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1. Introduction

In this note we investigate the existence of boundary limits of locally
n-precise functions u on a domain G in Rn which satisfy a condition of the form:

(1) I
with a nonnegative measurable function co on G and a positive nondecreasing
function *F on the interval (0, oo); for the definition and basic properties of
locally p-precise functions, see Ohtsuka [4] and Ziemer [5]. The function *F(r)
is assumed to be of the form rn\j/(r), where \j/(r) is a positive nondecreasing
function on the interval (0, oo) satisfying the following conditions:

There exists A > 0 such that

A'^ir) ^ il/(r2) ̂  Aij/{r) for any r > 0 .

For example,

Mr) = [log (2 + r)]«, [log (2 + r)]""1 [log (2 + (log (2 + r)))]«,

satisfy the above conditions, as long as a > n — 1.
We shall first show that if j G !P(|grad u(x)|)dx < 00, then there exists a

continuous function w* on G such that u* = u a.e. on G, and furthermore, in
case G is a Lipschitz domain, u* can be extended to a continuous function on
Gu<9G.

Next, in section 3, we are concerned with the existence of limits at a given
boundary point £, in the case where u satisfies (1) with co(x) = A(|x — £|) for
a positive nondecreasing function X on the interval (0, 00). Then, in the next
section, we study the existence of boundary limits along certain subsets of G for
a function u satisfying (1) with o(x) = ^(p(x)), where k is as above and p(x)
denotes the distance of x from the boundary dG.

In the last section, we discuss the existence of limits at infinity, in case G is
unbounded and 0 = 1.
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2. Continuity of locally /i-precise functions

First we give several properties on i//9 which follow from condition (i/^).

(xj/J There exists A' > 0 such that i//(2r) g Af\j/(r) on (0, oo).
(i/^)" For each y > 0, there exists Ay > 0 such that

A-'xj/ir) ^ W) ^ Ayxj/{r) on (0, oo).

G^)'" If £ > 0, then s'lj/is'1) g A ^ " 1 ) whenever 0 < s < t < A~1/E.

For the sake of convenience, we introduce the function

•-(£Jo

Then \j/ satisfies condition GAi), too, and

(ij/3) i j / ( r ) ^ M i / / ( r - 1 ) - 1 / n f o r a n y r > 0

with a positive constant M.
Our first aim is to establish the following result.

THEOREM 1. If u is a locally n-precise function on G satisfying

(2) LJG

then there exists a continuous function on G which equals u a.e. on G.

For a proof of Theorem 1, we use the following results.

LEMMA 1 (cf. [3; Theorem 1], [4; Theorem 9.11]). Let 1 < p < 00. If u is
a p-precise function on Rn with compact support, then

u(x) = c £?=i J (x, - y,)\x - y\-"(d/dy,)u(y)dy a.e. on R",

where c is a constant independent of u.

LEMMA 2. Let E be a measurable set in Rn, and let g, a> be nonnegative
measurable functions on E. Then, for any 3 with 0 < d < 1 and a > 0,

J I*-y\ 1 ~ n g(y)dy<

x ( f |x - yr iX ^ + oT6 f \x - y ^ -
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PROOF. Let Ex = {ye E; g(y) ^ (a|x - y\)~d) and E2 = E-E1. Then,

^ - y\Yd)^ A-8^{{OL\X - y\Yl) on Ex and g(y) £ oT*\x - y\~6

on E2. Hence, Holder's inequality implies the required inequality.

COROLLARY. / / £, g, 6 and a are as in Lemma 2, then

\x - y\1-ng(y)dy Zf
JE

Y
J

where \E\ denotes the measure of E9 R = sup {\x — y\; y e E} and M is a positive
constant independent of a, x, g9 E.

PROOF. Taking co = 1 in Lemma 2 and remarking that

I* - y\1~n~5dy ^ Mr1'3J.
for r ^ 0 such that |£ | = \B(x9 r)\, B(x9 r) denoting the open ball with center x
and radius r, we obtain the Corollary.

PROOF OF THEOREM 1. Let B(x0, 2r0) cz G, and take cp e CQ{G) such that
cp = 1 on B(x09 r0). Then, by Lemma 1, cpu is equal a.e. to

v(x) = c £?=i (xt -ydlx- yV^d/dy^cpu^dy .

