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Abstract: We are concerned with an ecological model described by a nonlinear

diffusion equation with a nonlocal convection. The conditions under which stationary

solutions exist are investigated. We also discuss the stability problem of stationary

solutions.

1. Introduction

Reaction-diffusion equations are widely used in the modelling in biology,
chemistry and other fields. Kawasaki [3] has proposed an ecological model
described by a nonlinear diffusion equation with a nonlocal convection. The
model of this type has been further studied by Nagai & Mimura [5], Mimura
& Ohara [4], Ikeda [2] in the whole line of/?1, whereas Ei [1] has considered
the model in the finite interval. In the latter case the equation of interest
takes the form

(1.1) ut = uxx - [(K*w)ι/L + F(ιι), xel = (- 1/2, 1/2)

subject to the boundary condition

(1.2) ux-(K*u)u = Q a t x = ± l / 2

and the initial condition

(1.3) ιι(x, 0) = u0(x) > 0, xe/.

Here u = u(t, x) denotes the population density at time t and the position
x. The convection term [(K*w)w]x corresponds to aggregating mechanism of

the population, where (K * u)(x) = K(x — y)u(y)dy and K(x) is an appropriate
Ji

odd function satisfying K(x) < 0 for x > 0.
A representative kernel K(x) is

(1.4) *(*) = { ye" (X<0)'; I - ye-1" (x > 0),

where y, β are nonnegative constants. One knows that when
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ί
i/2 Λ*

eβ(x~y)u(y)dy- e~β(χ-y}u(y)dy > 0 (resp. < 0)
.c J - l /2

the individuals move in the right (resp. left) direction, which means that the
individuals move in the direction of higher distribution. In this paper we

restrict the kernel K(x) to the above type.

The parameter β represents, so to speak, perception ability of the

species. When β = 0, the individual's movement depends evenly on the

information of the whole habitat, which is unrealistic from the biological point

of view. When β is large, the individual's movement depends heavily on the
nearby information.

The function F(u) represents the rate of growth of the population. In

this paper we assume that the growth process is much slower than the

dispersion process, so that we write the function F(u) as εf(u) with 0 < ε « 1

(For an ecological interpretation, see Shigesada [6]).
We are concerned with the asymptotic behaviour of solutions of (1.1),

(1.2), (1.3). The case of the simplest kernel (β = 0 in (1.4)) was analyzed in
[1]. It was shown there that the situation crucially depends on the choice

of the function f ( u ) and the kernel K(x).

We would like to find the global picture of stationary solutions of (1.1),
(1.2). In the rest of this section we specify f ( u ) to be a cubic function
w(l — u)(u — α), where 0 < a < 1, and fix y > 0.

When β = 0, the global picture of stationary solutions of (1.1), (1.2) with

respect to the parameter a is shown in Figure 1. There exsists 0 < α* < 1

depending on y such that for α* < a < 1 there is only one stable stationary

solution v0 = 0 and for 0 < a < α* there are two stable statinary solutions

VQ, v2 and one unstable stationary solution v1 (see [1]). When β tends to
infinity in (1.4), we formally obtain K(x) = 0. In this case (1.1) ~ (1.3) is a

simple semilinear parabolic equation with the homogeneous Neumann
boundary condition and we can also have complete global picture of stationary
solutions with respect to a as in Figure 2. Extending the results of [1] to
the case 0 < β < oo is the main concern of this paper.

The structure of stationary solutions of (1.1), (1.2) with respect to the
parameter β is an interesting problem. Our theoretical results and some

numerical simulations suggest that the global picture of stationary solutions
is as follows: There exists 0 < a*(β) < 1 depending on β such that for
a > a*(β) there is only one stationary solution u0 = 0 and for 0 < a < a*(β)

there are three stationary solutions V0,vl9v2 (see Figure 3). Figures 1 ~ 3
suggest that the global picture of the set of stationary solutions change

continuously with respect to β and that no structural changes occur irrespective
of the parameter β.
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α* 1
Figure 1. The global picture of stationary solutions of (1.1), (1.2) with respect to a

in the case β = 0, γ > 0, f(u) = u (1 - u)(u — a).

1

Figure 2. The global picture of stationary solutions of (1.1), (1.2) with respect to a

in the case β = oo, y > 0, f(u) =u(\ - u)(u - a).

α*(0)

Figure 3. The global picture of stationary solutions of (1.1), (1.2) with respect to a

in the case 0 < β < oo, y > 0, f(u) = u(l - u)(u - a).
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2. Main results

Throughout this paper, we assume that fe C2 (R) and /(O) > 0. Let v be

a stationary solution of (1.1), (1.2). Then v satisfies

(2.1) K - (K * υ)υ}x + εf(υ) = 0 in (- 1/2, 1/2),

(2.2) Όx-(K*Ό)υ = Q at x = ± 1/2.

Let w be a solution of the following equation.

(2.3) w x - C K * w ) w = 0 in /,

(2.4) w(0) = c.

Note that υ satisfies (2.3) when ε = 0.

THEOREM 1. Let c be an arbitrary nonnegative number. Then there exsisίs
a unique solution w( ; c, β, y) of (2.3), (2.4), which is nonnegative in I. Moreover

w( ; c, β, y)eC°°([0, oo) x (0, oo) x (0, oo); B)nC°([0, oo) x [0, oo) x [0, oo); β),
where B denotes the Banach space C(I) with sup-norm IHL-

- ;Ay)= f j
Jl

Let H(c'9 /?, y) = \ /(w(x; c, β, y))dx, where w(x; c, β, y) is a solution of

(2.3), (2.4).

