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Real hypersurfaces with harmonic Weyl
tensor of a complex space form
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Abstract. We study real hypersurfaces of a complex space form Mn(c). The purpose is to give
another characterization of pseudo-Einstein hypersurfaces and then to prove that there are no real
hypersurfaces with harmonic Weyl tensor of Mn(c\ c ^ 0, n > 3.

Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted by
Mn(c). A complete and simply connected complex space form is a complex
projective space PnC, a complex Euclidean space Cn or a complex hyperbolic
space HnC, according as c > 0, c = 0 or c < 0. The induced almost contact
metric structure of a real hypersurface of Mn(c) is denoted by (</>, £, rj9 g).

Now, there exist many studies of real hypersurfaces of a complex space
form. One of the first researches is the classification of homogeneous real
hypersurfaces of a complex projective space PnC by Takagi [12]. Some real
hypersurfaces of a complex space form Mn(c), c # 0, are characterized under the
conditions for the shape operator (or principal curvatures) and one of the
structure tensors. In particular, a real hypersurface M of Mn(c\ c / 0, is said
to be pseudo-Einstein if the Ricci tensor Sf satisfies

S' = ag + bt] ® rj,

where a and b are some functions on M. The structure of pseudo-Einstein
hypersurfaces is investigated by Cecil and Ryan [2], Kon [6] and Montiel [9].

On the other hand, some studies about the non-existence for real hyper-
surfaces under natural linear conditions which can be imposed on S' or VS'
have been made by Kimura [5], Kon [6] and Montiel [9]. It is seen in [6]
and [9] that there are no Einstein real hypersurfaces of Mn(c\ c ^ 0, n > 3. In
particular, it is proved by Kim [4] and Kwon and one of the authors [7] that
there are no real hypersurfaces with harmonic curvature of Mn(c), c # 0, n > 3,
on which the structure vector £ is principal. Recently, the first author [3]
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proves that there are no hypersurfaces with parallel Ricci tensor on Mn(c),
c / 0, n > 3.

The purpose of this paper is to give another characterization of pseudo-
Einstein real hypersurfaces of Mn(c\ c ^ 0, under a tensorial condition given
only by the Riemannian curvature tensor R and S'. In § 1 the theory of real
hypersurfaces of a complex space form is recalled and in § 2 the main theorem
(Theorem 2.1) is proved. As an application of properties obtained in §2 it is in
§3 proved that there are no real hypersurfaces with harmonic Weyl tensor of
Mn(c\ c # 0, n > 3.

1. Preliminaries

Let M be a real hypersurface of a complex n dimensional complex space
form Mn(c\ c ^ 0, n > 3, and let C be a unit normal vector field on a neigh-
borhood of a point x in M. We denote by J the almost complex structure of
Mn(c). For a local vector field X on a neighborhood of x in M, the trans-
formations of X and C under J can be represented by

where (/> defines a skew-symmetric transformation on the tangent bundle TM of
M, while rj and £ denote a 1-form and a vector field on a neighborhood of x in
M, respectively. Moreover it is seen that g(£, X) = rj(X), where g denotes the
induced Riemannian metric on M. By properties of the almost complex struc-
ture J, a set (</>, £, rj, g) of tensors satisfies then

where / denotes the identity transformation. Accordingly, the set is the almost
contact metric structure. Furthermore the covariant derivatives of the struc-
ture tensors are given by

(1.1) Fx(j>(Y) = rj(Y)AX - g(AX, Y){ , VXZ = </>AX ,

where V is the Riemannian connection of g and A denotes the shape operator
with respect to C on M.

Since the ambient space is of constant holomorphic curvature c, the equa-
tions of Gauss and Codazzi are respectively given as follows:

(1.2) R(X, Y)Z = c{g(Y, Z)X - g(X9 Z)Y

+ gtfY, Z)<f>X - gtfX, Z)<j>Y - 2g(</>X, Y)<f>Z}/4

+ g(AY9Z)AX-g(AX,Z)AY'9

(1.3) VXA{Y) - FYA(X) = c{rj(X)(/>Y - rj(Y)</>X - 2g(<f>X,
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where R denotes the Riemannian curvature tensor of M and VXA denotes the
covariant derivative of the shape operator A with respect to X.

