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On the reflexivity of certain fibered 3-knots
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§ 1. Introduction

Given AeGL(n, Z), A1 A denotes its i-fold exterior product with itself. Let
A satisfy the CS condition: n > 3, det ,4 = 1 and d e t ( Λ U - / ) = ± l for
1 < i < [«/2]. The mapping torus of a diffeomorphism on a torus Tn induced
by A is a homology S1 x Sn and has a unique loop up to isotopy whose
conjugates generate the fundamental group ([2]). Taking surgery on the loop
we get a pair of (n — l)-knots in homotopy (n + l)-spheres according to the
two framings. If these knots are equivalent, then the knot is called
reflexive. The reflexive knot is determined by its exterior. The criterion for
the reflexivity is given by Cappell-Shaneson.

PROPOSITION 1. (Cappell-Shaneson [2]) Let AεGL(n,Z) satisfy the CS
condition. Then the associated knot is reflexive if and only if there is a matrix
B e GL(n, Z) such that AB = BA and the restriction of B to the negative
eigenspace of A has negative determinant.

The purpose of this paper is to prove the following theorem by using
Cappell-Shaneson criterion and extending the technique of Hillman-Wilson [3].

THEOREM 2. Let A e GL(4, Z) satisfy the CS condition and det (A - I) = 1.
Then the characteristic polynomial fA(t) of A is either (1) ί4 + αf3 — 2(α + l)ί2

+ (α + l)ί + 1 or (1)' ί4 + at3 - 2at2 + (a - l)ί + 1 where a = - trace (A).
The associated knot is reflexive if and only if A is of type (1) and a = 0, or
A is of type (1)' and a = 1.

REMARK 1. The non-reflexivity of the case (1) with a < — 1 is noted in
[3].

REMARK 2. If det(Λ - /) = - 1, then fA(t) is either (2) ί4 + at3

- 2(a + 2)ί2 + (fl + l)ί + 1 or (2)' ί4 + αί3 - 2(a + l)ί2 + (a - l)ί + 1. The
reflexivity of the knot in this case is not completely determined yet.

Before closing the introduction we note that the characteristic polynomial
of A e GL(n, Z) satisfying the CS condition is irreducible. In fact, the CS

condition implies det (A1 A -1) = ± 1 for 1 < i < n — 1. By Newman [5, p. 50]
any square matrix A over Z is similar to some block triangular matrix
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, where each Ait (1 < ί < k) is a square matrix with irreducible

\ 0 AkJ
characteristic polynomial. If v4n is an / x / matrix, we have generators

{eι> ~>en} such that Λ^fci Λ -" Λel) = (detAll)(eί A --- Λ e^= ±l(eί A -•- Λ^).
So, det (A1 A — I) is even. This implies that / must be n, that is, fA(t) itself
is irreducible.

§2. Proof of Theorem 2

Let fA(t) = t4 + a^t3 + a2t
2 + 03ί + 1. Then det (A2 A - I) = - (a3 - a2)

2

= ± 1. If det (A - I ) = f A ( l ) = 1, we get the first part of Theorem 2. If A

is of type (1)' then/ι-ι(t) = ί4 + (α - l)ί3 - 2((α - 1) + l)ί2 + ((α - 1) + l)ί + 1
and A'1 is of type (1). Hence, we may assume that A is of type (1)
hereafter. It is not difficult to check the following

LEMMA 2.1. (1) fA(t) = t4 + at3 - 2(a + l)ί2 + (a + l)ί + 1 has negative
roots if and only if a > 0. If a > 0, there are two negative roots and the other
roots are not real.
(2) If a = 0, then B = A + / satisfies the reflexivity condition of Proposition 1.

By Proposition 1 and Lemma 2.1 it suffices to consider under the following
condition hereafter:

(*) /^W has two negative roots θ± and Θ2, and the other roots 03 and
04 are complex conjugate.

PROPOSITION 2.2. Assume that A satisfies the condition (*) and let
BeGL(n, Z) satisfy the condition of Proposition 1. Then fB(t) is irreducible and
B has just two real eigenvalues μα and μ2 corresponding to θ± and Θ2. In
particular det B = — 1

PROOF. Since fA(t) is irreducible, all eigenvalues of A are distinct. So,
there is a matrix P e GL(4, C) such that P ~ 1 AP is a diagonal matrix
diag(0 l9 Θ2, #3, #4). Because AB = BA, P~1BP is a diagonal matrix
diag(μ1? μ2, μ3, μ4). Note that each eigenvalue μt belongs to the extension
field Q(θι) of a corresponding eigenvalue θt for 1 < ί < 4. In fact, if xt be an
eigenvector of θt then 5xf = μ .̂ We can choose xf in Q(θi)

