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1. Introduction

In this paper we consider the derivations of a generalized Witt algebra
W(G, I) over a field I of characteristic zero, where / is a non-empty index set, G
is an additive submonoid of J^g / I* , a n d t* (iel) are copies of the additive
group I+. W(G, I) is a Lie algebra which has a basis {w(a, i)\ae G, i e /} and
the multiplication

, i), w(b, 7)] = a^{a + b, i) - btw{a + b, j),

where i, j el and a = {at)ieI, b = (bi)ieI e G.
Generalized Witt algebras have been considered by many authors over

fields of positive characteristic (e.g., [4], [6], [8]) and over fields of character-
istic zero (e.g., [1], [5]). We shall show that any derivation of W(G, I) is a sum
of a locally inner derivation and a derivation of degree zero (Theorem 1).
In the case of G = 0 l - e / Z f the Lie algebra W(G, I) has only locally inner
derivations, in particular if | / | < oo then the derivations of W(G, I) are inner
(Theorem 2). Concerning the above results it is known that if G is a group
and L is a finitely generated G-graded Lie algebra which admits a weight space
decomposition ®fl6G A* with finite dimensional La, then a derivation of L is a
sum of inner derivation and a derivation of degree zero [2, p. 36].

For every aeG let Wa be the subspace of W spanned by {w(a,i)\ie I}.
We say that a derivation d of W(G, I) has degree b if WaS a Wa+b for any aeG,
and hence every Wa is invariant under a derivation of degree zero. Let L be a
Lie algebra over !. A derivation 3 of L is a locally inner derivation if for any
finite subset F of L there exist a finite-dimensional subspace V of L containing
F and xeW such that 8\v = adx\v [3]. We denote by Der (L), Inn (L),
Lin (L) and Der (L)o respectively the derivations of L, the inner derivations of
L, the locally inner derivations of L and the derivations of L of degree zero.
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2. The derivations of W(G, I)

Let S be a derivation of W(G, I), and suppose that

(2.1) w(a9i)d= X c(a,i;s9h)w(s9h) (aeGJel),
seG,heI

where c(a, i; s, h) e f and is equal to 0 except for a finite number of s and
h. Since

(2.2) [w(0, 0, w(0,;)] = 0 (Ujel),

we have

(2.3) 0 = [w(0, i)d, w(0, j)] + [w(0, i), w(0, ;)5]

= X c(°>';s ' ft) Cw(s' *0> w ( ° ' J)] - Z c(0,;; 5, fc) [w(5, fc), w(0, i)]
seG,heI seG,heI

seG,/ie/

Hence if st ̂  0 and s7 # 0, then

( 2 4 ) c(0,i;s9h) = c(0J;s,h)
St Sj

If s # 0 then st ̂  0 for some U and we can put

(2.5) a ( ^ ) = - ^ | ^ (fcei),

which is well defined by (2.4). For each s / O w e have

(2.6) a(s, *) = 0

except for a finite number of h. Thus we can define an element

(2.7) xs = X «& *)w(s, fc)

of W(G, I) for s e G\{0}.
We observe that coefficients c(a, i; s, h) satisfy several relations. Applying

d to

(2.8) [w(a, i), w(0, 7)] = fl/w(fl, i) (a e G, i, j

we have

(2.9) X a,-c(a, i; 5, h)w(s9 h)
seG.hel

= [w(a, i)8, w(0, ;)] + [w(a, i), w(0, j)
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= £ c(a, i; s, h) [w(s, h\ w(0, j)']
seG,heI

- £ c(O,;;s,A)[w(s,fc),w(a,i)]

= J] SjC(a, i\ s, /i)w(s, /i)
seG,heI

- £ c (° ' ./; s> ft)(5iw(a + «»*) ( o)