THEOREM 2. Suppose that there exist c0 > 0, β0 > 0, y0 > 0 swcλ that

d

°' °' ° (3cJ

77z£« there exists a unique function v(ε, β, y ; c0, j?0, y0)eC1((— ε0, ε0) x

(j^o — εo» )̂ o + εo) x (yo — εo? yo + εo)ί )̂ for sufficiently small ε0 > 0 ^wc/z that
v(ε, β, y ; c0, β0> 7o)W w « solution o/(2.1), (2.2) satisfying t;(0, )S0, y0; c0, j80, y0)

— \Λ)(γ ' c R "V ^rv V * 5 U0' PO' / O /

THEOREM 3. Assume that limsup,,^^ —— < 0. Let q be a solution of the
u

following equation,

{
4t = {<lx — (K * ̂ 4 — (K * ̂ Mx + εff(v)<l> *e A
qx-(K* v)q -(K*q)v = Q at x = ± 1/2,

^f(x, 0) = (/>(x), xe/,

where v is a solution of (2.1), (2.2). Let u be a solution of (1.1) ~ (1.3) with
an initial value w0(x) = φ(x) + ι (x). Se/ p(x, ί) = w(x, ί) — v(x). Suppose that

there exist positive constants C, fc, <50 such that
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\\q( ,t)\\ <Ce-kt\\φ\\ for φeL2(I) with ||φ|| <<50,

where \\ - \\ means \\ - ||L2(/). Then there exist positive constants C", m, δ and a
subset Vγ c: L2(/) containing 0 such that

\\p( ,t)\\<C'e-mt\\φ\\ for φeV, with \\φ\\<δ.

3. Proofs of Theorems 1 and 2

In this section proofs of Theorems 1 and 2 will be given in several
steps. Let w be a solution of (2.3), namely, w satisfies

f Γ1/2 f* 1
(3.1) w x - W eβ(χ-y}w(y)dy- e-β(χ-y)w(y)dy\w = 0 i n / .

Ux J-l/2 J

If we introduce two functions w+, w_ defined by

f l / 2 fx

(3.2) w+ = eβ(χ-y)w(y)dy, w_ = e-β(χ-y)w(y)dy,
Jx J - l / 2

then (3.1) is equivalent to the following system of differential equations with
the boundary conditions.

{
w' = γ(w+ — w_)w

w+ = βw+ — w in 7,

w'_ = — βw_ + w

(3.4) w+(l/2) = 0, w _ ( - l / 2 ) = 0.

We note that the initial value problem of the system (3.3) has a unique solution.

LEMMA 1 Let (w, w+, vv_) be a solution of (3.3) with w φ 0. Then the

following equations hold.

n

(3.5) w+ + w _ -- log |w| = const.
7

w
(3.6) w+ w_ -- = const.

y
PROOF. By the equation (3.3) we have

— ( w+ -f w_ -- log |w| 1 •= j8w+ — w — J?w_ + w -- = 0.
dx\ y ) yw

The equation (3.6) can be proved similarly. Π
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LEMMA 2 (a) Let (w, w+, w_) be a solution of (3.3). If w(0) > 0 and
w_(0)>0, then w(x) > 0 in T, w_(x)>0 in [0,1/2] and w+(x) is bounded
below in I. Moreover w, w+, vv_ are bounded above in I.
(b) Let (w, w + , w _ ) be a solution of (3.3), (3.4). Then w(— x) = w(x),
w+(x) = w _ ( — x) in T. In particular w+(0) = w_(0) and w'(0) = 0. Moreover
w + (x)>0 in I if w(0) > 0.

PROOF, (a) From (3.3) we have

= w(0)exp

Therefore w(x) > 0 in T. From the inequality w'+ < βw+, we know that w+
is bounded above. The rest of the statements can be proved similarly.
(b) From (3.6) we have

_(- 1/2) - (l/y)w(- 1/2) = w+

which implies that w(- 1/2) = w(l/2). Thus from (3.5) we have w+(- 1/2)
= w_(l/2). If we put (w(x), w+(x), vv_(x)) = (w(- w), w_(-x), w + (-x)),
then (w, w+, vv_) satisfies (3.3). The uniqueness of solutions of (3.3) implies
that (w, vv + , vv_)(x) ΞΞ (w, w+, w_)(x). If w(0) > 0 we have w(x) > 0 in
T. Then from (3.2) we know that w+(x) > 0 in /. Π

By Lemma 2, in order to find a nonnegative solution of (3.3), (3.4) it is
sufficient to seek a solution of (3.3) with an initial condition w(0) > 0,
w+(0) = w_(0) > 0 in the interval 7=[0, 1/2] which satisfies the following
boundary condition:

(3.7) w+(l/2) = 0.

LEMMA 3 Let (w, w+, w_) be a solution of (3.3) such that w(0) > 0. If
there exists an x0e J such that W^XQ) = 0, then w"(x0) / 0 unless (w, w + , w_)(x)
= const.

PROOF. Suppose to the contrary that w'(x0) = w"(x0) = 0. Then we have
w+(x0) = w_(x0) and 0w+(w0) - w(x0) = - βw_(x0) + w(x0) = 0. If we put
(w, w+, w_)(x) = (w(x0), (l/j?)w(x0), (l/j?)w(x0)), then (w, v v + , w _ ) satisfies
(3.3). By the uniqueness of solutions of (3.3), we have (w, w + ,w_)(x)
= (w, vv+, vv_)(x). This contradicts the assumption. Π

LEMMA 4. Let (w, w + , w _ ) be a solution of (3.3) such that w(0) > 0,
w+(0) = w_(0) > 0, w+ (0) > 0. Then we have w+(x) > 0 in J.

