Some monomials in the universal Wu classes

Dedicated to Professor Shôrô Araki on his sixtieth birthday

Hiroki Ichikawa and Toshio Yoshida
(Received April 19, 1989)

§1. Introduction

Let $B O$ be the space which classifies stable real vector bundles. Then, its $\bmod 2$ cohomology $H^{*}\left(B O ; Z_{2}\right)$ is the polynomial algebra over Z_{2} on the (universal) Stiefel-Whitney classes $w_{i} \in H^{i}\left(B O ; Z_{2}\right), i \geqq 1$ (cf. [2], [6]). Moreover, the Steenrod squaring operation on $H^{*}\left(B O ; Z_{2}\right)$ is given by

$$
\begin{equation*}
S q^{j} w_{i}=\sum_{t=0}^{j}\binom{i-1-t}{j-t} w_{i+j-t} w_{t} \quad \text { for } 0 \leqq j<i \tag{1.1}
\end{equation*}
$$

where $\binom{a}{b}$ is the binomial coefficient and $w_{0}=1$ (cf. [7]).
Let $v_{i} \in H^{i}\left(B O ; Z_{2}\right)$ be the (universal) Wu classes (cf. [1], [4], [5]) defined inductively by

$$
\begin{equation*}
v_{0}=w_{0}=1 \quad \text { and } \quad w_{i}=\sum_{k=0}^{i} S q^{k} v_{i-k}, \quad i \geqq 1 . \tag{1.2}
\end{equation*}
$$

Then, the Wu class v_{i} is the polynomial

$$
v_{i}=v_{i}\left(w_{1}, w_{2}, \ldots\right) \text { with coefficients in } Z_{2}
$$

on the Stiefel-Whitney classes w_{j} 's, which can be described exactly by using (1.1-2) and the properties of the Steenrod operations, but it is not so easy in general to see the explicit form of this polynomial. In [8, Cor.], we find all monomials $w_{i_{1}} \ldots w_{i_{s}}, i_{1}>\cdots>i_{s} \geqq 1$, which appear in $v_{i}\left(w_{1}, w_{2}, \ldots\right)$ with coefficient 1.

The purpose of this paper is to study the monomials of the form w_{i}^{2} or $w_{j} w_{1}^{k}, j \geqq 2$, and to prove the following two theorems.

Theorem 1.3. In the polynomial $v_{i}\left(w_{1}, w_{2}, \ldots\right)$, the monomial $w_{j}^{2}, 2 j=i$, appears with coefficient 1 when and only when

$$
i=a \geqq 2, \quad \text { or } \quad i=a+b, \quad a>b \geqq 2,
$$

where a and b are all powers of 2 .

Theorem 1.4. In $v_{i}\left(w_{1}, w_{2}, \ldots\right)$, the monomial $w_{j} w_{1}^{i-j}, i \geqq j \geqq 2$, appears with coefficient 1 if and only if

$$
\begin{aligned}
& i=a \geqq 2 \quad \text { and } \quad a / 2<j \leqq a, \quad \text { or } \\
& i=a+b, \quad a>b \geqq 1 \quad \text { and } \quad b<j \leqq a,
\end{aligned}
$$

where a and b are all powers of 2 .
The authors are most grateful to Professor Masahiro Sugawara for his valuable advices during this work.

§2. Proof of Theorem 1.3

The following result on the binomial coefficient is used frequently.
Proposition 2.1 (cf. [3]).

$$
\binom{a}{b} \equiv \prod_{i=0}^{s}\binom{a_{i}}{b_{i}} \bmod 2
$$

for $a=\sum_{i=0}^{s} a_{i} 2^{i}$ and $b=\sum_{i=0}^{s} b_{i} 2^{i}$ with $0 \leqq a_{i}, b_{i} \leqq 1$.
On the Steenrod operation $S q^{j}: H^{i}\left(; Z_{2}\right) \rightarrow H^{i+j}\left(; Z_{2}\right)$, we use the following properties in this paper:
$S q^{j}$ is a natural homomorphism with $S q^{0}=i d$,
$S q^{j} x=0$ if $j>i, \quad=x^{2} \quad$ if $j=i$, for $x \in H^{i}\left(; Z_{2}\right)$,
$S q^{j}(x y)=\sum_{k=0}^{j}\left(S q^{k} x\right)\left(S q^{j-k} y\right) \quad$ (the Cartan formula), and
$S q^{j} S q^{k}=\sum_{s=0}^{[j 2]}\binom{k-1-s}{j-2 s} S q^{j+k-s} S q^{s}$ if $0<j<2 k$ (the Adem relations), where [] is the Gauss symbol.