Sjc(a, i; s, h)w(s, /i) + £ (a 4- s),-c(a, i; a 4- s, fi)w(a + s,
seG,heI

£ s^CO,;; s, fc)w(a + s, ft) + X! a/.c(°» ̂  s' ft)w(a + s» 0
seG,heI seG,heI

57.c(a, 1; 5, h)w(s, h)

X! ( ( a + 5 ) j c ( a ' J ' <* + s9h)- 5 fc(0, j ; 5, /i))w(« + 5, h)
seG,heI

seG./ie/

It follows that

(2.10) ajc(a, i; s, h) = Sjcfa i; s,h) (s$a + G ) ,

(2.11) ajC(a, i; a + s,h) = (a + s)jc(a, i; a + s, h) - sfc(0, ;'; s, ft) (/1 # i ) ,

(2.12) flyctfl, i; a + s, 0 = (a + ^^(a, i; a + s, i) - stc(09 j ; s, i) + X fl*c(°» 7'; 5, h).
be/

If s <£ a + G then a} ± Sj for some ;. Hence by (2.10)

(2.13) c(a,i;s9h) = 0 (s$a + G)9

and from (2.11) and (2.12)

(2.14) sjc(a, i; a + s , h ) = 5 f c ( 0 , j ; s , h) (i, j , h e l 9 h ^ i ) ,

(2.15) Sjc(a9 i; a + s, i) = s,c(0, j ; s, i) - £ ahc(0, j ; s, h) (i, ; e / ) .

/IG/

We note here that (2.1) can be written by (2.13) as follows:

(2.16) w ( a j ) 5 = YJ c(a, i; a + s , h)w(a + s , h) ( a e G , i e I ) .

seG,heI

If h 7* i and st # 0, then by (2.14) we have

(2.17) c(a, i; a + s,h) = c(0, i; s, h).
If h T̂  U s / 0 and s£ = 0, then s7- / 0 for some 7, and from (2.14) we have
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(2.18) c(a,i;a + s,li) = 0 .

Hence by (2.17), (2.18) and (2.5) we obtain

(2.19) c(a, i; a + s,h) = -s,a(s, h) (s # 0, h * i).

If h = i and st ^ 0, then by (2.15) we have

(2.20) c(a, i; a + s, i) = c(0, i; 5, i) - X - c ( 0 , i; s, fc).
he I S(

If /i = i, 5 7̂  0 and Sf = 0, then s7- # 0 for some j , and from (2.15) we have

(2.21) c(a, i; a + 5, i) = - £ ^ c ( 0 , 7; s, fc).

Hence by (2.20), (2.21) and (2.5) we obtain

(2.22) c(o, i; a + s, i) = -s fa(s, i) + X a*a(s> ft) (s # 0).
/is/

Now we consider a locally inner derivation of W(G, I). For any fixed
ae G and is I we put

(2.23) Sfl(i = {5 G G\{0} I c(a, 1; a -h s, fc) ̂  0 for some he I}.

Clearly SaJ is a finite subset of G, and we can define a linear m a p J : W(G, I) - •

, /) as follows:

(2.24)

where S = Sa?( and xs = £/ , e /a(s, h)w(s, h) as in (2.7). Let T be a finite subset
of G\{0} which contains S = SaJ. Then we have

(2.25) w(a, i) a

^ a(s, /i)(a^w(a + s, i) - s^a + 5, h))
seT,heI

seT \

X c(a, i; fl + s, A)w(a + s, A) (by (2.19) and (2.22))
seT,heI

^ c(^, /; a + s, /i)w(a + s, /z).
seT,heI
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For any finite subset F of W(G, I) we can take a finite number of w(a, i) which
span a subspace of W(G, I) containing F. Let T be a finite subset of G\{0}
containing the corresponding SfljI-'s. Then by (2.24) and (2.25) we have

(2.26) ^ = y a d ( X x)\ (y e F),

and (5 is a locally inner derivation of W(G91).
We conclude by (2.16) and (2.26) that for any aeG and i e I