PROOF. Suppose that there exists an x0e(0, 1/2] such that w+(x0) = 0.
Then it is easy to see that w+(x)<0 in (x0, 1/2]. From Lemma 1
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w+(0)w_(0)-(l/7)w(0) = w + (l/2)w_(l/2)-(l/7)w(l/2), which implies that
w(0) > w(l/2). By the assumption we have w"(0) > 0, which means that
w(x) > w(0) for small x > 0. Hence there is an xleJ such that w(xx) = w(0).
From Lemma 1 we have w+(xί) + w,(xi) = w+(0) + w_(0) and w+(x1)w_(x1)
= w+(0)w_(0). Since w + (0) = w_(0) we have w + (xί) = w^xj and w'(xι) — 0.
By Lemma 3 w'^xj Φ 0, which contradicts the fact that w(0) > w(l/2). Π

LEMMA 5. Let c be an arbitrary nonnegative number. Then there exists
a ξ > 0 such that the solution of (3.3) with an initial value (w, w+,w_)(0)

= (c, ξ, ζ) satisfies (3.7).

PROOF. The case c = 0 is trivial. For c > 0, (w, w+, w_) = (c, c/β, c/β)
satisfies (3.3) and w+(l/2) > 0. On the other hand the solution (w, vv+, w_)
of (3.3) with an initial condition (w, w+ , w_)(0) = (c, 0, 0) satisfies w + (l/2) < 0.
By the standard shooting argument there is a ξ (0 < ξ < β/c) such that the
solution (w, w + , w _ ) of (3.3) with an initial value (c, ξ, ξ) satisfies w+(l/2)

= 0. G

LEMMA 6. Let (w, w + , w _ ) be a solution of (3.3), (3.7). If w(0) > 0,
w+(0) = w_(0) > 0, then we have w'(x) < 0 in (0,1/2]. In particular w+(x)
< w_(x) i/i (0, 1/2].

PROOF. By Lemma 4 w'+(0)<0, which implies that w"(0) < 0. Hence
wr(x) < 0 for small x > 0. Suppose that there exists the smallest x0e J such
that w;(x0) = 0. By Lemma 3 we have w"(x0) > 0. On the other hand we
know that w(l/2) < w(x0) by Lemma 1. Thus there is an x^> x0) such that
w(x t) = w(x0). Following the proof of Lemma 4 we get w'(xx) = 0 and
w"^) ̂  0. This leads to a contradiction. Π

LEMMA 7. Let (w, w+, w_) be a solution of (3.3), (3.7) such that w(0) > 0,

w + (0) = w_(0) > 0. Then w'+(x) < 0 in J.

PROOF. Let x0 be the smallest x, if any, such that w'+(x) = 0. Then
w + (x0)>0. Since w + (l/2) = 0, there must be an x x > x0 such that
w+ίxj = 0, w+ίxj < 0. But this contradicts the fact that w+ίxj = -

LEMMA 8. For a given c > 0, there exists a unique ξ > 0 such that the
solution 0/(3.3) with an initial condition (w, w+, w_)(0) = (c, ξ, ζ) satisfies (3.7).

PROOF. Suppose to the contrary that there exist two solutions (w, w+, w_),
(w, w+, w_) of (3.3) with initial conditions w(0) = w(0) = c > 0, w + (0) = w_(0)
= ξ > ξ = w+(0) = w_(0) which satisfy the boundary conditions w+(l/2)
= w(l/2) = 0. From the assumption ξ>ξ9 we have w"(0) > w"(0), which
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implies that w(x) > w(x) for small x > 0. By Lemma 1 there exist constants

<?ι, cί9 c2, c2 such that

w+ + w_ = cί + (β/γ) log w,

(3 8) , w+ + w_ = Ci + (β/γ) log w,

W + W _ =( l/y )w + C2,

+ w _ = (ί/γ)w + c2.

From the inequality c2 > c2 and (3.8), we obtain w(l/2) < w(l/2). Let x x e J

be the largest x such that w(x) = w(x). We will show that ^+(x1) > w+(x1).
Assume that w+(xί)> w+(x1). Then for xe(x l 5 1/2]

(w+ - w+y = 0(w+ - w+) - (w - w) > β(w+ - w+),

which implies that w+(x) — w + (x) > 0 in (x1} 1/2]. This contradicts w+(l/2)

= w+(l/2) = 0. Hence w+(x1) > \v+(x1). On the other hand at x = x1

(3.9)

From (3.9) we obtain

(cι ~~ £ι)w+ + (w+ — w_)(w+ — w+) = c2 — c2 at x = x x.

Since w+(xi) < w+(xΐ) < w_(X}), we have

(c1 ~ci)w+(x1)>c2 -c2.

On the other hand

This is a contradiction. Π

Combining Lemmas 5 and 8, it is proved that for a given c > 0 there
exists a unique ξ > 0 such that the solution of (3.3) with an initial condition

(c, ξ, ξ) satisfies (3.7). We will write ξ = ξ(c) hereafter. The value ξ also

depends on the parameters /?, y. We will write ξ = ξ(c, β, γ) if necessary.

LEMMA 9. Let (w, w+, w_), (vv, vv+, vv_) be two solutions of (3.3), (3.7)

such that w + (0) = w _ (0) = ξ (c), w + (0) = vv _ (0) = ξ (c) and assume that

w(0) = c > w(0) = c > 0. Then we have ξ(c) > ξ(c).