For a monomial x on w_{j} 's, we say simply that x appears in $A \in H^{i}\left(B O ; Z_{2}\right)$ when the coefficient of x is 1 in the polynomial representing A on w_{j}^{\prime} s with coefficients in Z_{2}. Moreover, we mean in this section by the notation

$$
A \sim B \quad \text { for } \quad A, B \in H^{2 n}\left(B O ; Z_{2}\right), \quad n \geqq 1,
$$

that the monomial w_{n}^{2} does not appear in $A+B$.
Lemma 2.2. Let $s \geqq 3$ and $j_{1} \geqq \cdots \geqq j_{s} \geqq 1$. Then

$$
S q^{i}\left(w_{j_{1}} \ldots w_{j_{s}}\right) \sim 0 \quad \text { for any } i \geqq 0 .
$$

Proof. The Cartan formula and (1.1) tell us the lemma by the above definition.

The following result is a special case of [8, Cor.]:
Proposition 2.3. The monomial of the form $w_{i-j} w_{j}, i>2 j \geqq 0\left(w_{0}=1\right)$, appears in the $W u$ class v_{i} if and only if

$$
i=a \geqq 1 \quad \text { and } \quad 0 \leqq j<a / 2, \quad \text { or } \quad i=a+b, \quad a>b \geqq 1 \quad \text { and } j=b
$$

where a and b are all powers of 2 .
Lemma 2.4. \quad $q^{\alpha}\left(w_{a} w_{b}\right) \sim 0$ for any powers $a>b \geqq 1$ of 2 and any $\alpha \geqq 0$.
Proof. By the Cartan formula, (1.1) and the definition of \sim, we have

$$
S q^{\alpha}\left(w_{a} w_{b}\right)=\sum_{i=0}^{\alpha}\left(S q^{i} w_{a}\right)\left(S q^{\alpha-i} w_{b}\right) \sim \sum_{i=0}^{\alpha}\binom{a-1}{i}\binom{b-1}{\alpha-i} w_{a+i} w_{b+\alpha-i}
$$

Here, if $b>\alpha-i$, then $b+\alpha-i<2 b \leqq a \leqq a+i$, since $a>b$ are powers of 2 .

Lemma 2.5. (i) Let a be a power of 2. Then

$$
S q^{2 \alpha}\left(w_{a}^{2}\right) \sim w_{a+\alpha}^{2} \quad \text { for } 0 \leqq \alpha<a
$$

(ii) Let $a>b$ be powers of 2. Then

$$
S q^{2 \alpha}\left(w_{a+b}^{2}\right) \sim \begin{cases}w_{a+b+\alpha}^{2} & \text { for } 0 \leqq \alpha<b \text { or } a \leqq \alpha<a+b \\ 0 & \text { for } b \leqq \alpha<a\end{cases}
$$

Proof. Since $S q^{2 \alpha}\left(w_{i}^{2}\right)=\left(S q^{\alpha} w_{i}\right)^{2} \sim\binom{i-1}{\alpha} w_{i+\alpha}^{2}$, we see the lemma by Proposition 2.1.

Lemma 2.6. Let $a \geqq 2$ be a power of 2 . Then

$$
S q^{2 \alpha} P_{2 a} \sim \begin{cases}w_{a+\alpha}^{2} & \text { for } 1 \leqq \alpha<a / 2 \\ 0 & \text { for } a / 2 \leqq \alpha<a\end{cases}
$$

where $P_{2 a}=\sum_{i=1}^{a-1} w_{2 a-i} w_{i}$.
Proof. In $S q^{2 \alpha} P_{2 a}=\sum_{i=1}^{a-1} \sum_{j=0}^{2 \alpha}\left(S q^{j} w_{2 a-i}\right)\left(S q^{2 \alpha-j} w_{i}\right)$, the coefficient of $w_{a+\alpha}^{2}$ is seen by (1.1) to be equal to

$$
c(a, \alpha)=\sum_{i=a-\alpha}^{a-1}\binom{2 a-i-1}{\alpha+i-a}\binom{i-1}{\alpha-i+a}
$$