Thus it suffices to show that v is continuous on B(x09 r0). We write

v(x) = c X?=i ((xt - yt)\x - yri(d/dyi)cp(y)My)dy

i — yt)\x — y\ n(P(y)L(S/Syi)u(y)']dy = u^x) + u2{x).

We first note that ux is continuous on B(x09 r0). Let x1 be any point of
B(x09 r0). For r > 0, we set

= c

For simplicity, put

We note that $Rn Y{f{y))dy < oo, by condition (2). For x e B(xl9 r), we derive
from the Corollary to Lemma 2
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\x- y\l-nf{y)dy
B{xur)

JB(xltr)

where 0 < 3 < 1 and Mx, M2 are positive constants independent of x and r.
Consequently, lim r^0 supJceB(Xl>r)u2r(x) = 0. Since u2 — u2>r is continuous at
xu it follows that u2 is continuous at xx. Therefore, v is continuous on
B(x0, r0), and hence Theorem 1 is established.

REMARK. If W(r) = rp and p > n, then the same conclusion as in Theorem
1 is true.

Let k be a positive nondecreasing function on (0, oo) such that k(2r) ^ Bk(r)
on (0, oo) with a positive constant B, and consider

l - l / n

THEOREM 2. Let G be a Lipschitz domain in Rn, and u be a locally n-precise
function on G satisfying

(3) 1
where p(x) denotes the distance of x from the boundary dG. If fc^O) < oo, then
there exists a continuous function on GvdG which equals u a.e. on G.

REMARK. If limr>j,0 k(r) > 0 (in particular, if k = 1), then K'X(0) < oo by
assumption ^ )

For a proof of Theorem 2, we need the following result, which is a key
lemma in the discussions throughout this paper.

LEMMA 3. If u is a locally n-precise continuous function on G, then for
any x, x0 e G and r0 > 0 such that £(x, x0, r0) = {tx + (1 — t)y; 0 < t < 1,
>; e B(x0, r0)} c G,

O ) ! " 1 I "OO
jB(xo,ro)

f |x - z^
j£(jc, xo,ro)

^ Mro-n(|x - xo | + ro)

where M is a positive constant depending only on the dimension n
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REMARK. If x e B(x0, r0), then

u(x) - \B(x0, ro)!"1 f u(y)dy ^ 2nM f |x - z l ^ l g r a d u(z)\dz .
jB(xo,ro) JB(xo,ro)

PROOF OF LEMMA 3. If 0 < e < 1, then, in view of Example 1 given after
Theorem 3.21 in [4], we have

\u(x + e(y - x)) - u(y)\ ^ \x - y\ |grad u(tx + (1 - i)y)\dt

for almost every y e B(x0, r0). Letting e -• 0, we obtain

|II(X) - u{y)\ £\x-y\ I Igrad u(tx + (1 - t)y)| A
Jo

for almost every y e B(x0, r0). Hence

u(x)-\B(x09r0)\-
1 I u(y)dy

JB(xo,ro)

^ \B{x0, ro)!"1 I |x - y\ ( f |grad u(tx + (1 - t)y)| A )dy
jB(xo,ro) \Jo /

o,^)]-1 I | x - z | |grad u(z)|

| |x - z^
J E(x,xo,ro)

^ Mro-"(|x - xo | + rof | |x - z^-'lgrad u(z)\dz ,

since for z = tx + (1 - t)y, |x - z| = (1 - t)|x - y| ^ (1 - r)(|x - xo | + r0), where
M is a positive constant independent of x, x0, r0 and M.

PROOF OF THEOREM 2. By Theorem 1 we may assume that u is continuous
on G. We shall prove that u has a finite limit at any £ e 3G. Since G is a
Lipschitz domain, there is a cylindrical neighborhood U of £ such that, by
a suitable orthogonal coordinate system, we can write

£ = 0, UnG = {x = (xu x'); cp(x') <x,<h, \x'\ < p) ,

where h > 0, p > 0 and <p is a Lipschitz function on {xf e R"'1; |x'| < p} such
that <p(0) = 0. Let K be the Lipschitz constant of cp. For any r > 0 with
r < min {fc/2, 2(X + l)p}, let er = (0, r) and <rr = r/3(K + 1). Then, for any
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x E B(0, ar) n G, £(x, er, Gr)czJJ n G. Hence, by Lemmas 3 and 2, we have

u(x)-\B(eriar)\-
1 \ u(y)dy

jB(er,or)

