On the derivations of generalized Witt algebras over a field of characteristic zero

Dedicated to the memory of Professor Shigeaki Tôgô
Toshiharu Ikeda and Naoki Kawamoto
(Received January 13, 1989)

1. Introduction

In this paper we consider the derivations of a generalized Witt algebra $W(G, I)$ over a field \mathfrak{f} of characteristic zero, where I is a non-empty index set, G is an additive submonoid of $\prod_{i \in I} \mathfrak{f}_{i}^{+}$, and $\mathfrak{f}_{i}^{+}(i \in I)$ are copies of the additive group \mathfrak{f}^{+}. $W(G, I)$ is a Lie algebra which has a basis $\{w(a, i) \mid a \in G, i \in I\}$ and the multiplication

$$
[w(a, i), w(b, j)]=a_{j} w(a+b, i)-b_{i} w(a+b, j),
$$

where $i, j \in I$ and $a=\left(a_{i}\right)_{i \in I}, b=\left(b_{i}\right)_{i \in I} \in G$.
Generalized Witt algebras have been considered by many authors over fields of positive characteristic (e.g., [4], [6], [8]) and over fields of characteristic zero (e.g., [1], [5]). We shall show that any derivation of $W(G, I)$ is a sum of a locally inner derivation and a derivation of degree zero (Theorem 1). In the case of $G=\bigoplus_{i \in I} Z_{i}$ the Lie algebra $W(G, I)$ has only locally inner derivations, in particular if $|I|<\infty$ then the derivations of $W(G, I)$ are inner (Theorem 2). Concerning the above results it is known that if G is a group and L is a finitely generated G-graded Lie algebra which admits a weight space decomposition $\bigoplus_{a \in G} L_{a}$ with finite dimensional L_{a}, then a derivation of L is a sum of inner derivation and a derivation of degree zero [2, p. 36].

For every $a \in G$ let W_{a} be the subspace of W spanned by $\{w(a, i) \mid i \in I\}$. We say that a derivation δ of $W(G, I)$ has degree b if $W_{a} \delta \subset W_{a+b}$ for any $a \in G$, and hence every W_{a} is invariant under a derivation of degree zero. Let L be a Lie algebra over \mathfrak{f}. A derivation δ of L is a locally inner derivation if for any finite subset F of L there exist a finite-dimensional subspace V of L containing F and $x \in W$ such that $\left.\delta\right|_{V}=\left.\operatorname{ad} x\right|_{V}$ [3]. We denote by $\operatorname{Der}(L)$, $\operatorname{Inn}(L)$, $\operatorname{Lin}(L)$ and $\operatorname{Der}(L)_{0}$ respectively the derivations of L, the inner derivations of L, the locally inner derivations of L and the derivations of L of degree zero.

2. The derivations of $W(G, I)$

Let δ be a derivation of $W(G, I)$, and suppose that

$$
\begin{equation*}
w(a, i) \delta=\sum_{s \in G, h \in I} c(a, i ; s, h) w(s, h) \quad(a \in G, i \in I) \tag{2.1}
\end{equation*}
$$

where $c(a, i ; s, h) \in f$ and is equal to 0 except for a finite number of s and h. Since

$$
\begin{equation*}
[w(0, i), w(0, j)]=0 \quad(i, j \in I), \tag{2.2}
\end{equation*}
$$

we have
(2.3) $0=[w(0, i) \delta, w(0, j)]+[w(0, i), w(0, j) \delta]$

$$
\begin{aligned}
& =\sum_{s \in G, h \in I} c(0, i ; s, h)[w(s, h), w(0, j)]-\sum_{s \in G, h \in I} c(0, j ; s, h)[w(s, h), w(0, i)] \\
& =\sum_{s \in G, h \in I}\left(s_{j} c(0, i ; s, h)-s_{i} c(0, j ; s, h)\right) w(s, h)
\end{aligned}
$$

Hence if $s_{i} \neq 0$ and $s_{j} \neq 0$, then

$$
\begin{equation*}
\frac{c(0, i ; s, h)}{s_{i}}=\frac{c(0, j ; s, h)}{s_{j}} . \tag{2.4}
\end{equation*}
$$

