Boundary limits of locally n-precise functions

Yoshihiro Mizuta

(Received March 24, 1989)

1. Introduction

In this note we investigate the existence of boundary limits of locally n-precise functions u on a domain G in R^{n} which satisfy a condition of the form:

$$
\begin{equation*}
\int_{G} \Psi(|\operatorname{grad} u(x)|) \omega(x) d x<\infty \tag{1}
\end{equation*}
$$

with a nonnegative measurable function ω on G and a positive nondecreasing function Ψ on the interval $(0, \infty)$; for the definition and basic properties of locally p-precise functions, see Ohtsuka [4] and Ziemer [5]. The function $\Psi(r)$ is assumed to be of the form $r^{n} \psi(r)$, where $\psi(r)$ is a positive nondecreasing function on the interval $(0, \infty)$ satisfying the following conditions:
$\left(\psi_{1}\right)$ There exists $A>0$ such that

$$
A^{-1} \psi(r) \leqq \psi\left(r^{2}\right) \leqq A \psi(r) \quad \text { for any } \quad r>0
$$

$\left(\psi_{2}\right) \int_{0}^{1} \psi\left(r^{-1}\right)^{-1 /(n-1)} r^{-1} d r<\infty$.
For example,

$$
\psi(r)=[\log (2+r)]^{\alpha},[\log (2+r)]^{n-1}[\log (2+(\log (2+r)))]^{\alpha}, \ldots,
$$

satisfy the above conditions, as long as $\alpha>n-1$.
We shall first show that if $\int_{G} \Psi(|\operatorname{grad} u(x)|) d x<\infty$, then there exists a continuous function u^{*} on G such that $u^{*}=u$ a.e. on G, and furthermore, in case G is a Lipschitz domain, u^{*} can be extended to a continuous function on $G \cup \partial G$.

Next, in section 3, we are concerned with the existence of limits at a given boundary point ξ, in the case where u satisfies (1) with $\omega(x)=\lambda(|x-\xi|)$ for a positive nondecreasing function λ on the interval $(0, \infty)$. Then, in the next section, we study the existence of boundary limits along certain subsets of G for a function u satisfying (1) with $\omega(x)=\lambda(\rho(x))$, where λ is as above and $\rho(x)$ denotes the distance of x from the boundary ∂G.

In the last section, we discuss the existence of limits at infinity, in case G is unbounded and $\omega \equiv 1$.

2. Continuity of locally \boldsymbol{n}-precise functions

First we give several properties on ψ, which follow from condition $\left(\psi_{1}\right)$.
$\left(\psi_{1}\right)^{\prime} \quad$ There exists $A^{\prime}>0$ such that $\psi(2 r) \leqq A^{\prime} \psi(r)$ on $(0, \infty)$.
$\left(\psi_{1}\right)^{\prime \prime} \quad$ For each $\gamma>0$, there exists $A_{\gamma}>0$ such that

$$
A_{\gamma}^{-1} \psi(r) \leqq \psi\left(r^{\gamma}\right) \leqq A_{\gamma} \psi(r) \quad \text { on } \quad(0, \infty) .
$$

$\left(\psi_{1}\right)^{\prime \prime \prime} \quad$ If $\varepsilon>0$, then $s^{\varepsilon} \psi\left(s^{-1}\right) \leqq A t^{\varepsilon} \psi\left(t^{-1}\right)$ whenever $0<s<t<A^{-1 / \varepsilon}$.
For the sake of convenience, we introduce the function

$$
\tilde{\psi}(r)=\left(\int_{0}^{r} \psi\left(t^{-1}\right)^{-1 /(n-1)} t^{-1} d t\right)^{1-1 / n} .
$$

Then $\tilde{\psi}$ satisfies condition $\left(\psi_{1}\right)$, too, and

$$
\begin{equation*}
\tilde{\psi}(r) \geqq M \psi\left(r^{-1}\right)^{-1 / n} \quad \text { for any } \quad r>0 \tag{3}
\end{equation*}
$$

with a positive constant M.
Our first aim is to establish the following result.
Theorem 1. If u is a locally n-precise function on G satisfying

$$
\begin{equation*}
\int_{G} \Psi(|\operatorname{grad} u(x)|) d x<\infty, \tag{2}
\end{equation*}
$$

then there exists a continuous function on G which equals u a.e. on G.
For a proof of Theorem 1, we use the following results.
Lemma 1 (cf. [3; Theorem 1], [4; Theorem 9.11]). Let $1<p<\infty$. If u is a p-precise function on R^{n} with compact support, then

$$
u(x)=c \sum_{i=1}^{n} \int\left(x_{i}-y_{i}\right)|x-y|^{-n}\left(\partial / \partial y_{i}\right) u(y) d y \quad \text { a.e. on } R^{n},
$$

where c is a constant independent of u.
Lemma 2. Let E be a measurable set in R^{n}, and let g, ω be nonnegative measurable functions on E. Then, for any δ with $0<\delta<1$ and $\alpha>0$,

$$
\begin{aligned}
& \int_{E}|x-y|^{1-n} g(y) d y \leqq A_{\delta}^{1 / n}\left(\int_{E} \Psi(g(y)) \omega(y) d y\right)^{1 / n} \\
& \quad \times\left(\int_{E}|x-y|^{-n}\left[\psi\left(\alpha^{-1}|x-y|^{-1}\right) \omega(y)\right]^{-1 /(n-1)} d y\right)^{1-1 / n}+\alpha^{-\delta} \int_{E}|x-y|^{1-n-\delta} d y .
\end{aligned}
$$

Proof. Let $E_{1}=\left\{y \in E ; g(y) \geqq(\alpha|x-y|)^{-\delta}\right\}$ and $E_{2}=E-E_{1}$. Then, $\psi(g(y)) \geqq \psi\left((\alpha|x-y|)^{-\delta}\right) \geqq A_{\delta}^{-1} \psi\left((\alpha|x-y|)^{-1}\right)$ on E_{1} and $g(y) \leqq \alpha^{-\delta}|x-y|^{-\delta}$ on E_{2}. Hence, Hölder's inequality implies the required inequality.

Corollary. If E, g, δ and α are as in Lemma 2, then

$$
\int_{E}|x-y|^{1-n} g(y) d y \leqq M\left(\int_{E} \Psi(g(y)) d y\right)^{1 / n} \tilde{\psi}(\alpha R)+M \alpha^{-\delta}|E|^{(1-\delta) / n}
$$

where $|E|$ denotes the measure of $E, R=\sup \{|x-y| ; y \in E\}$ and M is a positive constant independent of α, x, g, E.

Proof. Taking $\omega \equiv 1$ in Lemma 2 and remarking that

$$
\int_{E}|x-y|^{1-n-\delta} d y \leqq M r^{1-\delta}
$$

for $r \geqq 0$ such that $|E|=|B(x, r)|, B(x, r)$ denoting the open ball with center x and radius r, we obtain the Corollary.