Thus it is sufficient to prove that

$$
\begin{equation*}
c(a, \alpha) \equiv 1 \quad \text { for } 1 \leqq \alpha<a / 2, \quad \equiv 0 \text { for } a / 2 \leqq \alpha<a, \tag{2.7}
\end{equation*}
$$

where \equiv means $\equiv \bmod 2$. We can show (2.7) easily when $a=2,4$.
We assume (2.7) for $a \geqq 4$ inductively, and study $c(2 a, \alpha)$ by putting

$$
m_{1}=2 a-i-1, \quad m_{2}=\alpha+i-2 a, \quad m_{3}=i-a-1, \quad m_{4}=\alpha-i+2 a
$$

for $1 \leqq \alpha<2 a$ and $2 a-\alpha \leqq i<2 a$.
Case 1: $1 \leqq \alpha<a / 2$. In this case, $0 \leqq m_{k}<a$ for all k. Therefore,

$$
\begin{gathered}
\binom{4 a-i-1}{\alpha+i-2 a}=\binom{2 a+m_{1}}{m_{2}} \equiv\binom{m_{1}}{m_{2}} \equiv\binom{a+m_{1}}{m_{2}}=\binom{2 a-j-1}{\alpha+j-a} \\
\binom{i-1}{\alpha-i+2 a}=\binom{a+m_{3}}{m_{4}} \equiv\binom{m_{3}}{m_{4}}=\binom{j-1}{\alpha-j+a}
\end{gathered}
$$

for $j=i-a$, by Proposition 2.1, because a is a power of 2. Thus,

$$
c(2 a, \alpha) \equiv c(a, \alpha) \equiv 1 \quad \text { if } 1 \leqq \alpha<a / 2
$$

Case 2: $a / 2 \leqq \alpha<a$. In this case, $0 \leqq m_{k}<a$ hold except for $m_{4}<a$. If $a+\alpha<i<2 a$, then $m_{4}<a$ also holds, and the above proof shows that

$$
\binom{4 a-i-1}{\alpha+i-2 a}\binom{i-1}{\alpha-i+2 a} \equiv\binom{m_{1}}{m_{2}}\binom{m_{3}}{m_{4}}=0
$$

because $m_{1} \geqq m_{2}$ implies $m_{3} \leqq m_{4}+a-2 \alpha-2<m_{4}$. If $2 a-\alpha \leqq i \leqq a+\alpha$, then $0 \leqq m_{4}-a<a$ and $\binom{a+m_{3}}{m_{4}} \equiv\binom{m_{3}}{m_{4}-a}$. Thus we have

$$
\begin{gathered}
c(2 a, \alpha) \equiv \sum_{i=2 a-\alpha}^{a+\alpha} d_{1}(i) d_{2}(i) \quad \text { for } \\
d_{1}(i)=\binom{m_{1}}{m_{2}}=\binom{2 a-i-1}{\alpha+i-2 a}, \quad d_{2}(i)=\binom{m_{3}}{m_{4}-a}=\binom{i-a-1}{\alpha-i+a} .
\end{gathered}
$$

Put $a^{\prime}=a / 2$. Then $d_{1}\left(3 a^{\prime}+j\right)=\binom{a^{\prime}-j-1}{\alpha-a^{\prime}+j}=d_{2}\left(3 a^{\prime}-j\right)$ for any integer j, and $d_{1}\left(3 a^{\prime}\right)=d_{2}\left(3 a^{\prime}\right) \equiv 1$ since a^{\prime} is a power of 2 . Therefore

$$
c(2 a, \alpha) \equiv 1 \quad \text { if } a / 2 \leqq \alpha<a
$$

Case 3: $a \leqq \alpha<2 a$. In this case, $0 \leqq m_{k}<2 a$ for $k=1,2$. Hence

$$
c(2 a, \alpha) \equiv \sum_{i=2 a-\alpha}^{2 a-1}\binom{m_{1}}{m_{2}}\binom{a+m_{3}}{m_{4}}=0 \quad \text { if } a \leqq \alpha<2 a,
$$

because $m_{1} \geqq m_{2}$ implies $a+m_{3} \leqq m_{4}+2 a-2 \alpha-2<m_{4}$.
Therefore, (2.7) and the lemma are proved by induction.

Now, we prove Theorem 1.3 which is trivial for odd i and is restated by the above notation \sim as follows:

$$
\begin{equation*}
v_{2 i} \sim w_{i}^{2} \quad \text { if } \quad i \in N_{1} \cup N_{2}, \quad \sim 0 \text { otherwise } \tag{2.8}
\end{equation*}
$$

where $N_{1}=\left\{2^{k} \mid k \geqq 0\right\}$ and $N_{2}=\left\{2^{k}+2^{l} \mid k>l \geqq 0\right\}$.
This holds for $i=1$, because $v_{2}=w_{2}+w_{1}^{2} \sim w_{1}^{2}$. We prove it for $i \geqq 2$ by induction in the following way, where the inductive assumption is denoted simply by (2.8) and Lemma or Proposition 2.n by 2.n.