PROOF. Suppose to the contrary that ξ(c) > ξ(c).

Case(l). ξ(c) = ξ(c)
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As in the proof of Lemma 8 we obtain the equation (3.8). From the

assumption we also have cί > cί9 c2 > c2, which implies that w(l/2) < w(l/2)

and w'+(l/2) < w'+(l/2) < 0. Hence w+(x) > w+(x) for x near 1/2. Let x*

be the largest xe(0, 1/2) such that w + (x) = w+(x). If w(x) > vv(x) in

xe[x*, 1/2] then we have (w + - w+)' > /?(w+ - w+), which implies that

w+ > w+ for xe(x*, 1/2]. This contradicts w + (l/2) = w+(l/2) = 0. Therefore

there is an x2e(x*, 1/2) such that w(x2) = w(x2) and w(x) > w(x) in

(x2, 1/2]. Let y* be the smallest xe(0, 1/2) such that w+(x) = w+(x).

Reasoning similarly as above, there is an x^O, y*) such that w(x^ = w(Xi)

and w(x) > w(x) in [0, xj. At x = x l 9 x2, we have

f w+ + w_ - w+ - w_ = c1 - Ci > 0,

{ w + w _ — w + w _ = c2 — c2 > 0.

From (3.10) we obtain

c2 - c2 = (ct - cί)\v+(x2) + {w + (x2) - w+(x2)} {w + (x2) - w_(x2)}.

Since w+(x2) < w+(x2) < w_(x2) we have

(3.11) c2 - c2 < (Ci - C!)w + (x2).

On the other hand

c2 - c2 = w + ίx^

Hence c2 - c2 - (cl - cl)^+(xl) = (w+(xι) - w+(xx)}

Since w_(x^ > W-ίx^ > w+ίxj > w+(x^ we have

c2 - c2 > (c1 - c1)w+(xί) > (cl - c1)w+(x2)9

which contradicts (3.11).

Case (2). ξ ( c ) > ξ ( c )
By noting that the inequalities cx > cl9 c2> c2 are also valid, this ease

can be treated similarly as in the Case (1). Π

LEMMA 10. The function ξ = ξ(c, /?, 7) is continuous on [0, oo) x [0, oo)

x [0, oo).

PROOF. We consider the case c > 0, β > 0, y > 0. Other cases can be

treated similarly. Fix c0, β0, 7o > ° Let (c/.}> {^«}» {7»} be sequences such

that cn -> c0, ft, -> jS0? 7n -* Vo (« -* °°) Suppose that lim sup^^ ξ(cn, βn, yn) >

ί(c0» ^o^ 7o) Let ^o be a number such that min {c0/00, lim sup^^ ξ(cn9 βn, γn)}
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> ξ0 > ξ(c0, /?0, y0). Consider the solution (w, vv+, w_) of (3.3) with an initial
condition (<?0, £0, £0) and with parameters /?0, y0. If w+(l/2) < 0, there exists
a ξ^ (ξ0 < £ι < c0/βo) such that the solution of (3.3) with an initial condition
(CG> £ι» £ι) satisfies (3.7) (by shooting argument as in Lemma 5). But this
contradicts Lemma 8. If w+(l/2) > 0, the solution (ww, w+, w"_) of (3.3) with
an initial condition (cn9 ξ0, ξ0) and with parameters ft,, yn also satisfies
w+(l/2) > 0 for sufficiently large n. Since limsup,,^ ξ(cn, ft, γn) > £0, there
is a large n such that ξ(cn9 ft,, yn) > ξ0. Then there exists a ξ2 (0 < ξ2 < ξ0)
such that the solution of (3.3) with an initial condition (cn, ξ2, ξ2) and with
parameters ft,, yn (for some fixed large n) satisfies (3.7). This again contradicts
Lemma 8. Thus limsup^^ ξ(cn, ft,, yn) < ξ(cθ9 βθ9 y0). Similarly we can
show that liming ξ(cn, ft, yn) > ξ(c0, β0, y0). Π

The next Proposition combined with the differentiability of solutions of
(3.3) with respect to the initial values and parameters completes the proof of
Theorem 1.

PROPOSITION 1. ξ = ξ(c9 β, y)eC°°([0, oo) x (0, oo) x (0, oo))

PROOF. Fix c0 > 0, β0 > 0, y0 > 0 and define the sets (7, V for small ε > 0
as follows:

17 = {ξ\mϊ(c^y}ev ξ(c, β,y)<ξ< sup(Ctβt7ΪeV ξ(c, β, y)}9

V= {(c, ft y)| \c - c0| < ε, \β - βQ\ < ε, |y - y 0 l < «}-

Lemma 9 guarantees that U is non-empty. The condition imposed on ε is
explained in the course of the proof. First of all ε is taken sufficiently small
so that (ξ, c, ft y)e U x V implies ξ < c/β. Let us define the map T: U x V
-> Ό as follows :

(3.12) T(ξ, c,β,y) = ξ- (l/K)w+(l/2, ξ, c, ft y),

where w+(x, ξ, c, ft y) is a unique solution of (3.3) with an initial condition
(w, w+, w_)(0) = (c, ξ, ξ) and K is a sufficiently large number as explained
below. Note that (w, w+, w_) satisfies (3.7) if and only if T(ξ, c9 ft y) = ξ. We
will show that the map T is a uniform contraction on U. Namely we prove
that there exists a constant k (0 < k < 1) such that

(3.13) I T(ξ, c, ft y) - T(ξ'9 c, ft y)| <k\ξ- ξ'\

for (ξ, c, ft y), (£', c, ft y)eU x V. The inequality (3.13) immediately finishes
the proof of Proposition 1. We will need the following lemma to prove that
the map T is well-defined.