Proof of Theorem 1. Let $B\left(x_{0}, 2 r_{0}\right) \subset G$, and take $\varphi \in C_{0}^{\infty}(G)$ such that $\varphi=1$ on $B\left(x_{0}, r_{0}\right)$. Then, by Lemma $1, \varphi u$ is equal a.e. to

$$
v(x)=c \sum_{i=1}^{n} \int\left(x_{i}-y_{i}\right)|x-y|^{-n}\left(\partial / \partial y_{i}\right)(\varphi u)(y) d y
$$

Thus it suffices to show that v is continuous on $B\left(x_{0}, r_{0}\right)$. We write

$$
\begin{aligned}
v(x)= & c \sum_{i=1}^{n} \int\left(x_{i}-y_{i}\right)|x-y|^{-n}\left[\left(\partial / \partial y_{i}\right) \varphi(y)\right] u(y) d y \\
& +c \sum_{i=1}^{n} \int\left(x_{i}-y_{i}\right)|x-y|^{-n} \varphi(y)\left[\left(\partial / \partial y_{i}\right) u(y)\right] d y=u_{1}(x)+u_{2}(x) .
\end{aligned}
$$

We first note that u_{1} is continuous on $B\left(x_{0}, r_{0}\right)$. Let x_{1} be any point of $B\left(x_{0}, r_{0}\right)$. For $r>0$, we set

$$
u_{2, r}(x)=c \sum_{i=1}^{n} \int_{B\left(x_{1}, r\right)}\left(x_{i}-y_{i}\right)|x-y|^{-n} \varphi(y)\left[\left(\partial / \partial y_{i}\right) u(y)\right] d y
$$

For simplicity, put

$$
f(y)=\sum_{i=1}^{n}\left|\varphi(y)\left[\left(\partial / \partial y_{i}\right) u(y)\right]\right| .
$$

We note that $\int_{R^{n}} \Psi(f(y)) d y<\infty$, by condition (2). For $x \in B\left(x_{1}, r\right)$, we derive from the Corollary to Lemma 2

$$
\begin{aligned}
\left|u_{2, r}(x)\right| & \leqq M_{1} \int_{B\left(x_{1}, r\right)}|x-y|^{1-n} f(y) d y \\
& \leqq M_{2}\left(\int_{B\left(x_{1}, r\right)} \Psi(f(y)) d y\right)^{1 / n} \tilde{\psi}(r)+M_{2} r^{1-\delta},
\end{aligned}
$$

where $0<\delta<1$ and M_{1}, M_{2} are positive constants independent of x and r. Consequently, $\lim _{r \rightarrow 0} \sup _{x \in B\left(x_{1}, r\right)} u_{2, r}(x)=0$. Since $u_{2}-u_{2, r}$ is continuous at x_{1}, it follows that u_{2} is continuous at x_{1}. Therefore, v is continuous on $B\left(x_{0}, r_{0}\right)$, and hence Theorem 1 is established.

Remark. If $\Psi(r)=r^{p}$ and $p>n$, then the same conclusion as in Theorem 1 is true.

Let λ be a positive nondecreasing function on $(0, \infty)$ such that $\lambda(2 r) \leqq B \lambda(r)$ on $(0, \infty)$ with a positive constant B, and consider

$$
\kappa_{\lambda}^{\prime}(r)=\left(\int_{r}^{1}\left[\psi\left(s^{-1}\right) \lambda(s)\right]^{-1 /(n-1)} s^{-1} d s\right)^{1-1 / n}
$$

Theorem 2. Let G be a Lipschitz domain in R^{n}, and u be a locally n-precise function on G satisfying

$$
\begin{equation*}
\int_{G} \Psi(|\operatorname{grad} u(x)|) \lambda(\rho(x)) d x<\infty \tag{3}
\end{equation*}
$$

where $\rho(x)$ denotes the distance of x from the boundary ∂G. If $\kappa_{\lambda}^{\prime}(0)<\infty$, then there exists a continuous function on $G \cup \partial G$ which equals u a.e. on G.

Remark. If $\lim _{r \downarrow 0} \lambda(r)>0$ (in particular, if $\lambda \equiv 1$), then $\kappa_{\lambda}^{\prime}(0)<\infty$ by assumption $\left(\psi_{2}\right)$.

For a proof of Theorem 2, we need the following result, which is a key lemma in the discussions throughout this paper.

Lemma 3. If u is a locally n-precise continuous function on G, then for any $x, x_{0} \in G$ and $r_{0}>0$ such that $E\left(x, x_{0}, r_{0}\right)=\{t x+(1-t) y ; 0<t<1$, $\left.y \in B\left(x_{0}, r_{0}\right)\right\} \subset G$,

$$
\begin{aligned}
& \left|u(x)-\left|B\left(x_{0}, r_{0}\right)\right|^{-1} \int_{B\left(x_{0}, r_{0}\right)} u(y) d y\right| \\
& \quad \leqq M r_{0}^{-n}\left(\left|x-x_{0}\right|+r_{0}\right)^{n} \int_{E\left(x, x_{0}, r_{0}\right)}|x-z|^{1-n}|\operatorname{grad} u(z)| d z
\end{aligned}
$$

where M is a positive constant depending only on the dimension n.

Remark. If $x \in B\left(x_{0}, r_{0}\right)$, then

$$
\left|u(x)-\left|B\left(x_{0}, r_{0}\right)\right|^{-1} \int_{B\left(x_{0}, r_{0}\right)} u(y) d y\right| \leqq 2^{n} M \int_{B\left(x_{0}, r_{0}\right)}|x-z|^{1-n}|\operatorname{grad} u(z)| d z
$$

Proof of Lemma 3. If $0<\varepsilon<1$, then, in view of Example 1 given after Theorem 3.21 in [4], we have

$$
|u(x+\varepsilon(y-x))-u(y)| \leqq \int_{\varepsilon}^{1}|x-y||\operatorname{grad} u(t x+(1-t) y)| d t
$$

for almost every $y \in B\left(x_{0}, r_{0}\right)$. Letting $\varepsilon \rightarrow 0$, we obtain

$$
|u(x)-u(y)| \leqq|x-y| \int_{0}^{1}|\operatorname{grad} u(t x+(1-t) y)| d t
$$

for almost every $y \in B\left(x_{0}, r_{0}\right)$. Hence

$$
\begin{aligned}
& \left|u(x)-\left|B\left(x_{0}, r_{0}\right)\right|^{-1} \int_{B\left(x_{0}, r_{0}\right)} u(y) d y\right| \\
& \quad \leqq\left|B\left(x_{0}, r_{0}\right)\right|^{-1} \int_{B\left(x_{0}, r_{0}\right)}|x-y|\left(\int_{0}^{1}|\operatorname{grad} u(t x+(1-t) y)| d t\right) d y \\
& \quad \leqq\left|B\left(x_{0}, r_{0}\right)\right|^{-1} \int_{E\left(x, x_{0}, r_{0}\right)}|x-z||\operatorname{grad} u(z)| \\
& \quad \times\left(\int_{\left.\left\{1-t \geqq|x-z|\left|x-x_{0}\right|+r_{0}\right)^{-1}\right\}}(1-t)^{-1-n} d t\right) d z \\
& \quad \leqq M r_{0}^{-n}\left(\left|x-x_{0}\right|+r_{0}\right)^{n} \int_{E\left(x, x_{0}, r_{0}\right)}|x-z|^{1-n}|\operatorname{grad} u(z)| d z
\end{aligned}
$$

since for $z=t x+(1-t) y,|x-z|=(1-t)|x-y| \leqq(1-t)\left(\left|x-x_{0}\right|+r_{0}\right)$, where M is a positive constant independent of x, x_{0}, r_{0} and u.

Proof of Theorem 2. By Theorem 1 we may assume that u is continuous on G. We shall prove that u has a finite limit at any $\xi \in \partial G$. Since G is a Lipschitz domain, there is a cylindrical neighborhood U of ξ such that, by a suitable orthogonal coordinate system, we can write

$$
\xi=0, \quad U \cap G=\left\{x=\left(x_{1}, x^{\prime}\right) ; \varphi\left(x^{\prime}\right)<x_{1}<h,\left|x^{\prime}\right|<\rho\right\}
$$

where $h>0, \rho>0$ and φ is a Lipschitz function on $\left\{x^{\prime} \in R^{n-1} ;\left|x^{\prime}\right|<\rho\right\}$ such that $\varphi(0)=0$. Let K be the Lipschitz constant of φ. For any $r>0$ with $r<\min \{h / 2,2(K+1) \rho\}$, let $e_{r}=(0, r)$ and $\sigma_{r}=r / 3(K+1)$. Then, for any
$x \in B\left(0, \sigma_{r}\right) \cap G, E\left(x, e_{r}, \sigma_{r}\right) \subset U \cap G$. Hence, by Lemmas 3 and 2, we have