We note that \sim is an equivalence relation preserved by + . Now,

$$
\begin{align*}
& \text { in } v_{2 i}=w_{2 i}+\sum_{k=1}^{2 i} S q^{k} v_{2 i-k} \sim v_{i}^{2}+\sum_{j=i+1}^{2 i-1} S q^{2 i-j} v_{j} \text { of (1.2), } \tag{2.9}\\
& v_{i}^{2} \sim w_{i}^{2} \text { if } i \in N_{1}, \quad \sim 0 \text { otherwise; } \quad S q^{2 i-j} v_{j} \sim 0 \quad \text { if } j \notin N_{1} \cup N_{2},
\end{align*}
$$

by 2.3, 2.2 and (2.8), and the other terms are seen by 2.4-6 as follows:
Case 1: $i=2 a$ for $a \in N_{1}$. In this case, $\left\{j \in N_{1} \cup N_{2} \mid i<j<2 i\right\}=$ $\left\{2 a+t \mid t \in N_{1}, t \leqq a\right\}$, and then 2.2-4, (2.8) and 2.5 (ii) show that

$$
S q^{2 a-t} v_{2 a+t} \sim \begin{cases}S q^{2 a-1}\left(w_{2 a} w_{1}\right) \sim 0 & \text { if } t=1, \\ S q^{2 a-t}\left(w_{2 a} w_{t}+w_{a+t / 2}^{2}\right) \sim 0 & \text { if } 2 \leqq t \leqq a, t \in N_{1}\end{cases}
$$

Thus $v_{4 a} \sim w_{2 a}^{2}$ by (2.9).
Case 2: $i=2 a+b$ for $a, b \in N_{1}, a \geqq b$. In this case, $\left\{j \in N_{1} \cup N_{2} \mid i<\right.$ $j<2 i\}=\left\{4 a, 4 a+t \mid t \in N_{1}, t \leqq b\right\} \cup\left\{2 a+s \mid s \in N_{1}, 2 b \leqq s \leqq a\right\}$. Then

$$
\begin{aligned}
S q^{2 b} v_{4 a} & \sim S q^{2 b}\left(w_{4 a}+w_{2 a}^{2}+P_{4 a}\right) \\
& \sim(1+\varepsilon) w_{i}^{2} \text { for } \varepsilon=1 \quad \text { if } b<a, \quad=0 \quad \text { if } b=a,
\end{aligned}
$$

by (1.1), 2.5(i) and 2.6. Also $S q^{2 b-t} v_{4 a+t} \sim 0$ in the same way, and

$$
S q^{2 a+2 b-s} v_{2 a+s} \sim \begin{cases}0 & \text { if } s>2 b, \\ S q^{2 a} w_{a+b}^{2} \sim w_{i}^{2} & \text { if } s=2 b \leqq a,\end{cases}
$$

by 2.5 (ii). Thus $v_{4 a+2 b} \sim w_{2 a+b}^{2}$ by (2.9).
Case 3: $i=2 a+b+r$ for $a, b \in N_{1}, a \geqq b>r$. In this case, $\left\{j \in N_{1} \cup N_{2} \mid\right.$ $i<j<2 i\}=\left\{4 a, 4 a+t \mid t \in N_{1}, t \leqq 2 b\right\} \cup\{2 a+s \mid 2 b \leqq s \leqq a\}$. Then, in the same way, we have

$$
\begin{gathered}
S q^{2 b+2 r} v_{4 a} \sim(1+\varepsilon) w_{i}^{2} \quad \text { for the above } \varepsilon, \\
S q^{2 b+2 r-t} v_{4 a+t} \sim 0 \quad \text { if } t \leqq b, \quad=S q^{2 r} v_{4 a+2 b} \sim w_{i}^{2} \quad \text { if } t=2 b, \\
S q^{2 a+2 b+2 r-s} v_{2 a+s} \sim 0 \quad \text { if } s>2 b, \quad \sim w_{i}^{2} \quad \text { if } s=2 b \leqq a ;
\end{gathered}
$$

hence $v_{4 a+2 b+2 r} \sim 0$.
Thus, Theorem 1.3 is proved completely.