4' a C4. Because
B((Q(θi)4) c β(^)4, μ; must belong to Q(θi). In particular μl and μ2 are
real. Note that μ^ =£ μ2 because μxμ2 < 0. If fB(t) is irreducible, θ{ belongs
to Q(μi) and μ3 and μ4 can not be real. Assume now that fB(t) is not
irreducible. If fB(t) can be written fB(t) = g ι ( t ) g2(t) in the rational number
field and g 1 ( t ) and g2(t) are coprime, then β4 decomposes into ^ 0 V2 where
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\ί= Ker gt(B). Since g^B^A^)) = A(gί(B)(Vi)) = 0, we have A(Vt) c Vt. This
contradicts the irreducibility of fA(t). Using this it is easy to exclude the case
that fB(t) decomposes into the product of two polynomials which have a degree

one common factor. So, fB(i) must be a square of an irreducible polynomial

of degree 2. In this case not only μί9 μ2 and trace (AB) = Θiμ1 + Θ2μ2 + Θ3μ3

+ 04μ4 but also μ3 and μ4 are real numbers. Hence μ3 must be equal to

μ4, which implies μ1 = μ2. This contradicts the reflexivity condition.

q.e.d.

Let θ denote an eigenvalue of A and μ an eigenvalue of B corresponding

to θ. We denote R the ring of all integral elements in Q(θ) and U the group
of all units in R. The following lemma comes directly from Dirichlet's theorem
(cf. [1, p. 112]) and the condition (*).

LEMMA 2.3. U is isomorphic to Z2 x Z x Z as an abelian group.

The norm of an element φeQ(θ) is the determinant of the linear map
of the four-dimensional β-vector space Q(θ) to itself which maps x to

φx. Since the linear map corresponding to θ, θ — I and μ are represented

by A, A — I and B respectively, we see that θ and θ - 1 are unit of norm 1

in R and μ is a unit of norm — 1 in R by Proposition 2.2. Hence the

following lemma concludes a proof of Theorem 2.

LEMMA 2.4. Assume a > 1. There are no units in R of norm — 1.

To prove this lemma, we may take a negative θ, say θ^. We shall prove
the following

LEMMA 2.5. Assume a > 1. Then — θ, — (θ — 1), and θ(θ — 1) are not

square in R.

PROOF OF LEMMA 2.4 ASSUMING LEMMA 2.5. First note that θ and θ — 1

are independent in U. In fact, otherwise θk(θ — I)1 = ± 1 for some integers
fe, / with \k\ + I / | Φ 0. We may assume that \k\ + | / | is the minimum of such
integers. Put k = 2fc0 — ε and / = 2/0 — ε' where /c0, /0 are integers and ε, ε'

are 0 or 1. If ε = ε' = 0 then θk°(θ - l)l° = ± 1, which contradicts the

minimality. So, we can write ± θε(θ - l)ε' = (θk°(θ - l)ίo)2. Since the right-

hand side is positive, the left-hand side must be either - θ, — (θ — 1) or

θ(θ — 1) and this contradicts the Lemma 2.5. Hence θ and θ — 1 are

independent in U. Let G be the subgroup of U generated by ± 1, θ and

θ - 1. Then G is isomorphic to Z2 x Z x Z as a group and all the elements

of G have norm 1. Assume that there is μel/ of norm — 1. Because U is

isomorphic to Z2 x Z x Z, there exists a nonzero integer m such that
μ2 meG. We can assume |m| is the minimum of such integers. Then
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± θk(θ - I)' = μ2m for some integers fc, /. Put k = 2k0 - s and / = 2/0 - ε'

as before. If ε = ε' = 0, then 0k°(0 - 1)/0 = ± μm. But since the left-hand side

is of norm 1 and μ is of norm - 1, m must be 2m' for some integer nϊ. This

contradicts the minimality of |w|. Hence, ± θε(θ - l)ε' = (θk°(θ - l)'°μ~m)2.

Since μ e Q(θ) c /?, the right-hand side is positive. This leads to a

contradiction as before. q.e.d.

PROOF OF LEMMA 2.5. We have to prove three cases (i.e. - 0, - (θ — 1)

and θ(θ — 1)) independently. Since we can prove these cases by the same

kind of argument, we shall give a proof only for — θ here. Let f ( t ) be the

minimal polynomial of - 0, then f ( t ) = t4 - at3 - 2(a + l)ί2 - (a + l)ί + 1.

Let φ be a unit in R and assume φ2 = — θ, then φ is a root of the polynomial

g(t) = ts - at6 - 2(a + l)ί4 - (a + l)ί2 + 1. Because Q(φ) = Q(θ)9 the minimal

polynomial of φ has degree 4. Since all the terms of g(t) have even degree

and f ( t ) is irreducible, g(t) must be written as g(t) = (t4 + αί3 + βt2 + yt + δ)

(t4 — αί3 + βt2 — γt + δ)9 where α, /?, yeZ and (5 = — 1 or 1. By comparing

coefficients, we have 2β - α2 = - α, 2(5 - 2αy + β2 = - 2(α + 1) and 2<5β - y2

= - (a + 1). Hence, (7 - α)2 + β2 = 2((5 + l)(β - 1) + 1 and β is even. Since

7

2 - α2 = 1 + 2((5 - 1)J8 and 5 - ± 1, we have y2 - α2 = 1 and α = 0. This

leads to a contradiction: 0 < β2 < β2 + 2(δ + 1) = - 2a < - 2. q.e.d.
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