$$
\begin{aligned}
& \left|u(x)-\left|B\left(e_{r}, \sigma_{r}\right)\right|^{-1} \int_{B\left(e_{r}, \sigma_{r}\right)} u(y) d y\right| \\
& \leqq M \sigma_{r}^{-n}\left(\left|x-e_{r}\right|+\sigma_{r}\right)^{n} \int_{E\left(x, e_{r}, \sigma_{r}\right)}|x-z|^{1-n}|\operatorname{grad} u(z)| d z \\
& \leqq M_{1} r^{1-\delta}+M_{1}\left(\int_{E\left(x, e_{r}, \sigma_{r}\right)} \Psi(|\operatorname{grad} u(z)|) \lambda(\rho(z)) d z\right)^{1 / n} \\
& \quad \times\left(\int_{E\left(x, e_{r}, \sigma_{r}\right)}|x-z|^{-n}\left[\psi\left(|x-z|^{-1}\right) \lambda(\rho(z))\right]^{-1 /(n-1)} d z\right)^{1-1 / n}
\end{aligned}
$$

for any $x \in B\left(0, \sigma_{r}\right) \cap G$, where $0<\delta<1$ and M_{1} is a positive constant independent of r. If $x \in B\left(0, \sigma_{r}\right) \cap G$ and $z \in E\left(x, e_{r}, \sigma_{r}\right)$, then $|x-z| \leqq M_{2} \rho(z)$ with a positive constant M_{2}, so that

$$
\begin{aligned}
& \left(\int_{E\left(x, e_{r}, \sigma_{r}\right)}|x-z|^{-n}\left[\psi\left(|x-z|^{-1}\right) \lambda(\rho(z))\right]^{-1 /(n-1)} d z\right)^{1-1 / n} \\
& \quad \leqq M_{3}\left(\int_{0}^{2 r}\left[\psi\left(t^{-1}\right) \lambda(t)\right]^{-1 /(n-1)} t^{-1} d t\right)^{1-1 / n} \leqq M_{4} \kappa_{\lambda}^{\prime}(0)
\end{aligned}
$$

with positive constants M_{3} and M_{4}. Therefore,

$$
|u(x)-u(y)| \leqq 2 M_{1} M_{4} \kappa_{\lambda}^{\prime}(0)\left(\int_{G \cap B(0,2 r)} \Psi(|\operatorname{grad} u(z)|) \lambda(\rho(z)) d z\right)^{1 / n}+2 M_{1} r^{1-\delta}
$$

whenever $x, y \in G \cap B\left(0, \sigma_{r}\right)$. This implies that u has a finite limit at $\xi=0$.
Remark. Theorem 2 fails to hold if G is not a Lipschitz domain. For example, consider the set $G_{a}=\left\{(x, y) ; 0<x<1,-x^{a}<y<x^{a}\right\}$, where $a>1$. If $u(x, y)=x^{-\beta}$ and $-\beta+(a-1) / 2>0$, then u satisfies condition (3) with $G=G_{a}$ and $\lambda \equiv 1$.

3. Boundary limits, I

Let λ be a positive nondecreasing function on $(0, \infty)$ such that $\lambda(2 r) \leqq B \lambda(r)$ on $(0, \infty)$ with a positive constant B, and let

$$
\kappa_{\lambda}(r)=\kappa_{\lambda}^{\prime}(r)+\lambda(r)^{-1 / n} \tilde{\psi}(r) .
$$

Recall that

$$
\kappa_{\lambda}^{\prime}(r)=\left(\int_{r}^{1}\left[\psi\left(t^{-1}\right) \lambda(t)\right]^{-1 /(n-1)} t^{-1} d t\right)^{1-1 / n}
$$

and

$$
\tilde{\psi}(r)=\left(\int_{0}^{r} \psi\left(t^{-1}\right)^{-1 /(n-1)} t^{-1} d t\right)^{1-1 / n} .
$$

Remark. (i) It is easy to see that $\kappa_{\lambda}^{\prime}(0)<\infty$ if and only if κ_{λ} is bounded on $(0,1)$. In fact, if $\kappa_{\lambda}^{\prime}(0)<\infty$, then $\lim _{r \downarrow o} \lambda(r)^{-1 / n} \tilde{\psi}(r)=0$.
(ii) If $\lambda(r)=r^{\beta} \quad(\beta>0)$, then $\kappa_{\lambda}(r) \sim r^{-\beta / n} \tilde{\psi}(r)$ (cf. the Appendix) and $\kappa_{\lambda}^{\prime}(0)=\infty$.

In this section, we are concerned with the existence of limits at a given boundary point ξ, for functions u satisfying

$$
\begin{equation*}
\int_{G} \Psi(|\operatorname{grad} u(x)|) \lambda(|\xi-x|) d x<\infty \tag{4}
\end{equation*}
$$

Theorem 3. Let $\xi \in \partial G$, and suppose there exist $x_{0} \in G, r_{0}>0$ and $\varepsilon_{0}>0$ such that $E\left(x, x_{0}, r_{0}\right) \subset G$ for all $x \in G \cap B\left(\xi, \varepsilon_{0}\right)$. If u is a locally n-precise continuous function on G satisfying (4) and if $\kappa_{\lambda}^{\prime}(0)=\infty$, then

$$
\lim _{x \rightarrow \xi, x \in G}\left[\kappa_{\lambda}(|x-\xi|)\right]^{-1} u(x)=0 .
$$

Proof. We may assume that $\xi=0$ and $\varepsilon_{0}<\left|x_{0}\right|-r_{0}$. First, we note that there is $a>0$ (depending only on x_{0}, r_{0} and ε_{0}) such that

$$
|z|>a|x| \quad \text { and } \quad|z|>a|x-z|
$$

whenever $x \in G \cap B\left(0, \varepsilon_{0}\right)$ and $z \in E\left(x, x_{0}, r_{0} / 2\right)$.
For $x \in G \cap B\left(0, \varepsilon_{0}\right)$, by Lemma 3, we have

$$
\begin{aligned}
\left|u(x)-\left|B\left(x_{0}, r_{0} / 2\right)\right|^{-1} \int_{B\left(x_{0}, r_{0} / 2\right)} u(y) d y\right| & \leqq M_{1} \int_{E\left(x, x_{0}, r_{0} / 2\right)}|x-z|^{1-n} f(z) d z \\
& =M_{1}\left(I_{1}+I_{2}\right)
\end{aligned}
$$

where $f(z)=|\operatorname{grad} u(z)|, M_{1}$ is a positive constant independent of x,

$$
I_{1}=\int_{E\left(x, x_{0}, r_{0} / 2\right) \cap B(x, r)}|x-z|^{1-n} f(z) d z
$$

and

$$
I_{2}=\int_{E\left(x, x_{0}, r_{0} / 2\right)-B(x, r)}|x-z|^{1-n} f(z) d z
$$

for r with $|x|<r<\varepsilon_{0}$. In view of Lemma 2, we obtain

$$
\begin{aligned}
I_{1} \leqq & M_{2}\left(\int_{E\left(x, x_{0}, r_{0} / 2\right) \cap B(x, r)} \Psi(f(z)) \lambda(|z|) d z\right)^{1 / n} \\
& \times\left(\int_{E\left(x, x_{0}, r_{0} / 2\right)}|x-z|^{-n}\left[\psi\left(|x-z|^{-1}\right) \lambda(|z|)\right]^{-1 / n-1)} d z\right)^{1-1 / n}+M_{2}
\end{aligned}
$$

for a positive constant M_{2} independent of x and r. Now, let

$$
E_{1}=E\left(x, x_{0}, r_{0} / 2\right)-B(x,|x|)
$$

and

$$
E_{2}=E\left(x, x_{0}, r_{0} / 2\right) \cap B(x,|x|) .
$$

For $z \in E_{1}$, we use the inequality $|z|>a|x-z|$ and obtain

$$
\begin{aligned}
& \left(\int_{E_{1}}|x-z|^{-n}\left[\psi\left(|x-z|^{-1}\right) \lambda(|z|)\right]^{-1 /(n-1)} d z\right)^{1-1 / n} \\
& \quad \leqq M_{3}\left(\int_{|x|}^{r_{1}}\left[\psi\left(t^{-1}\right) \lambda(a t)\right]^{-1 /(n-1)} t^{-1} d t\right)^{1-1 / n} \leqq M_{4} \kappa_{\lambda}^{\prime}(|x|),
\end{aligned}
$$