If $s \neq 0$ then $s_{i} \neq 0$ for some i, and we can put

$$
\begin{equation*}
\alpha(s, h)=-\frac{c(0, i ; s, h)}{s_{i}} \quad(h \in I), \tag{2.5}
\end{equation*}
$$

which is well defined by (2.4). For each $s \neq 0$ we have

$$
\begin{equation*}
\alpha(s, h)=0 \tag{2.6}
\end{equation*}
$$

except for a finite number of h. Thus we can define an element

$$
\begin{equation*}
x_{s}=\sum_{h \in I} \alpha(s, h) w(s, h) \tag{2.7}
\end{equation*}
$$

of $W(G, I)$ for $s \in G \backslash\{0\}$.
We observe that coefficients $c(a, i ; s, h)$ satisfy several relations. Applying δ to

$$
\begin{equation*}
[w(a, i), w(0, j)]=a_{j} w(a, i) \quad(a \in G, i, j \in I) \tag{2.8}
\end{equation*}
$$

we have

$$
\begin{align*}
& \sum_{s \in \boldsymbol{G}, h \in I} a_{j} c(a, i ; s, h) w(s, h) \tag{2.9}\\
= & {[w(a, i) \delta, w(0, j)]+[w(a, i), w(0, j) \delta] }
\end{align*}
$$

$$
\begin{aligned}
= & \sum_{s \in G, h \in I} c(a, i ; s, h)[w(s, h), w(0, j)] \\
& -\sum_{s \in G, h \in I} c(0, j ; s, h)[w(s, h), w(a, i)] \\
= & \sum_{s \in G, h \in I} s_{j} c(a, i ; s, h) w(s, h) \\
& -\sum_{s \in G, h \in I} c(0, j ; s, h)\left(s_{i} w(a+s, h)-a_{h} w(a+s, i)\right) \\
= & \sum_{s \notin a+G, h \in I} s_{j} c(a, i ; s, h) w(s, h)+\sum_{s \in G, h \in I}(a+s)_{j} c(a, i ; a+s, h) w(a+s, h) \\
& -\sum_{s \in G, h \in I} s_{i} c(0, j ; s, h) w(a+s, h)+\sum_{s \in G, h \in I} a_{h} c(0, j ; s, h) w(a+s, i) \\
= & \sum_{s \notin a+G, h \in I} s_{j} c(a, i ; s, h) w(s, h) \\
& +\sum_{s \in G, h \in I}\left((a+s)_{j} c(a, i ; a+s, h)-s_{i} c(0, j ; s, h)\right) w(a+s, h) \\
& +\sum_{s \in \sum_{G, h \in I}} a_{h} c(0, j ; s, h) w(a+s, i) .
\end{aligned}
$$

It follows that

$$
\begin{align*}
a_{j} c(a, i ; s, h) & =s_{j} c(a, i ; s, h) \quad(s \notin a+G), \tag{2.10}\\
a_{j} c(a, i ; a+s, h) & =(a+s)_{j} c(a, i ; a+s, h)-s_{i} c(0, j ; s, h) \quad(h \neq i), \tag{2.11}\\
a_{j} c(a, i ; a+s, i) & =(a+s)_{j} c(a, i ; a+s, i)-s_{i} c(0, j ; s, i)+\sum_{h \in I} a_{h} c(0, j ; s, h) .
\end{align*}
$$

If $s \notin a+G$ then $a_{j} \neq s_{j}$ for some j. Hence by (2.10)

$$
\begin{equation*}
c(a, i ; s, h)=0 \quad(s \notin a+G), \tag{2.13}
\end{equation*}
$$

and from (2.11) and (2.12)

$$
\begin{align*}
& s_{j} c(a, i ; a+s, h)=s_{i} c(0, j ; s, h) \quad(i, j, h \in I, h \neq i), \tag{2.14}\\
& s_{j} c(a, i ; a+s, i)=s_{i} c(0, j ; s, i)-\sum_{h \in I} a_{h} c(0, j ; s, h) \quad(i, j \in I) .
\end{align*}
$$

We note here that (2.1) can be written by (2.13) as follows:

$$
\begin{equation*}
w(a, i) \delta=\sum_{s \in G, h \in I} c(a, i ; a+s, h) w(a+s, h) \quad(a \in G, i \in I) . \tag{2.16}
\end{equation*}
$$

If $h \neq i$ and $s_{i} \neq 0$, then by (2.14) we have

$$
\begin{equation*}
c(a, i ; a+s, h)=c(0, i ; s, h) . \tag{2.17}
\end{equation*}
$$

