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§1. Introduction

Let BO be the space which classifies stable real vector bundles. Then, its
mod 2 cohomology H*(BO; Z2) is the polynomial algebra over Z2 on the
(universal) Stiefel-Whitney classes w, e Hl(B0; Z2), * ̂  1 (cf. [2], [6]). More-
over, the Steenrod squaring operation on H*(B0; Z2) is given by

(1.1) Sqjwt = £/=o (* ~]_~ l)wi+j.twt for 0 £j < i,

where ( ) is the binomial coefficient and w0 = 1 (cf. [7]).
W

Let vieHi(BO;Z2) be the (universal) Wu classes (cf. [1], [4], [5]) defined

inductively by

(1.2) v0 = w0 = 1 and wt = £JUo Sqkvt.k , i^ 1 .

Then, the Wu class vt is the polynomial

vt — ui(wi» vv2,...) with coefficients in Z2

on the Stiefel-Whitney classes w/s, which can be described exactly by using
(1.1-2) and the properties of the Steenrod operations, but it is not so easy in
general to see the explicit form of this polynomial. In [8, Cor.], we find
all monomials wil...wI-a, i"i > ••• > / s ^; 1, which appear in ^(w1? vv2,...) with
coefficient 1.

The purpose of this paper is to study the monomials of the form w/2 or
vf, j ^ 2, and to prove the following two theorems.

THEOREM 1.3. In the polynomial vi(w1, vv2,...), the monomial wj2, 2 / = i,
appears with coefficient 1 when and only when

i = a ^ 2 , or i = a + b , a > b ^ 2 ,

where a and b are all powers of 2.
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THEOREM 1.4. In vi(w1, w2 , . . .), the monomial Wjw[~j
9 i^j^2, appears

with coefficient 1 if and only if

i = a ^ 2 and a/2 <j^a, or

i = a + fo , a > h ^ 1 and b <j ^a ,

where a and b are all powers of 2.

The authors are most grateful to Professor Masahiro Sugawara for his
valuable advices during this work.

§2. Proof of Theorem 1.3

The following result on the binomial coefficient is used frequently.

PROPOSITION 2.1 (cf. [3]).

for a = YJ-O^1 and b = £ j = 0 b{2 with 0 ^ ai9 bt S 1.

On the Steenrod operation Sqj: Hl( ; Z2) ̂  f/£+j( ; Z2), we use the following
properties in this paper:

Sqj is a natural homomorphism with Sq° = id,

S^x = 0 if j>i, =x2 if y = i , for x e t f ( ; Z 2 ) ,

= Xi=o (Sqkx)(Sqj~ky) (the Cartan formula), and

Sqj+k-sSqs if 0<j<2k (the Adem relations),

where [ ] is the Gauss symbol.

For a monomial x on w/s, we say simply that x appears in Ae Hl(BO; Z2)
when the coefficient of x is 1 in the polynomial representing A on w/s with
coefficients in Z2. Moreover, we mean in this section by the notation

A - B for A, Be H2n(BO; Z 2 ) , n ^ 1 ,

that the monomial w% does not appear in A + B.

LEMMA 2.2. Let s ^ 3 and ;*! ^ • • • ̂  ; s ;> 1. Tnen

Sqi(wji... wis) ~ 0 for any i ^ 0 .
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PROOF. The Cartan formula and (1.1) tell us the lemma by the above
definition. •

The following result is a special case of [8, Cor.]:

PROPOSITION 2.3. The monomial of the form w^Wj, i > 2/ ^ 0 (w0 = 1),
appears in the Wu class v{ if and only if

i = a ^ 1 and 0 ^ j < a/2 , or i — a + b , a > b ^ 1 and j = b ,

vv/iere a and b are all powers of 2.

LEMMA 2.4. &Za(wflw&) ~ 0 for any powers a > b ^ 1 of 2 and any a ^ 0.

PROOF. By the Cartan formula, (1.1) and the definition of ~ , we have

Here, if b > <x — i, then b + a — i < 2b ^ a ^ a + i, since a > b are powers
of 2. •

LEMMA 2.5. (i) Let a be a power of 2. Then

Sq2a(w2) ~ w2
+a for 0 ^ a < a .

(ii) Let a> b be powers of 2. 77ten

/or b ^oc < a .

PROOF. Since Sq2a{wf) = (Sq*Wi)2 - ( ' W + a , we see the lemma by
\ a /

Proposition 2.1. •

LEMMA 2.6. Let a ^2 be a power of 2. T/ien

S ^ *Pla " [0 /or a/2 ^ a < a ,
w/iere P2fl = X?=/ ^ 2 ^ , ^ .