where $r_{1}=\left|x_{0}\right|+r_{0} / 2+\varepsilon_{0}$ and M_{3}, M_{4} are positive constants independent of x. For $z \in E_{2}$, we use the inequality $|z|>a|x|$ and obtain

$$
\begin{aligned}
& \left(\int_{E_{2}}|x-z|^{-n}\left[\psi\left(|x-z|^{-1}\right) \lambda(|z|)\right]^{-1 /(n-1)} d z\right)^{1-1 / n} \\
& \quad \leqq M_{5}[\lambda(a|x|)]^{-1 / n}\left(\int_{0}^{|x|}\left[\psi\left(t^{-1}\right)\right]^{-1 /(n-1)} t^{-1} d t\right)^{1-1 / n} \\
& \quad \leqq M_{6}[\lambda(|x|)]^{-1 / n} \tilde{\psi}(|x|)
\end{aligned}
$$

with positive constants M_{5} and M_{6}. Hence

$$
I_{1} \leqq M_{7} \kappa_{\lambda}(|x|)\left(\int_{E\left(x, x_{0}, r_{0} / 2\right) \cap B(x, r)} \Psi(f(z)) \lambda(|z|) d z\right)^{1 / n}+M_{2}
$$

with a positive constant M_{7} independent of x and r. Similarly, by using the inequality $|z|>a|x-z|$, we obtain

$$
I_{2} \leqq M_{8} \kappa_{\lambda}(r)\left(\int_{E\left(x, x_{0}, r_{0} / 2\right)-B(x, r)} \Psi(f(z)) \lambda(|z|) d z\right)^{1 / n}+M_{8}
$$

with a positive constant M_{8}. Thus we establish

$$
\begin{aligned}
& \left|u(x)-\left|B\left(x_{0}, r_{0} / 2\right)\right|^{-1} \int_{B\left(x_{0}, r_{0} / 2\right)} u(y) d y\right| \\
& \leqq M_{9} \kappa_{\lambda}(|x|)\left(\int_{G \cap B(x, r)} \Psi(f(z)) \lambda(|z|) d z\right)^{1 / n} \\
& \quad+M_{9} \kappa_{\lambda}(r)\left(\int_{G} \Psi(f(z)) \lambda(|z|) d z\right)^{1 / n}+M_{9}
\end{aligned}
$$

with a positive constant M_{9}. Since $\kappa_{\lambda}(|x|) \rightarrow \infty$ as $x \rightarrow 0$, it follows that

$$
\lim \sup _{x \rightarrow 0, x \in G}\left[\kappa_{\lambda}(|x|)\right]^{-1}|u(x)| \leqq M_{9}\left(\int_{G \cap B(0, r)} \Psi(f(z)) \lambda(|z|) d z\right)^{1 / n}
$$

for any r with $0<r<\varepsilon_{0}$, which implies the required result.
Now we consider a special domain

$$
G_{a}=\left\{x=\left(x_{1}, x^{\prime}\right) \in R^{1} \times R^{n-1} ; 0<x_{1}<1,\left|x^{\prime}\right|<x_{1}^{a}\right\} .
$$

If $a>1$, then G_{a} is not a Lipschitz domain, and it does not satisfy the condition in Theorem 3 at $\xi=0$. However, we have the following result for this domain.

Proposition 1. Let λ be a positive monotone function on the interval $(0, \infty)$ such that $B^{-1} \lambda(r) \leqq \lambda(2 r) \leqq B \lambda(r)$ for any $r>0$ with a positive constant B. For $a>1$, let

$$
\lambda_{a}(r)=\left(\int_{r}^{1} \lambda(s)^{-1 /(n-1)} s^{-a} d s\right)^{-n+1}
$$

If u is a locally n-precise continuous function on G_{a} satisfying condition (4), then
(i) $u(x)$ has a finite limit as $x_{1} \rightarrow 0, x \in G_{a}$, in case $\kappa_{\lambda_{a}}^{\prime}(0)<\infty$;
(ii) $\lim _{x_{1} \rightarrow 0, x \in G_{a}}\left[\kappa_{\lambda_{a}}\left(x_{1}\right)\right]^{-1} u(x)=0$ in case $\kappa_{\lambda_{a}}^{\prime}(0)=\infty$.

Proof. For each positive integer $j \geqq j_{0}$, let $r_{j}=M j^{1 /(1-a)}$. Here j_{0} and M are taken so large that $0<r_{j}<1 / 2$ and $r_{j}-r_{j+1}<\rho(e(j))$ for $j \geqq j_{0}$, where $e(j)=\left(r_{j}, 0\right)$. For simplicity, set $\Delta(j)=B(e(j), \rho(e(j))), j \geqq j_{0}$. We shall show the existence of $N>0$ such that the number of $\Delta(m)$ with $\Delta(m) \cap \Delta(j) \neq \varnothing$ is at most N for any j. Letting β and γ be positive numbers, we assume that $r_{j}-\beta r_{j}^{a} \leqq r_{j+k}+\gamma r_{j+k}^{a}$. Then

$$
j\left[1-(j /(j+k))^{1 /(a-1)}\right] \leqq M^{a-1}\left[\beta+\gamma(j /(j+k))^{a /(a-1)}\right]
$$

Since $K=\inf _{0<x<1}\left(1-x^{1 /(a-1)}\right) /(1-x)>0$, we derive

$$
j k /(j+k) \leqq K^{*} \quad \text { with } \quad K^{*}=\left[M^{a-1}(\beta+\gamma)\right] / K
$$

so that

$$
k \leqq K^{*} j /\left(j-K^{*}\right) \quad \text { when } \quad j>K^{*}
$$

From this fact we can readily find $N>0$ with the required property.
For $0<r<1 / 2$, let $X(r)=(r, 0) \in G_{a}$ and $B_{r}=B(X(r), \rho(X(r)))$. If $x \in B_{r}$, then Lemmas 2 and 3 imply

$$
\begin{aligned}
\left|u(x)-\left|B_{r}\right|^{-1} \int_{B_{r}} u(z) d z\right| & \leqq M_{1} \int_{B_{r}}|x-z|^{1-n}|\operatorname{grad} u(z)| d z \\
& \leqq M_{2}\left(\int_{B_{r}} \Psi(|\operatorname{grad} u(z)|) \lambda(|z|) d z\right)^{1 / n} \lambda(r)^{-1 / n} \tilde{\psi}\left(r^{a}\right) \\
& +M_{2} r^{a(1-\delta)},
\end{aligned}
$$

so that

$$
\begin{align*}
|u(x)-u(X(r))| \leqq & 2 M_{2}\left(\int_{B_{r}} \Psi(|\operatorname{grad} u(z)|) \lambda(|z|) d z\right)^{1 / n} \tag{5}\\
& \times \lambda(r)^{-1 / n} \tilde{\psi}\left(r^{a}\right)+2 M_{2} r^{a(1-\delta)}
\end{align*}
$$

with positive constants M_{1} and M_{2} independent of x, y and r, where δ is a positive number so chosen that $a \delta<1$. Since $\tilde{\psi}\left(r^{a}\right) \leqq M(a) \tilde{\psi}(r)$ for $r>0$ with a positive constant $M(a)$, we obtain

$$
\begin{aligned}
|u(e(j))-u(e(j+k))| \leqq & |u(e(j))-u(e(j+1))|+|u(e(j+1))-u(e(j+2))|+\cdots \\
& +|u(e(j+k-1))-u(e(j+k))| \\
\leqq & M_{3}\left(\int_{\Delta(j, j+k)} \Psi(|\operatorname{grad} u(z)|) \lambda(|z|) d z\right)^{1 / n} \\
& \times\left(\sum_{m=j}^{j+k-1} \tilde{\psi}\left(m^{-1}\right)^{n^{\prime}}\left[\lambda\left(m^{1 /(1-a)}\right)\right]^{-n^{\prime} / n}\right)^{1 / n^{\prime}} \\
& +M_{3} \sum_{m=j}^{\infty} m^{-a(1-\delta) /(a-1)},
\end{aligned}
$$

