Boundary limits of locally *n*-precise functions

Yoshihiro MIZUTA

(Received March 24, 1989)

1. Introduction

In this note we investigate the existence of boundary limits of locally *n*-precise functions u on a domain G in \mathbb{R}^n which satisfy a condition of the form:

(1)
$$\int_{G} \Psi(|\operatorname{grad} u(x)|)\omega(x)dx < \infty$$

with a nonnegative measurable function ω on G and a positive nondecreasing function Ψ on the interval $(0, \infty)$; for the definition and basic properties of locally *p*-precise functions, see Ohtsuka [4] and Ziemer [5]. The function $\Psi(r)$ is assumed to be of the form $r^n \psi(r)$, where $\psi(r)$ is a positive nondecreasing function on the interval $(0, \infty)$ satisfying the following conditions:

 $\begin{array}{ll} (\psi_1) & \text{There exists } A > 0 \text{ such that} \\ & A^{-1}\psi(r) \leq \psi(r^2) \leq A\psi(r) & \text{ for any } r > 0 \\ (\psi_2) & \int_0^1 \psi(r^{-1})^{-1/(n-1)} r^{-1} dr < \infty. \end{array}$

For example,

 $\psi(r) = [\log (2+r)]^{\alpha}, [\log (2+r)]^{n-1} [\log (2+(\log (2+r)))]^{\alpha}, \dots,$

satisfy the above conditions, as long as $\alpha > n - 1$.

We shall first show that if $\int_G \Psi(|\operatorname{grad} u(x)|)dx < \infty$, then there exists a continuous function u^* on G such that $u^* = u$ a.e. on G, and furthermore, in case G is a Lipschitz domain, u^* can be extended to a continuous function on $G \cup \partial G$.

Next, in section 3, we are concerned with the existence of limits at a given boundary point ξ , in the case where *u* satisfies (1) with $\omega(x) = \lambda(|x - \xi|)$ for a positive nondecreasing function λ on the interval $(0, \infty)$. Then, in the next section, we study the existence of boundary limits along certain subsets of *G* for a function *u* satisfying (1) with $\omega(x) = \lambda(\rho(x))$, where λ is as above and $\rho(x)$ denotes the distance of *x* from the boundary ∂G .

In the last section, we discuss the existence of limits at infinity, in case G is unbounded and $\omega \equiv 1$.

2. Continuity of locally *n*-precise functions

First we give several properties on ψ , which follow from condition (ψ_1).

 $(\psi_1)'$ There exists A' > 0 such that $\psi(2r) \leq A'\psi(r)$ on $(0, \infty)$.

 $(\psi_1)''$ For each $\gamma > 0$, there exists $A_{\gamma} > 0$ such that

$$A_{\gamma}^{-1}\psi(r) \leq \psi(r^{\gamma}) \leq A_{\gamma}\psi(r) \quad \text{on} \quad (0, \infty).$$

$$(\psi_1)^{\prime\prime\prime}$$
 If $\varepsilon > 0$, then $s^{\varepsilon}\psi(s^{-1}) \leq At^{\varepsilon}\psi(t^{-1})$ whenever $0 < s < t < A^{-1/\varepsilon}$.

For the sake of convenience, we introduce the function

$$\tilde{\psi}(r) = \left(\int_0^r \psi(t^{-1})^{-1/(n-1)} t^{-1} dt\right)^{1-1/n}$$

Then $\tilde{\psi}$ satisfies condition (ψ_1), too, and

$$(\psi_3)$$
 $\tilde{\psi}(r) \ge M\psi(r^{-1})^{-1/n}$ for any $r > 0$

with a positive constant M.

Our first aim is to establish the following result.

THEOREM 1. If u is a locally n-precise function on G satisfying

(2)
$$\int_G \Psi(|\operatorname{grad} u(x)|) dx < \infty ,$$

then there exists a continuous function on G which equals u a.e. on G.

For a proof of Theorem 1, we use the following results.

LEMMA 1 (cf. [3; Theorem 1], [4; Theorem 9.11]). Let $1 . If u is a p-precise function on <math>\mathbb{R}^n$ with compact support, then

$$u(x) = c \sum_{i=1}^{n} \int (x_i - y_i) |x - y|^{-n} (\partial/\partial y_i) u(y) dy \qquad a.e. \text{ on } \mathbb{R}^n,$$

where c is a constant independent of u.

LEMMA 2. Let E be a measurable set in \mathbb{R}^n , and let g, ω be nonnegative measurable functions on E. Then, for any δ with $0 < \delta < 1$ and $\alpha > 0$,

$$\begin{split} &\int_{E} |x-y|^{1-n} g(y) dy \leq A_{\delta}^{1/n} \bigg(\int_{E} \Psi(g(y)) \omega(y) dy \bigg)^{1/n} \\ & \times \left(\int_{E} |x-y|^{-n} [\psi(\alpha^{-1}|x-y|^{-1}) \omega(y)]^{-1/(n-1)} dy \right)^{1-1/n} + \alpha^{-\delta} \int_{E} |x-y|^{1-n-\delta} dy \,. \end{split}$$

PROOF. Let $E_1 = \{y \in E; g(y) \ge (\alpha |x - y|)^{-\delta}\}$ and $E_2 = E - E_1$. Then, $\psi(g(y)) \ge \psi((\alpha |x - y|)^{-\delta}) \ge A_{\delta}^{-1}\psi((\alpha |x - y|)^{-1})$ on E_1 and $g(y) \le \alpha^{-\delta} |x - y|^{-\delta}$ on E_2 . Hence, Hölder's inequality implies the required inequality.

COROLLARY. If E, g, δ and α are as in Lemma 2, then

$$\int_E |x-y|^{1-n}g(y)dy \leq M\left(\int_E \Psi(g(y))dy\right)^{1/n} \tilde{\psi}(\alpha R) + M\alpha^{-\delta}|E|^{(1-\delta)/n},$$

where |E| denotes the measure of E, $R = \sup \{|x - y|; y \in E\}$ and M is a positive constant independent of α , x, g, E.

PROOF. Taking $\omega \equiv 1$ in Lemma 2 and remarking that

$$\int_E |x-y|^{1-n-\delta} dy \leq M r^{1-\delta}$$

for $r \ge 0$ such that |E| = |B(x, r)|, B(x, r) denoting the open ball with center x and radius r, we obtain the Corollary.