The Ricci tensor S' of M is a tensor ot type (0, 2) given by S'(X, Y) =
tr {Z-> R(Z, X)Y}. But it may be also regarded as the tensor of type (1, 1)
and denoted by S: TM -• TM; it satisfies S'(X, Y) = g(SX, Y). By the Gauss
equation the Ricci tensor S is given by

(1.4) S = c{(2n + 1)/ — 3f| <S> £}/ 4 + hA - A2 ,

where h is the trace of the shape operator A. A real hypersurface M of Mw(c)
is said to be pseudo-Einstein if the Ricci tensor S satisfies

(1.5) SX = aX + bti(X)£

for any vector field X tangent to M and some functions a and b on M.

2. Real cyclic Ryan hypersurfaces

This section is devoted to the investigation of real cyclic Ryan hyper-
surfaces of Mn(c\ c ^ O , n > 3. Let AT be a Riemannian manifold. For the
Riemannian curvature tensor JRN, RN(X9 Y) operates as a derivation on the
algebra of tensor fields on N. For a tensor field F of type (r, s), RN(X, Y)-F =
VXVY? - PYPXF - P[X,Y]F is defined for any vector fields X and Y. The
Riemannian manifold N is said to be Ryan (resp. cyclic Ryan), if it satisfies

(2.1) {RN(X9 Y)• SN)(Z) = 0 (resp. <5(RN(X9 Y)• SN)(Z) = 0)

for any vector fields, where SN and 6 denote the Ricci tensor and the cyclic sum
with respect to X, Y and Z, respectively. The Ricci formula for the Ricci
tensor gives rise to

(RN(X, Y)-SN)(Z) = RN(X9 Y)(SNZ) - SN(RN(X9 Y)Z),

which implies that

(2.2) ®(*N(*> Y)- SN)(Z) = ZRN(X, Y)(SNZ),

because of the first Bianchi formula. By the definition of the Riemannian
curvature tensor RN, one gets

(2.3) <5(RN(X,Y)'SN)(Z)

= ^{vx{vYsN{z) - rzsN(Y)) + rxsN&Y, z]) - r[YtZ]sN(X)}.

REMARK 2.1. It is seen in [2] and [9] that if a real hypersurface M of a
complex space form Mn(c\ c # 0, is pseudo-Einstein, then the structure vector £
is principal and M is cyclic Ryan, by means of (1.1), (1.3) and (2.3).
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Now, let M be a real cyclic Ryan hypersurface of Mn(c\ c # 0, n > 3. By
taking account of (1.2) and (1.4), the equation (2.2) is equivalent to

(2.4) &[g(</>X9 HZ)<f>Y - g((f>Y9 HZ)</>X + 2g(</>X, Y)(/>HZ

- 3rj(Z){rj(AX)AY - ri{AY)AX}^ = 0 ,

because of c ^ 0, where we put H = hA — A2. In order to give some formulas
in the conventional form, given a linear transformation T a function Tm for an
integer m(> 1) is introduced as Tm = rj(Tm£). If we set X = £ in (2.4), then we
obtain

(2.5) rj(H(f>Y)<f>Z - rj(H</>Z)</>Y + 2g(<f>Y,

= 3lt](Z){A1AY - rj(AY)A£} + {rj{AY)AZ - rj(AZ)AY}

+ rj(Y){rj(AZ)At;-A1AZ}l9

because the transformation H is symmetric. For any point x on M we can
choose an orthonormal basis {El9..., £2«-i} f° r the tangent space TXM such
that E2a = <j)Ea, a = 1, . . . , n - 1 and E2n^ = {. Putting Z = Et in the last
equation, taking the inner product of this with <j>E{ and summing up with
respect to i, we have

(2.6) 3AU = {In - \)<t>HZ , rj(AU) = 0 ,

where we set U = V£. We notice here that

(2.7) W^-At + A^,

because of (1.1) and the property of the almost contact metric structure. This
implies that the structure vector £ is principal if and only if (f>U = 0, namely, the
vector field U vanishes identically. By making use of (2.6) and (2.7), the
relationship (2.5) is reduced to

(2.8) (2n - l ) [ 0 0 r , U)AZ - g^Z, U)AY + {v(Y)rj(AZ) -

= -g(U, AY)(j>Z + g(U, AZ)<f>Y + 2g((/>Y, Z)AU .