If $h \neq i, s \neq 0$ and $s_{i}=0$, then $s_{j} \neq 0$ for some j, and from (2.14) we have

$$
\begin{equation*}
c(a, i ; a+s, h)=0 \tag{2.18}
\end{equation*}
$$

Hence by (2.17), (2.18) and (2.5) we obtain

$$
\begin{equation*}
c(a, i ; a+s, h)=-s_{i} \alpha(s, h) \quad(s \neq 0, h \neq i) \tag{2.19}
\end{equation*}
$$

If $h=i$ and $s_{i} \neq 0$, then by (2.15) we have

$$
\begin{equation*}
c(a, i ; a+s, i)=c(0, i ; s, i)-\sum_{h \in I} \frac{a_{h}}{s_{i}} c(0, i ; s, h) \tag{2.20}
\end{equation*}
$$

If $h=i, s \neq 0$ and $s_{i}=0$, then $s_{j} \neq 0$ for some j, and from (2.15) we have

$$
\begin{equation*}
c(a, i ; a+s, i)=-\sum_{h \in I} \frac{a_{h}}{s_{j}} c(0, j ; s, h) \tag{2.21}
\end{equation*}
$$

Hence by (2.20), (2.21) and (2.5) we obtain

$$
\begin{equation*}
c(a, i ; a+s, i)=-s_{i} \alpha(s, i)+\sum_{h \in I} a_{h} \alpha(s, h) \quad(s \neq 0) \tag{2.22}
\end{equation*}
$$

Now we consider a locally inner derivation of $W(G, I)$. For any fixed $a \in G$ and $i \in I$ we put

$$
\begin{equation*}
S_{a, i}=\{s \in G \backslash\{0\} \mid c(a, i ; a+s, h) \neq 0 \text { for some } h \in I\} \tag{2.23}
\end{equation*}
$$

Clearly $S_{a, i}$ is a finite subset of G, and we can define a linear map $\hat{\delta}: W(G, I) \rightarrow$ $W(G, I)$ as follows:

$$
\begin{equation*}
w(a, i) \hat{\delta}=w(a, i) \operatorname{ad}\left(\sum_{s \in S} x_{s}\right) \tag{2.24}
\end{equation*}
$$

where $S=S_{a, i}$ and $x_{s}=\sum_{h \in I} \alpha(s, h) w(s, h)$ as in (2.7). Let T be a finite subset of $G \backslash\{0\}$ which contains $S=S_{a, i}$. Then we have

$$
\begin{align*}
& w(a, i) \mathrm{ad}\left(\sum_{s \in T} x_{s}\right) \tag{2.25}\\
= & \sum_{s \in T, h \in I} \alpha(s, h)[w(a, i), w(s, h)] \\
= & \sum_{s \in T, h \in I} \alpha(s, h)\left(a_{h} w(a+s, i)-s_{i} w(a+s, h)\right) \\
= & \sum_{s \in T}\left(\sum_{h \neq i}\left(-s_{i}\right) \alpha(s, h) w(a+s, h)+\left(-s_{i} \alpha(s, i)+\sum_{h} a_{h} \alpha(s, h)\right) w(a+s, i)\right) \\
= & \sum_{s \in T, h \in I} c(a, i ; a+s, h) w(a+s, h) \quad \text { (by (2.19) and (2.22)) } \\
= & \sum_{s \in T, h \in I} c(a, i ; a+s, h) w(a+s, h) .
\end{align*}
$$

For any finite subset F of $W(G, I)$ we can take a finite number of $w(a, i)$ which span a subspace of $W(G, I)$ containing F. Let T be a finite subset of $G \backslash\{0\}$ containing the corresponding $S_{a, i}$'s. Then by (2.24) and (2.25) we have

$$
\begin{equation*}
y \hat{\delta}=y \operatorname{ad}\left(\sum_{s \in T} x_{s}\right) \quad(y \in F) \tag{2.26}
\end{equation*}
$$

and $\hat{\delta}$ is a locally inner derivation of $W(G, I)$.
We conclude by (2.16) and (2.26) that for any $a \in G$ and $i \in I$

$$
\begin{align*}
w(a, i) \delta & =\sum_{s \in G, h \in I} c(a, i ; a+s, h) w(a+s, h) \tag{2.27}\\
& =\sum_{h \in I} c(a, i ; a, h) w(a, h)+\sum_{s \in S, h \in I} c(a, i ; a+s, h) w(a+s, h) \\
& =\sum_{h \in I} c(a, i ; a, h) w(a, h)+w(a, i) \hat{\delta}
\end{align*}
$$

and that $\delta-\hat{\delta}$ is a derivation of degree 0 . If $|I|$ is finite, then

$$
\begin{equation*}
x=\sum_{s \neq 0, h \in I} \alpha(s, h) w(s, h) \tag{2.28}
\end{equation*}
$$

is an element of $W(G, I)$, since for each $h \in I$ the coefficients $\alpha(s, h)$ are 0 except for a finite number of s. It is easy to see that $\delta-\mathrm{ad} x$ is a derivation of degree 0 in a similar way to (2.25) and (2.27). Thus we have the following