PROOF OF THEOREM 1. Let $B(x_0, 2r_0) \subset G$, and take $\varphi \in C_0^{\infty}(G)$ such that $\varphi = 1$ on $B(x_0, r_0)$. Then, by Lemma 1, φu is equal a.e. to

$$v(x) = c \sum_{i=1}^n \int (x_i - y_i) |x - y|^{-n} (\partial/\partial y_i) (\varphi u)(y) dy.$$

Thus it suffices to show that v is continuous on $B(x_0, r_0)$. We write

$$v(x) = c \sum_{i=1}^{n} \int (x_i - y_i) |x - y|^{-n} [(\partial/\partial y_i) \varphi(y)] u(y) dy$$

+ $c \sum_{i=1}^{n} \int (x_i - y_i) |x - y|^{-n} \varphi(y) [(\partial/\partial y_i) u(y)] dy = u_1(x) + u_2(x) .$

We first note that u_1 is continuous on $B(x_0, r_0)$. Let x_1 be any point of $B(x_0, r_0)$. For r > 0, we set

$$u_{2,r}(x) = c \sum_{i=1}^{n} \int_{B(x_1,r)} (x_i - y_i) |x - y|^{-n} \varphi(y) [(\partial/\partial y_i) u(y)] dy$$

For simplicity, put

$$f(y) = \sum_{i=1}^{n} |\varphi(y)[(\partial/\partial y_i)u(y)]|.$$

We note that $\int_{\mathbb{R}^n} \Psi(f(y)) dy < \infty$, by condition (2). For $x \in B(x_1, r)$, we derive from the Corollary to Lemma 2

Yoshihiro MIZUTA

$$|u_{2,r}(x)| \leq M_1 \int_{B(x_1,r)} |x-y|^{1-n} f(y) dy$$

$$\leq M_2 \left(\int_{B(x_1,r)} \Psi(f(y)) dy \right)^{1/n} \tilde{\psi}(r) + M_2 r^{1-\delta},$$

where $0 < \delta < 1$ and M_1 , M_2 are positive constants independent of x and r. Consequently, $\lim_{r\to 0} \sup_{x \in B(x_1,r)} u_{2,r}(x) = 0$. Since $u_2 - u_{2,r}$ is continuous at x_1 , it follows that u_2 is continuous at x_1 . Therefore, v is continuous on $B(x_0, r_0)$, and hence Theorem 1 is established.

REMARK. If $\Psi(r) = r^p$ and p > n, then the same conclusion as in Theorem 1 is true.

Let λ be a positive nondecreasing function on $(0, \infty)$ such that $\lambda(2r) \leq B\lambda(r)$ on $(0, \infty)$ with a positive constant *B*, and consider

$$\kappa'_{\lambda}(r) = \left(\int_{r}^{1} \left[\psi(s^{-1})\lambda(s)\right]^{-1/(n-1)}s^{-1}ds\right)^{1-1/n}.$$

THEOREM 2. Let G be a Lipschitz domain in \mathbb{R}^n , and u be a locally n-precise function on G satisfying

(3)
$$\int_G \Psi(|\operatorname{grad} u(x)|)\lambda(\rho(x))dx < \infty,$$

where $\rho(x)$ denotes the distance of x from the boundary ∂G . If $\kappa'_{\lambda}(0) < \infty$, then there exists a continuous function on $G \cup \partial G$ which equals u a.e. on G.

REMARK. If $\lim_{r\downarrow 0} \lambda(r) > 0$ (in particular, if $\lambda \equiv 1$), then $\kappa'_{\lambda}(0) < \infty$ by assumption (ψ_2) .

For a proof of Theorem 2, we need the following result, which is a key lemma in the discussions throughout this paper.

LEMMA 3. If u is a locally n-precise continuous function on G, then for any x, $x_0 \in G$ and $r_0 > 0$ such that $E(x, x_0, r_0) = \{tx + (1 - t)y; 0 < t < 1, y \in B(x_0, r_0)\} \subset G$,

$$\begin{aligned} \left| u(x) - |B(x_0, r_0)|^{-1} \int_{B(x_0, r_0)} u(y) dy \right| \\ &\leq M r_0^{-n} (|x - x_0| + r_0)^n \int_{E(x, x_0, r_0)} |x - z|^{1-n} |\operatorname{grad} u(z)| dz \,, \end{aligned}$$

where M is a positive constant depending only on the dimension n.

REMARK. If $x \in B(x_0, r_0)$, then

$$\left| u(x) - |B(x_0, r_0)|^{-1} \int_{B(x_0, r_0)} u(y) dy \right| \leq 2^n M \int_{B(x_0, r_0)} |x - z|^{1-n} |\operatorname{grad} u(z)| dz.$$

PROOF OF LEMMA 3. If $0 < \varepsilon < 1$, then, in view of Example 1 given after Theorem 3.21 in [4], we have

$$|u(x + \varepsilon(y - x)) - u(y)| \leq \int_{\varepsilon}^{1} |x - y| |\operatorname{grad} u(tx + (1 - t)y)| dt$$

for almost every $y \in B(x_0, r_0)$. Letting $\varepsilon \to 0$, we obtain

$$|u(x) - u(y)| \le |x - y| \int_0^1 |\operatorname{grad} u(tx + (1 - t)y)| dt$$

for almost every $y \in B(x_0, r_0)$. Hence

$$\begin{aligned} \left| u(x) - |B(x_0, r_0)|^{-1} \int_{B(x_0, r_0)} u(y) dy \right| \\ &\leq |B(x_0, r_0)|^{-1} \int_{B(x_0, r_0)} |x - y| \left(\int_0^1 |\operatorname{grad} u(tx + (1 - t)y)| dt \right) dy \\ &\leq |B(x_0, r_0)|^{-1} \int_{E(x, x_0, r_0)} |x - z| |\operatorname{grad} u(z)| \\ &\times \left(\int_{\{1 - t \geq |x - z| (|x - x_0| + r_0)^{-1}\}} (1 - t)^{-1 - n} dt \right) dz \\ &\leq M r_0^{-n} (|x - x_0| + r_0)^n \int_{E(x, x_0, r_0)} |x - z|^{1 - n} |\operatorname{grad} u(z)| dz , \end{aligned}$$

since for z = tx + (1 - t)y, $|x - z| = (1 - t)|x - y| \le (1 - t)(|x - x_0| + r_0)$, where M is a positive constant independent of x, x_0 , r_0 and u.