(2.27) w(a, i)8 = £ c(a9 i; a + s, h)w(a + s, h)
seG,heI

= YJ c(a> *; a> fc)w(fl, fe) + X c( a> l ' a + s ' h)w(a + s, /i)
Ae/ seS,heI

= J] c(a, i; a, h)w(a, h) + w(a9 i)d ,
hel

and that 3 — 3 is a derivation of degree 0. If | / | is finite, then

(2.28) x= X 0L(s9hMs9h)
s^O,heJ

is an element of W(G, /), since for each hel the coefficients a(s, h) are 0 except
for a finite number of 5. It is easy to see that 3 — ad x is a derivation of degree
0 in a similar way to (2.25) and (2.27). Thus we have the following

THEOREM 1. Let G be an additive submonoid of\\isIlt, and let W =
W(G, I). Then

Der (W) = Lin (W) + Der (W)o .

Furthermore if \I\ is finite, then

Der (W) = Inn (W) + Der (W)o .

3. The case of G = 0 Z,

In this section we consider a degree zero derivation 3 of W(G, /).
Throughout this section we assume that G = @ieIZt is a direct sum of Zh

where Zt is a copy of Z and / is not necessarily a finite set. Suppose that

(3.1) w(a, i)<5 = X c(o, i, fc)w(fl, fc) (a eGJel),
hel

where c(a, i9 h)et and is equal to 0 except for a finite number of h.
We shall show that w(a, i)<5 = c(a, i9 i)w(a, i). We assume that | / | > 2 since

the assertion is obvious for | / | = 1. Since

(3.2) [w(a, 0, w(6, 0 ] = (fl4 - bt)w{a + fc, i) (a, 6 e G, i e / ) ,
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we have

(3.3) (at - ft>(a + b, i)d = [w(a, i)d9w(b9 i)] + [w(a, i), w(ft, i)«] •

Hence by (3.1)

(3.4) £ (a, - Wcfo + 6, U h)w(a + ft, ft)
hel

> w(ft> 0 ] - I c(fc, i, ft)[w(ft, ft), w(a, i)]
/ie/

a, i, fc)(fliW(fl + b9 h) - bhw(a + h, 0)

6, fc) - a,w(a + b, i))
hel

= X toc(fl, i, fc) - biC(b, U h))w(a + ft, h)
hel

+ X (**<#, U h) - ^c(a, i, h))w(a + ft, i ) .
hel

It follows that

(3.5) {at - b^cia + ft, i, h) = atc(a, i, fc) - ftfc(ft, i, A) (h # i) ,

(3.6) (aj - ftf)c(a + ft, i, i) = a£c(a, i, i) - ftfc(ft, i, i) -h ^ (^c(ft, i, /i) - bhc(a, i, h))
hel

= (at - fcf)(c(a, i, 0 + c(ft, i, 0)

+ Z (a*c(fc> ^ ft) - bhc{a, i, h)).
h^i

Suppose that at # 0. If af = ftf then from (3.5)

(3.7) c(a, U h) = c(ft, i, h) (h * i).

Let h ^ i and choose an element ft e G such that ftfc ^ a,, and ftf = az for / # ft.
Then by (3.6) and (3.7)

(3.8) ahc{b9 i, ft) - ft,c(a, i, ft) = (^ - bh)c(a, i, ft) = 0 ,

whence

(3.9) c(fl, i, ft) = 0 fa * 0, ft * i) .

Suppose that af = 0. Let f̂ be an element of G with the i-th component is 1
and the other components are 0. Then

(3.10) [_w(a + ei9 i), w( -e , , i)] = 2w(a, i) .

Applying <5 to (3.10) we have by (3.9)
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(3.11) 2 £ c(a, i, h)w(a, h) = c(a + ei9 i9 OIX* + ei9 i), w{-ei9 *)]
hel

+ c(-ei9 i, i)[w(a + ei9 i), w(-eh i)]

= 2(c(a + ef, i9 i) - c{ei9 i, i))w(a, i),

whence

(3.12) c ( a , i 9 h ) = 0 (ai = O 9 h = t i ) .