Theorem 1. Let G be an additive submonoid of $\prod_{i \in I} \mathfrak{I}_{i}^{+}$, and let $W=$ $W(G, I)$. Then

$$
\operatorname{Der}(W)=\operatorname{Lin}(W)+\operatorname{Der}(W)_{0}
$$

Furthermore if $|I|$ is finite, then

$$
\operatorname{Der}(W)=\operatorname{Inn}(W)+\operatorname{Der}(W)_{0}
$$

3. The case of $G=\oplus Z_{i}$

In this section we consider a degree zero derivation δ of $W(G, I)$. Throughout this section we assume that $G=\bigoplus_{i \in I} \boldsymbol{Z}_{i}$ is a direct sum of \boldsymbol{Z}_{i}, where \boldsymbol{Z}_{i} is a copy of \boldsymbol{Z} and I is not necessarily a finite set. Suppose that

$$
\begin{equation*}
w(a, i) \delta=\sum_{h \in I} c(a, i, h) w(a, h) \quad(a \in G, i \in I) \tag{3.1}
\end{equation*}
$$

where $c(a, i, h) \in f$ and is equal to 0 except for a finite number of h.
We shall show that $w(a, i) \delta=c(a, i, i) w(a, i)$. We assume that $|I| \geq 2$ since the assertion is obvious for $|I|=1$. Since

$$
\begin{equation*}
[w(a, i), w(b, i)]=\left(a_{i}-b_{i}\right) w(a+b, i) \quad(a, b \in G, i \in I), \tag{3.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(a_{i}-b_{i}\right) w(a+b, i) \delta=[w(a, i) \delta, w(b, i)]+[w(a, i), w(b, i) \delta] \tag{3.3}
\end{equation*}
$$

Hence by (3.1)

$$
\begin{align*}
& \sum_{h \in I}\left(a_{i}-b_{i}\right) c(a+b, i, h) w(a+b, h) \tag{3.4}\\
= & \sum_{h \in I} c(a, i, h)[w(a, h), w(b, i)]-\sum_{h \in I} c(b, i, h)[w(b, h), w(a, i)] \\
= & \sum_{h \in I} c(a, i, h)\left(a_{i} w(a+b, h)-b_{h} w(a+b, i)\right) \\
& -\sum_{h \in I} c(b, i, h)\left(b_{i} w(a+b, h)-a_{h} w(a+b, i)\right) \\
= & \sum_{h \in I}\left(a_{i} c(a, i, h)-b_{i} c(b, i, h)\right) w(a+b, h) \\
& +\sum_{h \in I}\left(a_{h} c(b, i, h)-b_{h} c(a, i, h)\right) w(a+b, i) .
\end{align*}
$$

It follows that

$$
\begin{align*}
\left(a_{i}-b_{i}\right) c(a+b, i, h)= & a_{i} c(a, i, h)-b_{i} c(b, i, h) \quad(h \neq i) \tag{3.5}\\
\left(a_{i}-b_{i}\right) c(a+b, i, i)= & a_{i} c(a, i, i)-b_{i} c(b, i, i)+\sum_{h \in I}\left(a_{h} c(b, i, h)-b_{h} c(a, i, h)\right) \\
= & \left(a_{i}-b_{i}\right)(c(a, i, i)+c(b, i, i)) \\
& +\sum_{h \neq i}\left(a_{h} c(b, i, h)-b_{h} c(a, i, h)\right)
\end{align*}
$$

Suppose that $a_{i} \neq 0$. If $a_{i}=b_{i}$ then from (3.5)

$$
\begin{equation*}
c(a, i, h)=c(b, i, h) \quad(h \neq i) \tag{3.7}
\end{equation*}
$$

Let $h \neq i$ and choose an element $b \in G$ such that $b_{h} \neq a_{h}$ and $b_{l}=a_{l}$ for $l \neq h$. Then by (3.6) and (3.7)

$$
\begin{equation*}
a_{h} c(b, i, h)-b_{h} c(a, i, h)=\left(a_{h}-b_{h}\right) c(a, i, h)=0, \tag{3.8}
\end{equation*}
$$

whence

$$
\begin{equation*}
c(a, i, h)=0 \quad\left(a_{i} \neq 0, h \neq i\right) \tag{3.9}
\end{equation*}
$$