PROOF OF THEOREM 2. By Theorem 1 we may assume that u is continuous on G. We shall prove that u has a finite limit at any $\xi \in \partial G$. Since G is a Lipschitz domain, there is a cylindrical neighborhood U of ξ such that, by a suitable orthogonal coordinate system, we can write

$$\xi = 0, \qquad U \cap G = \left\{ x = (x_1, x'); \, \varphi(x') < x_1 < h, \, |x'| < \rho \right\},\$$

where h > 0, $\rho > 0$ and φ is a Lipschitz function on $\{x' \in \mathbb{R}^{n-1}; |x'| < \rho\}$ such that $\varphi(0) = 0$. Let K be the Lipschitz constant of φ . For any r > 0 with $r < \min\{h/2, 2(K+1)\rho\}$, let $e_r = (0, r)$ and $\sigma_r = r/3(K+1)$. Then, for any

 $x \in B(0, \sigma_r) \cap G$, $E(x, e_r, \sigma_r) \subset U \cap G$. Hence, by Lemmas 3 and 2, we have

$$\begin{aligned} u(x) &- |B(e_r, \sigma_r)|^{-1} \int_{B(e_r, \sigma_r)} u(y) dy \\ &\leq M \sigma_r^{-n} (|x - e_r| + \sigma_r)^n \int_{E(x, e_r, \sigma_r)} |x - z|^{1-n} |\operatorname{grad} u(z)| dz \\ &\leq M_1 r^{1-\delta} + M_1 \left(\int_{E(x, e_r, \sigma_r)} \Psi(|\operatorname{grad} u(z)|) \lambda(\rho(z)) dz \right)^{1/n} \\ &\times \left(\int_{E(x, e_r, \sigma_r)} |x - z|^{-n} [\psi(|x - z|^{-1}) \lambda(\rho(z))]^{-1/(n-1)} dz \right)^{1-1/n} \end{aligned}$$

for any $x \in B(0, \sigma_r) \cap G$, where $0 < \delta < 1$ and M_1 is a positive constant independent of r. If $x \in B(0, \sigma_r) \cap G$ and $z \in E(x, e_r, \sigma_r)$, then $|x - z| \leq M_2 \rho(z)$ with a positive constant M_2 , so that

$$\left(\int_{E(x,e_r,\sigma_r)} |x-z|^{-n} [\psi(|x-z|^{-1})\lambda(\rho(z))]^{-1/(n-1)} dz\right)^{1-1/n}$$

$$\leq M_3 \left(\int_0^{2r} [\psi(t^{-1})\lambda(t)]^{-1/(n-1)} t^{-1} dt\right)^{1-1/n} \leq M_4 \kappa_{\lambda}'(0)$$

with positive constants M_3 and M_4 . Therefore,

$$|u(x) - u(y)| \leq 2M_1 M_4 \kappa_{\lambda}'(0) \left(\int_{G \cap B(0, 2r)} \Psi(|\operatorname{grad} u(z)|) \lambda(\rho(z)) dz \right)^{1/n} + 2M_1 r^{1-\delta}$$

whenever x, $y \in G \cap B(0, \sigma_r)$. This implies that u has a finite limit at $\xi = 0$.

REMARK. Theorem 2 fails to hold if G is not a Lipschitz domain. For example, consider the set $G_a = \{(x, y); 0 < x < 1, -x^a < y < x^a\}$, where a > 1. If $u(x, y) = x^{-\beta}$ and $-\beta + (a - 1)/2 > 0$, then u satisfies condition (3) with $G = G_a$ and $\lambda \equiv 1$.

3. Boundary limits, I

Let λ be a positive nondecreasing function on $(0, \infty)$ such that $\lambda(2r) \leq B\lambda(r)$ on $(0, \infty)$ with a positive constant *B*, and let

$$\kappa_{\lambda}(r) = \kappa'_{\lambda}(r) + \lambda(r)^{-1/n} \widetilde{\psi}(r)$$

Recall that

$$\kappa_{\lambda}'(r) = \left(\int_{r}^{1} \left[\psi(t^{-1})\lambda(t)\right]^{-1/(n-1)} t^{-1} dt\right)^{1-1/n}$$

and

$$\tilde{\psi}(r) = \left(\int_0^r \psi(t^{-1})^{-1/(n-1)} t^{-1} dt\right)^{1-1/n}$$

REMARK. (i) It is easy to see that $\kappa'_{\lambda}(0) < \infty$ if and only if κ_{λ} is bounded on (0, 1). In fact, if $\kappa'_{\lambda}(0) < \infty$, then $\lim_{r \downarrow 0} \lambda(r)^{-1/n} \tilde{\psi}(r) = 0$.

(ii) If $\lambda(r) = r^{\beta}$ ($\beta > 0$), then $\kappa_{\lambda}(r) \sim r^{-\beta/n} \tilde{\psi}(r)$ (cf. the Appendix) and $\kappa'_{\lambda}(0) = \infty$.

In this section, we are concerned with the existence of limits at a given boundary point ξ , for functions u satisfying

(4)
$$\int_{G} \Psi(|\operatorname{grad} u(x)|)\lambda(|\xi-x|)dx < \infty.$$

THEOREM 3. Let $\xi \in \partial G$, and suppose there exist $x_0 \in G$, $r_0 > 0$ and $\varepsilon_0 > 0$ such that $E(x, x_0, r_0) \subset G$ for all $x \in G \cap B(\xi, \varepsilon_0)$. If u is a locally n-precise continuous function on G satisfying (4) and if $\kappa'_{\lambda}(0) = \infty$, then

$$\lim_{x\to\xi,x\in G} \left[\kappa_{\lambda}(|x-\xi|)\right]^{-1} u(x) = 0.$$

PROOF. We may assume that $\xi = 0$ and $\varepsilon_0 < |x_0| - r_0$. First, we note that there is a > 0 (depending only on x_0 , r_0 and ε_0) such that

$$|z| > a|x|$$
 and $|z| > a|x-z|$

whenever $x \in G \cap B(0, \varepsilon_0)$ and $z \in E(x, x_0, r_0/2)$.

For $x \in G \cap B(0, \varepsilon_0)$, by Lemma 3, we have

$$\left| u(x) - |B(x_0, r_0/2)|^{-1} \int_{B(x_0, r_0/2)} u(y) dy \right| \le M_1 \int_{E(x, x_0, r_0/2)} |x - z|^{1 - n} f(z) dz$$
$$= M_1 (I_1 + I_2),$$

where f(z) = |grad u(z)|, M_1 is a positive constant independent of x,

$$I_1 = \int_{E(x,x_0,r_0/2)\cap B(x,r)}^{r} |x-z|^{1-n} f(z) dz$$

and

$$I_2 = \int_{E(x,x_0,r_0/2)-B(x,r)} |x-z|^{1-n} f(z) dz$$

for r with $|x| < r < \varepsilon_0$. In view of Lemma 2, we obtain

Yoshihiro MIZUTA

$$I_{1} \leq M_{2} \left(\int_{E(x,x_{0},r_{0}/2) \cap B(x,r)} \Psi(f(z))\lambda(|z|)dz \right)^{1/n} \\ \times \left(\int_{E(x,x_{0},r_{0}/2)} |x-z|^{-n} [\psi(|x-z|^{-1})\lambda(|z|)]^{-1/(n-1)}dz \right)^{1-1/n} + M_{2}$$

for a positive constant M_2 independent of x and r. Now, let

$$E_1 = E(x, x_0, r_0/2) - B(x, |x|)$$

and

$$E_2 = E(x, x_0, r_0/2) \cap B(x, |x|)$$
.

