. \Box

§3. Proof of Theorem 1.4

We mean in this section by the notation

 $A \approx B$ for $A, B \in H^m(BO; \mathbb{Z}_2)$, $m \ge 2$,

that the monomial $w_i w_1^{m-i}$ does not appear in A + B for any $2 \leq i \leq m$. This is also an equivalence relation preserved by +, and moreover satisfies the following

LEMMA 3.1. If $A \approx B$, then $Sq^iA \approx Sq^iB$ for $i \ge 0$ and $w_1A \approx w_1B$.

PROOF. The Cartan formula and (1.1) tell us easily that

$$Sq^{i}(w_{j_{1}} \dots w_{j_{s}}w_{1}^{k}) \approx 0 \quad \text{if } s \ge 2 , \quad j_{1} \ge \dots \ge j_{s} \ge 2 , \quad k \ge 0 ,$$
$$Sq^{i}(w_{1}^{k}) = \binom{k}{i} w_{1}^{k+i} \approx 0 \quad \text{if } k \ge 1 , \quad i+k \ge 2 ,$$

by the definition of \approx . Thus we see the lemma.

We put

(3.2)
$$Q_m(k) = \sum_{i=0}^{k-1} w_{m-i} w_1^i$$
 for any $m > k \ge 1$.

LEMMA 3.3. Let $a \ge 1$ be a power of 2. Then

$$Sq^{\alpha}Q_{2a}(a) \approx Q_{2a+\alpha}(a) \quad \text{for } 0 \leq \alpha < a \,, \quad \approx Q_{2a+\alpha}(2a) \quad \text{for } a \leq \alpha < 2a \,.$$

PROOF. The lemma holds trivially for $\alpha = 0$, and so does if a = 1 since $Q_2(1) = w_2$ and $Sq^1w_2 = w_3 + w_2w_1 = Q_3(2)$.

Let $a \ge 2$. Then we see the lemma for $\alpha = 1$, because

$$Sq^{1}(w_{2a-i}w_{1}^{i}) = w_{2a-i}(Sq^{1}w_{1}^{i}) + (Sq^{1}w_{2a-i})w_{1}^{i}$$

= $iw_{2a-i}w_{1}^{i+1} + w_{2a-i}w_{1}^{i+1} + (2a - i - 1)w_{2a-i+1}w_{1}^{i}$
= $w_{2a-i}w_{1}^{i+1} + w_{2a-i+1}w_{1}^{i}$ if *i* is even, = 0 if *i* is odd.

In general, the Cartan formula and (1.1) imply that

(3.4)
$$Sq^{\alpha}(w_{m-i}w_{1}^{i}) = \sum_{j=0}^{\alpha} (Sq^{\alpha-j}w_{m-i})Sq^{j}(w_{1}^{i})$$

 $\approx \sum_{j=0}^{\alpha} \sum_{t=0}^{1} \binom{m-i-1-t}{\alpha-j-t} \binom{i}{j} w_{m+\alpha-i-j-t} w_{t} w_{1}^{i+j}, \text{ by putting } \binom{m-i-2}{-1} = 0.$

132

If $\alpha = m - 1$, then the coefficient in (3.4) is 0 for $i \neq j$. Hence,

(3.5)
$$Sq^{m-1}(w_{m-i}w_1^i) \approx w_{2m-2i-1}w_1^{2i} + w_{2m-2i-2}w_1^{2i+1},$$
$$Sq^{m-1}Q_m(k) \approx \sum_{i=0}^{2k-1} w_{2m-1-i}w_1^i = Q_{2m-1}(2k),$$

and the latter for m = 2a and k = a is the lemma for $\alpha = 2a - 1$. Moreover,

(3.6)
$$Sq^{\alpha}Q_{2m}(2k) \approx Sq^{\alpha} \{ w_{2m} + w_{2m-2k} w_1^{2k} + w_1 \cdot Sq^{m-1}Q_m(k) \}$$

by (3.2), (3.5) and Lemma 3.1.