where $1 / n+1 / n^{\prime}=1, \Delta(j, j+k)=\bigcup_{j \leqq m \leqq j+k} \Delta(m)$ and M_{3} is a positive constant independent of j and k. Here note that

$$
\begin{aligned}
& \sum_{m=j}^{j+k-1} \tilde{\psi}\left(m^{-1}\right)^{n^{\prime}} \lambda\left(m^{1 /(1-a)}\right)^{-n^{\prime} / n} \\
& \quad \leqq M_{4} \int_{j}^{j+k} \tilde{\psi}\left(t^{-1}\right)^{n^{\prime}} \lambda\left(t^{1 /(1-a)}\right)^{-n^{\prime} / n} d t \\
& \quad \leqq M_{5} \int_{(j+k)^{-1}}^{j-1} \psi\left(s^{-1}\right)^{-1 /(n-1)} s^{-1}\left(\int_{j}^{s^{-1}} \lambda\left(t^{1 /(1-a)}\right)^{-1 /(n-1)} d t\right) d s \\
& \quad+M_{5}\left(\int_{0}^{(j+k)^{-1}} \psi\left(s^{-1}\right)^{-1 /(n-1)} s^{-1} d s\right)\left(\int_{j}^{j+k} \lambda\left(t^{1 /(1-a)}\right)^{-1 /(n-1)} d t\right)
\end{aligned}
$$

for sufficiently large j, where M_{4} and M_{5} are positive constants independent of j and k. Since $\int_{j}^{s^{-1}} \lambda\left(t^{1 /(1-a)}\right)^{-1 /(n-1)} d t \leqq\left[(a-1) \lambda_{a}\left(s^{1 /(a-1)}\right)\right]^{-1 /(n-1)}$, we find, by $\left(\psi_{1}\right)^{\prime \prime}$ and change of variables, that

$$
\left(\sum_{m=j}^{j+k-1} \tilde{\psi}\left(m^{-1}\right)^{n^{\prime}} \lambda\left(m^{1 /(1-a)}\right)^{-n^{\prime} / n}\right)^{1 / n^{\prime}} \leqq M_{6} \kappa_{\lambda_{a}}\left((j+k)^{1 /(1-a)}\right) \leqq M_{7} \kappa_{\lambda_{a}}\left(r_{j+k}\right)
$$

with positive constants M_{6} and M_{7} independent of j and k.
First suppose $\kappa_{\lambda_{a}}^{\prime}(0)=\infty$. Then
$\lim \sup _{k \rightarrow \infty}\left[\kappa_{\lambda_{a}}\left(r_{j+k}\right)\right]^{-1}|u(e(j+k))| \leqq M_{3} M_{7}\left(\int_{\Delta(j, \infty)} \Psi(|\operatorname{grad} u(z)|) \lambda(|z|) d z\right)^{1 / n}$,
which implies

$$
\lim _{j \rightarrow \infty}\left[\kappa_{\lambda_{a}}\left(r_{j}\right)\right]^{-1} u(e(j))=0 .
$$

If $x \in B_{r}$ and $r_{j+1}<r \leqq r_{j}$, then $e(j) \in B_{r}$ and $x_{1}<r \leqq r_{j}$. Hence, by (5),

$$
\begin{aligned}
{\left[\kappa_{\lambda_{a}}\left(x_{1}\right)\right]^{-1}|u(x)| \leqq } & M_{8}\left[\kappa_{\lambda_{a}}\left(r_{j}\right)\right]^{-1}\left(|u(e(j))|+r_{j}^{a(1-\delta)}\right) \\
& +M_{8}\left[\lambda_{a}\left(r_{j}\right)\right]^{1 / n} \lambda\left(r_{j}\right)^{-1 / n}\left(\int_{G_{a}} \Psi(|\operatorname{grad} u(z)|) \lambda(|z|) d z\right)^{1 / n}
\end{aligned}
$$

with a positive constant M_{8}. Since

$$
\lambda_{a}(r)^{1 / n} \lambda(r)^{-1 / n} \leqq\left(\left[B^{-1} \lambda(r)\right]^{-1 /(n-1)} \int_{r}^{2 r} s^{-a} d s\right)^{-1 / n^{\prime}} \lambda(r)^{-1 / n} \leqq M_{9} r^{(a-1) / n^{\prime}}
$$

with a positive constant M_{9} independent of r, we see that $\left[\kappa_{\lambda_{a}}\left(x_{1}\right)\right]^{-1}|u(x)|$ tends to zero as $x \rightarrow 0, x \in G_{a}$.

If $\kappa_{\lambda_{a}}^{\prime}(0)<\infty$, then $\kappa_{\lambda_{a}}$ is bounded and the above arguments imply that $\{u(e(j))\}$ is a Cauchy sequence and

$$
\lim _{j \rightarrow \infty}\left(\sup \left\{|u(x)-u(e(j))| ; x \in \bigcup_{r_{j+1}<r \leqq r_{j}} B_{r}\right\}\right)=0
$$

From these facts it follows readily that $u(x)$ has a finite limit as $x \rightarrow 0, x \in G_{a}$.
Remark 1. Let $\lambda(r)=r^{\gamma}$ for a number γ. If $\gamma<-(n-1)(a-1)$, then $\quad \kappa_{\lambda_{a}}^{\prime}(0)<\infty$. If $\gamma>-(n-1)(a-1)$, then $\kappa_{\lambda_{a}}^{\prime}(0)=\infty \quad$ and $\quad \kappa_{\lambda_{a}}(r) \sim$ $r^{-[\gamma+(n-1)(a-1)] / n}$.

Remark 2. Proposition 1 is best possible as to the order of infinity in the following sense: if $\varepsilon>0$, then we can find a locally n-precise continuous function u on G_{a} satisfying condition (4) such that

$$
\begin{equation*}
\lim _{x_{1} \rightarrow 0, x \in G_{a}} x_{1}^{-\varepsilon}\left[\kappa_{\lambda_{a}}\left(x_{1}\right)\right]^{-1} u\left(x_{1}, x^{\prime}\right)=\infty . \tag{6}
\end{equation*}
$$

In fact, let $\psi(r)=[\log (2+r)]^{\beta}$ and $\lambda(r)=r^{\gamma}$, where $\beta>n-1$ and $\gamma+$ $(n-1)(a-1)>0$. Then $\tilde{\psi}(r) \sim\left[\log \left(2+r^{-1}\right)\right]^{(n-1-\beta) / n}$ and $\lambda_{a}(r) \sim r^{\gamma+(n-1)(a-1)}$ for $r \in(0,1)$. Consider the function

$$
u\left(x_{1}, x^{\prime}\right)=x_{1}^{-[\gamma+(n-1)(a-1)] / n}\left[\log \left(2+x_{1}^{-1}\right)\right]^{(n-1-\beta) / n-\delta}
$$

for $\delta>1$. Since $\kappa_{\lambda_{a}}(r) \leqq M_{1} \tilde{\psi}(r) \lambda_{a}(r)^{-1 / n}$ with a positive constant M_{1}, (6) is satisfied. On the other hand, we have

$$
\left|\left(\partial / \partial x_{1}\right) u\right| \leqq M_{1} x_{1}^{-1-[\gamma+(n-1)(a-1)) / n}\left[\log \left(2+x_{1}^{-1}\right)\right]^{(n-1-\beta) / n-\delta},
$$

so that

$$
\Psi\left(\left|\operatorname{grad} u\left(x_{1}, x^{\prime}\right)\right|\right) \leqq M_{2} x_{1}^{-[1+\gamma+(n-1) a]}\left[\log \left(2+x_{1}^{-1}\right)\right]^{n-1-n \delta} .
$$

Hence we obtain

$$
\begin{aligned}
\int_{G_{a}} \Psi(|\operatorname{grad} u(x)|)|x|^{\gamma} d x & \leqq M_{3} \int_{0}^{1} x_{1}^{-[1+\gamma+(n-1) a]}\left[\log \left(2+x_{1}^{-1}\right)\right]^{n-1-n \delta} x_{1}^{\gamma+(n-1) a} d x_{1} \\
& <\infty
\end{aligned}
$$

Thus u satisfies (4), and it is the required function.