For $z \in E_1$, we use the inequality |z| > a|x - z| and obtain

$$\left(\int_{E_1} |x - z|^{-n} [\psi(|x - z|^{-1})\lambda(|z|)]^{-1/(n-1)} dz \right)^{1 - 1/n}$$

$$\leq M_3 \left(\int_{|x|}^{r_1} [\psi(t^{-1})\lambda(at)]^{-1/(n-1)} t^{-1} dt \right)^{1 - 1/n} \leq M_4 \kappa_{\lambda}'(|x|)$$

,

where $r_1 = |x_0| + r_0/2 + \varepsilon_0$ and M_3 , M_4 are positive constants independent of x. For $z \in E_2$, we use the inequality |z| > a|x| and obtain

$$\left(\int_{E_2} |x-z|^{-n} [\psi(|x-z|^{-1})\lambda(|z|)]^{-1/(n-1)} dz\right)^{1-1/n}$$

$$\leq M_5 [\lambda(a|x|)]^{-1/n} \left(\int_0^{|x|} [\psi(t^{-1})]^{-1/(n-1)} t^{-1} dt\right)^{1-1/n}$$

$$\leq M_6 [\lambda(|x|)]^{-1/n} \tilde{\psi}(|x|)$$

with positive constants M_5 and M_6 . Hence

$$I_1 \leq M_7 \kappa_{\lambda}(|x|) \left(\int_{E(x,x_0,r_0/2) \cap B(x,r)} \Psi(f(z)) \lambda(|z|) dz \right)^{1/n} + M_2$$

with a positive constant M_7 independent of x and r. Similarly, by using the inequality |z| > a|x - z|, we obtain

$$I_2 \leq M_8 \kappa_{\lambda}(r) \left(\int_{E(x,x_0,r_0/2)-B(x,r)} \Psi(f(z)) \lambda(|z|) dz \right)^{1/n} + M_8$$

with a positive constant M_8 . Thus we establish

Boundary limits of locally n-precise functions

$$\begin{aligned} \left| u(x) - |B(x_0, r_0/2)|^{-1} \int_{B(x_0, r_0/2)} u(y) dy \right| \\ &\leq M_9 \kappa_\lambda(|x|) \left(\int_{G \cap B(x, r)} \Psi(f(z)) \lambda(|z|) dz \right)^{1/n} \\ &+ M_9 \kappa_\lambda(r) \left(\int_G \Psi(f(z)) \lambda(|z|) dz \right)^{1/n} + M_9 \end{aligned}$$

with a positive constant M_9 . Since $\kappa_{\lambda}(|x|) \to \infty$ as $x \to 0$, it follows that

$$\limsup_{x \to 0, x \in G} \left[\kappa_{\lambda}(|x|) \right]^{-1} |u(x)| \leq M_9 \left(\int_{G \cap B(0,r)} \Psi(f(z)) \lambda(|z|) dz \right)^{1/n}$$

for any r with $0 < r < \varepsilon_0$, which implies the required result.

Now we consider a special domain

$$G_a = \{ x = (x_1, x') \in \mathbb{R}^1 \times \mathbb{R}^{n-1}; 0 < x_1 < 1, |x'| < x_1^a \}$$

If a > 1, then G_a is not a Lipschitz domain, and it does not satisfy the condition in Theorem 3 at $\xi = 0$. However, we have the following result for this domain.

PROPOSITION 1. Let λ be a positive monotone function on the interval $(0, \infty)$ such that $B^{-1}\lambda(r) \leq \lambda(2r) \leq B\lambda(r)$ for any r > 0 with a positive constant B. For a > 1, let

$$\lambda_a(r) = \left(\int_r^1 \lambda(s)^{-1/(n-1)} s^{-a} ds\right)^{-n+1}$$

If u is a locally n-precise continuous function on G_a satisfying condition (4), then

- (i) u(x) has a finite limit as $x_1 \to 0$, $x \in G_a$, in case $\kappa'_{\lambda_a}(0) < \infty$;
- (ii) $\lim_{x_1\to 0, x\in G_a} [\kappa_{\lambda_a}(x_1)]^{-1}u(x) = 0$ in case $\kappa'_{\lambda_a}(0) = \infty$.

PROOF. For each positive integer $j \ge j_0$, let $r_j = Mj^{1/(1-a)}$. Here j_0 and M are taken so large that $0 < r_j < 1/2$ and $r_j - r_{j+1} < \rho(e(j))$ for $j \ge j_0$, where $e(j) = (r_j, 0)$. For simplicity, set $\Delta(j) = B(e(j), \rho(e(j))), j \ge j_0$. We shall show the existence of N > 0 such that the number of $\Delta(m)$ with $\Delta(m) \cap \Delta(j) \neq \emptyset$ is at most N for any j. Letting β and γ be positive numbers, we assume that $r_j - \beta r_j^a \le r_{j+k} + \gamma r_{j+k}^a$. Then

$$j[1 - (j/(j+k))^{1/(a-1)}] \leq M^{a-1}[\beta + \gamma(j/(j+k))^{a/(a-1)}].$$

Since $K = \inf_{0 \le x \le 1} (1 - x^{1/(a-1)})/(1 - x) > 0$, we derive

$$jk/(j+k) \leq K^*$$
 with $K^* = [M^{a-1}(\beta+\gamma)]/K$,

so that

Yoshihiro MIZUTA

$$k \leq K^* j/(j - K^*)$$
 when $j > K^*$.

From this fact we can readily find N > 0 with the required property.

For 0 < r < 1/2, let $X(r) = (r, 0) \in G_a$ and $B_r = B(X(r), \rho(X(r)))$. If $x \in B_r$, then Lemmas 2 and 3 imply

$$\begin{aligned} \left| u(x) - |B_r|^{-1} \int_{B_r} u(z) dz \right| &\leq M_1 \int_{B_r} |x - z|^{1-n} |\operatorname{grad} u(z)| \, dz \\ &\leq M_2 \left(\int_{B_r} \Psi(|\operatorname{grad} u(z)|) \lambda(|z|) \, dz \right)^{1/n} \lambda(r)^{-1/n} \tilde{\psi}(r^a) \\ &+ M_2 r^{a(1-\delta)}, \end{aligned}$$

so that

(5)
$$|u(x) - u(X(r))| \leq 2M_2 \left(\int_{B_r} \Psi(|\operatorname{grad} u(z)|)\lambda(|z|)dz \right)^{1/n} \\ \times \lambda(r)^{-1/n} \tilde{\psi}(r^a) + 2M_2 r^{a(1-\delta)}$$

with positive constants M_1 and M_2 independent of x, y and r, where δ is a positive number so chosen that $a\delta < 1$. Since $\tilde{\psi}(r^a) \leq M(a)\tilde{\psi}(r)$ for r > 0 with a positive constant M(a), we obtain