In (3.6) for m = a = 2k and $\alpha = 2a - 2$, we have

$$Sq^{2a-2}w_{2a} \approx w_{4a-2}$$
, $Sq^{2a-2}(w_a w_1^a) \approx w_{2a-2} w_1^{2a}$ by (3.4).

Since $Sq^{2a-3}Sq^{a-1} = 0$ by the Adem relation, we have also

$$Sq^{2a-2} \{ w_1 \cdot Sq^{a-1} Q_a(a/2) \} = w_1 \cdot Sq^{2a-2} Sq^{a-1} Q_a(a/2) \approx w_1 \cdot Sq^{2a-2} Q_{2a-1}(a)$$

$$\approx w_1 \cdot Q_{4a-3}(2a) = Q_{4a-2}(2a) + w_{4a-2} + w_{2a-2} w_1^{2a},$$

by (3.5) and Lemma 3.1. Thus the lemma holds for $\alpha = 2a - 2$ by (3.6).

Therefore the lemma is proved for $\alpha = 0, 1, 2a - 2, 2a - 1$; in particular, it holds if a = 2. Now, assuming the lemma for $a \ge 2$ inductively, we study $Sq^{\alpha}Q_{4a}(2a)$ by (3.6) for m = 2a = 2k as follows.

Case 1: $\alpha = 2n$ for $1 \leq n \leq 2a - 2$. Then, in (3.6), we have

$$Sq^{2n}w_{4a} \approx w_{4a+2n}, \qquad Sq^{2n}(w_{2a}w_1^{2a}) \approx \begin{cases} w_{2a+2n}w_1^{2a} & \text{if } n < a, \\ w_{2n}w_1^{4a} & \text{if } n \ge a, \end{cases}$$

by (3.4). To study $Sq^{2n}(w_1 \cdot Sq^{2a-1}Q_{2a}(a))$ by the Cartan formula, we note that the Adem relation and the dimensional reason tell us

$$\begin{split} Sq^{2n-\varepsilon}Sq^{2a-1}Q_{2a}(a) &= \sum_{j=0}^{n-\varepsilon} \binom{2a-2-j}{2n-\varepsilon-2j} Sq^{2a+2n-1-\varepsilon-j}Sq^{j}Q_{2a}(a) \\ &= \binom{2a-2-n+\varepsilon}{\varepsilon} Sq^{2a+n-1}Sq^{n-\varepsilon}Q_{2a}(a) \quad \text{for } \varepsilon = 0, 1 \;, \end{split}$$

which is $(2a - n - 1)(Sq^{n-1}Q_{2a}(a))^2 \approx 0$ if $\varepsilon = 1$. Therefore,

$$Sq^{2n}\{w_1 \cdot Sq^{2a-1}Q_{2a}(a)\} \approx w_1 \cdot Sq^{2a+n-1}Sq^nQ_{2a}(a)$$

$$\approx w_1 \cdot Sq^{2a+n-1}Q_{2a+n}(a') \approx \sum_{i=1}^{2a'} w_{4a+2n-i} w_1^i,$$

where a' = a for $1 \le n < a$, a' = 2a for $a \le n \le 2a - 2$, by the inductive assumption, (3.5) and Lemma 3.1. By adding these, we have

$$Sq^{2n}Q_{4a}(2a) \approx Q_{4a+2n}(2a')$$
, as desired.

Case 2: $\alpha = 2n + 1$ for $1 \le n \le 2a - 2$. Note that $Sq^{2n+1} = Sq^1Sq^{2n}$ by the Adem relation. Then the above result implies that

$$Sq^{2n+1}Q_{4a}(2a) \approx Sq^{1}Q_{4a+2n}(2a') \approx Q_{4a+2n+1}(2a')$$
,

by Lemma 3.1 and the proof for $\alpha = 1$ stated in the first place.

Therefore, Lemma 3.3 is proved by induction.