§3. Proof of Theorem 1.4

We mean in this section by the notation

$$
A \approx B \quad \text { for } A, B \in H^{m}\left(B O ; Z_{2}\right), \quad m \geqq 2,
$$

that the monomial $w_{i} w_{1}^{m-i}$ does not appear in $A+B$ for any $2 \leqq i \leqq m$. This is also an equivalence relation preserved by + , and moreover satisfies the following

Lemma 3.1. If $A \approx B$, then $S q^{i} A \approx S q^{i} B$ for $i \geqq 0$ and $w_{1} A \approx w_{1} B$.

Proof. The Cartan formula and (1.1) tell us easily that

$$
\begin{gathered}
S q^{i}\left(w_{j_{1}} \cdots w_{j_{s}} w_{1}^{k}\right) \approx 0 \quad \text { if } s \geqq 2, \quad j_{1} \geqq \cdots \geqq j_{s} \geqq 2, \quad k \geqq 0, \\
S q^{i}\left(w_{1}^{k}\right)=\binom{k}{i} w_{1}^{k+i} \approx 0 \quad \text { if } k \geqq 1, \quad i+k \geqq 2,
\end{gathered}
$$

by the definition of \approx. Thus we see the lemma.
We put

$$
\begin{equation*}
Q_{m}(k)=\sum_{i=0}^{k-1} w_{m-i} w_{1}^{i} \quad \text { for any } m>k \geqq 1 \tag{3.2}
\end{equation*}
$$

Lemma 3.3. Let $a \geqq 1$ be a power of 2 . Then

$$
S q^{\alpha} Q_{2 a}(a) \approx Q_{2 a+\alpha}(a) \quad \text { for } 0 \leqq \alpha<a, \quad \approx Q_{2 a+\alpha}(2 a) \quad \text { for } a \leqq \alpha<2 a
$$

Proof. The lemma holds trivially for $\alpha=0$, and so does if $a=1$ since $Q_{2}(1)=w_{2}$ and $S q^{1} w_{2}=w_{3}+w_{2} w_{1}=Q_{3}(2)$.

Let $a \geqq 2$. Then we see the lemma for $\alpha=1$, because

$$
\begin{aligned}
S q^{1}\left(w_{2 a-i} w_{1}^{i}\right) & =w_{2 a-i}\left(S q^{1} w_{1}^{i}\right)+\left(S q^{1} w_{2 a-i}\right) w_{1}^{i} \\
& =i w_{2 a-i} w_{1}^{i+1}+w_{2 a-i} w_{1}^{i+1}+(2 a-i-1) w_{2 a-i+1} w_{1}^{i} \\
& =w_{2 a-i} w_{1}^{i+1}+w_{2 a-i+1} w_{1}^{i} \quad \text { if } i \text { is even, }=0 \text { if } i \text { is odd } .
\end{aligned}
$$

In general, the Cartan formula and (1.1) imply that

$$
\begin{equation*}
S q^{\alpha}\left(w_{m-i} w_{1}^{i}\right)=\sum_{j=0}^{\alpha}\left(S q^{\alpha-j} w_{m-i}\right) S q^{j}\left(w_{1}^{i}\right) \tag{3.4}
\end{equation*}
$$

$$
\approx \sum_{j=0}^{\alpha} \sum_{t=0}^{1}\binom{m-i-1-t}{\alpha-j-t}\binom{i}{j} w_{m+\alpha-i-j-t} w_{t} w_{1}^{i+j}, \quad \text { by putting }\binom{m-i-2}{-1}=0
$$

If $\alpha=m-1$, then the coefficient in (3.4) is 0 for $i \neq j$. Hence,

$$
\begin{gather*}
S q^{m-1}\left(w_{m-i} w_{1}^{i}\right) \approx w_{2 m-2 i-1} w_{1}^{2 i}+w_{2 m-2 i-2} w_{1}^{2 i+1} \tag{3.5}\\
S q^{m-1} Q_{m}(k) \approx \sum_{i=0}^{2 k-1} w_{2 m-1-i} w_{1}^{i}=Q_{2 m-1}(2 k)
\end{gather*}
$$

and the latter for $m=2 a$ and $k=a$ is the lemma for $\alpha=2 a-1$. Moreover,

$$
\begin{equation*}
S q^{\alpha} Q_{2 m}(2 k) \approx S q^{\alpha}\left\{w_{2 m}+w_{2 m-2 k} w_{1}^{2 k}+w_{1} \cdot S q^{m-1} Q_{m}(k)\right\} \tag{3.6}
\end{equation*}
$$

by (3.2), (3.5) and Lemma 3.1.
In (3.6) for $m=a=2 k$ and $\alpha=2 a-2$, we have

$$
S q^{2 a-2} w_{2 a} \approx w_{4 a-2}, \quad S q^{2 a-2}\left(w_{a} w_{1}^{a}\right) \approx w_{2 a-2} w_{1}^{2 a} \quad \text { by (3.4) }
$$