PROOF. In Sq2aP2a = "£*=} Zj=o(S^w2a_ l)(S^2a-^), the coefficient of wa
2
+a

is seen by (1.1) to be equal to

\ + i — a J\OL — i + a
Thus it is sufficient to prove that
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(2.7) c(a, a) = 1 for 1 ̂  a < a/2 , = 0 for a/2 ^ a < a ,

where = means = mod 2. We can show (2.7) easily when a = 2, 4.

We assume (2.7) for a ^ 4 inductively, and study c(2a, a) by putting

m1 = 2a — i — 1, m2 = a + i — 2a , m3 = i — a — 1 , m4 = a — i 4- 2a

for 1 ̂  a < 2a and 2a — a ^ i < 2a.
Case 1: 1 ̂  a < a/2. In this case, 0 ^ mk < a for all fc. Therefore,

'4a — i — 1\ _ /2a + mA _ /mA = fa + n
a 4- J — 2a/ \ m2 / ~" \m 2 / \ m2

a + m3\ = /m3

a - i 4- 2a/ V m4 / \m47 Va ~ J; + a,

for 7 = i — a, by Proposition 2.1, because a is a power of 2. Thus,

c(2a, a) = c(a, a) = 1 if 1 ̂  a < a/2 .

Case 2: a/2 ^ a < a. In this case, 0 ^ mk < a hold except for m4 < a.
If a + a < i < 2a, then m4< a also holds, and the above proof shows that

a + i - 2aJ\oc - i + 2a/ \m2)\m4 ' ° '

because ml ^ m2 implies m3 ^ m4 -f a — 2a — 2 < m4. If 2a — a ^ i ^ a + a,
. i a H- wi3 \ / wi3 \

then 0 < m4 - a < a and = . Thus we have
V m4 / \m4-aj

2a - i - 1\ , , ,v / m3 \ / i - a - 1

\m 4 - a / \ a - * + a

Put a' = a/2. Then d^Ba' +7) = ( a ~]~ \ = d2{3a' -j) for any integer 7,
\ a — a + 7/

and d ^ a ' ) = d2(3a') = 1 since a' is a power of 2. Therefore

c(2a, a) = 1 if a/2 g a < a .

Case 3: a g a < 2a. In this case, 0 ^ mk < 2a for k = 1, 2. Hence

c(2a, a) = Yjf=2a-a I Ml 3 ) = 0 i f a ^ a < 2 a ,
\m2j\ m4 /

because mx ^ m2 implies a + m3 ^ m4 4- 2a — 2a — 2 < m4.
Therefore, (2.7) and the lemma are proved by induction. •
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Now, we prove Theorem 1.3 which is trivial for odd i and is restated by
the above notation ~ as follows:

(2.8) v2i ~ wf if ieNxvN2 , - 0 otherwise ,

where Nt = {2k\k ^ 0} and N2 = {2k + 2l\k > I ̂  0}.
This holds for i = 1, because v2 = vv2 + w2 ~ w2. We prove it for i ^ 2

by induction in the following way, where the inductive assumption is denoted
simply by (2.8) and Lemma or Proposition 2.n by 2.n.

We note that ~ is an equivalence relation preserved by + . Now,

(2.9) in v2i = w2i + I 2 i ! Sqkv2i.k ~ vf + J]"7ii ^2 f"7 ' ^ of (1.2),

vf ~ w2 ifie Nl9 ^ 0 otherwise; Sq2i~jVj ~ 0 if 7 ̂  JVX u N2 ,

by 2.3, 2.2 and (2.8), and the other terms are seen by 2.4-6 as follows:
Case 1: i = 2a for aeN1. In this case, {j e Nx uiV2 |i <j < 2i} =

{2a + t\t eNl9t£ a}, and then 2.2-4, (2.8) and 2.5(ii) show that

'Sq2a-Hw2a*i)~0 if t = 1,
^2a" r(w2aw t + w2

+t/2) - 0 if 2 =: t = a, f e # ! .

Thus u4fl - wffl by (2.9).
Case 2: i = 2a + b for a, b e Nl9 a^b. In this case, {7 e ATX uAT2|i <

; < 2/} = {4a, 4a + t\t e Nl9t ^b}u {2a + s\s e Nl9 2b g s g a}. Then

5(?2^4a - S<?2b(w4fl + w2
fl -

- ( 1 +a)wf
2 for 6= 1 i f f t<a , =0 iffc = a

by (1.1), 2.5(i) and 2.6. Also Sq^'^+t ~ 0 in the same way, and

by 2.5(ii). Thus V4a+2b - w2
fl+, by (2.9).