4. Boundary limits, II

In this section we discuss the existence of boundary limits along a set in G, for locally n-precise continuous functions u on G satisfying (3). Here λ is a positive nondecreasing function on $(0, \infty)$ such that $\lim _{r \downarrow_{0}} \lambda(r)=0$ and $\lambda(2 r) \leqq B \lambda(r)$ for $r>0$ with a positive constant B.

Let h be a nonnegative nondecreasing function on $(0, \infty)$ such that $h(2 r) \leqq$ $M h(r)$ for any $r>0$ with a positive constant M, and denote by H_{h} the Hausdorff mesure with the measure function h.

For $\xi \in \partial G$ and a set T, suppose there exist positive numbers c and C satisfying the following conditions:
$\left(\mathrm{T}_{1}\right) \quad \xi \in \partial T ;$
(T_{2}) for sufficiently small $r>0$, there exist $x_{r} \in G$ and $d_{r}>0$ such that $x_{r} \in B(\xi, r), c r<d_{r}<r$ and $E\left(x, x_{r}, d_{r}\right) \subset T$ whenever $x \in T \cap B(\xi, r) ;$
(T_{3}) $\quad \kappa_{\xi, \lambda}(x) \leqq C h(|x-\xi|)^{-1 / n}$ if $x \in T$, where

$$
\kappa_{\xi, \lambda}(x)=\left(\int_{G \cap B(\xi, 2|\xi-x|)}|x-y|^{-n}\left[\psi\left(|x-y|^{-1}\right) \lambda(\rho(y))\right]^{-1 /(n-1)} d y\right)^{1-1 / n}
$$

A typical example of T is a set of the form

$$
\left\{x=\left(x_{1}, x^{\prime}\right) \in R^{1} \times R^{n-1} ; \varphi\left(\left|x^{\prime}\right|\right)<a x_{1}\right\}
$$

or a set similar to this set, where $a>0$ and φ is a positive nondecreasing function on the interval $(0, \infty)$ such that $\lim \sup _{t \rightarrow 0} \varphi(t) / t<\infty$.

Remark. If G is a Lipschitz domain and $\lambda(r)=r^{\beta}$ with $0<\beta<n-1$, then we can prove that $\kappa_{\xi, \lambda}(x) \sim \kappa_{\lambda}(\rho(x))$ (see the Appendix).

Theorem 4. Let u be a locally n-precise continuous function on G, and suppose

$$
\begin{equation*}
\int_{G \cap B(\xi, r)}|\xi-y|^{1-n}|\operatorname{grad} u(y)| d y<\infty \quad \text { for some } \quad r>0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\lim \sup _{r \downarrow 0} h(r)^{-1} \int_{G \cap B(\xi, r)} \Psi(|\operatorname{grad} u(y)|) \lambda(\rho(y)) d y=0 \tag{8}
\end{equation*}
$$

Then, for a set $T \subset G$ satisfying the above conditions $\left(\mathrm{T}_{1}\right),\left(\mathrm{T}_{2}\right)$ and $\left(\mathrm{T}_{3}\right), u(x)$ has a finite limit as $x \in G$ tends to ξ along T.

Remark. Let E_{0} (resp. E_{h}) be the set of $\xi \in \partial G$ for which (7) (resp. (8)) does not hold. If u satisfies condition (3), then we can show that $H_{h}\left(E_{h}\right)=0$; moreover, in case $\lambda(r)=r^{\beta}$ and G is a Lipschitz domain, then, in view of [2; Section 5], we see that $B_{1-\beta / n, n}\left(E_{0}\right)=0$, where $B_{\gamma, p}$ denotes the Bessel capacity of index (γ, p) (see [1] for the definition of Bessel capacities).

Proof of Theorem 4. Let $r_{0}>0$ be sufficiently small, and take $x_{0}=x_{r_{0}}$ and $d_{0}=d_{r_{0}}$ having the properties in condition $\left(\mathrm{T}_{2}\right)$. By Lemma 3, we have

$$
\left|u(x)-\left|B\left(x_{0}, d_{0}\right)\right|^{-1} \int_{B\left(x_{0}, d_{0}\right)} u(y) d y\right| \leqq M_{1} \int_{E\left(x, x_{0}, d_{0}\right)}|x-z|^{1-n} f(z) d z
$$

for $x \in T \cap B\left(\xi, r_{0}\right)$, where $f(z)=|\operatorname{grad} u(z)|$ and M_{1} is a positive constant independent of x. Thus it follows that

$$
\sup _{x \in T \cap B\left(\xi, r_{0}\right)}\left|u(x)-u\left(x_{0}\right)\right| \leqq 2 M_{1} \sup _{x \in T \cap B\left(\xi, r_{0}\right)} \int_{E\left(x, x_{0}, d_{0}\right)}|x-z|^{1-n} f(z) d z
$$

If $z \in T(\xi, a)-B(\xi, 2|\xi-x|)$, then $|x-z| \geqq|\xi-z|-|x-\xi| \geqq|\xi-z| / 2$, so that

$$
\int_{E\left(x, x_{0}, d_{0}\right)-B(\xi, 2|\xi-x|)}|x-z|^{1-n} f(z) d z \leqq 2^{n-1} \int_{G \cap B\left(\xi, 2 r_{0}\right)}|\xi-z|^{1-n} f(z) d z
$$

On the other hand, by Lemma 2 and condition (T_{3}), we have

$$
\begin{aligned}
& \int_{E\left(x, x_{0}, r_{0}\right) \cap B(\xi, 2|\xi-x|)}|x-z|^{1-n} f(z) d z \\
& \quad \leqq M_{2} h(|\xi-x|)^{-1 / n}\left(\int_{G \cap B(\xi, 2|\xi-x|)} \Psi(f(y)) \lambda(\rho(y)) d y\right)^{1 / n}+M_{2}|\xi-x|^{1-\delta}
\end{aligned}
$$

with a positive constant M_{2}, where $0<\delta<1$. Thus,

$$
\begin{aligned}
\sup _{x \in T \cap B\left(\xi, r_{0}\right)}\left|u(x)-u\left(x_{0}\right)\right| & \leqq M_{3} r_{0}^{1-\delta}+M_{3} \int_{G \cap B\left(\xi, 2 r_{0}\right)}|\xi-z|^{1-n} f(z) d z \\
& +M_{3} \sup _{0<r<2 r_{0}}\left(h(r)^{-1} \int_{G \cap B(\xi, r)} \Psi(f(y)) \lambda(\rho(y)) d y\right)^{1 / n}
\end{aligned}
$$

with a positive constant M_{3} independent of r_{0}. In view of conditions (7) and (8), it follows that $u(x)$ has a finite limit as $x \in G$ tends to ξ along T.