Since $S q^{2 a-3} S q^{a-1}=0$ by the Adem relation, we have also

$$
\begin{gathered}
S q^{2 a-2}\left\{w_{1} \cdot S q^{a-1} Q_{a}(a / 2)\right\}=w_{1} \cdot S q^{2 a-2} S q^{a-1} Q_{a}(a / 2) \approx w_{1} \cdot S q^{2 a-2} Q_{2 a-1}(a) \\
\approx w_{1} \cdot Q_{4 a-3}(2 a)=Q_{4 a-2}(2 a)+w_{4 a-2}+w_{2 a-2} w_{1}^{2 a},
\end{gathered}
$$

by (3.5) and Lemma 3.1. Thus the lemma holds for $\alpha=2 a-2$ by (3.6).
Therefore the lemma is proved for $\alpha=0,1,2 a-2,2 a-1$; in particular, it holds if $a=2$. Now, assuming the lemma for $a \geqq 2$ inductively, we study $S q^{\alpha} Q_{4 a}(2 a)$ by (3.6) for $m=2 a=2 k$ as follows.

Case 1: $\alpha=2 n$ for $1 \leqq n \leqq 2 a-2$. Then, in (3.6), we have

$$
S q^{2 n} w_{4 a} \approx w_{4 a+2 n}, \quad S q^{2 n}\left(w_{2 a} w_{1}^{2 a}\right) \approx \begin{cases}w_{2 a+2 n} w_{1}^{2 a} & \text { if } n<a, \\ w_{2 n} w_{1}^{4 a} & \text { if } n \geqq a,\end{cases}
$$

by (3.4). To study $S q^{2 n}\left(w_{1} \cdot S q^{2 a-1} Q_{2 a}(a)\right)$ by the Cartan formula, we note that the Adem relation and the dimensional reason tell us

$$
\begin{aligned}
S q^{2 n-\varepsilon} S q^{2 a-1} Q_{2 a}(a) & =\sum_{j=0}^{n-\varepsilon}\binom{2 a-2-j}{2 n-\varepsilon-2 j} S q^{2 a+2 n-1-\varepsilon-j} S q^{j} Q_{2 a}(a) \\
& =\binom{2 a-2-n+\varepsilon}{\varepsilon} S q^{2 a+n-1} S q^{n-\varepsilon} Q_{2 a}(a) \quad \text { for } \varepsilon=0,1,
\end{aligned}
$$

which is $(2 a-n-1)\left(S q^{n-1} Q_{2 a}(a)\right)^{2} \approx 0$ if $\varepsilon=1$. Therefore,

$$
\begin{aligned}
S q^{2 n}\left\{w_{1} \cdot S q^{2 a-1} Q_{2 a}(a)\right\} & \approx w_{1} \cdot S q^{2 a+n-1} S q^{n} Q_{2 a}(a) \\
& \approx w_{1} \cdot S q^{2 a+n-1} Q_{2 a+n}\left(a^{\prime}\right) \approx \sum_{i=1}^{2 a^{\prime}} w_{4 a+2 n-i} w_{1}^{i}
\end{aligned}
$$

where $a^{\prime}=a$ for $1 \leqq n<a, a^{\prime}=2 a$ for $a \leqq n \leqq 2 a-2$, by the inductive assumption, (3.5) and Lemma 3.1. By adding these, we have

$$
S q^{2 n} Q_{4 a}(2 a) \approx Q_{4 a+2 n}\left(2 a^{\prime}\right), \quad \text { as desired }
$$

Case 2: $\alpha=2 n+1$ for $1 \leqq n \leqq 2 a-2$. Note that $S q^{2 n+1}=S q^{1} S q^{2 n}$ by the Adem relation. Then the above result implies that

$$
S q^{2 n+1} Q_{4 a}(2 a) \approx S q^{1} Q_{4 a+2 n}\left(2 a^{\prime}\right) \approx Q_{4 a+2 n+1}\left(2 a^{\prime}\right)
$$

by Lemma 3.1 and the proof for $\alpha=1$ stated in the first place.
Therefore, Lemma 3.3 is proved by induction.
Lemma 3.7. Let $a \geqq b \geqq 1$ be powers of 2 . Then