^ Ma;n{\x - er\ + ar)
n \ \x - z^grad u(

JE(x,er,<Tr)
z)\dz

1/n

u(z)\)k(p(z))dz
E(x,er,<Tr)

|x-z|
E(x,er,or)

for any x e B(0, ar) n G, where 0 < d < 1 and Mx is a positive constant inde-
pendent of r. If x € £(0, crr) n G and z e £(x, er, <jr), then |x — z\ ^ M2p{z) with
a positive constant M2, so that

) l - l / n

= M 3 ( [^(f1)^^)]"1^"""1^"1^ ) ^ M4/c'A(0)
VJo /

with positive constants M3 and M4. Therefore,

JGnB(0,2r)

whenever x, y e G n B(0, (jr). This implies that M has a finite limit at £ = 0.

REMARK. Theorem 2 fails to hold if G is not a Lipschitz domain. For
example, consider the set Ga = {(x, y); 0 < x < 1, — xa < y < xa}, where a > 1.
If w(x, y) = x~^ and — /? + (a — l)/2 > 0, then u satisfies condition (3) with
G = Ga and A = 1.

3. Boundary limits, I

Let k be a positive nondecreasing function on (0, oo) such that k(2r) ̂  Bk(r)
on (0, oo) with a positive constant B, and let

Recall that
. - l / M
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and

a \l-l/n
^(riri/(n-l)rl^j

REMARK, (i) It is easy to see that K'A(0) < oo if and only if KX is bounded
on (0, 1). In fact, if K'A(0) < oo, then limr;0 X(r)-1/nf{r) = 0.

(ii) If X{r) = rfi (jS > 0), then Kx(r) ~ r"^>(r) (cf. the Appendix) and
KA(0) = oo.

In this section, we are concerned with the existence of limits at a given
boundary point £, for functions u satisfying

I(4) y( |gradi i (x) |U( |{-x | ) ix<oo.

THEOREM 3. Let £ e dG, and suppose there exist x0 e G, r0 > 0 and eo>0

such that E(x, x 0 , r0) cz G for all x e G n B(£, s0). If u is a locally n-precise

continuous function on G satisfying (4) and if /cA(0) = oo, then

PROOF. We may assume that { = 0 and e0 < \xo\ — r0. First, we note
that there is a > 0 (depending only on x0, r0 and 80) such that

|z |>f l |x | and \z\>a\x — z\

whenever xeGn B(0, e0) and z e E(x, x0, ro/2).
For xeGn B(0, so\ by Lemma 3, we have

u(x) - \B(x09 ro/2)!"1 f u(y)dy
1 f u(

jB(xo,ro/2)
\x - z\l~nf{z)dz

E(x,xo,ro/2)

where /(z) = |grad u(z)\, Mx is a positive constant independent of x,

/ l = f \X - Z\1-"f(2)dz
J E(x,xo,ro/2)nB(x,r)

and

h= \ \x-z\'~nf{z)dz
JE(x,xo,ro/2)-B(x,r)

for r with \x\ < r < s0. In view of Lemma 2, we obtain
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E(x,xo,ro/2)nB(x,r)

l/n

x — z\~n[il/(\x — z\~1)h(\z\)']~1/in~1)dz ) 4- Mo
E(x,xo,ro/2)

for a positive constant M2 independent of x and r. Now, let

El^E(x9xO9rol2)^B(x9\x\)

and

E2 = E(x,x0,r0/2)nB(x9\x\).