When we take the inner product of this equation and U, it follows from (2.6)
that we get

(n - l){g(U, AZ)g(<f>Y, U) - g(AY, U)g(<f>Z, U)} = g(AU, U)g(</>Y, Z),

and hence it turns out that

(2.9) (n - l){g(AY, U)<f>U + gtfY, U)AU} = g(AU,

(2.10) (n-2)g(AU,U)fU = 0.
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Since it is easily seen that rj{U) = 0 and rj{AU) = 0 by the definition, (2.8) yields

(2.11) (2n - 3)g(</>Y, U)AU + g(U, AY)jU = g(AU9 U)</>Y,

by putting Z = U in (2.8).
For a tube of radius r over a submanifold of a complex space form Mn{c\

cf. Cecil and Ryan [2] and Montiel [9]. A Montiel tube of a complex
hyperbolic space is only defined here. Let Hfn+1 be a {In + l)-dimensional
anti-de Sitter space in Cn+1, which is a Lorentz manifold of constant curvature
c/4 (< 0). Given the real hypersurface M of a complex hyperbolic space HnC,
one can construct a Lorentz hypersurface N of Hfn+1 which is a principal
S ̂ bundle over M with time-like totally geodesic fibers and projection n:
N -• M in such a way that the diagram

JV — —

M —7—

is commutative (/, f being the isometric immersions). In particular, let N(t) be
the Lorentz hypersurface of Hin+1 in Cn+1 given by

I- |2 j _ V n
 IT I2 1 IT T I2 *

— \zo\ + 2 J J = I IZJI ~ - 1 ' l z o ~ z i l — r -

It is seen in [9] that M*(t) = n(N(t)) is a pseudo-Einstein real hypersurface of

HnC. Then M* = M*(l) is called a Montiel-tube.

THEOREM 2.1. Le£ M be a complete real cyclic Ryan hypersurface of Mn(c\
c 7̂  0, n > 3. 77ien M is congruent to one of the following spaces:
(1) In case Mn(c) = PnQ

(a) a geodesic hypersphere,
(b) a tafre o/ radius r over a totally geodesic PkC (1 < k < n — 2), w/zere

0 < r < n/2 and cot2 r = k/(n - k - 1),
(c) a tube over a complex quadric Qn-X.

(2) In case Mn(c) = HnQ
(a) a geodesic hypersphere,
(b) a fufre of arbitrary radius over a complex hyperplane,
(c) a Montiel-tube M*.

In order to prove Theorem 2.1, we begin with the following lemma.

LEMMA 2.2. Let M be a real cyclic Ryan hypersurface of Mn(c)9 c # 0,
n > 3. Then the structure vector £ is principal.
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PROOF. Let Mo be a set consisting of points x at which the function
(A2 — Al

2)(x) # 0. Then the structure vector at any point x in Mo is not
principal and therefore the vector U is not zero at x.

Suppose that Mo is not empty. It suffices to show that a contradiction is
drawn on the open set. By (2.9) and (2.10) we have

g(AU9U) = 09 g(AY,U)4U= -g(</>Y,U)AU on MO ,

from which (2.11) is reduced to (n - 2)g(AU, Y)</>U = 0 for any vector field Y
tangent to Mo and hence we get AU = 0 on Mo, because of <j>U ^ 0 on Mo and
n > 3. The above condition and (2.6) enable us to get the property </>H£ = 0
for the shape operator A and hence it turns out that

(2.12) A2£ = hA£ + (A2-hA1)Z on Mo ,

Combining the equation stated above together with (1.4), one finds

Si = Sx£ , Sx = (n - l)c/2 -A2 + hA, .