$$
S q^{\alpha} Q_{2 a+b}(2 a, b) \approx \begin{cases}Q_{2 a+b+\alpha}(2 a, b) & \text { for } 0 \leqq \alpha<b, \\ Q_{2 a+b+\alpha}(2 b, b) & \text { for } b \leqq \alpha<2 a, \\ Q_{2 a+b+\alpha}(4 a, 2 b) & \text { for } 2 a \leqq \alpha<2 a+b,\end{cases}
$$

where $Q_{m}(k, l)=\sum_{i=l}^{k-1} w_{m-i} w_{1}^{i}$ for any $m>k>l \geqq 0$.
Proof. By definition, we see that $Q_{m}(k, 0)=Q_{m}(k)$ and

$$
Q_{m}(k, l)=w_{1}^{n} Q_{m-n}(k-n, l-n)=Q_{m}(k, n)+Q_{m}(l, n)
$$

for $l \geqq n \geqq 0$, where $Q_{m}(l, l)=0$.
If $b=a$, then the lemma is proved by Lemma 3.3, because

$$
S q^{\alpha} Q_{3 a}(2 a, a)=S q^{\alpha}\left(w_{1}^{a} Q_{2 a}(a)\right)=w_{1}^{a} \cdot S q^{\alpha} Q_{2 a}(a)+w_{1}^{2 a} \cdot S q^{\alpha-a} Q_{2 a}(a)
$$

In particular, the lemma holds if $a=1$.
Now, we prove the lemma for $a>b \geqq 1$ by induction on a. Since $Q_{2 a+b}(2 a, b)=w_{1}^{b} Q_{2 a}(a)+w_{1}^{a} Q_{a+b}(a, b)$, we see $S q^{\alpha} Q_{2 a+b}(2 a, b)$ by adding

$$
\begin{aligned}
S q^{\alpha}\left(w_{1}^{b} Q_{2 a}(a)\right) & =w_{1}^{b} \cdot S q^{\alpha} Q_{2 a}(a)+w_{1}^{2 b} \cdot S q^{\alpha-b} Q_{2 a}(a), \\
S q^{\alpha}\left(w_{1}^{a} Q_{a+b}(a, b)\right) & =w_{1}^{a} \cdot S q^{\alpha} Q_{a+b}(a, b)+w_{1}^{2 a} \cdot S q^{\alpha-a} Q_{a+b}(a, b)
\end{aligned}
$$

and these are seen by Lemmas 3.1, 3.3 and the inductive assumption and by separating into the following cases:

$$
0 \leqq \alpha<b, \quad b \leqq \alpha<a, \quad a \leqq \alpha<a+b, \quad a+b \leqq \alpha<2 a, \quad 2 a \leqq \alpha<2 a+b
$$

Then, we can certify easily the conclusion for $S q^{\alpha} Q_{2 a+b}(2 a, b)$.
Now, we prove Theorem 1.4, which is restated by the above notation \approx as follows:

$$
v_{i} \approx \begin{cases}\sum_{j=1}^{a-1} w_{2 a-j} w_{1}^{j}=Q_{2 a}(a) & \text { if } i=2 a \in N_{1}, \tag{3.8}\\ \sum_{j=b}^{2 a-1} w_{2 a+b-j} w_{1}^{j}=Q_{2 a+b}(2 a, b) & \text { if } i=2 a+b \in N_{2}, \\ 0 & \text { otherwise },\end{cases}
$$

where N_{1} and N_{2} are the sets given in (2.8).
(3.8) holds for $i=2$, because $v_{2}=w_{2}+w_{1}^{2} \approx w_{2}$; and we prove it by induction on i.

Case 1: $\quad i=2 a \in N_{1}, a \geqq 2$. Then, we can study

$$
v_{i}=w_{i}+\sum_{j=1}^{i / 2} S q^{j} v_{i-j} \quad \text { of (1.2) }
$$

by using the inductive assumption and Lemmas 3.1 and 3.7 as follows:
If $i-j \notin N_{1} \cup N_{2}$, then $S q^{j} v_{i-j} \approx 0$.
If $i-j \in N_{1}$, then $j=a$ and $S q^{a} v_{a}=v_{a}^{2} \approx 0$.
If $i-j \in N_{2}$, then $i-j=a+t$ for $t \in N_{1}$ with $1 \leqq t \leqq a / 2$, and

$$
S q^{j} v_{2 a-j}=S q^{a-t} v_{a+t} \approx S q^{a-t} Q_{a+t}(a, t) \approx Q_{2 a}(2 t, t)
$$

since $t \leqq a-t<a$. Thus $v_{2 a} \approx w_{2 a}+\sum_{k=1}^{a-1} w_{2 a-k} w_{1}^{k}=Q_{2 a}(a)$, as desired.
Case 2: $i=2 a+b, a \geqq b \geqq 1, a, b \in N_{1}$. Then, in the same way as Case 1 , we see the following by using also Lemmas 3.3 and 3.7:

If $i-j \in N_{1}$, then $j=b, S q^{b} v_{2 a} \approx S q^{b} Q_{2 a}(a)$ and

$$
S q^{b} Q_{2 a}(a) \approx Q_{i}(a) \quad \text { when } \quad b<a, \quad \approx Q_{i}(2 a) \quad \text { when } \quad b=a
$$

If $i-j \in N_{2}$, then either $i-j=2 a+t$ for $t \in N_{1}$ with $1 \leqq t \leqq b / 2$, and

$$
S q^{b-t} v_{2 a+t} \approx S q^{b-t} Q_{2 a+t}(2 a, t) \approx Q_{i}(2 t, t)
$$

or $i-j=a+s$ for $s \in N_{1}$ with $b \leqq s \leqq a / 2$, and

$$
S q^{a+b-s} v_{a+s} \approx S q^{a+b-s} Q_{a+s}(a, s) \approx \begin{cases}Q_{i}(2 s, s) & \text { for } 2 b \leqq s \leqq a / 2 \\ Q_{i}(2 a, 2 b) & \text { for } s=b\end{cases}
$$

Thus $v_{i} \approx w_{i}+Q_{i}(2 a)+Q_{i}(b, 1)=Q_{i}(2 a, b)$ if $b=a$, and

$$
v_{i} \approx w_{i}+Q_{i}(a)+Q_{i}(b, 1)+Q_{i}(a, 2 b)+Q_{i}(2 a, 2 b)=Q_{i}(2 a, b) \quad \text { if } \quad b<a
$$

Case 3: $\quad i=2 a+b+r, a \geqq b>r, a, b \in N_{1}$. Then:
If $i-j \in N_{1}$, then $j=b+r, S q^{b+r} v_{2 a} \approx S q^{b+r} Q_{2 a}(a)$ and

$$
S q^{b+r} Q_{2 a}(a) \approx Q_{i}(a) \quad \text { when } b<a, \quad \approx Q_{i}(2 a) \quad \text { when } b=a
$$

If $i-j \in N_{2}$, then either $i-j=2 a+t$ for $t \in N_{1}$ with $1 \leqq t \leqq b$, and

$$
S q^{b+r-t} v_{2 a+t} \approx S q^{b+r-t} Q_{2 a+t}(2 a, t) \approx \begin{cases}Q_{i}(2 t, t) & \text { for } t<b \\ Q_{i}(2 a, b) & \text { for } t=b\end{cases}
$$

or $i-j=a+s$ for $s \in N_{1}$ with $b \leqq s \leqq a / 2$, and

$$
S q^{a+b+r-s} v_{a+s} \approx S q^{a+b+r-s} Q_{a+s}(a, s) \approx \begin{cases}Q_{i}(2 s, s) & \text { for } 2 b \leqq s \leqq a / 2 \\ Q_{i}(2 a, 2 b) & \text { for } s=b\end{cases}
$$

Thus $v_{i} \approx w_{i}+Q_{i}(2 a)+Q_{i}(b, 1)+Q_{i}(2 a, b)=0$ if $b=a$, and

$$
v_{i} \approx w_{i}+Q_{i}(a)+Q_{i}(b, 1)+Q_{i}(2 a, b)+Q_{i}(a, 2 b)+Q_{i}(2 a, 2 b)=0
$$

if $b<a$.
Thus, Theorem 1.4 is proved completely.

References

[1] J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.
[2] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press, Princeton, 1974.
[3] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies 50, Princeton Univ. Press, Princeton, 1962.
[4] R. E. Stong, Cobordism and Stiefel-Whitney numbers, Topology 4 (1965), 241-256.
[5] R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, 1968.
[6] J. Vrabec, Bordism, homology, and Stiefel-Whitney numbers, Postdiplom. Sem. Mat. 13, Društvo Mat. Fiz. Astronom. SR Slovenije, Ljubljana, 1982.
[7] W. T. Wu, Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci., Paris 230 (1950), 918-920.
[8] T. Yoshida, Universal Wu classes, Hiroshima Math. J. 17 (1987), 489-493.

Kuka High School
 (Kuka, Yamaguchi)

and
Faculty of Integrated Arts and Sciences,
Hiroshima University