LEMMA 11. w+(l/2, sup(c^y)eK ξ(c, ft y), c, ft y) >0for (ξ, c, ft y)εΰ x K
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PROOF. Suppose that w+(l/2, sup ξ(c, ξ, γ), c, ft y) < 0. Since ξ(c, ft y)
< sup ξ(c, β, y) < c/β, there exists a ξi (sup ξ(c9 β, y) < ξ1 < c/β) such that the
solution of (3.3) with an initial value (c, ξί9 ξj satisfies (3.7). This contradicts
Lemma 8. Π

The continuous dependence of solutions of (3.3) with respect to the initial
values implies that there exists a K > 0 such that

(3.14) w+(l/2, & c9 β, y) - w+(l/2, sup ξ(c9 β, 7), c, β, y)

>-K(supξ(c,β,y)-ξ).

Since w+(l/2, ξ, c, β, y) = w+(l/2, £, c, ft y) - w+(l/2, sup ξ(c, ft 7), c, ft y) +
w+(l/2, sup ξ(c9 ft 7), c, ft 7), (3.14) and Lemma 11 imply that

(3.15) ξ - (l/K)w + (l/2, ξ9 c, ft 7) < sup ξ(c9 ft 7).

Similarly there exists a K > 0 such that

(3.16) inf ξ(c9 ft 7) < ξ - (l/X)w+(l/2, t c9 ft 7).

The inequalities (3.15), (3.16) show that the map T is well-defined. The
inequality (3.13) is a consequence of the following lemma.

LEMMA 12. Assume that (ξ, c, ft 7), (ξ'9 c, ft y)e 17 x 7 0m/ ξ > ξ'.
exist L > M > 0 swcA

- O < w + (l/2, ξ, c, ft 7) - w+(l/2, ζ', c, ft 7) < L({ - ξ1).

PROOF. The right hand side inequality is an immediate consequence of
the continuous dependence of solutions of (3.3) on the initial values. To prove
the other inequality, we will show that there exists an M > 0 such that

(3.17) w+(l/2, ξ + fc, c, ft 7) - w + (l/2, ξ, c, ft 7) > Mh

for (ξ + ft, c, ft 7), (ξ, c, ft 7)6 Ό x K and ft > 0. To show that (3.17) is valid
when ε is sufficiently small, it is sufficient to prove (3.17) in the case

ξ = ξ(cQ9 ft), 7o)> c = co> β = βo> 7 = 7o For brevity we will denote w+(x) for
w+(x, ξ(cθ9 ft>, 7o) + K c0, βo, 7o) and w+(x) for w+(x, ξ(cθ9 β0, 7o)? c0, J80> 7o)

Case (1) w(l/2)>w(l/2)
By Lemma 1, we have

2ξh + ft2

where ξ = ξ(c0, /?0, 70). Since vv+(l/2) = 0 and there exists a K± such that
J^ > w_ > 0, w+(l/2) > (2ξh)/K1 > Mh for some constant M > 0.
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Cose (2) w(l/2) < w(l/2)

To treat this case we will need the following three lemmas.

LEMMA 13. Let x0 be any point such that w(x) = w(x). Then w+(x0)

> w +(*<>)•

PROOF. From Lemma 1, we have

+ + w_ — w+ — vv_ = 2h

+ w _ — w + w _ = 2ξh + h2

at x = x0. From (3.18) we obtain

2Aw+ + (w_ — w+)(w+ — w+) = 2ξh + h2 at x = x0.

Suppose that w+(x0) < w+(x0). Since w+(x0) < w_(x0), we have 2Aw+(x0)

>2ξh + h2. On the other hand 2hw+(x0) < A{w+(x 0) + w+(x0)} < Aw+(0)

+ Aw+(0) = 2ξh + h2. This is a contradiction. Π

LEMMA 14. Let x^ be the smallest x, if any, such that w+(x) — w+(x) =

h/2. Then there exists an I > 0 such that x1 > I for (ξ + A, c, jS, y), (ξ, c, jS, y)e

L7 x K

PROOF. From (3.3) we have

w+(x t) - w+(x t) - {w + (0) - w+(0)} = β\ l (w+ - w + )rfx - Γ (w - w)rfx.
Jo Jo

ΓX1

Since w+ > vv+ in [0, xj, we have (w — vv)dx > A/2. Since there exists
Jo

an L> 0 such that |w — w| < LA, we have LAx: > A/2. Hence x1 > 1/2L. Π

LEMMA 15. Let x*eJ be the largest x such that w(x) = w(x). Then there

exists an M > 0 such that w+(x*) — w+(x*) > MA.

PROOF. By Lemma 13, it is sufficient to treat the case 0<w+(x*)-w+(x*)

< A/2. As in the proof of Lemma 13, we have

2Aw+ + (w_ - w+)(w+ - w+) = 2ξh + h2 at x = x*.

By Lemma 14, 2Aw+(x*) < 2Aw+(/). Put w+ (l) = η. Then for sufficiently

small ε>0, w + (/) < {ξ(cθ9 β0, y0) + f}/2. Hence 2Aw+(x*) < {ξ(c0, β0, y0)

H- η}h. Since there exists an L> 0 such that |w_ — w + | < L, we have

Hence w + (x*) - w + (x*) > min(A/2, (l/L){ξ(c0, β0, 70) — ̂ }^)> which is to be
proved. Π
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Using Lemma 15, the proof of (3.17) in the Case (2) is now

immediate. Since w < w in (x*, 1/2], we have w+(l/2) — w+(l/2) > w + (x*)

— vv+(x*). Thus w + (l/2) — w+(l/2) > Mh. We have completed the proof
of Proposition 1 as well as Theorem 1. Π

REMARK. We assumed in the proof of Proposition 1 that c0 > 0, β0 > 0,

y0 > 0. The case c0 = 0, j50 > 0, y0 > 0 can be treated similarly. We omit
the details.