Suppose that $a_{i}=0$. Let e_{i} be an element of G with the i-th component is 1 and the other components are 0 . Then

$$
\begin{equation*}
\left[w\left(a+e_{i}, i\right), w\left(-e_{i}, i\right)\right]=2 w(a, i) \tag{3.10}
\end{equation*}
$$

Applying δ to (3.10) we have by (3.9)

$$
\begin{align*}
2 \sum_{h \in I} c(a, i, h) w(a, h)= & c\left(a+e_{i}, i, i\right)\left[w\left(a+e_{i}, i\right), w\left(-e_{i}, i\right)\right] \tag{3.11}\\
& +c\left(-e_{i}, i, i\right)\left[w\left(a+e_{i}, i\right), w\left(-e_{i}, i\right)\right] \\
= & 2\left(c\left(a+e_{i}, i, i\right)-c\left(e_{i}, i, i\right)\right) w(a, i),
\end{align*}
$$

whence

$$
\begin{equation*}
c(a, i, h)=0 \quad\left(a_{i}=0, h \neq i\right) . \tag{3.12}
\end{equation*}
$$

Thus by (3.9) and (3.12)

$$
\begin{equation*}
w(a, i) \delta=c(a, i, i) w(a, i) \tag{3.13}
\end{equation*}
$$

and it follows from (3.6) that

$$
\begin{equation*}
c(a+b, i, i)=c(a, i, i)+c(b, i, i) \quad\left(a_{i} \neq b_{i}\right) . \tag{3.14}
\end{equation*}
$$

Now we may assume from (3.13) and (3.14) that

$$
\begin{equation*}
w(a, i) \delta=c(a, i) w(a, i) \tag{3.15}
\end{equation*}
$$

where $c(a, i) \in \mathfrak{f}$, and that

$$
\begin{equation*}
c(a+b, i)=c(a, i)+c(b, i) \quad\left(a_{i} \neq b_{i}\right) . \tag{3.16}
\end{equation*}
$$

We show that (3.16) holds even for $a_{i}=b_{i}$. Let $a_{i}=b_{i}$ and choose $d \in G$ such that $d_{i} \neq 0, a_{i}, 2 a_{i}$. Then by (3.16) we have

$$
\begin{align*}
c(a+b, i)+c(d, i) & =c(a+b+d, i)=c(a, i)+c(b+d, i) \tag{3.17}\\
& =c(a, i)+c(b, i)+c(d, i) .
\end{align*}
$$

Therefore

$$
\begin{equation*}
c(a+b, i)=c(a, i)+c(b, i) \quad(a, b \in G, i \in I) \tag{3.18}
\end{equation*}
$$

and $c(\cdot, i): G \rightarrow \mathbf{i}^{+}$is a homomorphism.
We claim that

$$
\begin{equation*}
c(a, i)=c(a, j) \quad(a \in G, i, j \in I) \tag{3.19}
\end{equation*}
$$

Since

$$
\begin{gather*}
{\left[w\left(e_{h}, i\right), w\left(e_{h}, h\right)\right]=w\left(2 e_{h}, i\right) \quad(h \neq i),} \tag{3.20}\\
w\left(2 e_{h}, i\right) \delta=c\left(2 e_{h}, i\right) w\left(2 e_{h}, i\right)=2 c\left(e_{h}, i\right) w\left(2 e_{h}, i\right) \tag{3.21}
\end{gather*}
$$

and

$$
\begin{align*}
{\left[w\left(e_{h}, i\right), w\left(e_{h}, h\right)\right] \delta } & =\left(c\left(e_{h}, i\right)+c\left(e_{h}, h\right)\right)\left[w\left(e_{h}, i\right), w\left(e_{h}, h\right)\right] \tag{3.22}\\
& =\left(c\left(e_{h}, i\right)+c\left(e_{h}, h\right)\right) w\left(2 e_{h}, i\right),
\end{align*}
$$

we have $c\left(e_{h}, h\right)=c\left(e_{h}, i\right)$ for any $h \neq i$, which holds clearly for $h=i$. Thus

$$
\begin{equation*}
c\left(e_{h}, i\right)=c\left(e_{h}, h\right) \quad(i, h \in I) . \tag{3.23}
\end{equation*}
$$

Since G is generated by $\left\{e_{i} \mid i \in I\right\}$ and $c(\cdot, i)$ is a homomorphism, we have (3.19) from (3.23).