$$\begin{aligned} |u(e(j)) - u(e(j+k))| &\leq |u(e(j)) - u(e(j+1))| + |u(e(j+1)) - u(e(j+2))| + \cdots \\ &+ |u(e(j+k-1)) - u(e(j+k))| \\ &\leq M_3 \left(\int_{\mathcal{A}(j,j+k)} \Psi(|\text{grad } u(z)|)\lambda(|z|)dz \right)^{1/n} \\ &\times \left(\sum_{m=j}^{j+k-1} \tilde{\psi}(m^{-1})^{n'} [\lambda(m^{1/(1-a)})]^{-n'/n} \right)^{1/n'} \\ &+ M_3 \sum_{m=j}^{\infty} m^{-a(1-\delta)/(a-1)}, \end{aligned}$$

where 1/n + 1/n' = 1, $\Delta(j, j + k) = \bigcup_{j \le m \le j+k} \Delta(m)$ and M_3 is a positive constant independent of j and k. Here note that

$$\begin{split} \sum_{m=j}^{j+k-1} \tilde{\psi}(m^{-1})^{n'} \lambda(m^{1/(1-a)})^{-n'/n} \\ &\leq M_4 \int_j^{j+k} \tilde{\psi}(t^{-1})^{n'} \lambda(t^{1/(1-a)})^{-n'/n} dt \\ &\leq M_5 \int_{(j+k)^{-1}}^{j^{-1}} \psi(s^{-1})^{-1/(n-1)} s^{-1} \left(\int_j^{s^{-1}} \lambda(t^{1/(1-a)})^{-1/(n-1)} dt \right) ds \\ &+ M_5 \left(\int_0^{(j+k)^{-1}} \psi(s^{-1})^{-1/(n-1)} s^{-1} ds \right) \left(\int_j^{j+k} \lambda(t^{1/(1-a)})^{-1/(n-1)} dt \right) \end{split}$$

for sufficiently large *j*, where M_4 and M_5 are positive constants independent of *j* and *k*. Since $\int_j^{s^{-1}} \lambda(t^{1/(1-a)})^{-1/(n-1)} dt \leq [(a-1)\lambda_a(s^{1/(a-1)})]^{-1/(n-1)}$, we find, by $(\psi_1)''$ and change of variables, that

$$(\sum_{m=j}^{j+k-1} \tilde{\psi}(m^{-1})^{n'} \lambda(m^{1/(1-a)})^{-n'/n})^{1/n'} \leq M_6 \kappa_{\lambda_a}((j+k)^{1/(1-a)}) \leq M_7 \kappa_{\lambda_a}(r_{j+k})^{1/(1-a)}$$

with positive constants M_6 and M_7 independent of j and k.

First suppose $\kappa'_{\lambda_a}(0) = \infty$. Then

$$\limsup_{k\to\infty} \left[\kappa_{\lambda_a}(r_{j+k})\right]^{-1} |u(e(j+k))| \leq M_3 M_7 \left(\int_{\mathcal{A}(j,\infty)} \Psi(|\operatorname{grad} u(z)|) \lambda(|z|) dz\right)^{1/n},$$

which implies

$$\lim_{j\to\infty} \left[\kappa_{\lambda_a}(r_j)\right]^{-1} u(e(j)) = 0.$$

If $x \in B_r$ and $r_{j+1} < r \le r_j$, then $e(j) \in B_r$ and $x_1 < r \le r_j$. Hence, by (5),

$$\begin{split} [\kappa_{\lambda_a}(x_1)]^{-1} |u(x)| &\leq M_8 [\kappa_{\lambda_a}(r_j)]^{-1} (|u(e(j))| + r_j^{a(1-\delta)}) \\ &+ M_8 [\lambda_a(r_j)]^{1/n} \lambda(r_j)^{-1/n} \left(\int_{G_a} \Psi(|\text{grad } u(z)|) \lambda(|z|) dz \right)^{1/n} \end{split}$$

with a positive constant M_8 . Since

$$\lambda_a(r)^{1/n}\lambda(r)^{-1/n} \leq \left([B^{-1}\lambda(r)]^{-1/(n-1)} \int_r^{2r} s^{-a} ds \right)^{-1/n'} \lambda(r)^{-1/n} \leq M_9 r^{(a-1)/n'}$$

with a positive constant M_9 independent of r, we see that $[\kappa_{\lambda_a}(x_1)]^{-1}|u(x)|$ tends to zero as $x \to 0$, $x \in G_a$.

If $\kappa'_{\lambda_a}(0) < \infty$, then κ_{λ_a} is bounded and the above arguments imply that $\{u(e(j))\}\$ is a Cauchy sequence and

$$\lim_{j \to \infty} (\sup \{ |u(x) - u(e(j))|; x \in \bigcup_{r_{j+1} < r \le r_j} B_r \}) = 0.$$

From these facts it follows readily that u(x) has a finite limit as $x \to 0$, $x \in G_a$.

REMARK 1. Let $\lambda(r) = r^{\gamma}$ for a number γ . If $\gamma < -(n-1)(a-1)$, then $\kappa'_{\lambda_a}(0) < \infty$. If $\gamma > -(n-1)(a-1)$, then $\kappa'_{\lambda_a}(0) = \infty$ and $\kappa_{\lambda_a}(r) \sim r^{-[\gamma+(n-1)(a-1)]/n}$.

REMARK 2. Proposition 1 is best possible as to the order of infinity in the following sense: if $\varepsilon > 0$, then we can find a locally *n*-precise continuous function u on G_a satisfying condition (4) such that

(6)
$$\lim_{x_1\to 0, x\in G_a} x_1^{-\varepsilon} [\kappa_{\lambda_a}(x_1)]^{-1} u(x_1, x') = \infty .$$

In fact, let $\psi(r) = [\log (2+r)]^{\beta}$ and $\lambda(r) = r^{\gamma}$, where $\beta > n-1$ and $\gamma + (n-1)(a-1) > 0$. Then $\tilde{\psi}(r) \sim [\log (2+r^{-1})]^{(n-1-\beta)/n}$ and $\lambda_a(r) \sim r^{\gamma+(n-1)(a-1)}$ for $r \in (0, 1)$. Consider the function

$$u(x_1, x') = x_1^{-[\gamma + (n-1)(a-1)]/n} [\log (2 + x_1^{-1})]^{(n-1-\beta)/n-\delta}$$

for $\delta > 1$. Since $\kappa_{\lambda_a}(r) \leq M_1 \tilde{\psi}(r) \lambda_a(r)^{-1/n}$ with a positive constant M_1 , (6) is satisfied. On the other hand, we have

$$|(\partial/\partial x_1)u| \leq M_1 x_1^{-1-[\gamma+(n-1)(a-1)]/n} [\log (2+x_1^{-1})]^{(n-1-\beta)/n-\delta},$$

so that

$$\Psi(|\text{grad } u(x_1, x')|) \le M_2 x_1^{-[1+\gamma+(n-1)a]} [\log (2 + x_1^{-1})]^{n-1-n\delta}$$

Hence we obtain

$$\int_{G_a} \Psi(|\text{grad } u(x)|) |x|^{\gamma} dx \le M_3 \int_0^1 x_1^{-[1+\gamma+(n-1)a]} [\log (2+x_1^{-1})]^{n-1-n\delta} x_1^{\gamma+(n-1)a} dx_1 < \infty .$$

Thus u satisfies (4), and it is the required function.