The proof of Theorem 2 is analogous to the proof of Theorem 2 in
[1]. Therefore we will briefly outline the proof and only some nontrivial
points are explained in detail. Let B denote the Banach space C(T) with
sup-norm || || „. Let us define the operator G: B x B x R + -»B, where

R+ = [0, oo), as follows:

(i;, p,β,γ) = v-
Jo

(3.19) G(υ, p,β,y) = υ-\ (K*υ) vds - p.
Jo

Then the solution w( c) of (2.3), (2.4) satisfies G(w( ; c), c, β, y) = 0. (For
brevity we write w( ; c) for w( ; c, /?, y).) From this equatin we have

fic Γx

(3.20) — (w( c), c,β9γ)h = h-\ {(K* w)/ι + (K* h) w} ds for Λ e B.
3v Jo

r\C*

Put L= — (w( ; c), c, /?, y). We will show the invertibility of L. Since L— I
dv

is a compact operator, it suffices to show that Lh = 0 implies Λ = 0. Suppose

that Lh = 0. Then hεCl(I) and we obtain

(3.21) hx - {(K * w)Λ + (X * fc)w} = 0.

Let us define the operator LB in β with the domain D(LB) as follows:

LB = {vx -(K* w)v - (K * t Jw},,

D(LB) = {veC2(ϊ)\υx-(K*w)v-(K*v)\v = Q at x = ± 1/2}.

It can be shown that Ker LB = span \ — > . To prove this we need the
[dc }

following Proposition.

PROPOSITION 2. There exists at most one φ which satisfies the following

equations.

(K*φ)w = 0 in 7,
( ]

where w is a solution of (2.3), (2.4).
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PROOF. We will transform (3.22) into equivalent system of differential

equations as in the proof of Theorem 1.

(3.23) < w'+ = j8w+ - φ in /,

(3.24) φ(0) = 1, w+(l/2) = w_(- 1/2) = 0.

Here w+, w_ are defined in (3.2) and

f l / 2 _ _ f* _ _
w+ = I e^x y^φ(y)dy, vv_ = e ^x y^φ(y)dy.

Jx J - l /2

Recall that (w, vv+, vv_) is a solution of (3.3), (3.4). First we state two lemmas.

LEMMA 16. Let (φ, w+, w _ , w, w+, vv_) be a solution of (3.3), (3.23).
Then the next equations hold.

<P

ί
w + w _ + w + w _ = const,

y

βφ
w+ + w_ = const.

yw

The proof is straightforward from (3.3), (3.23).

LEMMA 17. Let φ be a solution of (3.22). Then φ(x) = φ(— x) in I. In
particular φ'(0) = 0 and w+(0) = vvL(O).

The proof of this lemma can be similarly done as Lemma 2 using (3.5), (3.6),

(3.25).

We will continue the proof of Proposition 2. Let φ, φ* be two solutions

of (3.22). Put v = φ — φ*, w+ = vv+ — w+, w_ = w_ — w _ . Then v, w + ,

w_ satisfy

v' = y(w+ — w_)ι; + y(vv+ — w_)w,

To prove that υ = 0, it is sufficient to show that w+(0) (=w_(0)) = 0.
Suppose to the contrary that w+ (0)^=0.

Case (1). w+(0)>0

In this case we have ι?(0) = ι;'(0) = 0, ι;"(0) > 0. Hence υ(x) > 0 for small
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x > 0. By Lemma 16 we obtain

- 2w + (0)w+(0) > 0.

Since w+(l/2) = w+(l/2) = 0, we know that υ(l/2) < 0. Let x0e(0, 1/2) be
the largest x such that Ό(X) = 0. By Lemma 16 we obtain

w+(x0) + vv_(x0) = 2w+(0),

w+(x0)w_(x0) + w+(x0)w_(*o) = 2w + (0)w+(0).

From (3.27) we have

(3.28) 2w + (0)w + (x0) + w + (x0){w_(x0) - w + (x0)} = 2w+(0)w+(0).

Suppose that w+(x0)>0. Since v < 0 in (x0, 1/2], we have w'+ >βw+ in
(x0, 1/2]. Then we know that w + > 0 in (x0, 1/2], which contradicts

w + (l/2) = 0. Thus w + (x0) < 0. Since w_(x0) > w+(x0) and w + (x0) < w+(0),
the equation (3.28) can not hold.

Case (2) w+(0)<0
This case can be treated similarly. Π

δw
It is easy to see that — eKerLβ. Proposition 2 shows that the kernel

dc
of LB is one-dimensional. From (3.21), there exists an leR such that

δw
h = I — . On the other hand it is easy to see that

dc

d\v [x ί/ δn
T-" S f e * i "
dc Jo IV dc dc

Hence L — =1. Since Lh = IL\ — = /, we have proved that Lh = Q
\dc J \dc J

implies h = 0. This shows that Oep(L), as desired. By the implicit function
theorem there exists a map ReC2(U',B), where U is a neighborhood of
(c, jβ, γ) in B x R2

+ , such that

G(R(p, β, y), p, ft y) = 0 for (p, jS5 y) 6 L7, R(c, ft y) = w( - c, ft y).