On the other hand, it is seen in [3] that under the cyclic Ryan condition,
the following equation holds:

(2.13) 2(n - 1){SX - rf{SX)Z - ri{X)S£} - (r - SJX

+ {r + (2n - 3)S1}ri(X)Z = 0,

which means that Mo is pseudo-Einstein, that is, S = al + brj (x) £ on Mo,
where the coefficients a and b are given by a = (r — 5x)/2(n — 1) and b =
{-r + {In - l)Si}/2(n - 1), and hence we have

(2.14) 4(A2 - hA) = {(2n + l)c - 4a}/ - (3c + 4b)rj ® { .

Transforming the last equation by A, we obtain

4(A3 - hA2) = {(2n + \)c - 4a] A - (3c + 4b)rj ® A{ ,

from which, by taking the skew-symmetric part, it is seen that

=0 on Mo .

So it turns out that b = —3c/4 and hence (2.14) is reduced to 4H =
{4a — (In + l)c}/, from which together with (2.4) it follows that

ri(Z){r](AX)AY - rj(AY)AX) + rj(X){rj(AY)AZ - rj(AZ)AY)

+ rj(Y){rj(AZ)AX - rj(AX)AZ} = 0 .

For the orthonormal basis {£,} we put X = € and Z = Ej in the left hand
side of the above equation, whose vector is denoted by F(7, Ej). By noting
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ti(X) = g{£, X) and by taking account of 4A3£ = {4h2 - 4a + (2n + l)c}A£ -
h{4a — (2n + l)c}<J, it follows from a straightforward calculation that

4 X flf(F(y, £,-), X£,) = lti(AY){4(-h2 + h2-A2 + hAt + a) - (2n + l)c}

+ 2AMY){(2n + l)c - 4a + 2(h2 - fc2)}]

= 0 ,

where h2 denotes the square of the norm of the second fundamental form. On
the other hand, by the definition of the linear transformation H we have

4(A2 - hAJ = -4a + (2n + l )c ,

4(h2 - h2) = - (2n - l){4o - (2n + l )c} ,

and hence it turns out that

{4a-(2n+l)c}(A£-A1e) = 0 on Mo ,

which implies 4a = (2n 4- l)c and S = c{(2n + 1)/ — 3rj (x) ̂ }/4, and hence we
have A2 -hA = 0.

The rank of A at a point x in M is called a ty/?e number and is denoted by
t(x). The above equation means that the type number t(x) of any point x in
Mo is at most 1. It is however seen (cf. Yano and Kon [13]) that any point in
Mo is geodesic under the type number. So it is a contradiction to the fact that
(A2 — A!2)(x) 7̂  0 at x in Mo. This implies that Mo is empty, which yields that
the structure vector £ is principal. This completes the proof.

By taking account of the classification theorem of pseudo-Einstein real
hypersurfaces of Mn(c) by Cecil and Ryan [2] and Montiel [9], in order to
prove Theorem 2.1 it suffices to show that M is pseudo-Einstein.

LEMMA 2.3. Let M be a real cyclic Ryan hypersurface of Mn(c\ c / 0,
n > 3. Then M is pseudo-Einstein.

PROOF. Under the assumption of this lemma, Lemma 2.2 gives rise to
S£ = St£, Sl=(n- \)c/2 - Ax

2 + hAl9 because of (1.4), while it is seen that
(2.13) holds true on the whole on M. This implies that the Ricci tensor S
satisfies S = al + brj ® £, where the coefficients a and b are functions.

REMARK 2.2. By the classification theorem [2] and [9] of real pseudo-
Einstein hypersurfaces of PnC or HnC, n> 3, it is seen that the coefficients a
and b are constant, and then there are no real Einstein hypersurfaces of Mn(c\
c # 0, n > 3.