4. Boundary limits, II

In this section we discuss the existence of boundary limits along a set in G, for locally *n*-precise continuous functions u on G satisfying (3). Here λ is a positive nondecreasing function on $(0, \infty)$ such that $\lim_{r \downarrow 0} \lambda(r) = 0$ and $\lambda(2r) \leq B\lambda(r)$ for r > 0 with a positive constant B.

Let h be a nonnegative nondecreasing function on $(0, \infty)$ such that $h(2r) \leq Mh(r)$ for any r > 0 with a positive constant M, and denote by H_h the Hausdorff mesure with the measure function h.

For $\xi \in \partial G$ and a set T, suppose there exist positive numbers c and C satisfying the following conditions:

 $(\mathbf{T}_1) \quad \boldsymbol{\xi} \in \partial T;$

- (T₂) for sufficiently small r > 0, there exist $x_r \in G$ and $d_r > 0$ such that $x_r \in B(\xi, r), cr < d_r < r$ and $E(x, x_r, d_r) \subset T$ whenever $x \in T \cap B(\xi, r)$;
- (T₃) $\kappa_{\xi,\lambda}(x) \leq Ch(|x-\xi|)^{-1/n}$ if $x \in T$, where

$$\kappa_{\xi,\lambda}(x) = \left(\int_{G \cap B(\xi,2|\xi-x|)} |x-y|^{-n} [\psi(|x-y|^{-1})\lambda(\rho(y))]^{-1/(n-1)} dy\right)^{1-1/n}$$

A typical example of T is a set of the form

$$\{x = (x_1, x') \in \mathbb{R}^1 \times \mathbb{R}^{n-1}; \varphi(|x'|) < ax_1\}$$

or a set similar to this set, where a > 0 and φ is a positive nondecreasing function on the interval $(0, \infty)$ such that $\limsup_{t \to 0} \varphi(t)/t < \infty$.

REMARK. If G is a Lipschitz domain and $\lambda(r) = r^{\beta}$ with $0 < \beta < n - 1$, then we can prove that $\kappa_{\xi,\lambda}(x) \sim \kappa_{\lambda}(\rho(x))$ (see the Appendix).

THEOREM 4. Let u be a locally n-precise continuous function on G, and suppose

(7)
$$\int_{G \cap B(\xi,r)} |\xi - y|^{1-n} |\operatorname{grad} u(y)| \, dy < \infty \quad \text{for some} \quad r > 0 \, ,$$

(8)
$$\lim \sup_{r \downarrow 0} h(r)^{-1} \int_{G \cap B(\xi, r)} \Psi(|\operatorname{grad} u(y)|) \lambda(\rho(y)) dy = 0.$$

Then, for a set $T \subset G$ satisfying the above conditions (T_1) , (T_2) and (T_3) , u(x) has a finite limit as $x \in G$ tends to ξ along T.

REMARK. Let E_0 (resp. E_h) be the set of $\xi \in \partial G$ for which (7) (resp. (8)) does not hold. If u satisfies condition (3), then we can show that $H_h(E_h) = 0$; moreover, in case $\lambda(r) = r^{\beta}$ and G is a Lipschitz domain, then, in view of [2; Section 5], we see that $B_{1-\beta/n,n}(E_0) = 0$, where $B_{\gamma,p}$ denotes the Bessel capacity of index (γ, p) (see [1] for the definition of Bessel capacities).

PROOF OF THEOREM 4. Let $r_0 > 0$ be sufficiently small, and take $x_0 = x_{r_0}$ and $d_0 = d_{r_0}$ having the properties in condition (T₂). By Lemma 3, we have

$$\left| u(x) - |B(x_0, d_0)|^{-1} \int_{B(x_0, d_0)} u(y) dy \right| \leq M_1 \int_{E(x, x_0, d_0)} |x - z|^{1 - n} f(z) dz$$

for $x \in T \cap B(\xi, r_0)$, where f(z) = |grad u(z)| and M_1 is a positive constant independent of x. Thus it follows that

$$\sup_{x \in T \cap B(\xi, r_0)} |u(x) - u(x_0)| \leq 2M_1 \sup_{x \in T \cap B(\xi, r_0)} \int_{E(x, x_0, d_0)} |x - z|^{1 - n} f(z) dz .$$

If $z \in T(\xi, a) - B(\xi, 2|\xi - x|)$, then $|x - z| \ge |\xi - z| - |x - \xi| \ge |\xi - z|/2$, so that

$$\int_{E(x,x_0,d_0)-B(\xi,2|\xi-x|)} |x-z|^{1-n} f(z) dz \leq 2^{n-1} \int_{G \cap B(\xi,2r_0)} |\xi-z|^{1-n} f(z) dz .$$

On the other hand, by Lemma 2 and condition (T_3) , we have

$$\int_{E(x,x_0,r_0)\cap B(\xi,2|\xi-x|)} |x-z|^{1-n} f(z) dz$$

$$\leq M_2 h(|\xi - x|)^{-1/n} \left(\int_{G \cap B(\xi, 2|\xi - x|)} \Psi(f(y)) \lambda(\rho(y)) dy \right)^{1/n} + M_2 |\xi - x|^{1-\delta}$$

with a positive constant M_2 , where $0 < \delta < 1$. Thus,

$$\begin{split} \sup_{x \in T \cap B(\xi, r_0)} |u(x) - u(x_0)| &\leq M_3 r_0^{1-\delta} + M_3 \int_{G \cap B(\xi, 2r_0)} |\xi - z|^{1-n} f(z) dz \\ &+ M_3 \sup_{0 < r < 2r_0} \left(h(r)^{-1} \int_{G \cap B(\xi, r)} \Psi(f(y)) \lambda(\rho(y)) dy \right)^{1/n} \end{split}$$

with a positive constant M_3 independent of r_0 . In view of conditions (7) and (8), it follows that u(x) has a finite limit as $x \in G$ tends to ξ along T.