For $\alpha>1, a \in R^{1}$ and $b \geqq 0$, set

$$
S_{\alpha}(a, b)=\left\{x=\left(x_{1}, x^{\prime}\right) \in R^{1} \times R^{n-1} ; x_{1}>a\left|x^{\prime}\right|+b\left|x^{\prime}\right|^{\alpha}\right\} .
$$

If G is a bounded Lipschitz domain and $\alpha>0$ is given, then, for each $\xi \in \partial G$ we can find $a_{\xi} \in R^{1}, b_{\xi} \geqq 0, r_{\xi}>0$ and an orthogonal transformation Ξ_{ξ} such that

$$
\left\{\xi+\Xi_{\xi} x ; x \in S_{\alpha}\left(a_{\xi}, b_{\xi}\right)\right\} \cap B\left(\xi, r_{\xi}\right) \subset G .
$$

For $b>b_{\xi}$, put

$$
T_{\alpha}(\xi, b)=\left\{\xi+\Xi_{\xi} x ; x \in S_{\alpha}\left(a_{\xi}, b\right)\right\} \cap B\left(\xi, r_{\xi}\right) .
$$

Corollary. Let G be a bounded Lipschitz domain and let $\alpha>1$. Let $\left\{T_{\alpha}(\xi, b) ; \xi \in \partial G, b>b_{\xi}\right\}$ be given as above. If u is a locally n-precise continuous function on G satisfying

$$
\int_{G} \Psi(|\operatorname{grad} u(x)|) \rho(x)^{\beta} d x<\infty
$$

with $0<\beta<n-1$, then there exists a set $E \subset \partial G$ such that
(i) $H_{h}(E)=0$ for $h(r)=\sup _{0<t<r} t^{\alpha \beta}[\tilde{\psi}(t)]^{-n}$;
(ii) if $\xi \in \partial G-E$, then $u(x)$ has a finite limit as $x \rightarrow \xi$ along $T_{\alpha}(\xi, b)$ for any $b>b_{\xi}$.

Proof. It is easy to see that, for fixed $\xi \in \partial G, T=T_{\alpha}(\xi, b)$ satisfies conditions (T_{1}) and (T_{2}). By Remark (ii) before Theorem 3 and the Remark
before Theorem 4, we see that $\kappa_{\xi, \lambda}(x) \sim \rho(x)^{-\beta / n} \tilde{\psi}(\rho(x))$ if $\lambda(r)=r^{\beta}$. Since $\rho(x) \geqq c|x-\xi|^{\alpha}$ for $x \in T_{\alpha}(\xi, b)$ with some $c>0$ (depending on ξ, α, b; but not on x), condition (T_{3}) is satisfied with $T=T_{\alpha}(\xi, b)$ and the function h given in (i).

Let $E=E_{0} \cup E_{h}$ in the notation given in the Remark after Theorem 4. Since $B_{1-\beta / n, n}\left(E_{0}\right)=0$ implies that E_{0} has Hausdorff dimension at most β (cf. [1; Theorem 22]) and since $\lim _{r \downarrow_{0}} h(r) / r^{\beta}=0$, we see that $H_{h}\left(E_{0}\right)=0$. Hence $H_{h}(E)=0$, and the Corollary follows from Theorem 4.

Remark. If $\beta=0$ in the Corollary, then u can be extended to a continuous function on $G \cup \partial G$, on account of Theorem 2.

5. Limits at infinity

In this section, we discuss the existence of limits at infinity of n-precise functions on unbounded domains R^{n} and $G=\left\{x=\left(x_{1}, x^{\prime}\right) \in R^{1} \times R^{n-1} ;\left|x^{\prime}\right|<1\right\}$.

Theorem 5. If u is a locally n-precise continuous function on R^{n} satisfying condition (2) with $G=R^{n}$, then $[\tilde{\psi}(|x|)]^{-1} u(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

Proof. By Lemma 3 we have

$$
\left|u(x)-|B(0, r)|^{-1} \int_{B(0, r)} u(y) d y\right| \leqq M_{1} \int_{B(0, r)}|x-z|^{1-n} f(z) d z
$$

with a positive constant M_{1} independent of x, where $r=|x|$ and $f(z)=$ $|\operatorname{grad} u(z)|$. For fixed $r_{0}>0$, taking $\alpha=r^{\gamma}$ with $\delta(\gamma+1)>1$ in the Corollary to Lemma 2, we have

$$
\int_{B(0, r)-B\left(0, r_{0}\right)}|x-z|^{1-n} f(z) d z \leqq M_{2}\left(\int_{R^{n-B\left(0, r_{0}\right)}} \Psi(f(z)) d z\right)^{1 / n} \tilde{\psi}(r)+M_{2} r^{1-\delta-\delta \gamma}
$$

with a positive constant M_{2} independent of r. Here, note that $\tilde{\psi}(r) \geqq$ $\psi(1)^{-1 / n}(\log r)^{1-1 / n}$ for $r>1$, so that $\lim _{r \rightarrow \infty} \tilde{\psi}(r)=\infty$. Hence

$$
\lim \sup _{|x| \rightarrow \infty} \tilde{\psi}(|x|)^{-1} \int_{B(0,|x|)}|x-z|^{1-n} f(z) d z \leqq M_{2}\left(\int_{R^{n-B\left(0, r_{0}\right)}} \Psi(f(z)) d z\right)^{1 / n}
$$

which implies that the left hand side is equal to zero. Similarly,

$$
\begin{aligned}
& \left|u(0)-|B(0, r)|^{-1} \int_{B(0, r)} u(y) d y\right| \leqq M_{1} \int_{B(0, r)}|z|^{1-n} f(z) d z \\
& \quad \leqq M_{1} \int_{B\left(0, r_{0}\right)}|z|^{1-n} f(z) d z+M_{3}\left(\int_{R^{n-B\left(0, r_{0}\right)}} \Psi(f(z)) d z\right)^{1 / n} \tilde{\psi}(r)+M_{3},
\end{aligned}
$$

where M_{3} is a positive constant independent of r and r_{0}, so that

$$
\lim _{r \rightarrow \infty} \tilde{\psi}(r)^{-1}\left(|B(0, r)|^{-1} \int_{B(0, r)} u(y) d y\right)=0 .
$$

Consequently, $\lim _{|x| \rightarrow \infty}[\tilde{\psi}(|x|)]^{-1} u(x)=0$.
Proposition 2. Let $G=\left\{\left(x_{1}, x^{\prime}\right) ;\left|x^{\prime}\right|<1\right\}$, and let u be a locally n-precise continuous function on G satisfying condition (2). Then

$$
\lim _{x_{1} \rightarrow \infty,\left(x_{1}, x^{\prime}\right) \in G}\left[\tilde{\psi}\left(x_{1}\right)\right]^{-1} x_{1}^{1 / n-1} u\left(x_{1}, x^{\prime}\right)=0 .
$$

Remark. Proposition 2 is best possible as to the order of infinity, in the same sense as in Remark 2 given after Proposition 1.

Proof of Proposition 2. Let $X(r)=(r, 0), r \in R^{1}$. If x and y belong to $\Delta(r)=B(X(r), 1)$, then, as in the proof of Theorem 5, we have

$$
\begin{aligned}
|u(x)-u(y)| & \leqq M_{1} \sup _{z \in \Delta(r)} \int_{\Delta(r)}|z-w|^{1-n}|\operatorname{grad} u(w)| d w \\
& \leqq M_{2}\left(\int_{\Delta(r)} \Psi(|\operatorname{grad} u(w)|) d w\right)^{1 / n} \tilde{\psi}(r)+M_{2} r^{-2}
\end{aligned}
$$

with positive constants M_{1}, M_{2} independent of x, y and r, where we used the Corollary to Lemma 2 with $\alpha=r^{2 / \delta}$ in the second inequality. For any fixed r_{0}, let $r_{j}=r_{0}+j / 2$. If $r_{k} \leqq x_{1}<r_{k}+2^{-1}$, then