For z e El9 we use the inequality \z\ > a\x — z\ and obtain

\x-

^ M3 (̂  J"
where rx = |xo| + ro/2 + e0 and M3, M4 are positive constants independent of x.
For z e E2,v/e use the inequality \z\ > a\x\ and obtain

\x -

[^(r1)]-1/("-

with positive constants M5 and M6. Hence

( f ( / ( ) ) ( | | ) ) M2
£(x,xo,ro/2)nB(x,r)

with a positive constant M7 independent of x and r. Similarly, by using the
inequality \z\ > a\x — z\9 we obtain

I2 ^ M8Kx(r)( I ^(/(z))A(|z|)dzY + M8
\j£(x,xo,ro/2)-B(x,r) /

with a positive constant M8. Thus we establish
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M(x)-|B(xo ,ro /2) |-1 f u(y)dy
jB(xo,ro/2)

^M9Kk{\x\)(\ W{f{z))k{\z\)dzY
\jGnB(x,r) J

+ M9Kk(r)([ W(f(z))mz\)dzJn + M9

with a positive constant M9. Since KX(\X\) -> oo as x -> 0, it follows that

lim
1 !^)! ^ M9f f

\jGnB(0,r)r)

for any r with 0 < r < e0, which implies the required result.

Now we consider a special domain

Ga = {x = (xl9 x') eR1 x K""1; 0 < xx < 1, |x'| < xj} .

If a > 1, then Ga is not a Lipschitz domain, and it does not satisfy the condition
in Theorem 3 at £ = 0. However, we have the following result for this domain.

PROPOSITION 1. Let Xbe a positive monotone function on the interval (0, oo)
such that B'1!^) ^ k{2r) ^ Bk{r) for any r > 0 with a positive constant B. For
a > 1, let a i

/ / w is a locally n-precise continuous function on Ga satisfying condition (4), then
(i) w(x) /zas a finite limit as xx -+ 0, x e Ga, in case /c'Aa(0) < oo;
(ii) limXi_OjceGa [^(xj) ]" 1 ! !^) = 0 in case ?c'Aa(0) = oo.

PROOF. For each positive integer j ^j0, let r7- = Mj1/(1~a). Here j0 and M
are taken so large that 0 < r} < 1/2 and r,. — rj+1 < p{e(j)) for j ^j0, where
^(7) = (rj9 0). For simplicity, set A{j) = B(e(j\ p(e(j))), j ^j0. We shall show
the existence of N > 0 such that the number of A(m) with A(m)nA(j) ^ 0 is
at most AT for any j . Letting JS and y be positive numbers, we assume that

Then

Since K = inf0<x<1 (1 - x 1 ^ - 1 ^ - x) > 0, we derive

M ; + k) g x* with K* = IM'-HP +

so that
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k^K*j/{j-K*) when j > K* .

From this fact we can readily find N > 0 with the required property.
For 0 < r < 1/2, let X(r) = (r, 0) e Ga and Br = B(X(r), p(X(r))). If x e flr,

then Lemmas 2 and 3 imply

u(x)-\Br\~
1 u(z)dz ^M1 \x-z\l-n\gv2idu{z)\dz

JBr jBr

u(z)\)H\z\)dz

so that

(5) \u(x)-u(X(r))\^2M2(t

x X{r)~lln4f{ra) + 2M2r
a(1~d)

with positive constants M1 and M2 independent of x, y and r, where <5 is
a positive number so chosen that ad < 1. Since ij/(ra) ^ M(a)i^(r) for r > 0
with a positive constant M(a)9 we obtain

|u(eU)) - u(e(j + fe))| ̂  |ii(e(j)) - u(e(j + 1))| + \u(e(j + 1)) - w(e(; + 2))| + •••

+ |w(6(j + k — 1)) — u(e(j + fe))|

, i /n

where l/« + 1/n' = 1, J(y,j + k) = (J;smgj+t/l(m) and M3 is a positive constant
independent of j and fc. Here note that

g M4

G 'S~l 1/(1-a) - l / ( n - l )

o S S SJ\Jj J
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for sufficiently large j , where M4 and M5 are positive constants independent of
; and k. Since Jfl Xit1^'^)'1^'1^ ^ [(a - l)Xa(s

ma'1))y1/im-1\ we find, by
(i/^)" and change of variables, that

(Zi^"1 (A(^"1r^(m1/(1-fl))-w7w)1/w' g M6KXa((j + /c)1/(1"fl)) ^ M7/cAa(rj+k)

with positive constants M6 and M7 independent of; and k.
First suppose KAa(0) = oo. Then

lim s u p , . , [*;Jo+k)]->(e(; + k))\ ^

which implies

If x E Br and rj+1 < r ^ r̂ , then 2(7) G Br and x1 < r ^ r7-. Hence, by (5),

^ f
with a positive constant M8. Since

with a positive constant M9 independent of r, we see that [?cAa(x1)]~
1|M(x)|

tends to zero as x -• 0, x e Ga.
If Kf

Xa(0) < 00, then Kka is bounded and the above arguments imply that
{u(e(j))} is a Cauchy sequence and

lim,.^ (sup (|a(x) - u(e(j))\; x e \Jrj+l<rZrj %}) = 0 .