Using the map R, we can transform (2.1), (2.2) into the following boundary
value problem.

(329) *x , 7 ) ) = 0 in/,

|px = 0 a t x = ± 1/2.

When c0, j?0, y0 satisfy the assumption of Theorem 2, standard Lyapunov-
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Schmidt method leads to the existence of a solution of (3.29), say p(x; ε, β, γ),

satisfying p(x; 0, 00, y0) = <V Defining v(ε, β, y; c0, 00, y0)(x) = R(p( ; ε, /?, y),
A y)(x), we get a solution of the original equation (2.1), (2.2).

4. Proof of Theorem 3

In this section, we consider the stability of stationary solutions whose
existence has been already proved in Theorem 2. First, we will give the next
general proposition.

PROPOSITION 3. Let B be a Banach space with the norm \\ - \\ and {S(ί)}f>o»
{^(0}ί>o be (C ̂ -semigroups in B. Moreover, assume that there are sets V[
and V2 in B with the properties below.
(i) OePί c V2 and S(t)Vt c= V2 for f > 0.
(ii) There exist positive constants C, fe, <50 such that

\\U(t)φ\\ <Ce~kt\\φ\\ for φeB with \\φ\\<δ0.

(iii) There exist continuous functions fc^ί), k2(t) for t > 0 and constants α > 1,
<50 > 0 such that limsup^^ k^t) < 1, k2(t) > 0 for t > 0 and

for φεV2 with \\φ\\ < δ0.
Then, there exist positive constants m, <5, C' such that

\\S(t)φ\\<C'e-mt\\φ\\

for φeV± with \\φ\\ < δ.

PROOF. From the assumptions (ii) and (iii). we obtain

(4.1) || S(t)φ || < (Ce~kt + k, (t) + k2(t) || φ \Γ ^ \\φ \\

for φeV2 with | |</> | |<<5 0 . Since limsup^^ (Ce~kt + k^t)) < 1, there exist

0 < r0 < 1 and ί0 > 0 such that (Ce~kt -f fe^ί)) < r0 f°Γ t ^ to> which implies
that there exist δ > 0 and 0 < λ < 1 so that

(4.2) \\S(t0)φ\\£λ\\φ\\

for φ e V2 with || 0 1| < δ. Let φ e K with || φ \\ < δ. Then S(t0)φ e V2 and (4.2)
leads to || S(t0)φ \\ < δ, which implies that || S(2t0)φ \\ < λ2 \\ φ \\ . Thus, iterating
this procedure, we have

(4.3) \\S(nt0)φ\\£λ*\\φ\\
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for φeV[ with || φ \\ < δ. The inequality (4.3) gives the proof of this
proposition. Π

We would like to apply this proposition to our problems. Let υ be a
solution of (2.1), (2.2) and S(t)φ, U(t)φ be solutions p, q of the following
equations, respectively :

ί Λ = JS(P)X + (F(υ + p) - F(v)), xe/,

(4.4) <J S (P) = 0, xedl,

{ p(x, 0) = φ(x)9 xe/,

and

(4.5)

xe/,

where Js(p) = px — (K*v)p — (K*p)v — (K*p)p and Ju(q) = qx — (K*t;)g
— (K*g)ι; and F(u) = εf(u). By the general existence theorem, it is easily
shown that {S(t)}t>0 and {l/(ί)}f>o are (C0)-semigroups. Then, the assumption
(ii) in Proposition 3 means that the stationary solution v of (1.1), (1.2) is stable
in the linearized sense, while we have not yet been able to analyze the spectrum
of the eigenvalue problem of the linearized equation of (1.1), (1.2) with respect
to the stationary solutions. In the rest of this section, we show that S(t) and
U(i) defined by (4.4), (4.5) satisfy the assumptions (i), (iii) in Proposition 3
under suitable conditions.

F(u)
Throughout this section, we assume limsup,,^ — — < 0, which gives the

tr
boundedness of the solution of (1.1) - (1.3) (Ei[l]). Let B = L2(I) with the
usual ίΛnorm, say || ||, and ^ = {φ e B ft L°° (I)\ H φ l L < Lj for arbitrarily

fixed L! > 0. Then, there exists L2(> L^ > 0 such that | |S(ί)0lloo ^ L2 for
any t >0 and φeV^. So that we define V2 = {φeJ3nL°°(/)| | |φ| |oo ^^2} and
(i) holds.

PROPOSITION 4. S(t) and U(t) satisfy (iii).

PROOF. First, we show the following lemma.

LEMMA 18. Let φeV^ in (4.4). Then, there exist C > 0 and M > 0 such
that

(4.6) \\p( , t ) \ \ < C e M t \ \ φ \ \ 9

(4.7) Γ \\Px(',s)\\2ds<CeMt\\φ\\\
Jo



i'\\p(;s)\\2

a

Jo
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(4.8)

PROOF. From (4.4), we have

^y l lp( , f ) H 2 = I P. pdx
2dt J,

= \ Js(p)x pdx + \ (F(p + v) - F(v)) pdx
J/ Jl

= - I Js(p)-Pxdx + f (FL3(p + v) - FLl(v)) pdx + L3 ί p2dx,
Jl Jl Jl

where FL3(u) = F(u) — L3u. Since pε V29 we can take L3 so that F'(u) < L3 for
any u > 0. Hence, FL3 is monotone decreasing and so (FL3(p + v) — FL3(v))-p
< 0, which leads to