From (3.15) and (3.19) we can put

$$
\begin{equation*}
w(a, i) \delta=c(a) w(a, i) \quad(a \in G, i \in I) \tag{3.24}
\end{equation*}
$$

where $c: G \rightarrow \mathrm{i}^{+}$is a homomorphism. For any finite subset F of $W(G, I)$ there exists a finite subset J of I satisfying

$$
\begin{equation*}
F \subseteq \bigoplus_{a \in S} W_{a}, \tag{3.25}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\left\{a=\left(a_{h}\right)_{h \in I} \in G \mid a_{h}=0 \text { for any } h \in I \backslash J\right\} \tag{3.26}
\end{equation*}
$$

Put

$$
\begin{equation*}
x=\sum_{j \in J} c\left(e_{j}\right) w(0, j) \tag{3.27}
\end{equation*}
$$

and let $y=\sum_{a \in G} y_{a}$ be any element of F, where $y_{a} \in W_{a}$. Then by (3.24)

$$
\begin{equation*}
y \delta=\sum_{a \in G} y_{a} \delta=\sum_{a \in G} c(a) y_{a}, \tag{3.28}
\end{equation*}
$$

and on the other hand

$$
\begin{equation*}
y \text { ad } x=\sum_{a \in G, j \in J} c\left(e_{j}\right)\left[y_{a}, w(0, j)\right]=\sum_{a \in G, j \in J} a_{j} c\left(e_{j}\right) y_{a}=\sum_{a \in G} c(a) y_{a} \tag{3.29}
\end{equation*}
$$

since $c: G \rightarrow \mathfrak{I}^{+}$is a homomorphism. Therefore

$$
\begin{equation*}
y \delta=y \operatorname{ad} x \quad(y \in F) \tag{3.30}
\end{equation*}
$$

and δ is a locally inner derivation of $W(G, I)$.
In the case of $G=Z^{n}$ we put

$$
\begin{equation*}
x=\sum_{i=1}^{n} c\left(e_{i}\right) w(0, i) \tag{3.31}
\end{equation*}
$$

In a similar way to the above we have $\delta=\operatorname{ad} x$, and δ is an inner derivation of $W(G, I)$.

Thus by using Theorem 1 and [5, Corollary 3.3] we have the following
Theorem 2. Let $G=\bigoplus_{i \in I} Z_{i}$, and let $W=W(G, I)$. Then W is simple and

$$
\operatorname{Der}(W)=\operatorname{Lin}(W)
$$

In particular if $|I|$ is finite and $G=\boldsymbol{Z}^{n}$, then

$$
\operatorname{Der}(W)=\operatorname{Inn}(W)
$$

Remark. In Theorem 2 if $|I|=\infty$, then $\operatorname{Der}(W) \neq \operatorname{Inn}(W)$ in general. For example, a derivation δ can be defined by

$$
w(a, i) \delta=\left(\sum_{h \in I} a_{h}\right) w(a, i),
$$

since $a \in \bigoplus_{i \in I} \boldsymbol{Z}_{i}$. But δ is not an inner derivation. A Lie algebra $\mathfrak{s l}(\infty, \mathfrak{f})=$ $\bigcup_{n} \mathfrak{s l}(n, \mathfrak{f})$ is another example of a locally finite simple Lie algebra [7], and it is not hard to see that $\mathfrak{s l}(\infty, f)$ has an outer derivation.

References

[1] R. K. Amayo and I. Stewart, Infiite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
[2] R. Farnsteiner, Derivations and central extensions of finitely generated graded Lie algebras, J. Algebra 118 (1988), 33-45.
[3] T. Ikeda, Locally inner derivations of ideally finite Lie algebras, Hiroshima Math. J. 17 (1987), 495-503.
[4] I. Kaplansky, Seminar on simple Lie algebras, Bull. Amer. Math. Soc. 60 (1954), 470-471.
[5] N. Kawamoto, Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J. 16 (1986), 417-426.
[6] R. Ree, On generalized Witt algebras, Trans. Amer. Math. Soc. 83 (1956), 510-546.
[7] S. Tôgô, Locally finite simple Lie algebras, Hiroshima Math. J. 14 (1984), 407-413.
[8] R. L. Wilson, Classification of generalized Witt algebras over algebraically closed fields, Trans. Amer. Math. Soc. 153 (1971), 191-210.

Department of Mathematics,
Faculty of Science,
Hiroshima University