From these facts it follows readily that u(x) has a finite limit as x -* 0, x e Ga.

REMARK 1. Let X(r) = ry for a number y. If y < — (n — l)(a — 1),

then Kf
Xa(0) < 00. If y > — (n — l)(a — 1), then KAa(0) = 00 and KXa(r) ~

REMARK 2. Proposition 1 is best possible as to the order of infinity in
the following sense: if e > 0, then we can find a locally rc-precise continuous
function u on Ga satisfying condition (4) such that

(6) limXi^0,JC6Ga xr8IXia(xi)]'Mxi, *') = 00 .
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In fact, let {//(r) = [log (2 + r)Y and k{r) = r\ where j? > n - 1 and y +
(„ _ i)(fl - 1) > 0. Then #(r) - [log (2 + r-i)]<»-i-«/» and >lfl(r) - r^"" 1^" 1*
for r e (0, 1). Consider the function

u(xl9 x') = x7[y+(w'1)(a-1)]/n[log (2 + x-i)](»-!-«/»-*

for 8 > 1. Since ^ J ^ M ^ f r J / l ^ r ) " 1 ' " with a positive constant M l 5 (6) is
satisfied. On the other hand, we have

\(d/dxx)u\ ^ Mxjcr1~[7+("~1)(fl~1)

so that

^(Igrad iifo, x')|) g M2xr[1+y+("-1)fl][log (2 + xr1)]""1""*.

Hence we obtain

I ^(|grad M(X)|)|X|^X ^ M3 | xr
JGa JO

< 00 .

Thus u satisfies (4), and it is the required function.

4. Boundary limits, II

In this section we discuss the existence of boundary limits along a set
in G, for locally n-precise continuous functions u on G satisfying (3). Here
I is a positive nondecreasing function on (0, oo) such that lim r;0 X(r) = 0 and
k(2r) g BX(r) for r > 0 with a positive constant B.

Let / i b e a nonnegative nondecreasing function on (0, oo) such that h(2r) ^
Mh(r) for any r > 0 with a positive constant M, and denote by Hh the
Hausdorff mesure with the measure function h.

For £ e dG and a set T, suppose there exist positive numbers c and C
satisfying the following conditions:

(TJ tedT;
(T2) for sufficiently small r > 0, there exist xr e G and dr > 0 such that

xr e £(£, r), cr <dr<r and £(x, xr, dr) c T whenever xeTn £(<!;, r);
(T3) icCiA(x) ^ C/z(|x - (^|)-1/n if x G T, where

A typical example of T is a set of the form
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or a set similar to this set, where a > 0 and cp is a positive nondecreasing
function on the interval (0, oo) such that lim sup t_0 cp(t)/t < oo.

REMARK. If G is a Lipschitz domain and X(r) = rfi with 0 < P < n — 1,
then we can prove that K^k(x) ~ Kx(p(x)) (see the Appendix).

THEOREM 4. Let u be a locally n-precise continuous function on G, and
suppose

(7) I |{ — ^""IgradiiOOIdjK oo for some r > 0 ,
JGnB(<5,r)

p r i 0 Hr)-1 f(8) lim sup,4o h(r) x *P(|grad u(y)\)X(p(y))dy = 0 .

Then, for a set T c G satisfying the above conditions (Tx), (T2) and (T3), M(X)
a finite limit as x e G tends to £ along T.

REMARK. Let Eo (resp. Eh) be the set of £ e dG for which (7) (resp. (8))
does not hold. If u satisfies condition (3), then we can show that Hh(Eh) = 0;
moreover, in case A(r) = rp and G is a Lipschitz domain, then, in view of
[2; Section 5], we see that B1-fi/Htn(Eo) = 09 where B7tP denotes the Bessel
capacity of index (7, p) (see [1] for the definition of Bessel capacities).