LEMMA 3.7. Let $a \ge b \ge 1$ be powers of 2. Then

$$Sq^{\alpha}Q_{2a+b}(2a,b) \approx \begin{cases} Q_{2a+b+\alpha}(2a,b) & \text{for } 0 \leq \alpha < b , \\ Q_{2a+b+\alpha}(2b,b) & \text{for } b \leq \alpha < 2a , \\ Q_{2a+b+\alpha}(4a,2b) & \text{for } 2a \leq \alpha < 2a + b , \end{cases}$$

where $Q_m(k, l) = \sum_{i=l}^{k-1} w_{m-i} w_1^i$ for any $m > k > l \ge 0$.

PROOF. By definition, we see that $Q_m(k, 0) = Q_m(k)$ and

$$Q_m(k, l) = w_1^n Q_{m-n}(k - n, l - n) = Q_m(k, n) + Q_m(l, n)$$

for $l \ge n \ge 0$, where $Q_m(l, l) = 0$.

If b = a, then the lemma is proved by Lemma 3.3, because

$$Sq^{\alpha}Q_{3a}(2a, a) = Sq^{\alpha}(w_1^a Q_{2a}(a)) = w_1^a \cdot Sq^{\alpha}Q_{2a}(a) + w_1^{2a} \cdot Sq^{\alpha-a}Q_{2a}(a).$$

In particular, the lemma holds if a = 1.

Now, we prove the lemma for $a > b \ge 1$ by induction on a. Since $Q_{2a+b}(2a, b) = w_1^b Q_{2a}(a) + w_1^a Q_{a+b}(a, b)$, we see $Sq^{\alpha} Q_{2a+b}(2a, b)$ by adding

$$Sq^{\alpha}(w_{1}^{b}Q_{2a}(a)) = w_{1}^{b} \cdot Sq^{\alpha}Q_{2a}(a) + w_{1}^{2b} \cdot Sq^{\alpha-b}Q_{2a}(a) ,$$

$$Sq^{\alpha}(w_{1}^{a}Q_{a+b}(a, b)) = w_{1}^{a} \cdot Sq^{\alpha}Q_{a+b}(a, b) + w_{1}^{2a} \cdot Sq^{\alpha-a}Q_{a+b}(a, b) ;$$

and these are seen by Lemmas 3.1, 3.3 and the inductive assumption and by separating into the following cases:

$$0 \leq \alpha < b , \quad b \leq \alpha < a , \quad a \leq \alpha < a + b , \quad a + b \leq \alpha < 2a , \quad 2a \leq \alpha < 2a + b .$$

Then, we can certify easily the conclusion for $Sq^aQ_{2a+b}(2a, b)$.

Now, we prove Theorem 1.4, which is restated by the above notation \approx as follows:

(3.8)
$$v_{i} \approx \begin{cases} \sum_{j=0}^{a-1} w_{2a-j} w_{1}^{j} = Q_{2a}(a) & \text{if } i = 2a \in N_{1} ,\\ \sum_{j=b}^{2a-1} w_{2a+b-j} w_{1}^{j} = Q_{2a+b}(2a, b) & \text{if } i = 2a + b \in N_{2} ,\\ 0 & \text{otherwise} , \end{cases}$$

where N_1 and N_2 are the sets given in (2.8).

134

(3.8) holds for i = 2, because $v_2 = w_2 + w_1^2 \approx w_2$; and we prove it by induction on *i*.

Case 1: $i = 2a \in N_1, a \ge 2$. Then, we can study

 $v_i = w_i + \sum_{j=1}^{i/2} Sq^j v_{i-j}$ of (1.2)

by using the inductive assumption and Lemmas 3.1 and 3.7 as follows:

If $i - j \notin N_1 \cup N_2$, then $Sq^j v_{i-j} \approx 0$. If $i - j \in N_1$, then j = a and $Sq^a v_a = v_a^2 \approx 0$. If $i - j \in N_2$, then i - j = a + t for $t \in N_1$ with $1 \le t \le a/2$, and

$$Sq^{j}v_{2a-j} = Sq^{a-t}v_{a+t} \approx Sq^{a-t}Q_{a+t}(a,t) \approx Q_{2a}(2t,t)$$

since $t \leq a - t < a$. Thus $v_{2a} \approx w_{2a} + \sum_{k=1}^{a-1} w_{2a-k} w_1^k = Q_{2a}(a)$, as desired. Case 2: i = 2a + b, $a \geq b \geq 1$, $a, b \in N_1$. Then, in the same way as