$$
\begin{aligned}
\left|u(x)-u\left(X\left(r_{0}\right)\right)\right| \leqq & \left|u(x)-u\left(X\left(x_{1}\right)\right)\right|+\left|u\left(X\left(x_{1}\right)\right)-u\left(X\left(r_{k}\right)\right)\right|+\cdots \\
& +\left|u\left(X\left(r_{1}\right)\right)-u\left(X\left(r_{0}\right)\right)\right| \\
\leqq & M_{3}\left(\int_{E\left(r_{0}, x_{1}\right)} \Psi(|\operatorname{grad} u(w)|) d w\right)^{1 / n}\left(\tilde{\psi}\left(x_{1}\right)^{n^{\prime}}+\sum_{j=0}^{k} \tilde{\psi}\left(r_{j}\right)^{n^{\prime}}\right)^{1 / n^{\prime}} \\
& +M_{2}\left(x_{1}^{-2}+\sum_{j=0}^{k} r_{j}^{-2}\right) \\
\leqq & M_{4}\left(\int_{E\left(r_{0}, x_{1}\right)} \Psi(|\operatorname{grad} u(w)|) d w\right)^{1 / n} \tilde{\psi}\left(x_{1}\right) x_{1}^{1 / n^{\prime}}+M_{5} r_{0}^{-1}
\end{aligned}
$$

where $1 / n+1 / n^{\prime}=1, E(s, t)=\bigcup_{s<r<t} \Delta(r)$ and M_{3}, M_{4} are positive constants independent of x and r_{0}. It follows that

$$
\lim \sup _{x_{1} \rightarrow \infty, x \in G}\left[\tilde{\psi}\left(x_{1}\right)\right]^{-1} x_{1}^{-1 / n^{\prime}}|u(x)| \leqq M_{4}\left(\int_{E\left(r_{0}, \infty\right)} \Psi(|\operatorname{grad} u(w)|) d w\right)^{1 / n}
$$

for any r_{0}, which implies that the left hand side equals zero.

Appendix

We now give a proof of $\kappa_{\xi, \lambda}(x) \sim \kappa_{\lambda}(\rho(x))$ given in the Remark before Theorem 4. By a change of coordinate system by a Lipschitz transformation, we may assume that G is the half space $\left\{x=\left(x_{1}, x^{\prime}\right) ; x_{1}>0\right\}$ and ξ is the origin. For $x=\left(x_{1}, x^{\prime}\right) \in G \cap B(0,1)$, let

$$
\begin{aligned}
& E_{1}=\left\{y=\left(y_{1}, y^{\prime}\right) ; y_{1}>x_{1} / 2\right\} \cap B(0,2|x|)-B\left(x, x_{1} / 2\right), \\
& E_{2}=B\left(x, x_{1} / 2\right), \\
& E_{3}=\left\{y=\left(y_{1}, y^{\prime}\right) ; 0<y_{1} \leqq x_{1} / 2\right\} \cap B(0,2|x|)
\end{aligned}
$$

and write

$$
I_{j}(x)=\int_{E_{j}}|x-y|^{-n}\left[\psi\left(|x-y|^{-1}\right) \lambda\left(y_{1}\right)\right]^{-1 /(n-1)} d y
$$

for $j=1,2$, 3. Since $y_{1} \geqq\left|y_{1}-x_{1}\right|$ on E_{1} and $\lambda(r)=r^{\beta}$ with $0<\beta<n-1$, we have by properties $\left(\psi_{1}\right)^{\prime \prime \prime}$ and $\left(\psi_{3}\right)$

$$
\begin{aligned}
I_{1}(x) & \leqq M_{1} \int_{x_{1} / 2}^{3|x|}\left[\psi\left(r^{-1}\right) \lambda(r)\right]^{-1 /(n-1)} r^{-1} d r \\
& \leqq M_{2}\left[x_{1}^{\varepsilon} \psi\left(x_{1}^{-1}\right)\right]^{-1 /(n-1)} \int_{x_{1} / 2}^{3|x|}\left[r^{-\varepsilon} \lambda(r)\right]^{-1 /(n-1)} r^{-1} d r \\
& \leqq M_{3}\left[\psi\left(x_{1}^{-1}\right) \lambda\left(x_{1}\right)\right]^{-1 /(n-1)} \leqq M_{4}\left[\tilde{\psi}\left(x_{1}\right) \lambda\left(x_{1}\right)^{-1 / n}\right]^{n^{\prime}}
\end{aligned}
$$

where $0<\varepsilon<\beta$. If $y \in E_{2}$, then $y_{1}>x_{1} / 2$, so that

$$
I_{2}(x) \leqq M_{5} \lambda\left(x_{1}\right)^{-1 /(n-1)} \int_{0}^{x_{1} / 2}\left[\psi\left(r^{-1}\right)\right]^{-1 /(n-1)} r^{-1} d r \leqq M_{6}\left[\tilde{\psi}\left(x_{1}\right) \lambda\left(x_{1}\right)^{-1 / n}\right]^{n^{\prime}}
$$

If $y \in E_{3}$, then $\left|\left(0, x^{\prime}\right)-y\right|^{2}+\left(x_{1} / 2\right)^{2} \leqq 2|x-y|^{2} \leqq 2\left[\left|\left(0, x^{\prime}\right)-y\right|^{2}+x_{1}^{2}\right]$. Hence, letting $r=\left|\left(0, x^{\prime}\right)-y\right|$, by a computation similar to the above, we have

$$
\begin{aligned}
I_{3}(x) \leqq & M_{7} \int_{0}^{3|x|}\left(r+x_{1}\right)^{-n}\left[\psi\left(\left(r+x_{1}\right)^{-1}\right) \lambda(r)\right]^{-1 /(n-1)} r^{n-1} d r \\
\leqq & M_{8} \int_{x_{1}}^{3|x|}\left[\psi\left(r^{-1}\right) \lambda(r)\right]^{-1 /(n-1)} r^{-1} d r \\
& +M_{8} x_{1}^{-n}\left[\psi\left(x_{1}^{-1}\right)\right]^{-1 /(n-1)} \int_{0}^{x_{1}}[\lambda(r)]^{-1 /(n-1)} r^{n-1} d r \\
\leqq & M_{9}\left[\tilde{\psi}\left(x_{1}\right) \lambda\left(x_{1}\right)^{-1 / n}\right]^{n^{\prime}} .
\end{aligned}
$$

Consequently, we establish

$$
\kappa_{\xi, \lambda}(x) \leqq M_{10} \tilde{\psi}\left(x_{1}\right) \lambda\left(x_{1}\right)^{-1 / n} .
$$

Conversely, we obtain

$$
\begin{aligned}
I_{2}(x) & \geqq M_{11} \lambda\left(x_{1}\right)^{-1 /(n-1)} \int_{0}^{x_{1} / 2}\left[\psi\left(r^{-1}\right)\right]^{-1 /(n-1)} r^{-1} d r \\
& \geqq M_{12}\left[\tilde{\psi}\left(x_{1}\right) \lambda\left(x_{1}\right)^{-1 / n}\right]^{n^{\prime}}
\end{aligned}
$$

and hence

$$
\kappa_{\xi, \lambda}(x) \geqq M_{13} \tilde{\psi}\left(x_{1}\right) \lambda\left(x_{1}\right)^{-1 / n} .
$$

On the other hand, we find, in view of $\left(\psi_{1}\right)^{\prime \prime \prime}$, that

$$
\begin{aligned}
{\left[\kappa_{\lambda}^{\prime}(r)\right]^{n^{\prime}} } & \leqq M_{14}\left[r^{\varepsilon} \psi\left(r^{-1}\right)\right]^{-1 /(n-1)} \int_{r}^{1}\left[r^{-\varepsilon} \lambda(r)\right]^{-1 /(n-1)} r^{-1} d r \\
& \leqq M_{15}\left[\tilde{\psi}(r) \lambda(r)^{-1 / n}\right]^{n^{\prime}}
\end{aligned}
$$

so that

$$
\kappa_{\lambda}\left(x_{1}\right) \leqq M_{16} \tilde{\psi}\left(x_{1}\right) \lambda\left(x_{1}\right)^{-1 / n} \leqq M_{16} \kappa_{\lambda}\left(x_{1}\right) .
$$

Since the constants $M_{1} \sim M_{16}$ do not depend on $x \in G \cap B(0,1)$, the required result has been derived.

References

[1] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
[2] Y. Mizuta, On the behavior of potentials near a hyperplane, Hiroshima Math. J. 13 (1983), 529-542.
[3] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
[4] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
[5] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128.

> Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