PROOF OF THEOREM 4. Let r0 > 0 be sufficiently small, and take x0 = xro

and d0 = dro having the properties in condition (T2). By Lemma 3, we have

u(x)-\B(xOido)\-
1 f u(y)dy £.MX f

jB(xo,do) jE(x,xo,
|x -

xo,do)

for x G T n B(£, r0), where f(z) = |grad u(z)\ and Mx is a positive constant
independent of x. Thus it follows that

<?,ro) \u(x) - u(xo)\ g 2Ml supX6rnB(^ro) |x - z\x

j£(jc,xo,do)

If zeT( f , f l ) -BK,2 |« -x | ) , then |x - z\ ^ |{ - z| - |x - {| ^ |{ - z|/2, so
that

|x - ^ 2""1 f |{ - zl1
jGnB(£,2r0)

On the other hand, by Lemma 2 and condition (T3), we have
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L, \x - z\1'nf(z)dz
xo,ro)nB{Z,2\S-x\)

( f
GnB(S,2\Z-x\)

with a positive constant M2, where 0 < d < 1. Thus,

3 | |{ -
jGnB&lr*)

<r<2ro Ihir)-1 f
\ jGnB(£,r)

+ M3 sup0

with a positive constant M3 independent of r0. In view of conditions (7) and
(8), it follows that u(x) has a finite limit as x e G tends to £ along T.

For a > 1, a 61*1 and b ̂  0, set

Sa(a, b) = {x = (xl9 x') e R1 x K""1; x, > a\x'\ + fr |x'|"} .

If G is a bounded Lipschitz domain and a > 0 is given, then, for each £ e dG we
can find ^ e J?1, ^ ^ 0, r4 > 0 and an orthogonal transformation S^ such that

For b > b%, put

T.({, fc) = {5 + ^ x ; x E Sa(a^, fc)} n

COROLLARY. L^t G be a bounded Lipschitz domain and let a > 1. Let
^, b); £ e dG, b > b%} be given as above. If u is a locally n-precise continuous

function on G satisfying

1!F(|grad u{x)\)p{xfdx < oo

with 0 < /? < n — 1, then there exists a set E a dG such that

(i) Hh(E) = 0 for h(r) = supo<,<r t*plHt)Tn\
(ii) if £ e dG — E, then u(x) has a finite limit as x -• £, along Ta(£, b) for any

PROOF. It is easy to see that, for fixed <* e dG, T = Ta(£, b) satisfies
conditions (TJ and (T2). By Remark (ii) before Theorem 3 and the Remark



Boundary limits of locally n-precise functions 123

before Theorem 4, we see that K^X{X) ~ p(x)~p/n\j/(p(x)) if X(r) = rp. Since
p(x)^c\x - <i;|a for xeT a(£, b) with some c > 0 (depending on {, a, b; but
not on x), condition (T3) is satisfied with T = Ta(£, b) and the function h given
in (i).

Let E = EouEh in the notation given in the Remark after Theorem 4.
Since B1_p/nn(E0) = 0 implies that Eo has Hausdorff dimension at most ft
(cf. [1; Theorem 22]) and since limr4r0 ^ r ) / ^ = 0, we see that Hh{E0) = 0.
Hence Hh(E) = 0, and the Corollary follows from Theorem 4.

REMARK. If /? = 0 in the Corollary, then u can be extended to a continuous
function on G u dG, on account of Theorem 2.

5. Limits at infinity

In this section, we discuss the existence of limits at infinity of n-precise func-
tions on unbounded domains Rn and G = {x = (xl9 x') e R1 x K""1; |x' | < 1}.

THEOREM 5. / / u is a locally n-precise continuous function on Rn satisfying
condition (2) with G = Rn, then [^( |X|)]~1M(X) ^ 0 as |x| -• oo.