For $\alpha > 1$, $a \in \mathbb{R}^1$ and $b \ge 0$, set

$$S_{\alpha}(a, b) = \{x = (x_1, x') \in \mathbb{R}^1 \times \mathbb{R}^{n-1}; x_1 > a |x'| + b |x'|^{\alpha} \}$$

If G is a bounded Lipschitz domain and $\alpha > 0$ is given, then, for each $\xi \in \partial G$ we can find $a_{\xi} \in \mathbb{R}^1$, $b_{\xi} \ge 0$, $r_{\xi} > 0$ and an orthogonal transformation Ξ_{ξ} such that

$$\{\xi + \Xi_{\xi} x; x \in S_{\alpha}(a_{\xi}, b_{\xi})\} \cap B(\xi, r_{\xi}) \subset G.$$

For $b > b_{\xi}$, put

$$T_{\alpha}(\xi, b) = \{\xi + \Xi_{\xi} x; x \in S_{\alpha}(a_{\xi}, b)\} \cap B(\xi, r_{\xi}).$$

COROLLARY. Let G be a bounded Lipschitz domain and let $\alpha > 1$. Let $\{T_{\alpha}(\xi, b); \xi \in \partial G, b > b_{\xi}\}$ be given as above. If u is a locally n-precise continuous function on G satisfying

$$\mathcal{\Psi}(|\text{grad } u(x)|)\rho(x)^{\beta}dx < \infty$$

with $0 < \beta < n - 1$, then there exists a set $E \subset \partial G$ such that

- (i) $H_h(E) = 0$ for $h(r) = \sup_{0 \le t \le r} t^{\alpha\beta} [\tilde{\psi}(t)]^{-n};$
- (ii) if $\xi \in \partial G E$, then u(x) has a finite limit as $x \to \xi$ along $T_{\alpha}(\xi, b)$ for any $b > b_{\xi}$.

PROOF. It is easy to see that, for fixed $\xi \in \partial G$, $T = T_{\alpha}(\xi, b)$ satisfies conditions (T_1) and (T_2) . By Remark (ii) before Theorem 3 and the Remark

before Theorem 4, we see that $\kappa_{\xi,\lambda}(x) \sim \rho(x)^{-\beta/n} \tilde{\psi}(\rho(x))$ if $\lambda(r) = r^{\beta}$. Since $\rho(x) \geq c |x - \xi|^{\alpha}$ for $x \in T_{\alpha}(\xi, b)$ with some c > 0 (depending on ξ, α, b ; but not on x), condition (T₃) is satisfied with $T = T_{\alpha}(\xi, b)$ and the function h given in (i).

Let $E = E_0 \cup E_h$ in the notation given in the Remark after Theorem 4. Since $B_{1-\beta/n,n}(E_0) = 0$ implies that E_0 has Hausdorff dimension at most β (cf. [1; Theorem 22]) and since $\lim_{r \downarrow 0} h(r)/r^{\beta} = 0$, we see that $H_h(E_0) = 0$. Hence $H_h(E) = 0$, and the Corollary follows from Theorem 4.

REMARK. If $\beta = 0$ in the Corollary, then *u* can be extended to a continuous function on $G \cup \partial G$, on account of Theorem 2.

5. Limits at infinity

In this section, we discuss the existence of limits at infinity of *n*-precise functions on unbounded domains R^n and $G = \{x = (x_1, x') \in R^1 \times R^{n-1}; |x'| < 1\}$.

THEOREM 5. If u is a locally n-precise continuous function on \mathbb{R}^n satisfying condition (2) with $G = \mathbb{R}^n$, then $[\tilde{\psi}(|x|)]^{-1}u(x) \to 0$ as $|x| \to \infty$.

PROOF. By Lemma 3 we have

$$\left| u(x) - |B(0, r)|^{-1} \int_{B(0, r)} u(y) dy \right| \leq M_1 \int_{B(0, r)} |x - z|^{1 - n} f(z) dz$$

with a positive constant M_1 independent of x, where r = |x| and f(z) = |grad u(z)|. For fixed $r_0 > 0$, taking $\alpha = r^{\gamma}$ with $\delta(\gamma + 1) > 1$ in the Corollary to Lemma 2, we have

$$\int_{B(0,r)-B(0,r_0)} |x-z|^{1-n} f(z) dz \leq M_2 \left(\int_{R^{n-B(0,r_0)}} \Psi(f(z)) dz \right)^{1/n} \tilde{\psi}(r) + M_2 r^{1-\delta-\delta\gamma}$$

with a positive constant M_2 independent of r. Here, note that $\tilde{\psi}(r) \ge \psi(1)^{-1/n} (\log r)^{1-1/n}$ for r > 1, so that $\lim_{r \to \infty} \tilde{\psi}(r) = \infty$. Hence

$$\limsup_{|x|\to\infty} \tilde{\psi}(|x|)^{-1} \int_{B(0,|x|)} |x-z|^{1-n} f(z) dz \leq M_2 \left(\int_{R^n - B(0,r_0)} \Psi(f(z)) dz \right)^{1/n},$$

which implies that the left hand side is equal to zero. Similarly,

$$\begin{aligned} \left| u(0) - |B(0,r)|^{-1} \int_{B(0,r)} u(y) dy \right| &\leq M_1 \int_{B(0,r)} |z|^{1-n} f(z) dz \\ &\leq M_1 \int_{B(0,r_0)} |z|^{1-n} f(z) dz + M_3 \left(\int_{\mathbb{R}^n - B(0,r_0)} \Psi(f(z)) dz \right)^{1/n} \tilde{\psi}(r) + M_3 , \end{aligned}$$

where M_3 is a positive constant independent of r and r_0 , so that

$$\lim_{r\to\infty} \tilde{\psi}(r)^{-1} \left(|B(0,r)|^{-1} \int_{B(0,r)} u(y) dy \right) = 0.$$

Consequently, $\lim_{|x|\to\infty} \left[\tilde{\psi}(|x|)\right]^{-1} u(x) = 0.$

PROPOSITION 2. Let $G = \{(x_1, x'); |x'| < 1\}$, and let u be a locally n-precise continuous function on G satisfying condition (2). Then

$$\lim_{x_1 \to \infty, (x_1, x') \in G} \left[\tilde{\psi}(x_1) \right]^{-1} x_1^{1/n-1} u(x_1, x') = 0.$$

REMARK. Proposition 2 is best possible as to the order of infinity, in the same sense as in Remark 2 given after Proposition 1.