P

2dx.2<- f Js(p) Pxdx +
Jj

Here, - Js(p)-pxdx= - p2dx + Hl9 where H ί = (K*(p + v))-p pxdx

+ (K'p)'vpxdx and so H1 < C, \\p\\ - \\px\\ + H^- \\K*p\\ ||p,|| for some
Ji

Cl >0. | |X*p| | is estimated by

ί Γ / Γ \2 1 1/2

\\K*p\\<\ K(x-y) p(y)dx dx\
I J / V J /

\P(y)\2dy)dx

So that we have

for some C2 > 0 and C3 > 0. Thus, it follows that
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which gives (4.6) and (4.7). The inequality (4.8) holds from (4.6), (4.7) and the

relation || p \\ „ < C4( || px \\ + \\p\\) for some C4 > 0. Π

Assume φ e ̂  . We note that || p || „ < L2 holds. Let &r = Ju(r)x + F'(υ)r

for reD(J^), ΛΓ(r) = F(v + r) - F(v) - F'(v)r and G(r) = (K*r) r, where D(&)

= {re#2(/)|JM(r) = 0 on dl}. Then, £/(£)</> is represented by V(t)φ = <?*φ,

where <f* is the semigroup generated by 5f . Let w(x, t) = p(x, t) — q(x, t). w

satisfies

- G(p), + N(p), ί > 0, xe/,

(4.9) <J"(w) = G(p), xeδ/,

^ w(x, 0) = 0, xεl.

Then, we have

(4.10) |
2 at

= ί (^w) wdx+ ί {-
Jj J/

The first term in the right hand side of (4.10) is (JS?w) wdx = J"(w), wdx

ί
J/ J/

Fr(ι;) w2dx, and we have

I J"(w), wdx = Jtt(w) w|w - I JM(w) wxdx

= G(p) w|w- ||wj|2 + (K*ι;) w w xdx+ (X * w) v - wxdx.
J/ J/

So

r
;G(P) W | M - H W ;ί/"<

for some CΊ > 0, which shows from (4.10) that

1 d 2 l 2 2
2dt 2 x ~ l dl x

Here, the inequality

(4.12) H w l L :

leads to

1| G(p) || „, || w || + C21| G(p) || β || w ||1
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< C2 1| G(p) || β 1| w || + - (C2 \\ G(p) \\ „ - 1| w ||

for some C2 and C3 > 0. The third inequality follows from the relation
α4/3 β4

aβ < - + — for α > 0, β > 0. Hence we see from (4.11) that
(4/3) 4

(4.13) ~ | |w||2 + - ||wx | |
2 < C, | |w||2 + B(t)\\ w||2/3,

2dt 4

where B(t) = C4{(||G(p)||00 + ||G(p)J| + | |iV(p)||)| |w||1 / 3 -f ||G(p)||4/3} for some
C4 > 0. The inequality (4.13) shows

II w(ί)||2 < 2 e2Cl(t~s)'B(s)' ||w(s)||2/3</s
Jo

and so

(4.14) || w(ί)||4/3 < 2 Γ e2Cί(t-s)-B(s)ds < 2e2Cίt Γ B(s)ds.
Jo Jo

LEMMA 19. B(s) ds < Cem \\ φ \\2.
Jo

PROOF. Since || w ||1/3 < C for some C > 0, we have

Γ B(s)ds < C Γ {|| G(p) ||^ + || G(p), || + || N(p) ||} + C Γ || G(p) ||4/3 ds
Jo Jo Jo

for some C > 0. First, we obtain from (4.8),

(4.15) Γ l | G ( p ) l l o o < f a ^ H a l l o o ' \ \\P(s)\\2

aods<CeMt\\φ\\2

Jo Jo

for some C > 0 and M > 0.

ΓJo
Next, we shall estimate || G(p)x \\ ds. It follows that

)o

and \\(K*p)x p\\2= I \(K*p)x p\2dx. Since \(K*p)x\ < C l l p I L holds for

f J/

some C>0, \(K*p)x p\2dx < C||p||^ ||p||2 for some C > 0. So we have
J/
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from (4.8)

Γ \\(K*p)x p\\ds<C Γ ||PIL | |pNs<C' Γ \\p\\l ds<C"eMt\\φ\\
Jo Jo Jo

for some C, C and C" > 0. Similarly, we obtain from (4.6), (4.7)

\\Px\\dsΓ ||(K*p).pJ|Λ«s
Jo

at \ l / 2

\\px\\2ds) <C"eMt\\φ\\
3 /

2

for some C, C', C" and M, M' > 0. Thus, it follows that

(4.16) Γ \\G(p)x\\ds<CeMt\\φ\\2

Jo

for some C and M > 0.

Jo
The estimation of \\N(p)\\ds is as follows. Since \N(p)\ < C\p\2 for

Jo
some C > 0, we have from (4.8),

(4.17) Γ \ \ N ( p ) \ \ d s £ C Γ | |p 2 N5<C Γ ||p||^ώ < C'eMt\\φ\\2

Jo Jo Jo

for some C' and M > 0.

Finally, we give the estimate of \\G(p)\\^ ds. From (4.8),
Jo

(4.18) Γ \\G(p)\\^ds < \\K\W Γ (\\p\\W3 ds
Jo Jo

^C supo^^llpίs)!!2^. Γ \\p(s)\\lds<Cem\\φ\\2

Jo

holds for some C, C' and M > 0. Thus, (4.15) ~ (4.18) gives the proof of this

lemma. Π

The inequality (4.14) and Lemma 19 leads to the estimate of

so that we have

(4.19) | |w(ί)| |<Cβ

for some C and M > 0 and (iii) is satisfied. Π
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