PROOF. By Lemma 3 we have

u(x) - \B(0, r)!"1 f u(y)dy ZMA \x - z\1'nf(z)dz
JB{O,r) JB(O,r)

with a positive constant M t independent of x, where r = |x| and f(z) =
Igrad u(z)\. For fixed r0 > 0, taking a = rv with d(y -f 1) > 1 in the Corollary
to Lemma 2, we have

f |x - z\1-nf(z)dz £M2(f Y(f(z))dz)llH$(r) + M2r
1'6^

jB(0,r)-B(0,ro) \jRn-B(0,ro) /

with a positive constant M2 independent of r. Here, note that \j/(r) ̂
r r)i-i/« for r > 1, so that lim,.^^ \j/(r) = oo. Hence

"1 f
JB(0,\

l i m s u p , x H o o l A ( l x l ) " 1 f | x - z\1~nf(z)dz £ M ( [
,\x\) \JRn-B(0,ro)

which implies that the left hand side is equal to zero. Similarly,

ii(0) - |B(0, r)r f u(y)dy ^ M, [ \z\^
JB(0,r) JB(0,r)

^ Mx f \z\1~nf(z)dz + M3([ r(f(z))dz\ln${r) + M3 ,
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where M3 is a positive constant independent of r and r0, so that

l i m , ^ lA(r)-1 (\B(09 r)!"
1 f u(y)dy) = 0 .

\ JB(O,r) /

Consequently, lini|xHoo [^(|x|)]"1u(x) = 0.

PROPOSITION 2. Let G = {(xl9 x'); \x'\ < 1}, and let u be a locally n-precise

continuous function on G satisfying condition (2). Then

REMARK. Proposition 2 is best possible as to the order of infinity, in the
same sense as in Remark 2 given after Proposition 1.

PROOF OF PROPOSITION 2. Let X(r) = (r, 0), r e R1. If x and y belong to

A(r) = B(X(r\ 1), then, as in the proof of Theorem 5, we have

\u(x) — u{y)\ ^ Mx supz e J ( r ) \z - w l^ lg rad u(w)\dw

u{w)\)dw\ \j/(r) + M2r

with positive constants Ml9 M2 independent of x, y and r, where we used the
Corollary to Lemma 2 with a = r2/d in the second inequality. For any fixed r0,
let rj = r0 + 7/2. If rk<>x1<rk + 2"1, then

\u(x) - u(X(ro))\ ^ \u(x) - u(X(Xl))\ + \u(X(Xl)) - u(X(rk))\ + •••

^(Igrad;

where 1/n 4- 1/n' = 1, E(s, t) = (J s < r < r^(r) and M3, M4 are positive constants
independent of x and r0. It follows that

lim p^^s [^(^rWH)] [
j£(r 0 , oo)

for any r0, which implies that the left hand side equals zero.
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Appendix

We now give a proof of K^X(X) ~ Kx(p(x)) given in the Remark before
Theorem 4. By a change of coordinate system by a Lipschitz transformation,
we may assume that G is the half space {x = (xux');x1 > 0} and £ is the
origin. For x = (xux')e Gn£(0, 1), let

E, = {y = (yl9 / ) ; y, > xJ2} n B(0, 2|x|) - B(x9 xjl),

E2 = B(x,x1/2)9

E3 = {y = (yl9 /); 0<y^ xjl] n B(0, 2|X|)

and write

W-J>-.
for 7 = 1, 2, 3. Since ^ ^ \yx - xx\ on Ex and k(r) = rp with 0 < jS < n - 1,
we have by properties (i/^)'" and (^3)

3|x|f3|
I1(x)^M1

Jxi/
f3|x|

^ M2[x£
1(/r(x^1)]-1/(n-1) lr-'X(r)y

JXi/2

where 0 < e < j8. If y e £ 2 , then ^ > xx/2, so that

f*i/2

/2(x) ^ MsACXi)-1^"^ [^(r-^j-^-^r-^r g M6[iA(x1)A(x1)-1//I]w'.
Jo

If y e E39 then |(0, x') - y\2 + (x!^) 2 ^ 2|x - y|2 ^ 2[|(0, x') - y\2 + xf ] .
Hence, letting r = |(0, x') — y\, by a computation similar to the above, we have

/3(x) ^ M7 f
3W (r + xO'-^ar + xj"1)

Jo
f3|x|

^ M 8 I

Jo
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Consequently, we establish

Conversely, we obtain

Cxt/2

I2(x) ^ MnlfXi)"1^^ l^(r'
Jo

^M12[<A(*1M(xj-1/'T\

and hence

On the other hand, we find, in view of OK)'", that

[ici(r)]"f ^ M^CrVfr"1)]'1^"^ I [r

^Af^C^rWr)-1/-]-',

so that

Since the constants M1 ~ M16 do not depend on x e G n B(0, 1), the required
result has been derived.
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