PROOF OF PROPOSITION 2. Let $X(r) = (r, 0), r \in \mathbb{R}^1$. If x and y belong to $\Delta(r) = B(X(r), 1)$, then, as in the proof of Theorem 5, we have

$$\begin{aligned} |u(x) - u(y)| &\leq M_1 \sup_{z \in \Delta(r)} \int_{\Delta(r)} |z - w|^{1-n} |\operatorname{grad} u(w)| \, dw \\ &\leq M_2 \left(\int_{\Delta(r)} \Psi(|\operatorname{grad} u(w)|) \, dw \right)^{1/n} \tilde{\psi}(r) + M_2 r^{-2} \end{aligned}$$

with positive constants M_1 , M_2 independent of x, y and r, where we used the Corollary to Lemma 2 with $\alpha = r^{2/\delta}$ in the second inequality. For any fixed r_0 , let $r_j = r_0 + j/2$. If $r_k \leq x_1 < r_k + 2^{-1}$, then

$$\begin{aligned} |u(x) - u(X(r_0))| &\leq |u(x) - u(X(x_1))| + |u(X(x_1)) - u(X(r_k))| + \cdots \\ &+ |u(X(r_1)) - u(X(r_0))| \\ &\leq M_3 \left(\int_{E(r_0, x_1)} \Psi(|\operatorname{grad} u(w)|) dw \right)^{1/n} (\tilde{\psi}(x_1)^{n'} + \sum_{j=0}^k \tilde{\psi}(r_j)^{n'})^{1/n} \\ &+ M_2(x_1^{-2} + \sum_{j=0}^k r_j^{-2}) \\ &\leq M_4 \left(\int_{E(r_0, x_1)} \Psi(|\operatorname{grad} u(w)|) dw \right)^{1/n} \tilde{\psi}(x_1) x_1^{1/n'} + M_5 r_0^{-1} , \end{aligned}$$

where 1/n + 1/n' = 1, $E(s, t) = \bigcup_{s < r < t} \Delta(r)$ and M_3 , M_4 are positive constants independent of x and r_0 . It follows that

$$\limsup_{x_1 \to \infty, x \in G} \left[\tilde{\psi}(x_1) \right]^{-1} x_1^{-1/n'} |u(x)| \le M_4 \left(\int_{E(r_0, \infty)} \Psi(|\text{grad } u(w)|) dw \right)^{1/n}$$

for any r_0 , which implies that the left hand side equals zero.

Appendix

We now give a proof of $\kappa_{\xi,\lambda}(x) \sim \kappa_{\lambda}(\rho(x))$ given in the Remark before Theorem 4. By a change of coordinate system by a Lipschitz transformation, we may assume that G is the half space $\{x = (x_1, x'); x_1 > 0\}$ and ξ is the origin. For $x = (x_1, x') \in G \cap B(0, 1)$, let

$$E_1 = \{ y = (y_1, y'); y_1 > x_1/2 \} \cap B(0, 2|x|) - B(x, x_1/2),$$

$$E_2 = B(x, x_1/2),$$

$$E_3 = \{ y = (y_1, y'); 0 < y_1 \le x_1/2 \} \cap B(0, 2|x|)$$

and write

$$I_{j}(x) = \int_{E_{j}} |x - y|^{-n} [\psi(|x - y|^{-1})\lambda(y_{1})]^{-1/(n-1)} dy$$

for j = 1, 2, 3. Since $y_1 \ge |y_1 - x_1|$ on E_1 and $\lambda(r) = r^{\beta}$ with $0 < \beta < n - 1$, we have by properties $(\psi_1)^m$ and (ψ_3)

$$\begin{split} I_1(x) &\leq M_1 \int_{x_1/2}^{3|x|} \left[\psi(r^{-1})\lambda(r) \right]^{-1/(n-1)} r^{-1} dr \\ &\leq M_2 \left[x_1^{\varepsilon} \psi(x_1^{-1}) \right]^{-1/(n-1)} \int_{x_1/2}^{3|x|} \left[r^{-\varepsilon} \lambda(r) \right]^{-1/(n-1)} r^{-1} dr \\ &\leq M_3 \left[\psi(x_1^{-1})\lambda(x_1) \right]^{-1/(n-1)} \leq M_4 \left[\tilde{\psi}(x_1)\lambda(x_1)^{-1/n} \right]^{n'}, \end{split}$$

where $0 < \varepsilon < \beta$. If $y \in E_2$, then $y_1 > x_1/2$, so that

$$I_2(x) \leq M_5 \lambda(x_1)^{-1/(n-1)} \int_0^{x_1/2} \left[\psi(r^{-1}) \right]^{-1/(n-1)} r^{-1} dr \leq M_6 \left[\tilde{\psi}(x_1) \lambda(x_1)^{-1/n} \right]^{n'}.$$

If $y \in E_3$, then $|(0, x') - y|^2 + (x_1/2)^2 \le 2|x - y|^2 \le 2[|(0, x') - y|^2 + x_1^2]$. Hence, letting r = |(0, x') - y|, by a computation similar to the above, we have

$$\begin{split} I_{3}(x) &\leq M_{7} \int_{0}^{3|x|} (r+x_{1})^{-n} [\psi((r+x_{1})^{-1})\lambda(r)]^{-1/(n-1)} r^{n-1} dr \\ &\leq M_{8} \int_{x_{1}}^{3|x|} [\psi(r^{-1})\lambda(r)]^{-1/(n-1)} r^{-1} dr \\ &+ M_{8} x_{1}^{-n} [\psi(x_{1}^{-1})]^{-1/(n-1)} \int_{0}^{x_{1}} [\lambda(r)]^{-1/(n-1)} r^{n-1} dr \\ &\leq M_{9} [\tilde{\psi}(x_{1})\lambda(x_{1})^{-1/n}]^{n'} . \end{split}$$

Consequently, we establish

$$\kappa_{\xi,\lambda}(x) \leq M_{10} \tilde{\psi}(x_1) \lambda(x_1)^{-1/n}$$

Conversely, we obtain

$$I_{2}(x) \geq M_{11}\lambda(x_{1})^{-1/(n-1)} \int_{0}^{x_{1}/2} \left[\psi(r^{-1})\right]^{-1/(n-1)} r^{-1} dr$$
$$\geq M_{12} \left[\tilde{\psi}(x_{1})\lambda(x_{1})^{-1/n}\right]^{n'},$$

and hence

$$\kappa_{\xi,\lambda}(x) \ge M_{13}\tilde{\psi}(x_1)\lambda(x_1)^{-1/n}$$

On the other hand, we find, in view of $(\psi_1)^{\prime\prime\prime}$, that

$$[\kappa_{\lambda}'(r)]^{n'} \leq M_{14} [r^{\varepsilon} \psi(r^{-1})]^{-1/(n-1)} \int_{r}^{1} [r^{-\varepsilon} \lambda(r)]^{-1/(n-1)} r^{-1} dr$$

$$\leq M_{15} [\tilde{\psi}(r) \lambda(r)^{-1/n}]^{n'} ,$$

so that

$$\kappa_{\lambda}(x_1) \leq M_{16} \tilde{\psi}(x_1) \lambda(x_1)^{-1/n} \leq M_{16} \kappa_{\lambda}(x_1) \,.$$

Since the constants $M_1 \sim M_{16}$ do not depend on $x \in G \cap B(0, 1)$, the required result has been derived.

References

- N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
- [2] Y. Mizuta, On the behavior of potentials near a hyperplane, Hiroshima Math. J. 13 (1983), 529-542.
- [3] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
- [4] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
- [5] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University