Case 3: i = 2a + b + r for a, fe e N l 9 a^b > r. In this case, {7 e ATX u iV2|

i < ; < 2i} = {4a, 4a + t\t eNl9t^ 2b} u {2a + s\2b ^s^a}. Then, in the

same way, we have

- (1 + e)w? for the above e ,

r -Xa+r - 0 i f t g f c , = S ^ 4 f l + 2 b ^ w I
2 iff = 2 6 ,

+ ^ Q jf 5 > 2ft , ^ W2 if 5 = 2ft ^ a ;

hence v4a+2b+2r - 0.

Thus, Theorem 1.3 is proved completely. •
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§3. Proof of Theorem 1.4

We mean in this section by the notation

A « B for A, Be Hm(BO; Z 2 ) , m ̂  2 ,

that the monomial vv̂ wj""1 does not appear in A + B for any If^i^m. This
is also an equivalence relation preserved by + , and moreover satisfies the
following

LEMMA 3.1. / / A « B, then SqlA « SqlB fori^O and wxA « u^B.

PROOF. The Cartan formula and (1.1) tell us easily that

by the definition of %. Thus we see the lemma. •

We put

(3.2) Qm(k) = X?=o w w - X for any m > /c ̂  1 .

LEMMA 3.3. L^t a ^ 1 ftg a power of 2.

S«aG2«(*) * Qia+M / o r 0 ^ a < a , «(22fl+a(2«) /or a g a < 2a .

PROOF. The lemma holds trivially for a = 0, and so does if a = 1 since
Q2(l) = w2 and S g ^ = w3 + w2w1 = <23(2).

Let a ^ 2. Then we see the lemma for a = 1, because

= w2a_fw{+1 + w2a_j+1w{ if i is even, = 0 if i is odd .

In general, the Cartan formula and (1.1) imply that

_ (m — i — 1 — 1 \ fi\ ... , . fm — i — 2\

~E,-=oI«=o(^ a_j_t jywm+a_f_J._rwrwrj, by putting^ _ 1 J = 0.
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If a = m — 1, then the coefficient in (3.4) is 0 for i =£j. Hence,

(3.5) Sqm-1(*m-t*l) « w2m_2l._lWf + wlm-2i-2wli+1,

Sqm-'Qm(k) « L V ^ - i - ^ = Q2m-i(2k),

and the latter for m = 2a and k = a is the lemma for a = 2a — 1. Moreover,

(3.6) Sq*Q2m(2k) * S<?>2 m + w2m_2kw
2fc + *i • Sf^QJlc)}

by (3.2), (3.5) and Lemma 3.1.
In (3.6) for m = a = 2k and a = 2a — 2, we have

S<72a~2w2fl « vv4a_2 , S^2--2(wawf) « w2fl_2w
2* by (3.4).

Since Sq2a~3Sqa~1 = 0 by the Adem relation, we have also

W4fl_2 + W2fl_2Wf f l,

by (3.5) and Lemma 3.1. Thus the lemma holds for a = 2a - 2 by (3.6).
Therefore the lemma is proved for a = 0, 1, 2a — 2, 2a — 1; in particular, it

holds if a = 2. Now, assuming the lemma for a ^ 2 inductively, we study
Sq"Q4a(2a) by (3.6) for m = 2a = 2/c as follows.

Case 1: a = 2n for 1 ^ n ^ 2a - 2. Then, in (3.6), we have

w2a+2nw2fl if n < a ,

,nw*fl if n ^ a ,

by (3.4). To study S^f2"(w1 •Sg2fl~1Q2fl(a)) by the Cartan formula, we note that
the Adem relation and the dimensional reason tell us

2a - 2 - n + e\ „ , . _, o _ ^ , .
)Sq Sq Q2a\

a) for e = 0, 1 ,
e /

which is (2a - n - I ) (^ n" 1e 2 a (a)) 2 « 0 if e = 1. Therefore,

where af = a for 1 ^ n < a, a' = 2a for a ^ n ^ 2a — 2, by the inductive
assumption, (3.5) and Lemma 3.1. By adding these, we have

Sq2nQ4a(2a) » Q4a+2n(2a'), as desired .
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Case 2: a = In + 1 for 1 ̂  n ̂  2a - 2. Note that Sq2n+1 = Sq^q2" by
the Adem relation. Then the above result implies that

Sq2»+1Qta(2a) * SqlQ4a+2n(2a') » 64a+2n+1(2a'),

by Lemma 3.1 and the proof for a = 1 stated in the first place.
Therefore, Lemma 3.3 is proved by induction. •

LEMMA 3.7. Let a ̂  b ̂  1 be powers of 2. Then

2b) for2a^0L<2a + b,

m(fe, /) = Y!i=i wm-iwi for any m> k> 1^0.