Case 1, we see the following by using also Lemmas 3.3 and 3.7:

If $i - j \in N_1$, then j = b, $Sq^b v_{2a} \approx Sq^b Q_{2a}(a)$ and

$$Sq^{b}Q_{2a}(a) \approx Q_{i}(a)$$
 when $b < a$, $\approx Q_{i}(2a)$ when $b = a$

If $i - j \in N_2$, then either i - j = 2a + t for $t \in N_1$ with $1 \le t \le b/2$, and

$$Sq^{b-t}v_{2a+t} \approx Sq^{b-t}Q_{2a+t}(2a, t) \approx Q_i(2t, t);$$

or i - j = a + s for $s \in N_1$ with $b \leq s \leq a/2$, and

$$Sq^{a+b-s}v_{a+s} \approx Sq^{a+b-s}Q_{a+s}(a,s) \approx \begin{cases} Q_i(2s,s) & \text{for } 2b \leq s \leq a/2, \\ Q_i(2a,2b) & \text{for } s=b. \end{cases}$$

Thus $v_i \approx w_i + Q_i(2a) + Q_i(b, 1) = Q_i(2a, b)$ if b = a, and

$$v_i \approx w_i + Q_i(a) + Q_i(b, 1) + Q_i(a, 2b) + Q_i(2a, 2b) = Q_i(2a, b)$$
 if $b < a$

Case 3: i = 2a + b + r, $a \ge b > r$, $a, b \in N_1$. Then: If $i - j \in N_1$, then j = b + r, $Sq^{b+r}v_{2a} \approx Sq^{b+r}Q_{2a}(a)$ and

$$Sq^{b+r}Q_{2a}(a) \approx Q_i(a)$$
 when $b < a$, $\approx Q_i(2a)$ when $b = a$.

If $i - j \in N_2$, then either i - j = 2a + t for $t \in N_1$ with $1 \le t \le b$, and

$$Sq^{b+r-t}v_{2a+t} \approx Sq^{b+r-t}Q_{2a+t}(2a, t) \approx \begin{cases} Q_i(2t, t) & \text{for } t < b , \\ Q_i(2a, b) & \text{for } t = b ; \end{cases}$$

or i - j = a + s for $s \in N_1$ with $b \leq s \leq a/2$, and

$$Sq^{a+b+r-s}v_{a+s} \approx Sq^{a+b+r-s}Q_{a+s}(a,s) \approx \begin{cases} Q_i(2s,s) & \text{for } 2b \leq s \leq a/2, \\ Q_i(2a,2b) & \text{for } s=b. \end{cases}$$

Thus $v_i \approx w_i + Q_i(2a) + Q_i(b, 1) + Q_i(2a, b) = 0$ if b = a, and

 $v_i \approx w_i + Q_i(a) + Q_i(b, 1) + Q_i(2a, b) + Q_i(a, 2b) + Q_i(2a, 2b) = 0$

if b < a.

Thus, Theorem 1.4 is proved completely. \Box

References

- J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.
- [2] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press, Princeton, 1974.
- [3] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies 50, Princeton Univ. Press, Princeton, 1962.
- [4] R. E. Stong, Cobordism and Stiefel-Whitney numbers, Topology 4 (1965), 241-256.
- [5] R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, 1968.
- [6] J. Vrabec, Bordism, homology, and Stiefel-Whitney numbers, Postdiplom. Sem. Mat. 13, Društvo Mat. Fiz. Astronom. SR Slovenije, Ljubljana, 1982.
- [7] W. T. Wu, Les *i*-carrés dans une variété grassmannienne, C. R. Acad. Sci., Paris 230 (1950), 918-920.
- [8] T. Yoshida, Universal Wu classes, Hiroshima Math. J. 17 (1987), 489–493.

Kuka High School (Kuka, Yamaguchi) and Faculty of Integrated Arts and Sciences, Hiroshima University