100 U-Hang Ki, Hisao NAKAGAWA and Young Jin SUH

3. Harmonic Weyl tensor

In this section we are concerned with real hypersurfaces with harmonic
Weyl tensor of Mn(c\ c ^ O . Let (AT, gN) be an n-dimensional Riemannian
manifold. The Ricci tensor S'N can be regarded as a 1-form with values in the
cotangent bundle T*N. Then N is said to have harmonic curvature or har-
monic Weyl tensor, if S'N or S'N — rNgN/2(n — 1) for the scalar curvature rN is a
Codazzi tensor, that is, it satisfies

dS'N = 0 or d{S'N-rNgN/2(n-l)} = 0,

where d denotes the exterior differential. For the harmonic Weyl tensor, it is
seen that in the case of n > 4 the Weyl curvature tensor W which is regarded as
a 2-form with values in the bundle A2T*N is closed and coclosed, namely, it is
harmonic. In the case of n = 3 the Riemannian manifold N is conformally
flat. For details, see Besse [1],

REMARK 3.1. By means of (2.3) it is easily seen that a Riemannian
manifold with harmonic curvature is cyclic Ryan.

Now, let M be a real hypersurface with harmonic Weyl tensor of a
complex space form Mn(c\ c ^ 0. First of all, the following lemma is proved.

LEMMA 3.1. Let M be a real hypersurface with harmonic Weyl tensor of a
complex space form Mn(c\ c / 0, n > 3. Then M is cyclic Ryan.

PROOF. The Ricci tensor S' and the scalar curvature r satisfy by definition
d{S' - rg/4(n - 1)} = 0, that is,

(3.1) VXS{Y) - FYS(X) = {dr(X)Y- dr(Y)X}/4(n - 1)

for any vector fields X and Y tangent to M. By substituting (3.1) into (2.3) and
by calculating directly, the conclusion is given.

THEOREM 3.2. There are no real hypersurfaces with harmonic Weyl tensor of
MM c ± 0, n > 3.

PROOF. For the real hypersurface with harmonic Weyl tensor of Mn(c\
Lemmas 2.2 and 2.3 show that M is pseudo-Einstein and the structure vector £,
is principal. In particular, by Remark 2.2, the coefficients a and b of the Ricci
tensor are both constant and hence the scalar curvature r becomes constant.
This means that M has harmonic curvature.

Differentiating the Ricci tensor S covariantly, we find

(3.2) VXS{Y) = b{fi(Y)Fx£ +
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Since the hypersurface M has harmonic curvature, we have

(3.3) b{(g(FY£9 X) - g{Vx^ Y))£ + rj(X)FYt; - rj(Y)Fx^} = 0 .

Taking account of the second equation of (1.1) and $£ = 0, we get V£ = 0,
because the structure vector £ is principal. If we put hence Y — £ in (3.3), then
we obtain bPx£ = 0, which together with (3.2) implies that the Ricci tensor is
parallel. However, it is seen in [3] and [5] that there are no real hypersurfaces
with parallel Ricci tensor of Mn(c\ c ^ 0, n > 3. A contradiction. Thus the
proof is complete.

REMARK 3.2. It is in [4] and [7] seen that there are no real hyper-
surfaces with harmonic curvature of Mn(c\ c =A 0, n > 3. Theorem 3.2 is the
slight generalization, by which the last step of the proof can be omitted.

REMARK 3.3. The situation in Theorem 3.2 is quite different from that in
hypersurfaces of a real space form. It is seen in [1] that there are Riemannian
manifolds with harmonic Weyl tensor but not harmonic curvature. According
to a theorem of Nishikawa and Maeda [10], a hypersurface of a conformally
flat Riemannian manifold is also conformally flat if and only if any point of M
is umbilic or it has two distinct principal curvatures one of which is simple,
where a principal curvature is said to be simple if its multiplicity is equal to
one. On the other hand, Otsuki [11] showed that there are many minimal
hypersurfaces with the similar situation for principal curvatures of a real space
form, which implies that they are conformally flat. Since a conformally flat
hypersurface has harmonic Weyl tensor, it means that there are many minimal
hypersurfaces with harmonic Weyl tensor of a real space form, which are not
with harmonic curvature.
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