PROOF. By definition, we see that Qm(k, 0) = Qm(k) and

Qm(K I) = <Qm-n(k -n,l-n) = Qm(k, n) + Qm(l, n)

for / ̂  n ̂  0, where Qm(f, /) = 0.
If b = a, then the lemma is proved by Lemma 3.3, because

Sq*Q3a(2a, a) = Sq'iw^M) = wf • S^'fi^a) + wf • Sq'-"Q2a(a) •

In particular, the lemma holds if a = 1.
Now, we prove the lemma for a > b ̂  1 by induction on a. Since

e2fl+,(2a, fr) = wlQ2a{a) + w?<2fl+b(a, b), we see Sq"Q2a+b(2a, b) by adding

Sq\*lQ2JLa)) = wf-S^«G2.(a) + w2b • Sq^bQ2a{a),

^ a KG f l + b (a , 6)) = wf • S^aGa+b(«, b) + w?fl • S^a-«Gfl+fc(a, 6);

and these are seen by Lemmas 3.1, 3.3 and the inductive assumption and by
separating into the following cases:

0 g a < b , b ̂  a < a, a ̂  a < a + b , a + b ̂ <x <2a , 2a^ot <2a + b .

Then, we can certify easily the conclusion for SqaQ2a+h{2a, b). •

Now, we prove Theorem 1.4, which is restated by the above notation « as
follows:

f I;=o w2fl_jw/ = G2fl(a) if i = 2fl e Nx ,
(3.8) t;f « j X'^"1 ^2a+.-,W = G2a+b(2«, 6) if i = 2a + fr e iV2 ,

[0 otherwise,

where Nx and N2 are the sets given in (2.8).
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(3.8) holds for i = 2, because v2 = w2 + wf & w2; and we prove it by
induction on i.

Case 1: i = 2a e Nl9 a ^ 2. Then, we can study

"t = *i + TfiiSqJvt-j of (1.2)

by using the inductive assumption and Lemmas 3.1 and 3.7 as follows:
If i-j4NxvN2, then SqJvt-j « 0.
If i—jeNl9 then j = a and Sqava = v\ « 0.
If i - j e JV2, then i-j = a + t for t e ATX with 1 <; f g a/2, and

S«S«- j = Sqa-\+t » ^ f l- fe f l + f(a, t) « Q2fl(2t, t)

since t ^ a — t < a. Thus y2a % w2fl + J]jlJ w2a_kWi = Q2a(a), as desired.
Case 2: i = 2a + b, a g: b ^ 1, a, beNt. Then, in the same way as

Case 1, we see the following by using also Lemmas 3.3 and 3.7:
If i-jeNu then j = ft, S^t;2a « SgbQ2a(a) and

SqbQ2a(a) « 6*(fl) w h e n * < « , ^6»(2^) when ft = a .

If i - ; e N2, then either i - ; = la + r for t e Nx with 1 ^ t ^ ft/2, and

Sqb-fv2a+t « S^b-fe2fl+r(2a, t) » fif(2t, t) ;

or i — j = a + s for s e Nx with ft ^ s ^ a/2, and

Thus vt « w, + Qi(2a) + Qt(b, 1) = Qt{la9 ft) if ft = a, and

t>, « w, + ft(a) + &(ft, 1) + Gi(fl, 2ft) 4- &(2o, 2ft) = Qf(2a, ft) if ft < a

Case 3: i = la + ft + r, a ^ ft > r, a, ft e Nx. Then:
If i-jeNl9 then 7 = ft + r, Sqb+rv2a « Sgb+rg2fl(a) and

^b + rQ2a( a) % 6»(a) when ft < a , »Qt-(2a) when ft = a .

If i —j e N2, then either i — j = 2a + f for f e JVj with 1 ^ t ^ ft, and

2i(2t, 0 for r < ft ,

or i — 7 = a 4- s for s e Nx with ft g s ^ a/2, and

?£(2s, s) for 2ft ^ 5 ^ a/2 ,

);(2a, 2ft) for s = ft .

Thus i>i « w, + Qi(2a) + Qf(ft, 1) + <2f(2a, ft) = 0 if ft = a, and
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vt « w£ + Qt(a) + G,(ft, 1) + Qi(2a, b) + ft(a, 2b) + ft(2a, 2fc) = 0

if ft < a.
Thus, Theorem 1.4 is proved completely. •
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