Thus by (3.9) and (3.12)

(3.13) w(a, i)d = c(a, i, i)w(a, i)

and it follows from (3.6) that

(3.14) c(a + b, U 0 = c(a, U 0 + c(b9 i, i) (^ ^ 6,).

Now we may assume from (3.13) and (3.14) that

(3.15) w(a, i)S = c(a, i)w(a, i),

where c(a, i) e f, and that

(3.16) c(a + b, i) = c(a, i) + c(b, i) (at * bt).

We show that (3.16) holds even for a( = b{. Let at = bt and choose d e G such
that dt # 0, ai9 2a{. Then by (3.16) we have

(3.17) c(a + b, i) + c(d, i) = c{a + b + d, i) = c(a, i) + c(b + d, i)

= c(a9 i) + c(6, i) + c(d9 i).

Therefore

(3.18) c(a + b9 i) = c(a, i) + c(b, i) (a, beGJel),

and c(-, i): G -» f+ is a homomorphism.
We claim that

(3.19) c(a9i) = c(aj) (aeGJJel).

Since

(3.20) [wfo, i), w(gfc, h)] = w(2efc> i) (h # i ) ,

(3.21) w(2eh, i)5 = c(2^fc, i)w(2eh, i) = 2c(^, i)w(2eJk, i)

and

(3.22) [W(efc, 0, w(^, h)18 = (c(eh9 i) + cfo, fc)) [w(^, f), w(eh, ft)]

i) + c(ek9 h))w{2eh9 i),
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we have c(eh, h) = c(eh9 i) for any h ^ i, which holds clearly for h = i. Thus

(3.23) c(eh, i) = c(eh9 h) ( i , h e I ) .

Since G is generated by {ef | i e 1} and c(-, i) is a homomorphism, we have (3.19)
from (3.23).

From (3.15) and (3.19) we can put

(3.24) w(a , i)S = c(a)w(a, i) (a e G , i e I ) ,

where c: G -• ! + is a homomorphism. For any finite subset F of W(G, /) there
exists a finite subset J of / satisfying

(3.25) F £ 0 f l e S » ; ,

where

(3.26) 5 = {a = (ah)heI e G \ ah = 0 for any h e I\J} .

Put

(3.27) x=
jeJ

and let y = Y,aeGya be any element of F, where yaeWa. Then by (3.24)

(3.28) 3rf= £ j a 5 = £ c{a)ya9
aeG aeG

and on the other hand

(3.29) y ad x = £ c(^) [yfl, w(0, ; ) ] = £ af(e^)ya = £ c(a)yfl
aeG,jeJ aeGJeJ aeG

since c: G -» ! + is a homomorphism. Therefore

(3.30) yd = y ad x (ysF)9

and <5 is a locally inner derivation of W(G, I).
In the case of G = Z" we put

(3.31) x = t c(et)w(09i).
i = l

In a similar way to the above we have d = ad x, and <5 is an inner derivation of
W(G, I).

Thus by using Theorem 1 and [5, Corollary 3.3] we have the following

THEOREM 2. Let G = 0 i 6 / Z , , and let W = W(G, I). Then W is simple
and

Der (W) = Lin (W).
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In particular if \I\ is finite and G = Z", then

Der (W) = Inn {W).

REMARK. In Theorem 2 if | / | = oo, then Der (W) / Inn (W) in general.
For example, a derivation d can be defined by

w(a, i)5 =
\hel

since a e ®f 6 jZ f . But 5 is not an inner derivation. A Lie algebra sl(oo, I) =
(JBsl(n, I) is another example of a locally finite simple Lie algebra [7], and it is
not hard to see that sl(oo, f) has an outer derivation.
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